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Abstract: Uterine Corpus Endometrial Carcinoma (UCEC) is a significant health concern with a complex genetic land-
scape impacting disease susceptibility and progression. This study aimed to unravel the spectrum of DNA repair 
gene mutations in Pakistani UCEC patients through Next Generation Sequencing (NGS) and explore their potential 
functional consequences via downstream analyses. NGS analysis of genomic DNA from 30 UCEC patients was con-
ducted to identify clinically significant pathogenic mutations in DNA repair genes. This analysis revealed mutations 
in 4 key DNA repair genes: BRCA1, BRCA2, APC, and CDH1. Kaplan-Meier (KM) analysis was employed to assess the 
prognostic value of these mutations on patient overall survival (OS) in UCEC. To delve into the functional impact of 
these mutations, we performed RT-qPCR, immunohistochemistry (IHC), and western blot analyses on the mutated 
UCEC samples compared to their non-mutated counterparts. These results unveiled the up-regulation in the expres-
sion of the mutated genes, suggesting a potential association between the identified mutations and enhanced gene 
activity. Additionally, targeted bisulfite sequencing analysis was utilized to evaluate DNA methylation patterns in the 
promoters of the mutated genes. Strikingly, hypomethylation in the promoters of BRCA1, BRCA2, APC, and CDH1 
was observed in the mutated UCEC samples relative to the non-mutated, indicating the involvement of epigenetic 
mechanisms in the altered gene expression. In conclusion, this study offers insights into the genetic landscape of 
DNA repair gene mutations in Pakistani UCEC patients. The presence of pathogenic mutations in BRCA1, BRCA2, 
APC, and CDH1, coupled with their down-regulation and hypermethylation, suggests a convergence of genetic and 
epigenetic factors contributing to genomic instability in UCEC cells. These findings enhance our understanding of 
UCEC susceptibility and provide potential avenues for targeted therapeutic interventions in Pakistani UCEC patients.
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Introduction

Uterine corpus endometrial carcinoma (UCEC) 
represents a complex and increasingly preva-
lent gynecological malignancy that affects the 
endometrial lining of the uterus [1-3]. In 2022, 
UCEC prevalence exhibited a steady increase 
and this disease declared as one of the most 
commonly diagnosed gynecological malignan-
cies worldwide [4, 5]. Factors such as obesity, 
hormonal imbalances, and an aging population 
contributed to this rising trend [6-8]. With a 
diverse clinical spectrum ranging from indo- 
lent to aggressive forms, UCEC poses signifi-

cant health challenge [9, 10]. While early-stage 
UCEC is often associated with a favorable prog-
nosis, a subset of cases manifests as high-
grade tumors with aggressive behavior, neces-
sitating a deeper understanding of the underly-
ing molecular mechanisms that drive its pro-
gression [11, 12].

DNA repair gene mutations are pivotal drivers 
of cancer development [13, 14]. These genes, 
responsible for correcting DNA damage, safe-
guard the genome against mutations [15]. 
When they acquire mutations themselves, the 
DNA repair process becomes compromised, 
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allowing the accumulation of genetic altera-
tions, which can ultimately lead to the initiation 
and progression of cancer. 

Defects in DNA repair genes, such as BRCA1, 
BRCA2, and others, are particularly associated 
with an increased cancer risk [16, 17]. These 
mutations can result in impaired repair of DNA 
double-strand breaks, making cells susceptible 
to genomic instability and the formation of 
malignant tumors. Given the clinical and thera-
peutic implications, elucidating the genetic and 
epigenetic landscape of DNA repair genes in 
UCEC has become paramount. So far, less 
research work has been done on exploring 
mutational spectrum of DNA repair genes in 
Pakistani UCEC patients. Therefore, investigat-
ing DNA repair gene mutations in the Pakis- 
tani UCEC patient’s context will address popu-
lation-specific variations influencing disease 
susceptibility. Furthermore, the investigation 
into gene expression changes and epigenetic 
alterations, including hypomethylation in gene 
promoters, will enhance our understanding of 
the intricate molecular mechanisms underlying 
UCEC in the Pakistani context. In the current 
study, by harnessing cutting-edge Next Gene- 
ration Sequencing (NGS) technology, we delve 
deep into the genetic makeup of UCEC, unearth-
ing clinically significant mutations in a selective 
group of DNA repair genes across Pakistani 
UCEC patients’ cohort. These findings not only 
serve as prognostic markers but also shed light 
on the molecular terrain within UCEC cells.

Beyond genetic mutations, we explore the  
functional repercussions of these alterations, 
investigating how they may affect the expres-
sion of DNA repair genes. Through state-of-the-
art techniques like RT-qPCR and immunohisto-

chemistry, we unveil a potential link between 
these mutations and reduced gene activity, 
raising intriguing questions about the compro-
mised DNA repair mechanisms in UCEC cells. 
Moreover, we also explored epigenetic aspect 
of the mutated genes, examining their DNA 
methylation status. 

Method

Ethical approval and sample collection

This research was conducted in accordance 
with Helsinki guidelines [18] and approved by 
the institutional review board. Informed con-
sent was obtained from all patients participat-
ing in the study. A cohort of 30 UCEC patients, 
who were underwent for surgical resection in 
the DHQ, Teaching Hospital, Dera Ismail Khan, 
KPK were recruited for this study (Table 1). 
Patients were selected based on clinical and 
histopathological criteria, ensuring diverse dis-
ease stages and grades. After resection, UCEC 
tissue samples were immediately collected and 
snap-frozen in liquid nitrogen for subsequent 
analysis.

Genetic analysis

Genomic DNA extraction: Genomic DNA was 
extracted from tissue samples using a com-
mercially available kit (Easy Genomic DNA 
Extraction Kit, Thermo Fischer). DNA concen-
tration and purity were measured by NanoDrop 
2000 Spectrophotometer and Qubit 3.0 Fluo- 
rometer (Thermo Fischer Scientific, Waltham, 
MA, USA).

Next generation sequencing (NGS) analysis: In 
total of the coding region of 27 DNA repair 
genes, including BRCA1, BRCA2, APC, ATM, 
BARD1, BMPR1A, BRIP1, CDH1, CDK4, CD- 
KN2A, CHEK2, EPCAM, MLH1, MRE11A, MSH2, 
MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, 
RAD50, RAD51C, RAD51D, SMAD4, STK11, 
and TP53 were analyzed. Multiplex polymera- 
se chain reaction (PCR) was performed using 
50-100 ng of genomic DNA and involved 17 
cycles. A premixed primer pool and Ion Am- 
pliSeq Library Kit 2.0 were used for this pur-
pose, as previously detailed [19]. Subsequently, 
the PCR amplicons underwent treatment with 2 
μL of FuPa reagent, leading to partial digestion 
of primer sequences and phosphorylation of 
the amplicons. The amplicons underwent liga-

Table 1. An overview of UCEC patient’s char-
acteristics in the present study
Sr. no Characteristics Sample count (n)
1 Sex

    Male 0
    Female 30

2 Age
    >60 1
    <60 29

3 Treatment
    Pre-treatment 30
    Post-treatment 0
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tion to adapters, incorporating diluted barco- 
des from the Ion Xpress Barcode Adapters kit 
(Life Technologies). Following this step, adap-
tor-ligated amplicon libraries were subjected  
to purification using Agencourt AMPure XP 
reagents (Beckman Coulter, Tokyo, Japan). Su- 
bsequently, library concentrations were as- 
sessed using an Ion Library Quantitation Kit 
(Life Technologies). Each library was then dilut-
ed to a concentration of 8 pM, and equal 
amounts of these libraries were combined for a 
single sequencing reaction. Emulsion PCR was 
subsequently conducted employing the Ion 
OneTouch System and Ion PI Template OT2 200 
Kit v2 (Life Technologies), adhering to the man-
ufacturer’s protocols. The Ion Sphere Particles, 
confirmed as template-positive, were subse-
quently enriched through the employment of 
Dynabeads MyOne Streptavidin C1 Beads (Life 
Technologies) via the Ion OneTouch ES system 
(Life Technologies). After this purification pro-
cess, the Ion Sphere particles were loaded onto 
an Ion PI Chip v2. Sequencing process, con-
ducted on an Ion Proton System (Life Tech- 
nologies), employed the Ion PI Sequencing 200 
Kit v2. This sequencing procedure utilized 500 
flow runs, resulting in the generation of reads 
approximately 200 base pairs in length.

Data analysis and mutation classification: The 
clean sequencing reads were aligned to the 
human reference genome hg19/GRCh37. After 
the alignment process, reads exhibiting mis-
alignment from the reference were classified  
as potential mutations. Subsequent to muta-
tion identification, the annotation of these dis-
cerned mutations was conducted utilizing the 
Basespace mutation interpreter, constructed 
on the foundation of Annotation Engine 3.1.1.0. 
Conforming to the guidelines outlined by the 
American College of Medical Genetics and 
Genomics and the Association for Molecular 
Pathology - ACMG/AMP [20], the interpretation 
of mutations was undertaken. Additionally, the 
ClinVar database [21] was utilized to assess 
the clinical significance of the identified mu- 
tations.

Mutational frequencies analysis: The Genome 
Aggregation Database (gnomAD) is a compre-
hensive and widely utilized genetic resource.  
It compiles and shares exome and genome 
sequencing data from diverse populations, 
enabling researchers to explore genetic varia-
tions and their frequencies [22]. In this study, 

GnomeAD database was used to analyze the 
frequencies of observed mutations in Asian 
population.

Survival analysis (Kaplan-Meier)

Kaplan-Meier survival curves [23] were gener-
ated to assess the impact of DNA repair gene 
mutations on overall survival (OS) in UCEC 
patients. These curves visually depicted the 
survival probability over time for two distinct 
groups: UCEC patients with the identified DNA 
repair gene pathogenic mutations and those 
without. To determine the statistical signifi-
cance of these survival differences, the log-
rank test, a widely recognized statistical meth-
od for comparing survival distributions, was 
employed. This test assessed whether the 
observed differences in OS between the two 
groups were statistically meaningful, providing 
valuable insights into the prognostic implica-
tions of these mutations in UCEC.

Functional consequences of mutations

RNA extraction: Total RNA was extracted from 
UCEC tissue samples was extracted using kit 
method (GeneJET RNA Purification Kit, Thermo 
Fischer), following instructions of manufactur-
er. RNA concentration and purity were mea-
sured by NanoDrop 2000 Spectrophotometer 
and Qubit 3.0 Fluorometer (Thermo Fischer 
Scientific, Waltham, MA, USA).

Reverse transcription quantitative polymerase 
chain reaction (RT-qPCR): The whole RNA was 
converted into complementary DNA (cDNA) 
using High-Capacity cDNA Reverse Transcrip- 
tion Kits from Applied Biosystems. Subse- 
quently, RT-qPCR was conducted employing 
Platinum PCR SuperMix High Fidelity from Life 
Technologies. Each reaction was replicated 
three times for accuracy. To determine the 
mRNA expression levels, the following formula 
was employed: mRNA expression level =2^(-
ΔΔCq) [24]. A student t-test was employed to 
find expression differences between two 
groups.

Receiver operating curve generation

Based on the RT-qPCR expression and bisul-
fite-seq based methylation data, ROC curves  
of DNA repair gene expression and methylation 
levels were generated with the help of SRPLOT 
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web source (https://bioinformatics.com.cn/sr- 
plot).

Immunohistochemistry (IHC)

Tissue sections were deparaffinized, and anti-
gen retrieval was performed by heat treat- 
ment in EDTA (ethylenediaminetetraacetic acid) 
solution pH 8.0. Protein expression of the 
mutated genes in UCEC tissues samples were 
evaluated on 4-μm-thick, formalin-fixed, paraf-
fin-embedded (FFPE) sections with anti-BRCA1 
(EPR19433, abcam), anti-BRCA2 (EPR23442-
43, abcam), anti-APC (EP701Y, abcam), and 
anti-CDH1 (EP700Y, abcam) monoclonal anti-
bodies using the Ventana BenchMark XT stain-
ing system (Roche, Tokyo, Japan). In this analy-
sis, non-pathogenic mutated tissue samples 
served as comparison counterpart. A patholo-
gist determined the tumors to be positive when 
nuclear staining in tumor tissue was present or 
negative when the nuclear stain was absent. 
Protein expression was observed based on 
staining intensity.

Western blotting

Protein extraction from two samples, encom-
passing one UCEC sample with pathogenic 
mutations and another UCEC sample devoid of 
pathogenic mutations, was carried out using  
a kit method (ab270054). The protein concen-
tration was quantified using the BCA Protein 
Assay reagent (Beyotime, Shanghai, China). 
Subsequently, the samples underwent separa-
tion on an SDS-polyacrylamide gel and were 
transferred onto polyvinylidene difluoride (PV- 
DF) membranes. Signal detection was accom-
plished using ECL western blotting detection 
reagent (Thermo, USA). The antibodies em- 
ployed in this process included anti-BRCA1 
(ab238983), anti-BRCA2 (ab123491), anti-APC 
(ab40778), anti-CDH1 (ab219332), and β-actin 
(ab6302).

Targeted bisulfite sequencing analysis

Library preparation: In brief, total DNA (1 µg) 
was fragmented into approximately 200-300 
bp fragments using a Covarias sonication sys-
tem (Covarias, Woburn, MA, USA). Following 
purification, the DNA fragments underwent 
repair and phosphorylation of blunt ends using 
a mixture of T4 DNA polymerase, Klenow 
Fragment, and T4 polynucleotide kinase. The 

repaired fragments were then 3’ adenylated 
using Klenow Fragment (3’-5’ exo-) and ligated 
with adapters containing 5’-methylcytosine 
instead of 5’-cytosine and index sequences 
using T4 DNA Ligase. The constructed libraries 
were quantified using a Qubit fluorometer with 
the Quant-iT dsDNA HS Assay Kit (Invitrogen, 
Carlsbad, CA, USA) and sent to Beijing Geno- 
mic Institute (BGI), China for targeted bisulfite 
sequencing. Following sequencing, the methyl-
ation data was normalized into beta values.

cBioPortal analysis: cBioPortal is a user-friend-
ly, open-access platform designed for cancer 
genomics research [25]. It offers a suite of pow-
erful tools to explore complex cancer genomic 
datasets. Researchers can easily visualize, 
analyze, and interpret genetic alterations in 
various cancers, enhancing our understanding 
of the disease. In the present study, we used 
this database to analyze clinically significant 
mutations across TCGA UCEC samples.

Enrichment analysis: MetaScape is a versatile 
bioinformatics tool widely used for KEGG (Kyoto 
Encyclopedia of Genes and Genomes) and GO 
(Gene Ontology) analysis [26]. It streamlines 
the exploration of biological pathways, func-
tions, and molecular interactions within large-
scale datasets. In this study, we used this  
valuable resource for GO and KEGG analyses of 
the mutated genes. A P<05 was used as the 
cutoff criterion for the functional enrichment 
analysis.

Drug prediction analysis: DrugBank is a com-
prehensive and authoritative resource in the 
field of pharmacology [27]. It serves as an 
essential repository of information on drugs, 
drug targets, and drug interactions, encom-
passing both approved pharmaceuticals and 
investigational compounds. In this study, we 
used DrugBank database to explore mutated 
genes’ expression regulatory drugs.

Results

Mutation identification via NGS

The analysis of 30 UCEC cases’ sequencing 
data revealed a total of 31 mutations, distrib-
uted as follows: 10 mutations in BRCA1, 7 
mutations in BRCA2, 6 mutations in APC, and  
8 mutations in the CDH1 gene (Figure 1A). 
Notably, all detected mutations exhibited a 
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high mutation quality score of 100. The se- 
quencing reads provided an impressive cover-
age rate of 97.1%, and the average Quality 
score (Q30) reached an impressive 97%. In 
addition to the computational analysis, we uti-
lized the ClinVar database to assess the clinical 
significance of these observed mutations.

Upon a comprehensive evaluation of mutation 
calling files for the entire cohort of cases, we 
identified a sum of 2 pathogenic mutations 
(constituting 20%) and 8 benign mutations 
(comprising 80%) within the BRCA1 gene. 
Similarly, in the BRCA2 gene, we found 2 pa- 
thogenic mutations (constituting 25%) and 5 
benign mutations (constituting 75%). For the 
APC gene, our analysis revealed 1 pathogenic 
mutation (constituting 15%) and 5 benign 
mutations (constituting 85%). Lastly, within 
CDH1 gene, we detected 1 pathogenic muta-
tion (constituting 12%) and 7 benign mutations 
(constituting 88%) in some of the analyzed 
UCEC samples (Figure 1B and Table 2). 

Clinically valuable mutations

Pathogenic mutations carry critical clinical 
importance as they directly contribute to dis-
ease initiation. These genetic abnormalities 
disrupt normal cellular processes, leading to 
abnormal protein production or function [28]. 
In terms of clinical significance, our investiga-
tion identified a total of 2 pathogenic muta- 
tions (p.Glu1817Ter and p.Trp1815Ter) in 

BRCA1, 2 pathogenic mutations (p.Gly173Arg 
and p.Val211Ile) in BRCA2, 1 pathogenic muta-
tion (p.Gln208Ter) in APC, and 1 pathogenic 
mutation (p.Asp254Tyr) in CDH1 (Figure 1B 
and Table 2).

Screening frequencies of the clinical valuable 
mutations across Asian UCEC patients via 
GnomAD database

Low-frequency pathogenic mutations are valu-
able as population-specific biomarkers due to 
their ability to identify distinctive genetic varia-
tions prevalent in particular populations [29]. 
To confirm the uniqueness of the pathogenic 
mutations observed in our studied population, 
we examined their frequencies in the Gnome- 
AD database. Remarkably, these pathogenic 
mutations, including BRCA1 (p.Glu1817Ter and 
p.Trp1815Ter), BRCA2 (p.Gly173Arg and p.
Val211Ile), APC (p.Gln208Ter), and CDH1 
(p.Asp254Tyr), have not been previously docu-
mented in Asian UCEC patients, registering a 
frequency of 0 in GnomAD database. This sug-
gests that these mutations are specific to the 
Pakistani population.

Survival outcomes of the UCEC patients 
harboring pathogenic mutations in BRCA1, 
BRCA2, APC, and CDH1 genes

In this study, the Kaplan-Meier survival analysis 
reveals a notable disparity in overall survival 
(OS) between two cohorts of UCEC patients: 

Figure 1. Comprehensive overview of mutations in BRCA1, BRCA2, APC, and CDH1 genes in UCEC samples via NGS. 
(A) Total count of identified mutations in BRCA1, BRCA2, APC, and CDH1 genes across UCEC samples, and (B) Num-
ber of pathogenic mutations detected in BRCA1, BRCA2, APC, and CDH1 genes across UCEC samples.
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Table 2. Detail of the mutations observed in four DNA repair genes across UCEC patients
Sr. no Gene NM:c.DNA Protein Nature No. patients
1 BRCA1 NM_007294.4:c.5449G>T p.Glu1817Ter Pathogenic 14
2 NM_007294.4:c.5445G>A p.Trp1815Ter Pathogenic 14
3 NM_007294.4:c.5117G>C p.Gly1706Ala Benign 17
4 NM_007294.4:c.4985T>C p.Phe1662Ser Benign 11
5 NM_007294.4:c.4910C>T p.Pro1637Leu Benign 11
6 NM_007294.4:c.4837A>G p.Ser1613Gly Benign 19
7 NM_007294.4:c.4816A>G p.Lys1606Glu Benign 15
8 NM_007294.4:c.4682C>T p.Thr1561Ile Benign 21
9 NM_007294.4:c.4636G>A p.Asp1546Asn Benign 24
10 NM_007294.4:c.4535G>T p.Ser1512Ile Benign 24
11 BRCA2 NM_000059.4:c.517G>C p.Gly173Arg Pathogenic 14
12 NM_000059.4:c.631G>A p.Val211Ile Pathogenic 14
13 NM_000059.4:c.5640T>G p.Asn1880Lys Benign 15
14 NM_000059.4:c.6943A>T p.Ile2315Leu Benign 13
15 NM_000059.4:c.7534C>T p.Leu2512Phe Benign 19
16 NM_000059.4:c.7731A>T p.Lys2577Asn Benign 23
17 NM_000059.4:c.7902G>A p.Met2634Ile Benign 23
18 APC NM_000038.6:c.622C>T p.Gln208Ter Pathogenic 14
19 NM_000038.6:c.295C>T p.Arg99Trp Benign 15
20 NM_000038.6:c.715G>C p.Ala239Pro Benign 23
21 NM_000038.6:c.995G>A p.Arg332Gln Benign 22
22 NM_000038.6:c.1240C>T p.Arg414Cys Benign 21
23 NM_000038.6:c.2608C>T p.Pro870Ser Benign 21
24 CDH1 NM_004360.5:c.760G>T p.Asp254Tyr Pathogenic 14
25 NM_004360.5:c.820G>A p.Gly274Ser Benign 23
26 NM_004360.5:c.892G>A p.Ala298Thr Benign 15
27 NM_004360.5:c.1018A>G p.Thr340Ala Benign 23
28 NM_004360.5:c.1162G>A p.Glu388Lys Benign 21
29 NM_004360.5:c.1298A>G p.Asp433Gly Benign 16
30 NM_004360.5:c.1409C>T p.Thr470Ile Benign 21
31 NM_004360.5:c.2077G>A p.Gly693Ser Benign 11

one characterized by the presence of patho-
genic mutations in BRCA1, BRCA2, APC, and 
CDH1 (n=14), and the other comprising pa- 
tients without pathogenic mutations (n=16) 
(Figure 2). The group harboring pathogenic 
mutations in BRCA1, BRCA2, APC, and CDH1 
exhibits worst OS outcomes when contrasted 
with the non-mutated group (Figure 2). This  
discovery underscores the clinical significan- 
ce of BRCA1, BRCA2, APC, and CDH1 patho-
genic mutations in influencing disease pro- 
gression and survival prospects, indicating an 
association with poorer prognosis in UCEC 
patients.

Expression analysis of BRCA1, BRCA2, APC, 
and CDH1 genes

We conducted RT-qPCR assessments of BR- 
CA1, BRCA2, APC, and CDH1 gene expression 
in two distinct subsets of UCEC samples. One 
subset comprised samples (n=14) with con-
firmed pathogenic mutations in BRCA1, BRCA2, 
APC, and CDH1, while the other subset (n=16) 
consisted of samples lacking these mutations, 
forming the non-pathogenic mutation group. 
Our RT-qPCR analysis revealed a marked in- 
crease in the expression levels of these mu- 
tated genes in UCEC samples harboring patho-
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genic mutations when compared to UCEC sam-
ples devoid of such mutations (Figure 3A). 
Furthermore, the analysis of ROC curves yield-
ed significant results. For BRCA1, BRCA2, APC, 
and CDH1 expression, a prominent AUC of 1 
(p-value <0.05) was observed (Figure 3B).

Promoter methylation analysis of BRCA1, 
BRCA2, APC, and CDH1 genes

We carried out a promoter methylation analysis 
using targeted bisulfite-seq to explore the pro-
moter methylation status of BRCA1, BRCA2, 
APC, and CDH1 genes within two distinct cate-
gories of UCEC samples. The first group com-
prised samples containing pathogenic muta-
tions in BRCA1, BRCA2, APC, and CDH1, while 
the second group consisted of UCEC samples 
lacking such pathogenic mutations, as a coun-
terpart. Our investigation revealed a significant 
contrast in promoter methylation patterns. In 
the UCEC sample group with pathogenic mu- 
tations, we observed substantial hypomethyl-
ation within the promoters of BRCA1, BRCA2, 
APC, and CDH1 genes as compared to the non-
pathogenic mutation group of UCEC samples 
(Figure 4).

Immunohistochemical and western blot analy-
ses of BRCA1, BRCA2, APC, and CDH1 protein 
expressions

We performed an IHC analysis to evaluate the 
expression of BRCA1, BRCA2, APC, and CDH1 

proteins in UCEC samples. Specifically, we ex- 
amined two tissue sample containing patho-
genic mutations in each of the BRCA1, BRCA2, 
APC, and CDH1 genes, and one tissue sample 
without any pathogenic mutations. The objec-
tive was to discern potential differences in pro-
tein expression between these two types of 
samples. Upon analyzing the staining results, a 
noticeable trend became evident. UCEC tissue 
samples with pathogenic mutations displayed 
significantly higher levels of BRCA1, BRCA2, 
APC, and CDH1 proteins compared to their 
counterparts lacking pathogenic mutations 
(Figure 5A). In addition to the IHC, western blot 
analysis also revealed that the protein expres-
sion of the BRCA1, BRCA2, APC, and CDH1 was 
significantly higher in UCEC sample with patho-
genic mutations as compare to those without 
pathogenic mutations (Figure 5B).

Analysis of clinically valuable pathogenic mu-
tations across TCGA dataset

Following this, our study embarked on an exten-
sive exploration of mutations within the BRCA1, 
BRCA2, APC, and CDH1 genes in UCEC samples 
obtained from the TCGA dataset, utilizing the 
cBioPortal platform. The primary objective was 
to identify potential genetic variations and th- 
eir prevalence across diverse populations. The 
results of this analysis revealed a distinct pat-
tern: the pathogenic mutations detected in 
BRCA1 (p.Glu1817Ter and p.Trp1815Ter), BR- 

Figure 2. Kaplan-Meier survival analysis of UCEC patients. A significance threshold of P<0.05 was applied to indi-
cate significant outcomes.
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Figure 3. Comparative expression and ROC curve analysis of BRCA1, BRCA2, APC, and CDH1 genes in pathogenic mutated and non-pathogenic mutated UCEC 
sample groups. (A) Evaluation of relative expression levels of BRCA1, BRCA2, APC, and CDH1 genes through RT-qPCR, and (B) ROC curve analysis based on RT-qPCR 
expression data for BRCA1, BRCA2, APC, and CDH1 genes. A significance threshold of P<0.05 was applied to indicate significant outcomes.
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CA2 (p.Gly173Arg and p.Val211Ile), APC (p.
Gln208Ter), and CDH1 (p.Asp254Tyr) in UCEC 
patients of Pakistani origin were conspicuously 
absent within the TCGA UCEC samples (Figure 
6). The absence of these specific pathogenic 
mutations in the TCGA dataset underscores 
their unique occurrence within the Pakistani 
cohort.

Enrichment analysis outcomes 

Next, we performed GO and KEGG enrichment 
analyses. Among GO, BRCA1, BRCA2, APC, and 

candidates, Dasatinib, Doxorubicin, Bortezo- 
mib, Cyclosporine, Resveratrol, Lucanthone, 
Estradiol, Curcumin, Quercetin, Tretinoin (Table 
3) hold particular significance. These compo- 
unds exhibit the potential to effectively modu-
late the expression levels of the target genes, 
thus representing promising avenues for inno-
vative therapeutic interventions.

Discussion

Uterine Corpus Endometrial Carcinoma (UCEC) 
represents a significant public health concern, 

Figure 4. Assessment of methylation levels in BRCA1, BRCA2, APC, and 
CDH1 genes via targeted bisulfite sequencing in pathogenic mutated and 
non-pathogenic mutated UCEC sample groups. A significance threshold of 
P<0.05 was applied to indicate significant outcomes.

CDH1 genes were enriched in 
“BRCA1-BARD1 complex, lat-
eral element, BRCA1-A com-
plex, and flotillin complex” 
etc., CC terms (Figure 7A), 
“gamma-catenin binding, H3 
histone acetyltransferase ac- 
tivity, H4 histone acetyltrans-
ferase activity, and GTPase 
activated protein binding” 
etc., MF terms (Figure 7B), 
“cell cycle DNA replication 
maintenance of fidelity, res- 
ponse to indole-3-methanol, 
cellular response to indole-
3-methanol, and histon H3- 
acetylation” etc., BP terms 
(Figure 7C), and “homologous 
recombination, fanconi ane-
mia pathway, breast cancer, 
endometrial cancer, basal ce- 
ll mcarcinoma, and platinum 
drug resistance in Cancer” 
etc., KEGG terms (Figure 7D).

Drug prediction analysis out-
comes

In this comprehensive inves- 
tigation, we employed the 
DrugBank database for a sys-
tematic exploration of thera-
peutic strategies aimed at at- 
tenuating the expression of 
underexpressed and mutated 
genes (BRCA1, BRCA2, APC, 
and CDH1). Our meticulous 
analysis unveiled a range of 
potential drug candidates, ea- 
ch displaying promising attri-
butes for suppressing the ex- 
pression of BRCA1, BRCA2, 
APC, and CDH1. Among these 
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particularly among women, due to its increas-
ing incidence and impact on morbidity and  
mortality [30-32]. UCEC, a subtype of endome-
trial cancer, is the most common malignancy  
of the female reproductive tract in developed 
countries, making it a substantial healthcare 
burden [5, 33, 34]. Its incidence has been 
steadily rising, partly due to factors such as 
obesity, hormone therapy, and an aging popula-
tion [35-38].

Genetic factors also play a crucial role in UCEC 
development [39]. Mutations in DNA repair 
genes can lead to genomic instability, a hall-
mark of cancer [40, 41]. Among these genes, 
BRCA1 and BRCA2 have garnered attention 
due to their association with hereditary breast 
and ovarian cancers [42, 43]. However, their 
involvement in UCEC has been less explored, 
particularly in populations like Pakistan. There- 
fore, the present study focuses on unraveling 
the genetic and epigenetic factors contribut- 
ing to UCEC susceptibility and progression in 
Pakistani patients.

In the current study, we conducted a compre-
hensive analysis of 27 major DNA repair gene 
mutations in Pakistani UCEC patients using 
NGS. The results revealed Pakistani popula-

tion-specific pathogenic mutations in four key 
DNA repair genes: BRCA1 (p.Glu1817Ter and 
p.Trp1815Ter), BRCA2 (p.Gly173Arg and p.
Val211Ile), APC (p.Gln208Ter), and CDH1 
(p.Asp254Tyr). Similar to our study, previous 
studies have identified germline and somatic 
mutations in BRCA1 and BRCA2 genes in UCEC, 
emphasizing their role in endometrial cancer 
susceptibility and treatment response [44, 45]. 
Additionally, studies have explored the correla-
tion between specific morphological features 
and microsatellite instability (MSI) status in 
UCEC, shedding light on the presence of APC 
pathogenic mutations in this context [46, 47]. 
Furthermore, investigations have also investi-
gated germline pathogenic mutations in CDH1 
gene and their implications in hereditary dif-
fuse gastric cancer, which also has implications 
for UCEC given CDH1 mutations’ broader sig-
nificance [48, 49].

Furthermore, we assessed the possible func-
tional consequences of these pathogenic mu- 
tations in BRCA1, BRCA2, APC, and CDH1 
through RT-qPCR and immunohistochemistry 
(IHC) analyses in UCEC samples. The up-re- 
gulation of mutated BRCA1, BRCA2, APC, and 
CDH1 genes in mutated UCEC samples as  
compared to the non-mutated samples sug-

Figure 5. Proteomic expression analysis of BRCA1, 
BRCA2, APC, and CDH1 proteins via IHC and west-
ern blot in UCEC samples with pathogenic muta-
tions compared to non-pathogenic mutations. (A) 
IHC results, and (B) Western blot results.
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Figure 6. Mutational analysis outcomes of BRCA1, BRCA2, APC, and CDH1 genes across TCGA UCEC samples using cBioPortal platform.
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gests their potential association of the obser- 
ved pathogenic mutations with the enhanced 
gene activity. Previous studies also suggested 
that pathogenic mutations can lead to the 
abnormal expression (up-regulation or down-
regulation) variations in the mutated genes in 
cancer samples [50, 51].

Intriguingly, our investigation of DNA methyla-
tion patterns in the promoters of mutated 
genes (BRCA1, BRCA2, APC, and CDH1) using 
targeted bisulfite sequencing revealed hypo-
methylation in the mutated UCEC samples re- 

lative to non-mutated samples. This observa-
tion underscores the involvement of epigene- 
tic mechanisms in altered gene expression of 
BRCA1, BRCA2, APC, and CDH1. Similar to our 
results, previous research has indeed indicat-
ed that mutated genes often exhibit hypometh-
ylation in cancer patients. This phenomenon 
was observed in various cancer types, includ-
ing breast cancer, colorectal cancer and gastric 
cancer [52, 53]. 

In addition to this, KEGG enrichment analysis of 
the mutated genes (BRCA1, BRCA2, APC, and 

Figure 7. GO and KEGG analyses of BRCA1, BRCA2, APC, and CDH1 genes via metascape. (A) BRCA1, BRCA2, APC, 
and CDH1 genes-related CC terms, (B) BRCA1, BRCA2, APC, and CDH1 genes-related MF terms, (C) BRCA1, BRCA2, 
APC, and CDH1 genes-related BP terms, and (D) BRCA1, BRCA2, APC, and CDH1 genes-related KEGG terms. A sig-
nificance threshold of P<0.05 was applied to indicate significant outcomes.

Table 3. DrugBank-based BRCA1, BRCA2, APC, and CDH1 associated drugs
Sr. No Hub gene Drug name Effect Reference Group
1 BRCA1 Dasatinib Decrease expression of BRCA1 mRNA A21899 Approved

Doxorubicin A21498
Bortezomib A21448

Cyclosporine A20661
2 BRCA2 Resveratrol Decrease expression of BRCA2 mRNA A23854 Approved

Lucanthone A23132
Estradiol A21155

Cyclosporine A20661
3 APC Curcumin Decrease expression of APC mRNA A21794 Approved

Quercetin A23741
Tretinoin A24376

4 CDH1 Cyclosporine Decrease expression of CDH1 mRNA A20661 Approved
Resveratrol A23854
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CDH1) provides valuable insights into the  
functional consequences of these pathogenic 
mutations. Specifically, the disruption of essen-
tial DNA repair pathways, such as the homolo-
gous recombination pathway, underscores the 
impact of these mutations on the genomic sta-
bility of UCEC cells. The homologous recombi-
nation pathway plays a critical role in repairing 
DNA double-strand breaks and maintaining 
genomic integrity [54, 55]. The observed dis-
ruption of this pathway suggests that the iden-
tified mutations in BRCA1, BRCA2, APC, and 
CDH1 genes may compromise the cells’ ability 
to effectively repair DNA damage, potentially 
contributing to UCEC development and progres-
sion. This finding aligns with previous research 
linking pathogenic mutations in DNA repair 
genes to increased cancer susceptibility and 
genomic instability [56, 57].

Another important contribution of this study is 
the identification of potential drugs (Dasatinib, 
Doxorubicin, Bortezomib, Cyclosporine, Resve- 
ratrol, Lucanthone, Estradiol, Curcumin, Quer- 
cetin, Tretinoin) capable of modulating mutat- 
ed BRCA1, BRCA2, APC, and CDH1expression 
regulation. 

Dasatinib is a tyrosine kinase inhibitor, Do- 
xorubicin is an anthracycline, Bortezomib is a 
proteasome inhibitor, and Cyclosporine is an 
immunosuppressant [58-61]. These drugs are 
chemotherapy agents, which established in- 
teractions with DNA and potentially influence 
the BRCA1 expression, highlighting their rele-
vance for cancer therapy [58-61]. Resvera- 
trol, known for its antioxidant properties, and 
Lucanthone, originally studied for its antischis-
tosomal effects, exhibit promise in cancer ther-
apeutic research due their impact of DNA re- 
pair pathways by modulating BRCA2 expres-
sion [62, 63]. Estradiol, a form of estrogen, is 
another important chemotherapeutic drug be- 
cause of its potential interaction with BRCA2 
for inducing cell death [64]. Curcumin is a natu-
ral compound found in turmeric, Quercetin is a 
flavonoid with antioxidant and anti-inflammato-
ry properties, and Tretinoin is a derivative of 
vitamin A, have demonstrated anti-cancer 
properties, including effects on various signal-
ing pathways. With respect to treating UCEC, 
there are evidences indicating Curcumin, Quer- 
cetin, and Tretinoin abilities to modulate APC 
function and Wnt signaling [65-67]. Cyclos- 

porine is known to exert indirect influences on 
CDH1 expression by modulating cellular pro-
cesses involved in adhesion and migration 
[68]. Resveratrol on the other hand exhibits 
antioxidant and anti-inflammatory effects and 
has been implicated in influencing CDH1 ex- 
pression, potentially impacting cancer treat-
ment [69]. The exploration of these drugs as 
part of personalized therapeutic strategies 
could offer new avenues for the management 
of UCEC patients with pathogenic mutations in 
BRCA1, BRCA2, APC, and CDH1 genes, further 
advancing precision medicine approaches in 
cancer treatment.

Conclusion

Overall, our study enhances our understand- 
ing of UCEC susceptibility and progression in 
Pakistani patients by considering both genetic 
and epigenetic factors. The identified muta-
tions have potential implications for prognosis 
and therapeutic strategies, offering avenues 
for personalized treatment approaches in UCEC 
patients. Further research is needed to eluci-
date the precise mechanisms underlying these 
findings and translate them into clinical app- 
lications.
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