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Abstract: Immunogenic cell death (ICD) is a type of cell death that plays a pivotal role in immunity. Recent studies 
have identified the critical role of ICD in glioma treatment. This study aimed to use ICD-associated differentially ex-
pressed genes (ICD-DEGs) to predict survival of glioma patients. We investigated the relationship between clinical 
prognosis and the date-to-clinical prognosis of 1,721 glioma patients by examining the expression, methylation, and 
mutation status of ICD-related genes (IRGs) in these patients. Our prediction of survival in glioma patients was based 
on three risk genes, and we explored the association between these genes and clinical outcomes. Additionally, IRG 
expression was used to stratify glioma patients. We further examined the relationship among the three subgroups 
in terms of immune microenvironment heterogeneity and immunotherapy response. In addition, this study also 
included analyses of histograms and sensitivity to antitumor drugs. The expression of these genes was externally 
validated by RT-qPCR, Western blot (WB), and immunohistochemistry (IHC) in glioma and normal brain tissue. Our 
findings reveal that most IRGs are overexpressed in glioma tumor tissues, and this high expression was confirmed 
through histological validation. We successfully developed predictive models for three prognostic genes associated 
with ICD. These models not only predict survival in glioma but also correlate with the tumor’s immune microenviron-
ment. Finally, using consensus clustering, we identified three ICD-associated subtypes. Notably, patients with the 
C3 subtype showed high levels of immune cell infiltration, whereas those with the C1 subtype exhibited lower levels 
of immune cell infiltration. We successfully developed an innovative IRG-based systematic approach for evaluating 
glioma patients. This stratification in experimental studies opens new avenues for prognosis and assessing im-
munotherapy responses in glioma patients. Our study demonstrates the effectiveness of this approach in treating 
glioma, potentially paving the way for more promising and effective therapeutic strategies in the future.
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Introduction

Glioma, a common cancer in children and ado-
lescents, is thought to originate from glial pro-
genitor or stem cells [1]. However, the exact 
origin of most pediatric gliomas remains elu-
sive. Pediatric gliomas exhibit distinct histologi-
cal, molecular, and clinical features, emerging 
from specific cell populations vulnerable to 
oncogenic events during particular develop-
mental phases of the central nervous system 
(CNS) [2]. Standard treatments for glioma 

include observation, surgery, chemotherapy, 
and radiation therapy [3]. Throughout the past 
few decades, significant advancements in glio-
ma treatment have enhanced surgical proce-
dures. However, due to the nature of the cells, 
the treatment of gliomas presents significant 
difficulties [4-6]. Recent biomarker discoveries 
have improved cancer patient survival and tar-
geted antitumor treatment [5, 7]. Despite the 
discovery of a number of predictive biomarkers, 
such as lncRNA FOXD1-AS1 [8] and hemody-
namic alterations, the prognosis for patients 
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with high-grade gliomas is frequently still poor 
[9]. Consequently, developing more accurate 
predictive models and cellular targets for glio-
mas is critically important. This represents a 
key area for drug research and development.

ICD is a novel kind of regulatory cell death that 
can trigger adaptive immune responses. 
Numerous studies have thoroughly investigat-
ed the concept of immunostimulatory death 
[10, 11]. Owing to the heterogeneity of tumors, 
different tumor types have variable responses 
to immunotherapy. Tumors less responsive to 
immunotherapy are often referred to as “cold 
tumors”, while those responsive are termed 
“hot tumors”. Most researchers have studied 
how to convert cold tumors into hot tumors. 
Several recent studies have emphasized the 
significance of ICD in cancer progression and 
immunotherapy [12-14]. Ahmed et al. highlight-
ed that ICD could initiate anti-cancer immune 
responses [15]. Nevertheless, the specific role 
of ICD in gliomas remains unclear. Further 
patient-based research is necessary to explore 
the potential of ICD in glioma treatment. 
Specifically, it would be extremely beneficial to 
identify biomarkers that can classify patients.

In this study, we analyzed mRNA profiles and 
clinical data of glioma patients from public 
databases. We established a prognostic gene 
signature based on ICD-related differentially 
expressed genes (ICD-DEGs) using data from 
The Cancer Genome Atlas (TCGA) group and 
validated its predictive efficacy in the Chinese 
Glioma Genome Atlas (CGGA) group. A clinical 
treatment-guiding model was developed to 
determine the prognosis of glioma patients. 
Finally, this model was validated for its ability to 
predict glioma characteristics and employed 
functional enrichment analysis to identify 
potential mechanisms of action. These insights 
could help clinicians devise more targeted and 
effective treatment strategies.

Materials and methods

Data collection

Data acquisition and analysis processes are 
illustrated in Supplementary Figure 1. TCGA-
Lower grade glioma (TCGA-LGG) and TCGA-
Glioblastoma (TCGA-GBM) pairs (n = 703) were 
obtained from TCGA (https://portal.gdc.cancer.
GOv). For validation, patient biological data 

were standardized by converting expression 
profiles into transcript values per kilobase. 
Analyses were conducted using R programming 
language. Gencode (version 26) GTF files for 
mRNA annotation and differentiation were 
retrieved from Ensemble (http://asia.ensembl.
org). Additionally, clinical information including 
sex, age, clinical stage, and survival was down-
loaded from the TCGA data portal. Patients 
with survival time under 30 days were exclud-
ed. Data normalization employed the “limma” 
package [16]. The “Deseq2” R package was 
then used for variance analysis (Supplementary 
Tables 1 and 2). 

Identification of differentially expressed genes

Differentially expressed genes (DEGs) in the 
TCGA dataset were identified by comparing 
mRNA expression of 34 IRGs across tissue 
types. The message on the specimen source 
(TCGA-LGG or TCGA-GBM) was included as a 
covariate in this analysis. IRGs meeting the cri-
teria (P < 0.05, fdr < 0.05 and |log FC| for 
genes > 1) were selected for further analysis.

Gene correlation analysis and functional en-
richment analysis

Protein-protein interactions among DEGs were 
analyzed using the STRING database [17]. 
Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analyses 
were carried out in R software using Cluster 
Profiler [18] for the functional annotation of dif-
ferentially expressed genomes to elucidate 
pathways and biological effects among the vari-
ous groups of signaling ICDs during the investi-
gation. GO and the KEGG route was evaluated 
using the R software’s “Cluster Profiler” tool. 
GO utilized the q-value and p-value along with 
KEGG abundance analysis.

Construction and identification of ICD related 
signature

Univariate Cox regression analysis in the TCGA 
dataset identified genes significantly linked to 
overall survival (OS) based on IRGs. The predic-
tive power of IRGs was evaluated using Cox 
regression analysis. To refine ICD-associated 
gene profiles, Venn diagrams identified genes 
shared between clinically significant genes and 
DEGs. These overlapping genes were then ana-
lyzed using LASSO Cox regression analysis via 
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the Glmnet software [19]. The entire TCGA glio-
ma patient cohort served as the training group, 
while the CGGA glioma patients (n = 242) con-
stituted the test group. We stratified the train-
ing group into two groups based on their medi-
an risk-scores for determination of prognostic 
risk-scores for immunogenic mortality.

Differences in OS between these two groups 
were investigated. Kaplan-Meier analysis (KMA) 
was utilized to compare OS times across these 
groups. Additionally, DEG-based Principal Com- 
ponent Analysis (PCA) was performed using a 
statistical package, and normalization of each 
DEG associated with immunogenic mortality 
was conducted in the test group. The model’s 
validation was carried out using the test group, 
with individual patient risk-scores calculated as 
follows: Risk-score = (0.00019 * BAX expres-
sion level + 0.299 * CASP8 expression level + 
0.0377 * MYD88 expression level).

Consensus clustering analysis of IRGs

We conducted unsupervised consensus clus-
tering analysis using the “Consensus Cluster- 
Plus” R package. To validate our classification’s 
accuracy, 1000 replications were performed, 
categorizing patients into various molecular 
subtypes as per the CRG [20]. We next applied 
KMA to calculate survival differences across 
these subtypes.

Correlation of ICD related signature, genotypes 
and TME

For the purpose of evaluating percentage in  
23 glioma immune cell subpopulations, the 
CIBERSORT was used. The amount of immune 
cell inflammation in TME of glioma patients was 
examined using the single sample gene set 
enrichment analysis (ssGSEA) algorithm [21, 
22]. Additionally, the “ESTIMATE” software was 
employed to evaluate immune and tumor purity 
scores [23, 24].

Mutation single nucleotide polymorphism 
(SNP) and copy number variation (CNV) analy-
sis

Glioma SNP data were analyzed using the Map 
Toolkit [25]. Waterfall plots featuring the top 
ten genes from Section 2.12 illustrated muta-
tions in the top 20 genes, facilitating the explo-
ration of changes in SNP presentation between 

two groups. Tumor mutational burden (TMB), 
defined as the sum of all somatic mutations per 
megabase in each tumor sample, was calcu-
lated by counting the mutations present in the 
sample. The TMB in the high/low-risk groups 
was then statistically evaluated. For CNV analy-
sis, CNV files from the database were first 
marked and imported into the GenePattern 
software, followed by visualization using the 
Map Toolkit [25].

Establishment and validation of a nomogram 
and scoring system

Graphs of prediction curves were created using 
the “rms” software [26]. Receiver Operating 
Characteristic (ROC) curves were used to evalu-
ate histograms over time. Calibration curves 
were used to display the differences between 
projected and actual outcomes.

Drug sensitivity analysis

Drug half-maximum inhibitory concentrations 
(IC50) were predicted using a correlation ridge 
regression model with the pRRophetic algo-
rithm [27]. This model used the TCGA cohort as 
the evaluation data for expression profiles and 
the Genomics of Drug Sensitivity in Cancer 
(GDSC) cell line as the training data (https://
www.cancerrxgene.org/). The IC50 values of 
various regularly used medications from  
the TCGA dataset were predicted in this 
research via studying the relationship between 
lncRNA expression and the IC50 values of 
these medicines and cisplatin using spearman 
correlation.

Cell culture

U251 and ln229 cell lines were acquired from 
Procell Life Science & Technology Corporation, 
located in Wuhan, China. These cell lines were 
cultured in Dulbecco’s Modified Eagle’s Medium 
(DMEM), sourced from HyClone, Logan, USA, 
supplemented with 10% fetal bovine serum 
(FBS) from Invitrogen, Carlsbad, CA, USA. Cells 
were maintained at 37°C in a 5% CO2 atmo-
sphere. For experimental analysis, cells were 
used in the logarithmic phase of growth.

Cell transfection

Lentivirus STMN1-shRNA was acquired from 
Genechem (Shanghai, China). The shRNA se- 
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quences were as follows: shRNA sequence 1: 
5’-TGGCATCTGGAGATGGCAATA-3’; shRNA se- 
quence 2: 5’-CCGCGTGGTTGCCCTCTTCTA-3’. 
U251 and ln229 cells were seeded at a density 
of 3-5×10^4 cells/ml into 6-well plates and cul-
tured at 37°C for 16-24 hours until the cell con-
fluence reached 30-50%. The cells were main-
tained under the same conditions until the 
desired confluence was achieved. According to 
provided instructions, lentivirus and infection 
enhancer were added to the culture. After 16 
hours, the medium was replaced, and the cells 
were incubated further.

Collection of clinical samples

We obtained clinical samples comprising tis-
sues from 10 glioma patients and 10 normal 
brain tissues obtained post-surgery for severe 
craniocerebral trauma between January 2021 
and October 2022 at Longgang District Ma- 
ternity & Child Healthcare Hospital, Shenzhen. 
The human tissues or specimens used in this 
study were obtained from previous medical 
records, not collected specifically for this study, 
and, in accordance with national medical ethi-
cal standards, can be exempt from informed 
consent. The tissues or specimens were used 
only for this study and not for other research. 
Excess tissues or specimens were returned at 
the end of the study and research results were 
reviewed to ensure confidentiality of personal 
information about the source of the tissues  
or specimens. The study was approved by  
the Ethics Committee of Shenzhen Longgang 
District Maternal and Child Hospital with the 
ethical approval number LGFYYXLLL-2022-032.

Cell viability analysis

Cells were plated in 96-well plates at a density 
of 2×103 cells per well in DMEM. Post-treatment, 
cells were cultured for 24 and 48 h. Ten micro-
liters of Cell Counting Kit-8 (CCK-8) reagent 
(Glpbio, California, USA) was added to each well 
and incubated at 37°C for 1 h. The absorbance 
of each well was measured at 450 nm with a 
microplate reader.

Wound healing assay

Cells were seeded in 6-well plates at a density 
of 15×104 cells/ml. Upon reaching 80-90% 
confluence, a 200 µl pipette tip was used to 
create a scratch, followed by rinsing with PBS 

and incubation in DMEM without FBS. Cell 
migration in the wound area was photographed 
under a microscope at 24 h and 48 h. Wound 
healing was measured on the images, and the 
migration area was calculated by the length of 
the original wound minus the length of the 
wound during healing using ImageJ software.

Invasion assay

For the invasion study, chamber inserts were 
coated with 40 μl of BD Matrigel (Corning, USA) 
and allowed to solidify at 37°C for 1 hour. 
Approximately 5×104 cells were resuspended in 
500 µl FBS-free DMEM and plated into the top 
chamber of the insert, which was then placed 
into a 24-well plate containing 750 µl FBS-
containing DMEM. After 24 hours, migrated 
cells were fixed with 4% paraformaldehyde, 
stained with 0.05% crystal violet, and counted 
under a microscope.

Western blotting method

Post-treatment, the cells of each group were 
collected, washed twice with PBS, and lysed in 
RIPA buffer with phosphatase inhibitors in an 
ice water bath for 30 minutes. To assist in lysis, 
lysate was subject to an ultrasonic cell frag-
mentation apparatus. Protein concentration 
was detected by the BCA method after centrifu-
gation. The denatured proteins were separated 
by SDS-PAGE (60 µg per well), transferred to 
PVDF membranes, and blocked in 5% skim milk 
powder for 2 hours. Membranes were incubat-
ed overnight at 4°C with primary antibodies, 
washed with 1× PBST 3 times, followed by a  
2 h incubation with a secondary antibody 
(Beyotime) at room temperature. Membranes 
were washed with 1× PBST 3 times and visual-
ized using an enhanced chemiluminescence kit 
(Beyotime, Shanghai, China). Protein bands 
were analyzed using ImageJ software. GAPDH 
was used as a reference for normalization.

Quantitative reverse transcription polymerase 
chain reaction (RT-qPCR)

Total RNA was extracted from tissues using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 
Complementary DNA was synthesized using 
PrimeScript RT kits (Takara, Osaka, Japan) fol-
lowing the manufacturer’s protocol. RT-qPCR 
was performed with SYBR Green assay (Takara) 
on an ABI 7500 system (Applied Biosystems, 
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Waltham, USA). Primer sequences are detailed 
in Supplementary Table 3.

Human protein atlas database and IHC valida-
tion

Protein expression levels of TCRs-related hall-
mark genes in glioma samples were analyzed 
using the Human Protein Atlas online database 
(https://www.proteinatlas.org/) with integrate-
domics techniques [28].

Immunohistochemistry

Glioma specimens of varying grades and nor-
mal brain tissues were fixed in formalin, embed-
ded in paraffin, and sectioned into 4-micron 
slices. These sections underwent deparaf-
finization in citrate buffer, dehydration, pre-
treatment for antigen recovery, and quenching 
of endogenous peroxidase activity using 3% 
hydrogen peroxide (H2O2). Non-specific antigen-
ic sites were blocked with 10% normal goat 
serum and sections were incubated overnight 
at 4°C with BAX, CASP8, and MYD88 antibod-
ies (dilutions 1:100 from Abcam and 1:500 
from CST, respectively). Sections were then 
incubated with secondary antibody (goat anti-
rabbit IgG, 1:5000, Proteintech) and stained 
with diaminobenzidine hydrochloride (DAB) and 
hematoxylin. IHC images were captured, and 
the fraction of protein expression was quanti-
fied using Image J.

Statistical analysis

The independent predictive power of the sug-
gested model was examined using a Cox 
regression model. All statistical analyses were 
conducted using R version 4.1.0. Significant 
differences between different groups are 
denoted as follows: *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001. The threshold 
for statistical significance was set at P < 0.05.

Results

Genetic changes and presentation of ICD-
related genes in glioma

Our comprehensive analytical flow is presented 
in Supplementary Figure 1. Most ICDs genes, 
including ATG5, BAX, CALR, CASP1, CASP8, 
CD4, CD8B, CXCR3, EIF2AK3, HMGB1, IFNB1, 
IFNG, IFNGR1, IL10, IL17A, IL1R1, LY96, 
MYD88, NT5E, PDIA3, PRF1, and TNF, were 

found to be overexpressed in gliomas (Figure 
1A). At the genomic level, 145 (14.74%) of the 
984 samples revealed regulatory mutations 
associated with ICD, with TP53 showing the 
highest frequency of mutations (Figure 1B, 1C). 
We then explored the connections between 
IRGs (Figure 1F) and used the STRING platform 
to investigate potential bio-functional networks 
linked to ICD regulators (Figure 1D). The 
Cytoscape plug-in was utilized to analyze the 
regulatory networks of HUB genes (Figure 1E). 
Correlations were predicted between genes 
within these network maps, and pathways 
enriched in alphabetical similarity were ana-
lyzed. We observed that processes such as 
interleukin-1 signaling, macrophage differentia-
tion, antigen processing and presentation,  
lipids and atherosclerosis, and most ICD-
associated prognostic genes were enriched for 
positive regulation of these processes (Figure 
1G, 1H). Thus, it was demonstrated that the 
expression levels of ICD-related genes corre-
lated with glioma, suggesting their potential 
representation of various patient charac- 
teristics.

Association between prognosis and immuno-
genic apoptosis-associated degs in glioma

We identified 15 prognostically associated glio-
ma ICD regulators by integrating 34 ICD-related 
differentially expressed genes from our study 
with genes linked to prognosis (Figure 2A).  
We found that the expression levels of most 
prognosis-related ICD regulators, including 
BAX, CASP1, CASP8, CALR, CD4, CD8B, CXCR3, 
EIF2AK3, IFNB1, IFNG, IL10, IL1R1, LY96, 
MYD88, and PDIA3, were associated with glio-
ma (Figure 2B). Additional univariate analysis 
revealed 15 prognosis-related genes to be 
associated with poor OS in glioblastoma (Figure 
2C). Through gene prognostic network maps, 
we also discovered co-expression interactions 
among 15 ICD regulators linking to glioma prog-
nosis, which influenced glioma formation and 
progression through their reciprocal regulatory 
effects (Figure 2D, 2E).

Construction of an immunogenic apoptosis-
related gene signature model

We aimed to construct predictive models by 
analyzing the expression profiles of 15 genes 
using LASSO Cox regression. Three genes we- 
re characterized based on the optimal cutoff 
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Figure 1. Characterization and differences of ICD-associated regulators in gliomas. A: Heat map showed 24 ICD 
gene expression profiles in normal and glioma samples from the TCGA database. B: Mutation profiles of 984 glioma 
patients from the TCGA-GBM cohort and TCGA-LGG. Each waterfall plot represents mutational information for each 
focal death-associated regulator. Corresponding colors are annotated at the bottom to indicate the different muta-
tion types. The top bar graph shows the mutation burden. The correct numbers represent the mutation frequencies. 
C: Shows the different classifications of ICD-associated regulators and CNV frequencies, respectively. The height of 
the bars shows the proportion of different types. D, E: Collection of potential biological interactions of ICD-associated 
regulators from the STRING platform. F: The plot of correlation analysis between ICD-associated genes. Indicates P < 
0.05, *indicates P < 0.001. G, H: Gene function enrichment analysis of ICD-associated genes by Cytoscape plug-in.

Figure 2. A: Wayne plot of ICD-associated differential 
genes and glioma prognosis-associated genes taking 
intersection. B: Heat map showing the expression pro-
files of 15 ICD-associated prognostic genes in normal 
and glioma samples from TCGA database. C: Univari-
ate Cox analysis to assess the predictive value of ICD 
genes in terms of OS. D: Prognostic network diagram of 
ICD-associated genes, where nodes represent different 
The color of the left semicircle illustrates the gene attri-
butes, the color of the right circle describes the risk at-
tributes of the gene, purple represents high risk, green 
represents low risk, the line between the nodes repre-
sents the existence of co-expression relationship, the 
pink line represents positive correlation, the blue line 
represents negative correlation. E: Correlation analysis 
between 15 glioma ICD-associated prognostic genes, 
red represents positive correlation, the thicker the line 
represents correlation The more comprehensive the 
line, the stronger the correlation.
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value, where high expression was associated 
with unfavorable outcomes in our previous 
analysis (all adjusted P * 0.05, Figure 3A, 3B). 
The risk scores were calculated as follows: 
Risk-core = (0.00019 * expression levels of 
BAX, CASP8, and MYD88 + 0.299 * expression 
levels of BAX). Patients were stratified into 
high-risk (n = 315) and low-risk (n = 316) groups 
based on the median critical value. In the TCGA 
cohort, high-risk patients exhibited a higher 
mortality rate, demonstrating that the overall 
survival (OS) of the high-risk group was signifi-
cantly lower than that of the low-risk group 
(Figure 3C, P < 0.001). Surprisingly, progres-
sion-free survival (PFS) was also significantly 
lower in the high-risk group compared to the 
low-risk group (Figure 3E). ROC analysis of the 
risk-score yielded areas under the curve (AUC) 
values of 0.736 (1 year), 0.690 (2 years), and 
0.710 (3 years) (Figure 3D). PCA and tSNE were 
utilized to illustrate the bivariate distributions 
for patients in different risk groups (Figure 3F, 
3G). Overall, the signature proposed in this 
study emerged as a valuable predictive model 
for glioma patient risk classification.

Additionally, we conducted a similar analysis 
using the external validation cohort from CGGA 
to enhance the reliability of our study’s model. 
Patients were categorized into high-risk (n = 
721) and low-risk (n = 244) groups based on 
median cutoff values. High-risk patients gener-
ally had shorter survival periods than those in 
the low-risk group (Supplementary Figure 2A, 
2B). Kaplan-Meier curves for the CGGA valida-
tion group confirmed that OS in the high-risk 
group was significantly lower than that in the 
low-risk group (Supplementary Figure 2C).

ROC curves plotted using the CGGA validation 
data revealed AUC values of 0.693, 0.744,  
and 0.766 for 1, 2, and 3-year survival pe- 
riods, respectively (Supplementary Figure 2D).  
PCA and tSNE analyses further divided the 
CGGA validation cohort into two groups 
(Supplementary Figure 2E, 2F). These findings 
indicated that the validation outcomes in the 
CGGA cohort were consistent with those in the 
TCGA training cohort, further affirming that our 
signature is a robust prognostic model.

Clinical characterization of differential genetic 
profiles associated with immunogenic apopto-
sis in low- and high-risk populations

Next, we sought to explore the potential of ICD 
for clinical application, particularly its utility in 

predicting the prognosis of glioma patients. To 
this end, we utilized a column line plot, integrat-
ing three readily accessible clinical features 
commonly believed to influence glioma progno-
sis, along with the risk score’s capacity to pre-
dict patients’ 1, 3, and 5-year survival rates 
(Figure 4B, 4D). The column line plots demon-
strated robust predictive values, as indicated 
by a C-index of 0.736 (Figure 4C). Further  
analysis revealed significant associations in 
the high-risk group with various factors, includ-
ing higher tumor grade, advanced age, and 
increased risk score (Figure 4A).

Functional enrichment analysis of differentially 
expressed genes in low and high-risk groups

Functional enrichment analysis of the differen-
tially expressed genes in the high-risk and low-
risk groups was conducted using the “Limma” 
R package. In terms of biological processes 
(BPs), IRGs were predominantly enriched in 
leukocyte-mediated immunity, lymphocyte-
mediated immunity, immunoglobulin-mediated 
immune response, and B-cell activities. For cel-
lular components (CCs), enrichment was pri-
marily observed in the extracellular matrix, 
including collagen, collagen trimers, and major 
histocompatibility complex (MHC) class II pro-
teins. For molecular functions (MFs), IRGs were 
mostly enriched in extracellular matrix struc-
tural components, MHC protein complex bind-
ing, collagen-related genes, and T-cell activa-
tion. Tensile strength is conferred via collagen 
binding, MHC protein complex binding, MHC 
class II protein complex binding, and struc- 
tural elements of the extracellular matrix 
(Supplementary Figure 3A, 3C). The KEGG path-
ways enriched in IRGs were analyzed using the 
DAVID online tool and visualized with R. IRGs 
were found to be abundant in pathways related 
to type I diabetes, Staphylococcus aureus in- 
fection, viral myocarditis, and interactions bet- 
ween the ECM and receptors (Supplementary 
Figure 3B, 3D).

Somatic mutations and tumor microenviron-
ment landscape in ICD-high and ICD-low sub-
types

Given the growing evidence of ICD’s importance 
in eliciting specific anti-tumor immune respons-
es, we compared the TME composition between 
high and low-risk groups. High-risk patients 
generally exhibited higher percentages of B 
cells, CD8 T cells, activated bone marrow den-
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Figure 3. Validation of ICD-associated risk model prediction results in the TCGA dataset. A: The risk score of each pa-
tient. B: Survival outcomes for each patient. C: Kaplan-Meier curves are based on overall survival for high-risk and 
low-risk patients. D: 1-year, 2-year, and 3-year ROC curves derived from optimized model construction show all AUC 
values above 0.65. E: Kaplan-Meier curves are based on progression-free survival in high- and low-risk patients. F: 
PCA results indicated a significant difference in transcriptional expression between the two isoforms. G: The results 
of tSNE similarly showed the transcriptional expression of these two genes. There was good discrimination between 
the homozygotes.

dritic cells, macrophages M1 and M2, and regu-
latory T cells (Figure 5B). Increased expression 

of most human leukocyte antigen (HLA) genes 
and immune checkpoints was observed in the 
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Figure 4. Establishment of a prediction nomogram for immunogenic cell death-related genes in gliomas. A: Heat 
map showing the unsupervised clustering of 3 IRGs associated with glioma prognosis in the glioma cohort. B: Im-
munogenic cell death-related genes predictive nomogram predicted 1, 3, and 5 years OS in glioma patients. C: The 
DCA of the risk factors. D: Calibration curves for immunogenic cell death-related prediction nomograms for predict-
ing 1-year, 3-year, and 5-year OS in glioma patients.

Figure 5. A, B: Heterogeneity of different immune cells and inflammation-related factors in patients with high and 
low-risk scores were conducted. C, D: Somatic mutation signatures in the immunogenic cell death-related model 
were shown in a waterfall plot. E: Differences between tumor tmbation burden scores in high and low-risk score 
groups were analyzed. F: Survival analysis of high and low TMB. G: Survival analysis between different TMB scores 
and high and low-risk scores.
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high ICD subtype. Conversely, the low-risk 
group exhibited a contrary trend (Figure 5A), 
suggesting a close association between immu-
nosera and cold-resistant phenotypes with the 
ICD high and low subtypes, respectively.

Diverse somatic mutation patterns were ob- 
served between low-risk and high-risk groups 
(Figure 5C, 5D). While mutations in genes such 
as TP53, TTN, FAT1, CDKN2A, and MUC16 were 
prominent, their relative frequencies varied by 
subtype. The ICD high subtypes exhibited high-
er mutation rates in IDH1, TP53, ATRX, and 
TTN, accounting for 79%, 44%, 31%, and 12% 
of the total, respectively, compared to 44%, 
26%, 26%, and 19% in the ICD low subtypes.

Clinical trials and preclinical studies have linked 
high somatic TMB with improved response, 
enhanced long-term survival, and sustained 
therapeutic benefits in patients undergoing 
immunocheckpoint blockade therapy [29]. We 
analyzed various TMB risk-scores and found 
that the low-scoring group had a better progno-
sis, while the high-scoring group exhibited  
a higher TMB (Figure 5E-G). This suggests  
that the ICD prediction model could be instru-
mental in forecasting glioma patients’ progno-
sis and may indicate their response to im- 
munotherapy.

The tumor microenvironmental landscape of 
different ICD subtypes

Emerging evidence indicates the critical role of 
ICDs in eliciting specific anti-tumor immune 
responses. Notably, our findings showed that 
C2 and C3 subtypes exhibited higher rates of 
immune cell infiltration compared to the C1 
subtype. We then analyzed the TME structure 
across the three ICD subtypes. Results revealed 
variation in ESTIMATE immune scores among 
the subtypes, with the C3 subtype demonstrat-
ing higher immune activity than both C2 and C1 
subtypes. This suggests that ICD heterogeneity 
may influence responses to immunotherapy, 
with C3 subtypes exhibiting stronger immune 
reactions compared to C1 and C2 subtypes 
(Figure 6A-C). Thus, TME cell differences may 
be a key factor driving ICD heterogeneity, sup-
porting previous findings that “hot tumors” 
were tumors that were associated with more T 
cell infiltration, making the tumors more 
responsive to immunotherapy, and yielding bet-
ter therapeutic outcomes [30].

To further explore the relationship between ICD 
subtypes and immunotherapies, such as PD1/
PDL1 inhibitors, we examined variations in 
immune checkpoint expression across the sub-
types. The majority of immunological check-
points were found to be differentially expressed 
among ICD subtypes. Notably, C3 subtypes 
expressed higher levels of most immune check-
point genes compared to C1 and C2 subtypes 
(Figure 6D). This indicates that ICD heterogene-
ity could predict the effectiveness of immuno-
therapy in glioma patients, particularly in those 
with the C3 subtype.

Tissue validation results

We validated the differences in the expression 
of BAX, MYD88, and CASP8 in glioma versus 
normal tissues using Western blotting. The 
results demonstrated higher expression of 
BAX, MYD88, and CASP8 in glioma tissues 
(Figure 7A). Notably, the RT-qPCR assay showed 
similar results (Figure 7B). We then looked for 
immunohistochemical results of BAX, CASP8, 
and MYD88 in the HPA database. Our immuno-
histochemical results also indicated significant-
ly higher expression of these genes in glioblas-
toma (GBM) patient tissues (Figure 7C-E). 
Surprisingly, IHC data from several centers  
corroborated these findings, showing signifi-
cantly elevated expression of BAX, CASP8, and 
MYD88 in glioma tissues (Supplementary 
Figure 4). These findings align with our previous 
analyses, confirming that BAX, CASP8, and 
MYD88 are highly expressed in glioma tissues 
and may play roles in glioma genesis and 
progression.

Consensus clustering identified three ICD as-
sociated subtypes

Based on their expression, we classified the 
IRGs into three ICD related subtypes in order to 
determine the optimum clustering stability at K 
= 3 (Supplementary Figure 5A, 5B). Of the 631 
glioma patients included in the study, 323 were 
clustered into C1 subtypes, 238 into C2 sub-
types, and 70 were pressed into C3 subtypes. 
Normalized enrichment scores for IRGs across 
the three subtypes are shown using a heatmap 
(Supplementary Figure 6). Additionally, we ana-
lyzed TME cell infiltration in these ICD subtypes 
(Supplementary Figure 6). PCA and tSNE analy-
ses revealed that patients in all three groups 
were distinct and distinguishable from each 
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Figure 6. A-C: Differences between stromal score, immune score, and estimate score in three Gene clusters are 
demonstrated. D: The image shows differences in the expression of immune checkpoint-related genes in the three 
gene clusters. 

other (Supplementary Figure 5C-F). Further- 
more, survival analysis of these ICD-based sub-
groups indicated varying clinical outcomes, 
with the C1 subtype exhibiting a better progno-
sis compared to the C2 and C3 subtypes, and 
the C3 subtype demonstrating the worst prog-
nosis (Supplementary Figure 5G). Sankey dia-
gram further indicated that C1 subtype patients 
had lower risk scores compared to those in the 
C3 subtype (Supplementary Figure 5H). These 
results suggest that our risk model accurately 
staged glioma patients’ prognoses and that  
the ICD subtypes may have predictive value  
for clinical interventions, particularly im- 
munotherapy.

Correlation analysis of risk scores and drug 
sensitivity

The link between risk ratings and glioma treat-
ment medications was analyzed to investigate 
the effect of ICD-related prediction models on 

glioma drug treatment responses. A strong cor-
relation was found between risk scores and 
drug treatment effectiveness (Supplementary 
Figure 7A-H). This suggests that IRGs might be 
associated with glioma treatment resistance 
and could serve as potential targets for glioma 
drug therapy.

Impact of BAX knockout on GBM progression

To understand the pathophysiological role of 
BAX in GBM, we used RNA interference to sup-
press endogenous BAX expression. The effi-
ciency of gene knockout was determined via 
RT-qPCR. Sequence one exhibited a higher 
knockout efficiency in U251 cells, while 
sequence two was more effective in ln229 
cells. Accordingly, sequence one was used for 
U251 cells and sequence two for ln229 cells, 
facilitating subsequent experiments (Figure 
8A). The influence of BAX on GBM proliferation 
was validated using the CCK-8 assay, indicating 
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Figure 7. ICD-Related DEGs were highly expressed in glioma tissues. A: WB detection of MYD88, BAX and CASP8 
expression in glioma and normal tissues. B: RT-qPCR to detect the expression levels of MYD88, BAX and CASP8 in 
glioma and normal brain tissues. C-E: Immunohistochemical detection of BAX, CASP8 and MYD88 expression in 
glioma tissues and normal tissues (Data are means ± SD of at least three independent experiments with Student’s 
t-test or one-way ANOVA (*P < 0.05; ns, not significant)).

that the suppression of BAX significantly re- 
duced the in vitro proliferative capacity of both 
U251 and ln229 cell strains (Figure 8B). 
Furthermore, we examined the impact of BAX 
knockout on the migration and invasion poten-
tial of U251 and ln229 (Figure 8C, 8D). The 
results showed that inhibiting BAX markedly 
reduced migration and invasion potential 
(Figure 8E, 8F). These findings highlight the 
crucial role of BAX in promoting GBM cell prolif-
eration, migration, and invasion.

Discussion

Central nervous system tumors are the most 
prevalent solid tumors in children. with gliomas 
being the most prevalent malignant type [31]. 
Characterized by high-grade disease, high 
recurrence rates, and mortality, gliomas 
account for 50% of these malignancies [32]. 
The traditional classification of gliomas, based 
solely on histology, is insufficient in the era of 
advanced genomics and molecular diagnos-
tics. Recent advancements have significantly 
transformed the classification of pediatric glio-
mas, shifting from morphological to molecular 
stratification. This molecular-focused approach 

offers a more reliable categorization of gliomas 
and opens up new avenues for treatment strat-
egies. Notably, emerging molecular biomarkers 
have been recognized, including chromosome 
1p/19q co-deletion and IDH mutation, incorpo-
rated into the stratified glioma classification in 
the 2016 WHO guidelines for the first time [33]. 
Despite advances in immunotherapy improving 
outcomes in certain cancers, optimal manage-
ment of gliomas remains a significant challenge 
[34].

Immunogenic cell death is a unique form  
of regulatory cell death that can initiate a com-
prehensive antigen-specific adaptive immune 
response through the release of danger signals 
or DAMPs [10, 14, 35]. Novel immunotherapeu-
tic strategies combined with immunogenic ther-
apy offer promising prospects for parent thera-
py [13, 36-38]. Identifying ICD-related biomark-
ers that distinguish glioma patients’ respon-
siveness to immunotherapy is crucial. To date, 
few studies have explored the role of immuno-
genic cell death in glioma classification. Our 
study extensively examined the relationship 
between IRGs and glioma, identifying three dis-
tinct glioma subgroups based on prognostic 
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Figure 8. A: RT-qPCR was performed to determine the knockdown efficiency of sequence 1 in U251 cells and sequence 2 in LN229 cells. B: CCK-8 detects the ef-
fect of knockdown on the proliferation of U251 and LN229. C, D: Images of Si-BAX U251 and LN229 exposed at different times (0, 24 and 48 h) compared to the 
control group. Distance curves of Si-BAX U251 and LN229 groups from the control group (Statistical analysis was performed using two-way ANOVA and Sidack post 
hoc tests. Values are means ± s.e.m. (n = 4)). E, F: Transwell assay to analyze the migration and invasion ability of si-BAX and normal control U251 and LN229 cells.
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genes associated with ICD and constructing  
an immunological spectrum for each group. We 
also detailed the molecular and clinical charac-
teristics of each subgroup/risk group, providing 
novel perspectives into pediatric glioma classi-
fication and malignancy progression.

In this study, we initially described the expres-
sion of ICD-related prognostic genes in glio-
mas, constructing a signature comprising three 
key genes: BCL2 Associated X (BAX), Caspase 
8 (CASP8), and Myeloid Differentiation Primary 
Response Gene (88) (MyD88). BAX is a central 
regulator of cell death, an indispensable path-
way for mitochondrial dysfunction, and a core 
pro-apoptotic member of the Bcl-2 protein fam-
ily that controls apoptosis in both standard and 
cancer cells. Dysfunctional apoptosis can lead 
to cancer cell resistance to treatment and pro-
mote tumorigenesis. Several recent studies 
had suggested that the aberrant expression of 
BAX might be associated with chemoresistance 
in ovarian, colorectal, lung, and melanoma can-
cers [39-43]. BAX activators could promote 
pro-apoptotic activity, potentially overcoming 
drug resistance, serving as an alternative to 
enhanced BAX expression, increasing apoptot-
ic stimulation, and reducing tumor expansion 
[44]. Several direct BAX activators have been 
identified with specificity advantages and 
potential to overcome resistance to chemother-
apy and radiotherapy. These properties are piv-
otal in cancer treatment. Further studies on 
these new drug candidate are needed to bring 
them to the clinic as a new treatment for cancer 
[45]. 

CASP8, an apical cysteine-aspartic acid prote-
ase, induces lysosome-associated cell death in 
cancer cells [46]. It classically triggers an exter-
nal pathway of apoptosis in response to activa-
tion of cell surface death receptors (DR),  
such as FAS, TRAIL-R, and TNF-R. In addition to 
its role in triggering death receptor-mediated 
apoptosis, caspase-8 is thought to be associ-
ated with the development of denuded apopto-
sis, autophagy, and cellular scorching [47]. 
Besides its role in apoptosis, caspase-8 has 
been implicated in non-apoptotic functions, 
such as promoting NF-κB activation, autophagy 
regulation and endosome transport change. 
Therefore, dependent on specific cellular back-
ground, caspase-8 may enhance or inhibit ma- 
lignant transformation of tumors. The expres-

sion pattern of caspase-8 displays notable  
heterogeneity across different tumor types. 
Therapy aimed at increasing caspase-8 expres-
sion has been developed, but its efficacy across 
all cases remains uncertain [48]. 

MyD88 acts as a typical bridging element in the 
downstream inflammatory signaling pathways 
for members of the Toll-like receptor (TLR) and 
interleukin-1 (IL-1) receptor families. Recent 
studies have demonstrated that MyD88 pro-
motes proliferation and metastasis in various 
cancers, including pancreatic, colorectal, lym-
phoma, and breast cancers, by mediating 
inflammatory responses in the TME [49-53]. In 
the present study, we found that most glioma 
patients exhibited high expression of these ICD 
genes, which are associated with glioma prog-
nosis. KEGG analysis revealed that these IRGs 
are involved in essential pathways related to 
tumor immunity, such as antigen processing 
and presentation, macrophage differentiation, 
and positive regulation of IL-1. These results 
suggest that a signature constructed from 
these three ICD prognosis-associated genes is 
important to glioma immunotherapy.

To further explore the utility of our ICD-related 
signature in the stratification of glioma patients, 
patient samples were scored using our ICD-
related signature and were successfully classi-
fied into high- and low-risk groups based on 
median risk scores. This classification utilized 
ROC curves, PCA, stratified analysis, multivari-
ate regression analysis, and univariate regres-
sion analysis, alongside the TCGA training 
cohort for survival analysis. Our findings indi-
cated that well-known genetic traits serve as 
reliable indicators for prognosis prediction. 
Moreover, the CGGA external validation cohort 
presented comparable results, reinforcing the 
validity of our approach.

A well-known technique is sample classification 
based on parameters of preset gene expres-
sion [54]. This method was used in the current 
investigation to divide glioma patients into 
three subgroups. This analysis revealed signifi-
cant heterogeneity in the expression of these 
IRGs among the subtypes. Additionally, there 
was a strong correlation between these regula-
tors and other survival hazards. PCA analysis 
suggested a possible distinction of these three 
subtypes among glioma patients, with the C3 
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subtype demonstrating the worst prognosis 
among independent patients.

Immune cells use cell migration to carry out 
their immunosurveillance role. The glioma TME 
is incredibly intricate. Myeloid cells associated 
with gliomas are crucial in increasing the viru-
lence of glioma cells [55]. We used ssGSEA and 
CIBERSORT to investigate the brain immune 
microenvironment in glioma patients. According 
to correlation heat maps, patients with high 
risk scores had considerably greater numbers 
of B-cell plasma, CD8 T cells, macrophages  
M1 and M2, activated myeloid dendritic cells, 
and regulatory T cells. Conversely, the low-risk 
group exhibited reduced numbers of these 
immune cells. Previous evidence suggests that 
the malignant biological behavior of glioma 
cells is influenced by the polarization of M2 
macrophages in the TME [56]. Furthermore, 
regulatory T cell infiltration has been closely 
linked to poor prognosis [56]. Consistent with 
earlier studies, our results demonstrated in- 
creased infiltration of macrophages, myeloid 
dendritic cells, and regulatory T cells in patients 
with higher risk scores.

These results support the idea that patient 
characteristics are intimately linked to immune 
cell infiltration, corroborating earlier studies. To 
further differentiate between glioma patient 
groups that responded better to immunothera-
py, we subdivided the study’s glioblastoma 
patients into three distinct subgroups. Further 
genotyping demonstrated that the three dis-
tinct subgroups differed in terms of ESTIMATE 
score, immune score, and stromal score, with 
subtype C3 having the highest ESTIMATE  
score, immunological score, and stromal score, 
whereas subtype C1 had the lowest. Tumor 
purity had a low group correlation. These find-
ings implied that patients with high-risk glio-
mas had more immune cell infiltration in the 
tumor immunological microenvironment. Our 
results align with previous research indicating 
a correlation between tumor grade and in- 
creased immune cell infiltration. Surprisingly, 
the current study also discovered high TMB 
scores, resistant cell infiltration rates, stronger 
immune checkpoint gene expression, and a 
more potent immunotherapy response in the 
C3 cohort than in the other two subgroups. The 
C1 subtype is sometimes referred to as the 
immunologically ‘cold’ phenotype and the C3 

subtype as the ‘hot’ phenotype. These findings 
imply that our ICD-related genotyping could 
predict immunotherapeutic responses in glio-
ma patients, potentially opening new therapeu-
tic avenues.

In conclusion, our research highlights the con-
nection between ICD subtypes and changes in 
the immunological tumor microenvironment in 
glioma patients. This insight could facilitate the 
selection of immunotherapy-based treatments 
for glioma patients. Additionally, we developed 
and validated ICD-related predictive features 
useful for forecasting overall survival (OS) in 
glioma patients.

Conclusion

Based on our data, we established ICD-
associated features to stratify prognosis and 
predict responsiveness to immune check- 
point inhibitor therapy, identifying three ICD-
associated subgroups in gliomas. Our findings 
offer a new perspective on glioma classification 
and underscore the role of ICD-related prog-
nostic genetic characteristics in glioma hetero-
geneity. This study also revealed that different 
risk subgroups differed in immune cell infiltra-
tion and immune checkpoint-related gene 
expression. These results suggest a promising 
approach to determine a patient’s risk predic-
tion for glioma and potentially create more 
effective management and treatment strate-
gies for those affected by the disease.
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Supplementary Figure 1. The flow chart of this study.

Supplementary Table 1. The clinical characteristics of patients in the TCGA dataset
Variable Number of samples
Age at diagnosis
    < 65/≥ 65 873/241
Gender
    Male/Female/NA 651/460/3
Grade
    G2/G3/NA 249/265/600

Supplementary Table 2. The clinical characteristics of patients in the CGGA dataset
Variable Number of samples
Age at diagnosis
    < 65/≥ 65 972/46
Gender
    Male/Female 601/417
Grade
    II/III/IV/NA 291/334/388/5
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Supplementary Figure 2. Validation of the ICD-associated risk model prediction results in the CGGA dataset. A: Risk 
score for each patient. B: Survival outcomes for each patient. C: Kaplan-Meier curves are based on the survival of 
high- and low-risk patients. D: The 1-year, 2-year, and 3-year ROC curves derived from the optimized model construc-
tion showed that all AUC values were higher than 0.65. E: PCA results showed that the transcript expression of the 
two isoforms was significantly different. F: The results of tSNE similarly showed that the transcriptional expression 
of these two genes was quite different. There is a good distinction between the isoforms of the genes.

Supplementary Table 3. The list of Primer sequence (BAX, CASP8 and MYD88)
Gene
BAX-F AGCGACTGATGTCCCTGTCTCC
BAX-R AGATGGTGAGTGAGGCGGTGAG
CASP8-F GGAGCTGCTCTTCCGAATTA
CASP8-R CATGACCCTGTAGGCAGAAA
MYD88-F ACTTGGAGATCCGGCAACT
MYD88-R ATCCGGCGGCACCAATG
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Supplementary Figure 3. Functional analysis of immunogenic cell death-related genes was conducted. A and C: 
These images show the enrichment analysis of T cell proliferation-associated regulators BP, CC, and MF. B and D: 
These images show the enrichment analysis of the KEGG pathway, respectively.

Supplementary Figure 4. Representative immunohistochemical images of (A) BAX, (B) CASP8 and (C) MYD88 in 
glioma and normal brain tissue from the HPA database. Glioma; HPA, Human Protein Atlas.
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Supplementary Figure 5. Immunogenic cell death-related genes subtypes in gliomas. A, B: Consensus matrix heat-
map defining three clusters (k = 3) and their correlation area. C, D: PCA results indicated a significant difference 
in transcriptional expression between the two isoforms. E, F: The results of tSNE similarly showed that the tran-
scriptional expression of these two genes differed significantly. There was good discrimination between the homo-
zygotes. G: Survival analysis of three Gene clusters. H: Sankey diagram showed the changes in IRGs clusters and 
gene clusters.
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Supplementary Figure 6. Immunoreactive heat maps based on CIBERSORT, ESTIMATE, MCPcounter, ssGSEA, and 
TIMER algorithms in different molecular subtypes were conducted.
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Supplementary Figure 7. A-H: Signature and drug sensitivity correlation analysis.


