
Am J Cancer Res 2024;14(1):253-273
www.ajcr.us /ISSN:2156-6976/ajcr0153559

https://doi.org/10.62347/IDXM4018

Original Article
A prognostic metabolism-related  
gene signature associated with the tumor  
immune microenvironment in neuroblastoma

Xin Yu1,2,3*, Chao Xu1,2,3,4*, Yiping Zou1,2,3, Weishuai Liu1,2,3, Yongjie Xie1,2,3, Chao Wu1,2,3

1Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 
China; 2Tianjin’s Clinical Research Center for Cancer, Tianjin, China; 3Key Laboratory of Cancer Immunology and 
Biotherapy, Tianjin, China; 4National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, 
Tianjin, China. *Equal contributors.

Received September 21, 2023; Accepted January 15, 2024; Epub January 15, 2024; Published January 30, 2024

Abstract: Neuroblastoma (NB) is the most prevalent malignant solid tumor in children. Tumor metabolism, includ-
ing lipid, amino acid, and glucose metabolism, is intricately linked to the genesis and progression of tumors. This 
study aimed to establish a prognostic gene signature for NB patients, based on metabolism-related genes, and to 
investigate a treatment approach that could enhance the survival rate of high-risk NB patients. From the NB data-
set GSE49710, we identified metabolism-related gene markers utilizing the “limma” R package and univariate Cox 
analysis combined with least absolute shrinkage and selection operator (LASSO) regression analysis. We explored 
the correlation between these gene markers and the overall survival of NB patients. Gene set enrichment analysis 
(GSEA) and single-sample GSEA algorithms were used to assess the differences in metabolism and immune status. 
Furthermore, we examined the association between metabolic subgroups and drug responsiveness. Concurrently, 
data downloaded from TARGET and MTAB were used for external verification. Using multicolor immunofluorescence 
and immunohistochemistry, we investigated the relationship between the lipid metabolism-related gene ELOVL6 
with both the International Neuroblastoma Staging System classification of NB and survival rate. Finally, we explored 
the effect of high ELOVL6 expression on the immune microenvironment in NB using flow cytometry. We identified 
an eight-gene signature comprising metabolism-related genes in NB: ELOVL6, OSBPL9, RPL27A, HSD17B3, ACHE, 
AKR1C1, PIK3R1, and EPHX2. This panel effectively predicted disease-free survival, and was validated using an 
internal dataset from GSE49710 and two external datasets from the TARGET and MTAB databases. Moreover, our 
findings confirmed that ELOVL6 fosters an immunosuppressive microenvironment and contributes to the malignant 
progression in NB. The eight-gene signature is significant in predicting the prognosis of NB, effectively classifying 
patients into high- and low-risk groups. This classification may guide the development of innovative treatment strate-
gies for these patients. Notably, the signature gene ELOVL6 markedly encourages an immunosuppressive microen-
vironment and malignant progression in NB.
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Introduction

Neuroblastoma (NB), the most common extra-
cranial solid tumor in children, is an embryonal 
tumor originating from sympathetic neural pro-
genitor cells and accounts for at least 10% of 
childhood cancer deaths [1]. Treatment options 
for NB, influenced by factors such as age, 
MYCN amplification, chromosomal aberrations, 
history of metastases, etc., include chemother-
apy, surgical resection, myeloablation with 
autologous stem cell transplantation, radiation 

therapy, and immunotherapy [2]. Commonly 
used chemotherapeutic agents for NB include 
cyclophosphamide, cisplatin, doxorubicin, eto-
poside, carboplatin, and vincristine [3]. The sur-
vival rate of NB patients largely depends on age 
at diagnosis, stage of disease, and pathophysi-
ology. Although the disease is self-limiting, its 
prognosis remains poor with a high recurrence 
rate in high-risk patients [2]. Therefore, identify-
ing new therapeutic targets and developing tar-
geted therapeutic strategies for NB are urgently 
needed.
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A hallmark of cancer is the reprogramming of 
energy metabolism to support growth and sur-
vival in adverse conditions, contributing to  
cancer progression [4]. Moreover, in the tumor 
microenvironment (TME), various metabolites 
affect the differentiation and effector functions 
of immune cells [5]. The immune response is 
closely linked to substantial changes in tissue 
metabolism. Aerobic glycolysis and the sub- 
sequent acidification of the TME significantly 
influence T cell-mediated anti-tumor immune 
responses and the function of tumor-infiltrating 
myeloid cells [6]. For instance, lactate pro-
duced by tumor cells can promote tumorigene-
sis by inducing inflammation mediated through 
interleukins-23 and -17 [7]. Tumor-infiltrating 
myeloid cells, such as myeloid-derived sup-
pressor cells (MDSCs), dendritic cells, and 
tumor-associated macrophages, undergo met-
abolic reprogramming in response to abnormal 
accumulations of lipids, including short- and 
long-chain fatty acids and cholesterol [8]. The 
impact of metabolic reprogramming on NB  
progression and its underlying mechanisms 
remains to be explored.

This study aimed to investigate the correlation 
between cellular metabolism and NB pro- 
gression. Gene expression data from Gene 
Expression Omnibus (GEO) were used to con-
struct NB molecular subtypes based on energy 
metabolism-related genes. We then evaluated 
the association between these molecular sub-
types and patient prognosis. Through differen-
tial expression analysis and least absolute 
shrinkage and selection operator (LASSO)-Cox 
regression, eight genes were finally selected 
from the 222 differentially expressed genes 
(DEGs) to construct a prognostic risk model. 
This model independently evaluates the prog-
nosis of NB patients and has been validated  
by internal GEO, Therapeutically Applicable 
Research to Generate Effective Treatments 
(TARGET), and MTAB external validation co- 
horts. Additionally, we assessed the model’s 
clinical relevance, metabolic significance, 
immune landscape, and implications for 
immune pharmaceutical therapy. Among the 
eight metabolism-related genes, ELOVL6 had 
the highest coefficient value. Through a series 
of in vitro and in vivo experiments, we demon-
strated that high expression of ELOVL6 was 
closely associated with poor prognosis and an 
immunosuppressive TME in NB, further corrob-

orating the predictive ability of this prognostic 
model.

Methods

Data collection and preprocessing

Expression profiles and associated clinical 
information of NB samples were downloaded 
from GEO (accession: GSE49710) [9], Array- 
Express (accession: E-MTAB-8248) (35100- 
718), and the TARGET cohort of NB patients in 
the University of California Santa Cruz Xena 
platform (https://xenabrowser.net/). A total  
of 871 samples were included in this study. 
Within the GSE49710 cohort, 70% were desig-
nated as the training group and the remaining 
30% as the internal validation group. The 
E-MTAB-8248 and the TARGET cohorts served 
as the external validation groups. For further 
analysis, the expression profile data in the 
TARGET cohort was transformed from frag-
ments per kilobase of transcript per million 
fragments mapped to transcripts per kilobase 
million. Metabolism-related genes were obta- 
ined from the Molecular Signatures Database 
(MSigDB; https://www.gsea-msigdb.org/gsea/
msigdb) (Table S1).

Consensus clustering analysis

To uncover expression patterns, unsupervised 
consensus clustering analysis was perform- 
ed based on prognostic metabolism-related 
genes in the GSE49710 datasets using the 
“Consensus Cluster Plus” R package and the 
“k-means” method. The repetition number was 
set to 1,000 to ensure stability [10]. Principal 
component analysis (PCA) was conducted using 
the “scatterplot3d” package to investigate the 
distribution between distinct clusters.

Gene set variation analysis (GSVA)

GSVA was carried out to determine the enrich-
ment scores and pathway activity in the hall-
mark gene sets and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways. The 
gene sets used in GSVA were downloaded from 
MSigDB.

DEGs analysis

The DEGs between different metabolism-relat-
ed clusters were identified using the “limma” R 
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package with the following criteria: |log2(fold-
change)| ≥ 0.58 and adjusted p-value < 0.05. 
The intersection of DEGs and prognostic 
metabolism-related genes yielded metabolism-
related DEGs for constructing the risk 
signature.

Construction and validation of the metabolism-
related risk signature

LASSO-Cox regression analysis identified sig-
nature genes and their corresponding regres-
sion coefficients. Risk scores were calculated 
by multiplying the expression value of each 
gene with its corresponding regression coeffi-
cient. Samples were divided into high- and low-
risk groups based on median scores. Kaplan-
Meier survival curves, compared using the log-
rank test, evaluated the prognostic capability 
of the metabolism-related risk signature. The 
accuracy of the risk signature for 1-, 2-, 3-,  
and 5-year survival rates was assessed by cal-
culating the area under the curve (AUC) of 
receiver operating characteristic curves using 
the “survivalROC” R package. PCA was per-
formed to distinguish different risk groups 
using the “ggplot2” R package.

Independent prognostic analysis

The “survival” and “rms” R packages were 
respectively used to determine the indepen-
dent prognostic value of the risk signature 
through univariate and multivariate Cox regres-
sion analysis, and construct a nomogram for 
predicting the 3-year and 5-year overall 
survival.

Gene set enrichment analysis (GSEA)

GSEA was performed to identify pathways 
enriched in the low- and high-risk groups, and 
to reveal the differences in their biological func-
tions. The gene sets for GSEA were downloaded 
from MSigDB.

Immune infiltration analysis

The infiltration level of 30 immune cell types 
was evaluated and compared between the low- 
and high-risk groups using single-sample GSEA 
[11, 12]. The immune and stromal cell infiltra-
tion levels [13] were determined using the 
ESTIMATE algorithm (The Estimation of Stromal 
and Immune cells in Malignant Tumor tissues 
using Expression data).

Drug sensitivity analysis

A series of drug sensitivities were predicted 
using Ridge’s regression in the “pRRophetic” R 
package (25229481). Half-maximal inhibitory 
concentrations were calculated and compari-
sons were made between the low- and high-risk 
groups.

Clinical samples

A total of 78 NB tumor tissue samples were col-
lected from January 2015 to January 2022  
at the Institute of Oncology and Hospital of 
Tianjin Medical University. Clinical characteris-
tics of all patients included in this study are 
shown in Table S2. All procedures for this  
study were authorized by the Research Ethics 
Committee of the Institute of Oncology and 
Hospital of Tianjin Medical University and con-
ducted in accordance with the Code of Ethics of 
the World Medical Association (the Declaration 
of Helsinki). Fully informed consent was 
obtained for all clinical samples.

Immunohistochemistry (IHC) and multiplex 
fluorescent IHC

IHC analysis of NB tissue for ELOVL6 expres-
sion was performed using a DAB substrate kit 
(Maxin). The score was determined based on 
staining intensity (0: negative, 1: low, 2: medi-
um, 3: high) and extent (0: 0%, 1: 1-25%, 2: 
26-50%, 3: 51-75%, 4: 76-100%). Five random 
fields were evaluated under a light microscope. 
Scores were determined by two independent 
pathologists, blinded to patients’ clinical fea-
tures and outcomes. The final staining scores 
were determined by multiplying the staining 
intensity scores by the staining extent scores. 
The final score ranged from 0 to 12. For multi-
plex fluorescent IHC, stained tissues were 
scanned and captured using a Vectra Polaris 
system (PerkinElmer). Captured images were 
analyzed using the inForm cell analysis soft-
ware (PerkinElmer).

Cell culture

Mouse NB cell lines 9464D and 975A2 were 
cultured in high-glucose Dulbecco’s Modified 
Eagle Medium (DMEM, Gibco) supplemented 
with 10% fetal bovine serum (BI) and 0.1% pen-
icillin-streptomycin solution (Gibco). The human 
NB cell line SK-N-AS was cultured in high-glu-
cose DMEM:F12 (Gibco) supplemented with 
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10% fetal bovine serum (BI) and 0.1% penicillin-
streptomycin solution (Gibco). The human NB 
cell line SK-N-BE2 was cultured in high-sugar 
DMEM:F12 (Gibco) supplemented with penicil-
lin-streptomycin solution (Gibco) at 37°C and 
5% CO2.

Western blot

Total protein was extracted from the stable cell 
lines ELOVL6-OE/ELOVL6-Vector SK-N-AS and 
SK-N-BE2 using the radioimmunoprecipitation 
assay protein lysis kit containing protease and 
phosphatase inhibitors. Protein concentrations 
were uniformly quantified using the bicincho-
ninic acid assay protein kit. Each protein sam-
ple (20 µg) was resolved on 10-12% sodium 
dodecyl sulfate polyacrylamide gels and elec-
tro-transferred onto 0.2-µm polyvinylidene  
fluoride membranes (Millipore, Billerica, MA). 
The membranes were incubated with 5% 
skimmed milk for 1 h at room temperature, 
probed with the corresponding primary anti-
bodies overnight at 4°C (Table S3), washed 
thrice with phosphate-buffered saline (PBS)  
for 3 min each, incubated with anti-rabbit or 
anti-mouse immunoglobulin G (1:5000) for 1 h 
at room temperature, and washed thrice with 
PBS for 2 min each. Stained bands were visual-
ized using the GelView 6000 Plus system and 
analyzed using ImageJ.

RNA extraction and quantitative RT-PCR analy-
sis

Total RNA was isolated using the RNeasy mini 
kit (QIAGEN) according to the manufacturer’s 
instructions. RNA was quantified by UV spectro-
photometry. In brief, the cells were lysed with 
the Qiazol reagent for at least 5 minutes at 
room temperature and then chloroform was 
added. The aqueous phase was collected, 
mixed with ethanol and loaded onto RNeasy 
Mini columns after centrifugation at 12,000 ×  
g for 15 min at 4°C. After sequential washing 
with RWT and RPE buffer, the RNA was eluted 
from the membrane with RNase-free water and 
recovered by centrifugation. For mRNA expres-
sion analysis, 200-500 ng of RNA was reverse 
transcribed to cDNA using the QuantiTect 
Reverse Transcription Kit (QIAGEN). Quantitative 
real-time PCR was then performed using 
Maxima SYBR green qPCR master mix (Thermo 
Fisher Scientific) on a QuantStudio 7 Flex PCR 

system (Thermo Fisher Scientific) with 0.5 mL 
of diluted cDNA (2.5-fold dilution) utilizing 
GAPDH as an endogenous control. Each sam-
ple was run in triplicate. The following lists the 
primers used for RT-qPCR analysis: GAPDH-F: 
CCTGCACCACCAACTGCTTA; GAPDH-R: TCATG- 
AGCCCTTCCACAATG; ELOVL6-F: CAGGGAGGA- 
AGGGCTATGGGCAG; ELOVL6-R: CGAACAGGGA- 
GGGAGGCGAACA.

Animal experiments

Female C57BL/6 mice (6-8-week-old, 18-20 g) 
were obtained from Beijing Vital River 
Laboratory Animal Technology Co. (Beijing, 
China) and bred in a pathogen-free environ-
ment. All animal experiments were performed 
in accordance with the Guide for the Care and 
Use of Laboratory Animals and were approved 
by the Institutional Animal Care and Use 
Committee of Tianjin Medical University Cancer 
Institute and Hospital. To evaluate the impact 
of ELOVL6 in the NB xenograft model, the  
stably expressing ELOVL6 OE/Vector 9464D 
cells or ELOVL6 sh/SC 975A2 cells (1.5 × 106 
per 100 μL of PBS per mouse) were injected 
into the axillae of mice. After tumor implanta-
tion, the tumor volume was measured every  
3 days using the following formula: tumor vol-
ume = (length × [width]2)/2. Pose-euthanasia, 
tumors were harvested and weighed for further 
analysis. Fresh tumor tissue was used for flow 
cytometry.

Flow cytometry

Harvested mouse NB tumors were processed 
into single-cell suspensions at a cell density of 
105-107/mL for fluorescent or immunofluores-
cent labelling. Cells were stained with antibod-
ies for 30 min at 4°C (Table S3), while the con-
trol samples were treated with corresponding 
isotype controls. Data were collected using a 
CytoFLEX LX flow cytometer (Beckman, USA) 
and processed using FlowJo.

Cell proliferation assay

Stable cell lines ELOVL6/Vector SK-N-AS/SK-N-
BE2 were transfected in their logarithmic 
growth phase, further cultured in 96-well plates 
for 24, 48, or 72 h, and incubated with CCK-8 
reagent (Solarbio, China) for 3 h. The optical 
density values were measured using a micro-
plate reader (Biotek Instruments Inc., USA), and 
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proliferation curves were plotted using 
GraphPad Prism 8.0.

Lipid peroxidation malondialdehyde (MDA) 
assay

The Lipid Peroxidation MDA Assay Kit (Beyo- 
time, S0131S) was used according to the man-
ufacturer’s instructions to assay the relative 
MDA concentration in cell lysates. Briefly, sta-
ble cell lines were lysed using Western blot  
lysis buffer, and the supernatants were ex- 
tracted by centrifugation at 10,000-12,000 g 
for 10 min. Protein concentrations were deter-
mined using the BCA protein concentration 
assay kit (THERMO) to determine the MDA con-
tent per unit protein weight in tissue or cells. 
Obtained supernatants (100 µL) were mixed 
with 200 μL of MDA working solution and incu-
bated at 100°C for 15 min. Samples were 
cooled to room temperature and the absor-
bance of each mixture was measured at 532 
nm.

Glutathione reductase assay

Glutathione reductase activity in the cell 
lysates was assayed using the Glutathione 
Reductase Assay Kit with DTNB (Beyotime, 
S0055), according to the manufacturer’s proto-
col. Briefly, stable cell lines were lysed using 
Western blot lysis buffer and the supernatants 
were isolated by centrifugation at 10,000-
12,000 g for 10 min. Supernatants were mixed 
with the Glutathione Reductase assay working 
solution and the absorbance at 412 nm was 
determined every 2 min at 25°C using an 
enzyme marker. The results were calculated 
according to the manufacturer’s protocol.

Glutathione peroxidase assay

Glutathione peroxidase activity in the cell 
lysates was measured using the Total 
Glutathione Peroxidase Assay Kit with NADPH 
(Beyotime, S0058), according to the manufac-
turer’s protocol. Briefly, stable cell lines were 
lysed using Western blot lysis buffer and the 
supernatants were isolated by centrifugation at 
10,000-12,000 g for 10 min. Supernatants 
were mixed with the Glutathione Peroxidase 
working solution and incubated for 15 min at 
room temperature. The absorbance at 340 nm 
was measured continuously for 5 min or auto-
matically in 1-min intervals. The results were 

calculated according to the manufacturer’s 
protocol.

Iron assay

Levels of intracellular ferrous ions (Fe2+) and 
the total iron content were measured using the 
Iron Assay Kit (ab83366, Abcam), according to 
the manufacturer’s instructions. Stably trans-
fected NB cells were seeded in 10-cm plates, 
treated with erastin or dimethyl sulfoxide for  
48 h, harvested, washed with ice-cold PBS, 
and resuspended on ice in 5 × volume of iron 
assay buffer. Supernatants were isolated by 
centrifugation at 4°C for 10 min at 13,000 g, 
mixed with iron-reducing agent, incubated for 
30 minutes at room temperature, then com-
bined with 100 μL of the iron probe, and incu-
bated for 1 hour in the dark at room tempera-
ture. Absorbance at 593 nm was measured 
immediately using an enzyme marker.

Statistical analysis

All statistical analyses were conducted using 
software (version 4.1.2). Continuous variables 
were compared using the Mann-Whitney 
Wilcoxon test or the Kruskal-Wallis test. 
Categorical variables were compared using the 
Pearson chi-squared test. The log-rank test 
was applied for comparing the prognoses in 
risk groups. A p-value < 0.05 (two-tailed) was 
considered statistically significant.

Results

Identification and characteristics of metabo-
lism-related clusters

The flow chart for this study is presented in 
Figure 1. From the GSE49710 dataset, we 
retrieved 1216 metabolism-related genes, 
among which 802 were identified as prognostic 
genes (Figure 2A). Enrichment analyses were 
performed to explore the biological functions of 
these prognostic metabolism-related genes. 
Gene Ontology enrichment analysis revealed 
significant enrichment of these genes in carbon 
metabolism, glycerophospholipid metabolism, 
biosynthesis of amino acids, and fatty acid 
metabolism (Figure 2B). Similarly, KEGG en- 
richment analysis demonstrated significant 
enrichment in fatty acid, glycerolipid, and phos-
pholipid metabolism, underscoring the pivotal 
role of lipid metabolism in NB development and 
progression (Figure 2B).
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Given the complexity of metabolic processes in 
NB, consensus clustering analysis was per-
formed to discern different metabolic patterns. 
Based on the prognostic metabolism-related 
genes, we identified two distinct metabolism-
mediated clusters in the GSE49710 dataset 
(Figures 2C, S1), which were clearly distin- 
guishable by PCA (Figure 2D). Survival analysis 
revealed that cluster A had a significantly better 
prognosis compared to cluster B (P < 0.001, 
Figure 2E). Furthermore, we performed GSVA to 
elucidate the differences in metabolic process-
es between these clusters. Cluster B was 
enriched in glycine, serine, and threonine 
metabolism, alanine, aspartate, glutamate 
metabolism, and arginine and proline metabo-
lism (Figure 2F), whereas cluster A was enrich- 

ed in taurine, hypotaurine, and arachidonic acid 
metabolism. Additionally, we observed differ-
ences in biological functions between the clus-
ters using hallmark gene sets, with cluster B 
enriched in MYC targets and DNA repair path-
ways, while apoptosis and p53 pathways were 
activated in cluster A (Figure 2G).

Construction of the metabolism-related risk 
signature

Given the considerable prognostic value of the 
metabolism-mediated clusters, we constructed 
a metabolism-related risk signature to predict 
NB prognosis. Firstly, the two clusters under-
went differential gene expression analysis. We 
identified 222 metabolism-related DEGs as 

Figure 1. Flowchart of this study.
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Figure 2. Identification of metabolism-related clusters in the GSE49710 dataset. A. Volcano plot of prognostic 
metabolism-related genes in the GSE49710 dataset. The orange dots represent risk genes and the green dots 
represent protective genes with statistical significance. The gray dots represent nonsignificant genes. B. Gene On-
tology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of prognostic 
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potential signature genes (Figure 3A). Sub- 
sequently, LASSO-penalized Cox regression 
analysis was applied to the training group to 
identify eight genes for constructing the metab-
olism-related risk signature (Figure 3B). These 
signature genes were closely related (Figure 
3C), and the corresponding regression coeffi-
cients are shown in Figure 3D.

Samples were categorized into high- and low-
risk groups based on the median score. The 
risk groups were distinctly separated in the 
training group (Figure 4A). Samples in the high-
risk group demonstrated shorter survival times 

(Figure 4B, 4C), and the high-risk group overall 
exhibited a significantly worse prognosis com-
pared to the low-risk group (Figure 4D). The 
AUC values for the risk signature in predicting 
1-year, 3-year, and 5-year overall survival were 
0.910, 0.920, and 0.925, respectively (Figure 
4E).

Internal and external validation of the metabo-
lism-related risk signature

We further validated the risk signature in the 
internal validation group and two external vali-
dation groups, namely the E-MTAB-8248 and 

metabolism-related genes. C. Identification of two metabolism-related clusters according to the consensus cluster-
ing matrix (k = 2) in the GSE49710 cohort. D. Principal component analysis (PCA) of sample distributions based on 
metabolism-related clusters. E. Kaplan-Meier curves of overall survival for the two metabolism-related clusters. F, 
G. Gene set variation analysis (GSVA) of the metabolism-related clusters based on KEGG and hallmark gene sets 
(indicated by colors).

Figure 3. Construction of the metabolism-related risk signature. A. The intersection of prognostic metabolism-relat-
ed genes and differentially expressed genes (DEGs) between different clusters. B. Least absolute shrinkage and se-
lection operator (LASSO)-Cox regression analysis of the prognostic metabolism-related DEGs. C. Correlation analysis 
of the eight signature genes and risk scores. D. Coefficient values of the eight signature genes.
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TARGET cohorts. The risk signature demon-
strated significant prognostic value and predic-
tive accuracy in the internal validation group 
(Figure S2). Notably, it maintained robust prog-g-
nostic value in the E-MTAB-8248 dataset, accu-
rately predicting prognosis with AUC values 
exceeding 0.8 throughout the observation peri-
od (Figure S3). Similarly, the risk signature 
showed satisfactory prognostic value and accu-
racy in the TARGET dataset (Figure S4).

Independent prognosis and GSEA

The risk signature exhibited significant correla-
tions with various clinical characteristics of NB. 
Samples from patients older than 547 days, 
with MYCN amplification, advanced stage, and 

disease progression, had significantly higher 
scores (Figure 5A, 5B). Univariate and multi-
variate Cox regression analyses established 
the risk signature as an independent prognos-
tic factor (hazards ratio > 1, P < 0.001, Figure 
5C, 5D). Subsequently, we constructed a nomo-
gram to predict 3-year and 5-year overall sur-
vival by combining several clinical prognostic 
factors (Figure 5E).

In addition, we explored the differences in bio-
logical functions between the high- and low-risk 
groups. The high-risk group was enriched in cell 
cycle checkpoint signaling, cell cycle phase 
transition, and DNA repair (Figure 6A), whereas 
the low-risk group was enriched in immune-
related pathways, including regulation of leuko-

Figure 4. Validation of the metabolism-related signature in the training cohort in GSE49710. (A) PCA plot based on 
the risk groups. (B, C) The distribution of the risk score (B) and survival time (C) in the training cohort of GSE49710. 
(D) Kaplan-Meier curves of overall survival (OS) in the training cohort of GSE49710 between the different risk 
groups. (E) The receiver operating characteristic (ROC) curves of the risk signature for 1-year, 3-year, and 5-year OS 
prediction in the training cohort of GSE49710.
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cyte cell adhesion, leukocyte-mediated immu-
nity, and adaptive immune responses (Figure 
6B). These findings suggest a potential associ-
ation of the metabolism-related risk signature 
with immune infiltration.

Immune infiltration analysis

Considering the enrichment of immune-related 
pathways in the low-risk, we further analyzed 
the immune infiltration associated with the  
risk signature. Notably, most immune cells, 
such as CD4 and CD8 T cells, showed low infil-
tration in the high-risk group, indicative of a 
“cold tumor” phenotype. Conversely, immuno-
suppressive cells, including stromal cells, were 
predominantly found in the low-risk group 
(Figure 7A). Consistent with these findings, the 
stromal and immune scores, determined using 
the ESTIMATE algorithm, were significantly 
higher in the low-risk group (Figure 7B). 
Furthermore, several immune-related path-
ways, like adaptive immune response, T cell 
activation, and T cell-mediated immunity, were 
prominently enriched in the low-risk group 
(Figure 7C). Thus, the risk signature identified 
the high-risk group as exhibiting an immuno-
suppressive phenotype in NB.

Given the crucial role of immune checkpoints  
in tumor immunosuppression, we examined 

their expression in relation to the risk signa-
ture. The risk score positively correlated with 
B7 homolog 3 (CD276) expression, while show-
ing a negative correlation with CD274 (pro-
grammed cell death ligand 1 [PD-L1]) and 
PDCD1LG2 (PD-L2) expression (Figure 8A). 
These immune checkpoints demonstrated var-
ied immunosuppressive mechanisms within 
the risk signature, suggesting differing immu-
notherapy strategies for the low- and high-risk 
groups.

Drug sensitivity

Chemotherapy is an important treatment  
strategy for NB. To inform clinical treatment,  
we compared the sensitivity of the two risk 
groups to various chemotherapeutic agents. 
Interestingly, the half-maximal inhibitory con-
centrations of several chemotherapeutic 
agents, including doxorubicin, cisplatin, etopo-
side, and vinblastine, were significantly lower in 
the high-risk group, suggesting that chemother-
apy should remain as an applicable treatment 
for the high-risk group (Figure 8B).

The metabolism-related protein ELOVL6 is 
related to the immune microenvironment and 
NB prognosis

From the above bioinformatic analysis, we iden-
tified ELOVL6 as an important prognostic mark-

Figure 5. Correlation analysis between clinical characteristics and the risk signature in the GSE49710 cohort. (A) 
Heatmap for the relation between clinicopathological characteristics and the risk groups (*: P < 0.05, **: P < 0.01, 
***: P < 0.001). (B) Comparison of risk scores between samples with different clinical characteristics, including 
clinical risk, MYCN status, age, progression, and the International Neuroblastoma Staging System (INSS) stage. (C, 
D) Univariate (C) and (D) multivariate Cox regression analysis of the risk signature in the GSE49710 cohort. (E) The 
establishment of a nomogram that predicted 3-year and 5-year OS in the GSE49710 cohort.

Figure 6. Gene set enrichment analysis (GSEA) of the risk signature. GSEA in the high-risk (A) and low-risk (B) groups.
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er in NB, with its expression level correlated 
with the regulation of the immune microenvi-

ronment in NB. To validate the association of 
ELOVL6 with NB prognosis and immune micro-

Figure 7. Immune infiltration analysis of the metabolism-related risk signature. A. Heatmap displaying the infiltrating 
level of immune cells in different risk groups. B. Violin chart comparing differences between the high- and low-risk 
groups in terms of their stromal score, immune score, ESTIMATE score, and tumor purity. C. GSEA of immune-related 
pathways in the metabolism-related risk signature (*: P < 0.05, **: P < 0.01, ***: P < 0.001, ****: P < 0.0001).
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environment, we analyzed the expression of 
ELOVL6, CD8, and CD33 (a marker for MDSCs, 
myeloid-derived suppressor cells) in NB tissu- 
es using multicolor immunofluorescence. High 
CD8 expression correlated with low ELOVL6 
expression, while low CD33 expression corre-
lated with high ELOVL6 expression (Figure 9A), 
suggesting that the upregulation of ELOVL6 
was associated with an immunosuppressive 
environment in NB. Using immunohistochemis-
try, we found that the upregulation of ELOVL6 

was associated with both higher grades and 
worse prognosis according to the International 
Neuroblastoma Staging System (Figure 9B, 
9C).

Expression of ELOVL6 reshapes the immuno-
suppressive environment in NB

To further explore whether high ELOVL6 expres-
sion reshapes the immunosuppressive micro-
environment of NB in vivo, we engineered  

Figure 8. Immune checkpoints and drug sensitivity of the metabolism-related risk signature. A. Correlation between 
expression of the four immune checkpoints and the metabolism-related risk scores. B. Box plots of estimated half-
maximal inhibitory concentrations (IC50) for four chemotherapeutic agents in the high- and low-risk groups.



A gene signature construction and validation in neuroblastoma

266 Am J Cancer Res 2024;14(1):253-273

Figure 9. The metabolism-related protein ELOVL6 is related to the immune microenvironment and prognosis of neuroblastoma (NB). A. Representative image of 
multiplex immunohistochemistry in NB tissue with high or low ELOVL6 expression. Green (CD8), purple (ELOVL6), red (CD33, MDSC), and blue (DAPI). Scale bar: 100 
µm. B. The correlation between INSS staging and ELOVL6 expression in NB tissue was analyzed. C. Three-year and five-year overall survival curves were analyzed 
according to the high or low expression of ELOVL6 in NB patients (n = 78; log-rank test and the p-value is shown). Paired Student’s t-test was performed for in vitro 
assays and unpaired Student’s t-test was conducted for in vivo assays. n.s., no significant statistical difference; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, 
P < 0.0001.
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the NB cell line 9464D into a stable ELOVL6-
Vector/OE cell line and 975A2 into a stable 
ELOVL6-SC/sh1/sh2 (Figure 10A). These cells 
were implanted into the axillae of C57/BL  
mice, and tumor growth was recoded every 3 
days (Figure 10B). The tumors in the ELOVL6-
OE group were significantly larger than those in 
the ELOVL6-Vector group, while the tumors  
in the ELOVL6-sh group were significantly 
smaller than those in the ELOVL6-SC group, 
indicating more aggressive NB growth with 
higher ELOVL6 expression (Figure 10C, 10D). 
Finally, we analyzed the proportions of different 
immune cells within the tumor tissues of mice 
from the ELOVL6-Vector/OE/SC/sh groups 
using flow cytometry. The infiltration of MDSCs 
(Myeloid-derived suppressor cells) and Treg 
cells was significantly higher in the ELOVL6-OE 
group compared with the ELOVL6-Vector group, 
and lower in the ELOVL6-sh group compared 
with the ELOVL6-SC group (Figure 10E, 10F). 
Furthermore, the percentages of CD8+ T cells 
and cytotoxic factors, such as tumor necrosis 
factor-α and interferon-γ (IFNγ), were signifi-
cantly reduced in the ELOVL6-OE group com-
pared with the ELOVL6-Vector group, and high-
er in the ELOVL6-sh group compared with the 
ELOVL6-SC group (Figure 10G-I). We also 
examined other relevant immune cells in the 
tumor immune microenvironment and observ- 
ed that expression of ELOVL6 elevated ex- 
hausted T cells (PD1+ CD8; Tim3+ CD8 cells) 
(Figure S5A, S5B), further illustrating the prop-
erties of ELOVL6 immunosuppression. In addi-
tion, ELOVL6 expression did not affect NK cells, 
M1 (Classical activated macrophages, CD80+ 
F4/80+), M2 (Alternatively activated macro-
phages, CD163+ F4/80+), and CD4+ T cells 
(Figure S5C-F). Overall, these results suggest 
that high ELOVL6 expression induces an immu-
nosuppressive microenvironment in NB by 
increasing MDSC and Treg cell infiltration while 
reducing CD8+ T cell presence.

Discussion

Cellular metabolic reprogramming plays a cru-
cial role in tumorigenesis, significantly affecting 
gene expression, cell heterogeneity, and the 
TME in various cancers, including NB, a neuro-
endocrine tumor that is the leading cause of 
childhood cancer death [14]. Our study devel-
oped a metabolism-related prognostic model 
for NB, demonstrating a strong correlation 

between metabolism-related genes and both 
the immune microenvironment and patient 
prognosis. Additionally, the lipid metabolism 
gene ELOVL6 was highlighted, confirming the 
predictions of our model. This model serves as 
a reliable reference for analyzing the relation-
ship between the TME and prognosis in NB 
patients with distinct metabolic profiles.

Lipid and amino acid metabolism have been 
previously identified as promoters of NB cell 
growth. Notably, the MYCN-activating transcrip-
tion factor 4 axis, in tandem with epigenetic 
regulators such as lysine demethylase 4C, 
enhances the amino acid pool, sustaining 
MYCN-mediated growth in adult NB [15, 16]. 
Similarly, MYCN-enhanced fatty acid oxidation 
supports NB growth [17]. In this study, we ini-
tially categorized patients into two subgroups 
based on differentially expressed genes 
enriched in lipid- and amino acid-related 
metabolism. These subgroups exhibited signifi-
cant differences in disease-free survival, which 
corroborates the finding that NB patients with 
different metabolic backgrounds have different 
clinical presentations [18]. This finding under-
scores the necessity of refining the NB clinical 
prognostic staging system to incorporate lipid 
and amino acid metabolism.

Single genes often provide limited predictive 
power; hence, multigene models are frequently 
employed for prognosis in cancer patients [19]. 
Several studies have constructed prognostic 
models using various low-molecular-weight 
growth factors for cancers like breast, gastric, 
and osteosarcoma [20-22]. In this study, we 
screened eight key metabolism-related genes - 
ELOVL6, OSBPL9, RPL27A, HSD17B3, ACHE, 
AKR1C1, PIK3R1, and EPHX2 - to construct a 
prognostic model for NB.

The metabolism-related signature (MRS) has a 
significant impact on NB prognosis, yet it has 
been rarely studied, and the genes involved 
have not been experimentally validated. Our 
analysis of training and validation sets revealed 
that MRS influences the clinical characteristics 
and prognosis of children with NB, in terms of 
both metabolic immune landscape and immu-
nopharmacological treatment, corroborating 
the observation that changes in tumor metabo-
lism accompany the progression of NB [23]. 
Survival analysis, receiver operating character-
istic curve analysis, and univariate multifactor 
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Figure 10. Expression of ELOVL6 reshapes the immunosuppressive environment in NB. (A) Stable expression of ELOVL6 in 9464D cells infected with an ELOVL6 
overexpression plasmid, and stable low expression of ELOVL6 in 975A2 cells infected with an ELOVL6 Knockdown plasmid. (B) Vector- or ELOVL6-overexpressing 
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Cox regression analysis confirmed that our 
metabolism-related genes-based model was a 
reliable and independent prognostic indicator, 
whose accuracy was considerably higher than 
other single models.

Typically, NB is considered an immune “cold” 
tumor, characterized by a lack of reactive T cell 
infiltration, which contributes to its low res- 
ponse rate to immune checkpoint inhibitors, 
such as programmed cell death protein 1/
PD-L1 inhibitors [24]. We identified eight key 
methylated DEGs associated with survival,  
and discovered a strong correlation with  
the tumor immune microenvironment in NB. 
Among these, the signature gene OSBPL9, 
which had the highest coefficient value as a 
protective factor, was downregulated in he- 
patocellular carcinoma [25]. PIK3R1 is a tumor 
suppressor gene [26], and RPL27A executes 
critical functions in the development and 
metastasis of triple-negative breast cancer 
[27]. The analysis in this study aligns with these 
data. ELOVL6 had the highest coefficient value 
among risk factors. It was shown to be a poor 
prognostic predictor in breast and liver cancer 
[28, 29], but its role in NB had yet to be 
explored. Through in vivo and in vitro experi-
ments, we demonstrated that high ELOVL6 
expression in NB led to a significant increase in 
the infiltration of MDSCs and Treg cells and a 
significant decrease in the percentage of  
CD8+ T cells and cytotoxic factors (tumor 
necrosis factor-α and IFNγ), leading to a worse 
prognosis. ELOVL6 is a rate-limiting enzyme in 
the long-chain fatty acid elongation reaction 
and is involved in lipid metabolism [30]. 
Previous studies have shown that altered lipid 
metabolism affects the immunotherapeutic 
response and can be a promising biomarker  
for predicting the efficacy of immunotherapy 
[31]. Therefore, ELOVL6 may contribute to the 
immunosuppressive in NB by modulating lipid 
metabolism.

Immune infiltration within the TME is critically 
associated with tumor ferroptosis, a process 
that can be induced by interferon-gamma 
(IFNγ) secreted by CD8+ T cells, key players in 
antitumor immunity [32]. Ferroptosis in cancer 
cells can release multiple immunostimulatory 
signals that further enhance CD8+ T cell infil-
tration into the tumor [33]. ELOVL6 expres- 
sion has been reported to inhibit ferroptosis in 
colon cancer cells [34], suggesting that it may 
affect patient prognosis in NB via a similar 
mechanism. In this study, we also found that 
the high expression of ELOVL6 inhibited ferrop-
tosis in NB cells (Figure S6), which is consistent 
with studies demonstrating that ferroptosis 
can be used to kill highly aggressive NB [35].

Current immunotherapy for NB primarily 
involves anti-disialoganglioside (GD2) monoclo-
nal antibodies. However, some patients experi-
ence relapse post anti-GD2 treatment or even 
turn GD2-negative following relapse. Moreover, 
GD2 is also expressed in normal tissues. This 
can lead to neuropathic pain in patients during 
treatment [36]. Therefore, enhancing im- 
munotherapy efficacy is crucial, not only 
through the advancement of immunotherapy 
itself but also via combination with other thera-
peutic approaches. The immunosuppressive 
properties of ELOVL6 in NB and its role in in- 
hibiting ferroptosis present a novel therapeutic 
concept: inhibiting ELOVL6 could promote fer-
roptosis and immune infiltration in NB, poten-
tially overcoming the limitations and side 
effects of GD2 monotherapy.

In summary, this study employed the “limma” R 
package and univariate Cox analysis in combi-
nation with LASSO regression analysis to 
establish metabolism-related gene markers 
within the NB dataset. An eight-gene signature 
(ELOVL6, OSBPL9, RPL27A, HSD17A3, ACHE, 
AKR1C1, PIK3R1, EPHX2) associated with NB 
metabolism was identified, effectively predict-
ing disease-free survival. This model was more 

9464D cells and Scramble- or ELOVL6-sh 975A2 cells were injected into the axilla of C57BL/6 mice (approximately 
1.5 × 106 cells per mouse, 5 mice per group). (C, D) The diameters of subcutaneous tumors in mice were measured 
every 3 days after tumor implantation and a growth curve was plotted. (E-G) Flow cytometric analysis of harvested 
tumors: Representative dot plots and statistical analysis of the proportions of myeloid-derived suppressor cells (MD-
SCs) (E), Treg cells (F) and CD3+CD8+ T cells (G). Representative dot plots and statistical analysis of the proportions 
of tumor-infiltrating CD8+IFNγ+ T cells (H) and CD8+TNFα+ T cells (I). Experiments were independently repeated 
thrice. Representative data are shown. Data are expressed as the mean ± standard deviation (SD). Paired and 
unpaired Student’s t-tests were performed for in vitro and in vivo assays, respectively. n.s., no statistically significant 
difference; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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comprehensive and accurate, outperforming 
other single models in predicting tumor progno-
sis. We selected ELOVL6 for in vitro and in vivo 
validation and found that upregulation promot-
ed the immunosuppressive microenvironment 
and malignant progression of NB. Taken togeth-
er, our data demonstrates ELOVL6 as a poten-
tial novel therapeutic target in NB, potentially 
transforming NB into an immune “hot” tumor, 
thus addressing the limitations of standalone 
immunotherapy or ineffective anti-GD2 treat-
ment. We further validated the reliability and 
detectability of this predictive model, which can 
inform patient prognosis and guide new immu-
notherapy combination strategies.
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Table S2. Patient clinical features
Characteristic Patient number (percentage)
Total 78
Age (months)
    < 18 23 (29.5%)
    ≥ 18 55 (70.5%)
Sex
    Male 34 (43.6%)
    Female 44 (56.4%)
INSS stage
    1 16 (20.5%)
    2 5 (6.4%)
    3 17 (21.8%)
    4 38 (48.7%)
    4s 2 (2.6%)
MYCN status
    Amplification 18 (23.1%)
    Not amplification 60 (76.9%)
Risk group
    LR 19 (24.4%)
    IR 20 (25.6%)
    HR 39 (50.0%)
Bone marrow metastasis
    Yes 31 (39.7%)
    No 47 (60.3%)
LDH (U/L)
    ≤295 12 (15.4%)
    295-500 21 (26.9%)
    500-1500 32 (41.0%)
    > 1500 11 (14.1%)
    None 2 (2.6%)
NSE (ng/l)
    ≤25 16 (20.5%)
    25-100 25 (32.1%)
    > 100 37 (47.4%)
VMA (mg/24 h urine)
    ≤13.6 5 (6.4%)
    > 13.6 50 (64.1%)
    None 23 (29.5%)
Follow-up
    Alive 53 (67.9%)
    Dead 25 (32.1%)
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Table S3. The primary antibodies utilized for western blot analysis, immunochemistry, flow cytometry, 
and muticolor-immunofluorescence
Antibody Company Catalog Number Dilution
ELOVL6 Abcam ab69857 1-2 ug/ml
ACSL4 ABclonal A20414 1:10000
GPx4 Cell Signaling Technology 59735 1:1000
FTH1 Cell Signaling Technology 4393 1:1000
GAPDH Cell Signaling Technology 5174 1:1000
ELOVL6 Abcam ab69857 5 ug/ml
APC/Fire 750 anti-mouse CD45 BioLegend 103154 1:100
FITC anti-mouse CD8a BioLegend 100706 1:100
APC-anti-mouse-CD3 BioLegend 100236 1:100
APC-anti-mouse/human CD11b BioLegend 101212 1:100
eFluorTM 450 anti-mouse Gr-1 Invitrogen 48-5931-82 1:100
Brilliant Violet 605TManti-mouse TNF-α BioLegend 506329 1:100
PE-anti-mouse-IFNγ Invitrogen 12-7311-82 1:100
BUV395 CD25 BD 564022 1:100
PerCP-eFluor710 FOXP3 THERMO 46-5773-82 1:100
SuperBright 600 PD1 eBioscience 63-9981-82 1:100
PE/dazzle 594 anti-mouse CD366 (Tim-3) BioLegend 134014 1:100
Brilliant Violet 785TM anti-mouse NK-1.1 BioLegend 108749 1:100
Brilliant Violet 785TM anti-mouse F4/80 BioLegend 123141 1:100
Brilliant Violet 421TM anti-mouse CD80 BioLegend 104726 1:100
SuperBright600 CD163 THERMO 63-1631-82 1:100
Brilliant Violet 421TM anti-mouse CD4 BioLegend 100544 1:100
ELOVL6 Abcam ab69857 1 ug/ml
CD8 ZSGB-BIO ZA-0508 /
CD33 ZSGB-BIO ZM-0045 /
DAPI SouthernBiotech 0100-20 /
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Figure S1. Consensus clustering analysis based on prognostic metabolism-related genes in the GSE49710 dataset. 
A-H. Consensus score matrix of samples when k = 2-9. I. Cumulative distribution function (CDF) of the consensus 
matrix for each k (indicated by colors). J. Tracking plot for each k. K. Relative alterations in the area under CDF 
curves.
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Figure S2. Validation of the metabolism-related signature in the testing cohort in the GSE49710 dataset. (A) Princi-
pal component analysis (PCA) plot based on the risk groups. (B, C) The distribution of the risk score (B) and survival 
time (C) in the testing cohort in the GSE49710 dataset. (D) Kaplan-Meier curves of overall survival (OS) in the testing 
cohort in the GSE49710 dataset. (E) Receiver operating characteristic (ROC) curves of the risk signature for 1-year, 
3-year, and 5-year OS prediction in the testing cohort in the GSE49710 dataset.
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Figure S3. Validation of the metabolism-related signature in the E-MTAB-8248 dataset. (A) PCA plot based on the 
risk groups. (B, C) The distribution of the risk score (B) and survival time (C) in the testing cohort in the E-MTAB-8248 
dataset. (D) Kaplan-Meier curves of OS in the testing cohort in the E-MTAB-8248 dataset. (E) ROC curves of the risk 
signature for 1-year, 3-year, and 5-year OS prediction in the testing cohort in the E-MTAB-8248 dataset.
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Figure S4. Validation of the metabolism-related signature in the TARGET cohort. (A) PCA plot based on the risk 
groups. (B, C) The distribution of the risk score (B) and survival time (C) in the TARGET cohort. (D) Kaplan-Meier 
curves of OS in the testing cohort in the TARGET cohort. (E) ROC curves of the risk signature for 1-year, 3-year, and 
5-year OS prediction in the testing cohort in the TARGET cohort.
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Figure S5. Effect of ELOVL6 expression on the immunosuppressive microenvironment of NB. (A-F) Flow cytometric analysis of harvested tumors: Representative dot 
plots and statistical analysis of the proportions of the exhausted T cells (PD1+ CD8; Tim3+ CD8 cells) (A, B). Representative dot plots and statistical analysis of the 
proportions of NK cells (C), M1 (Classical activated macrophages, CD80+ F4/80+) (D), M2 (Alternatively activated macrophages, CD163+ F4/80+) (E), and CD4+ T 
cells (F). Experiments were independently repeated thrice. Representative data are shown. Data are expressed as the mean ± standard deviation (SD). Paired and 
unpaired Student’s t-tests were performed for in vitro and in vivo assays, respectively. n.s., no significant statistical difference; ***, P < 0.001; ****, P < 0.0001.
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Figure S6. Overexpression of ELOVL6 inhibits ferroptosis in NB. (A) Western blot assay showed that overexpression 
of ELOVL6 inhibited ferroptosis in NB human cell lines (SK-N-AS and SK-N-BE2). (B) 24, 48, 72 h cell growth rates 
of NB human cell lines in the Vector and ELOVL6-OE groups were observed by CCK8 assay. (C, D) Total iron (C) and 
Fe2+ (D) in Vector and ELOVL6-OE groups were measured by iron detection assays. (E) Intracellular MDA in Vector 
and ELOVL6-OE groups was determined by MDA assays. (F) Intracellular GSH in Vector and ELOVL6-OE groups was 
determined by GSH assays. (G) Intracellular GPx in Vector and ELOVL6-OE groups was determined by GPx assays. 
Representative data are shown. Data are expressed as mean ± SD. Paired student’s t test were performed for in 
vitro assays and unpaired student’s t test were conducted for in vivo assays. n.s., no significant statistical difference; 
*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.


