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Abstract: Background: The aim of this study is to develop a machine learning-based model to predict postoperative 
overall survival (OS) in patients with soft tissue sarcoma (STS) that demonstrates superior comprehensive perfor-
mance. Methods: This analysis leveraged data from the SEER database spanning 2010-2020, alongside a STS 
cohort from the National Cancer Center. Machine learning methods were applied for predictor selection by wrap-
per methods and the development of the predictive model. The optimal model was determined using the concor-
dance index (C-index), time-dependent calibration curves, time dependent receiver operating characteristic (ROC) 
curves, and decision curve analysis (DCA). Results: Six machine learning learners identified six feature subsets. 
Subsequently, six feature subsets and six machine learning learners were combined, resulting in the development 
of 36 prognostic models. The CAM model, exhibiting the highest prediction performance, was selected. The CAM 
model achieved a C-index of 0.849 (95% CI 0.837-0.859) in the training cohort and 0.837 (95% CI 0.809-0.871) 
in the validation cohort. Furthermore, time-dependent calibration curves, time-dependent ROC curves, and DCA 
indicate that the PAM demonstrates excellent calibration, predictive accuracy, and clinical net benefit. A publicly 
accessible web tool was developed for the CAM. Notably, CAM’s performance exceeds that of all existing STS prog-
nostic nomograms and prediction models. Conclusions: The CAM has the potential to identify postoperative OS in 
STS patients. This can assist clinicians in assessing the severity of the disease, facilitating patient follow-up, and 
aiding in the formulation of adjuvant treatment strategies.
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Introduction

Soft tissue sarcoma (STS), constituting only 1% 
of adult malignancies, is a rare and heteroge-
neous group of tumors [1]. Originating from 
mesenchymal tissues, STS displays a range of 
clinical behaviors [2]. STS predominantly occurs 
in subcutaneous soft tissues of extremities 
and the trunk, comprising about 40%-50% and 
13% of cases, respectively [3, 4]. Surgical inter-
vention remains the mainstay treatment for the 
majority of STS cases [5]. In elderly patients, 
STS is associated with a 5-year relative survival 
rate below 50%, posing substantial risks [6]. 
Consequently, identifying prognostic risk fac-
tors for extremity and trunk STS and develop- 

ing a precise prognostic prediction system is 
essential.

The eighth edition of the American Joint Com- 
mittee on Cancer (AJCC) staging system is com-
monly applied in the clinical staging of STS. 
However, studies suggest that AJCC system 
does not sufficiently capture the heterogeneity 
of soft tissue sarcomas, leading to suboptimal 
predictive accuracy [7, 8].

Previous studies have identified prognostic fac-
tors for STS and integrated them into various 
models [9]. Notably, the MSKCC and Sarculator 
models stand out in this context [10, 11]. These 
models incorporate clinical characteristics, us- 
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ing the Cox proportional hazards model to cre-
ate nomograms with robust predictive capabili-
ties. Recently, machine learning has emerged 
as a new methodology for investigating STS 
prognostic factors. Machine learning is signifi-
cant, offering advanced tools for analyzing 
complex biological data [12, 13]. Theoretically, 
machine learning potentially surpasses tradi-
tional Cox regression in predictive accuracy. It 
is increasingly used in predicting survival rates 
in cancers such as glioblastoma, breast, co- 
lorectal, and STS [14-19]. However, these stud-
ies have limitations. For instance, Yeramosu’s 
study approached 5-year survival as a binary 
classification, not a survival analysis [18]. 
Additionally, Yang’s study on STS imaging devel-
oped a complex, less generalizable deep learn-
ing model [17].

The purpose of this study is to develop an accu-
rate prognostic model using fundamental clini-
cal characteristics to predict postoperative 
overall survival (OS) in patients with STS.

Materials and methods

This study strictly adhered to the Prediction 
model Risk Of Bias Assessment Tool (PROBAST) 

standards and a checklist for useful clinical 
prediction tools reported by Florian Markowetz, 
and followed the Transparent Reporting of a 
Multivariable Prediction Model for Individual 
Prognosis or Diagnosis (TRIPOD) Checklist for 
reporting [20-22]. The complete research pro-
cess of this study is shown in Figure 1.

Study population

This retrospective cohort study involved pa- 
tients with limb and trunk STS who underwent 
radical surgery between 2010 and 2020 from 
Surveillance, Epidemiology, and End Results 
(SEER) database and the National Cancer Cen- 
ter (NCC), a specialized secondary care center. 
Prior to surgery and the subsequent follow-up 
survey, each patient from NCC provided inform- 
ed consent. The surgical procedures were ex- 
pertly conducted by seasoned senior surgeons. 
Adherence to ethical standards was ensured by 
conducting the study in compliance with the 
Declaration of Helsinki (revised in 2013), and 
ethical approval was secured from the Hospi- 
tal Ethics Committee of the National Cancer 
Center (No. NCC2020C-341). The SEER cohort 
and the NCC cohort were used as the training 
and validation cohort, respectively.

Figure 1. Overall workflow.
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Inclusion and exclusion criteria

Adult participants with STS (defined as patho-
logically diagnosed STS) who underwent radical 
resection were included. The exclusion criteria 
were as follows: (1) Death during perioperative 
period; (2) Loss to follow-up; (3) Insufficient 
clinical data.

Predictor selection

In the training cohort, over 35% of missing 
parameters were excluded from the analysis. 
10 variables of the training cohort, including 
demographic details (age and sex); pathologi-
cal information (tumor site, size, pathological 
diagnosis, lung metastasis, other metastasis); 
stage parameters (AJCC T, AJCC N, AJCC M, and 
Grade); and adjuvant treatment status (adju-
vant radiotherapy and chemotherapy), were 
included in six machine learning learners to 
select predictors.

We chose widely recognized machine learning 
learners capable of handling continuous, nomi-
nal categorical and ordinal categorical vari-
ables. These included: Gradient Boosting (GB), 
Survival Tree (ST), Conditional Inference Tree 
(CIT), Random Survival Forest (RSF), Conditional 
Random Forest (CRF), Accelerated Oblique 
Random Survival Forest (AORSF). These learn-
ers were all sourced from the “mlr3proba” R 
package [23].

The GB is an ensemble learning algorithm that 
iteratively adds weak learners (typically deci-
sion trees) to fit the residuals of the previous 
step, progressively optimizing the loss function 
to enhance the overall predictive performance 
of the model [24]. ST is a decision tree model 
used in survival analysis that recursively splits 
data to group individuals based on their surviv-
al times and the risks of event occurrence, 
thereby providing insights into survival proba-
bilities [25]. Besides, ST can also be used to 
identify cut-off. The CIT is a method for con-
structing decision trees that uses statistical 
tests to select splitting variables and points, 
thereby reducing bias and overfitting in the 
model during the splitting process in a non-
parametric and conditional inference-based 
manner [26]. RSF is an ensemble learning 
method used in survival analysis that con-
structs multiple survival trees and uses the 
results from these trees to estimate the sur-

vival functions and hazard ratios for individu-
als, thereby offering powerful analysis of sur-
vival time data [27]. The CRF is an ensemble 
learning algorithm that builds multiple decision 
trees and uses conditional inference tests to 
select variables and splitting points. This 
approach enhances the robustness and accu-
racy of the model while reducing bias in vari-
able selection [28]. The AORSF is a survival 
analysis model that combines the ensemble 
learning techniques of random forests with the 
approach of oblique decision trees. This inte-
gration enhances the accuracy and efficiency in 
handling complex survival data [29].

We use Wrapper methods (WM) for the predic-
tor selection. WM work by fitting models on 
selected feature subsets and evaluating their 
performance and ultimately select the feature 
subset that performs best for that learner. The 
entire predictor selection process using WM is 
as follows: (1) The learner selects a feature sub-
set (iteratively adding features to the model in 
sequential forward selection); (2) A 10-fold 
cross-validation resampling strategy is used to 
develop a pre-model and calculate the concor-
dance index (C-index) of the pre-model for that 
feature subset; (3) Repeat the above process 
until the C-index for all feature subsets has 
been calculated; (4) Select and output the fea-
ture subset with the highest C-index as the 
result of the WM for that learner. The predictor 
selection result for each learner is a feature 
subset that includes several clinical features.

After separately calculating the above six 
machine learning learners, we obtained a total 
of six feature subsets for subsequent model 
development.

Development and validation of machine learn-
ing model

The six machine learning learners, combined 
with six feature subsets, were used to develop 
models. These models were trained using the 
training cohort, culminating in 36 prediction 
models. These models were subsequently vali-
dated within validation cohort.

The C-index was utilized to assess model per-
formance. As a statistical measure for evaluat-
ing the predictive capability of survival analysis 
models, the C-index is widely used in medical 
research. It gauges the congruence between 
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model predictions and actual outcomes, with 
its value ranging from 0 to 1. A higher C-index 
indicates superior predictive accuracy of the 
model. The model that achieved the highest 
average C-index was chosen for further investi-
gation. Calibration curves were generated to 
evaluate the correspondence between predict-
ed and actual non-incidence rates of all-cause 
death at 1, 3, and 5 years. Time-dependent 
calibration curves were used to reflect the 
degree of calibration over an entire time range. 
The area under the time-dependent receiver 
operating characteristic (ROC) curves (AUC) 
served to compare the predictive accuracy and 
discriminative power of the model and its com-
ponents. Decision curve analysis (DCA) was 
conducted to determine the clinical utility of the 
model, assessing the clinical benefits for 
patients at 1, 3, and 5 years. Risk scores were 
calculated in the training and validation cohorts 
using the machine learning model.

To examine how different features influence 
model performance over time, a time-depen-
dent feature importance analysis method was 
employed. The significance of each predictor 
was evaluated by computing the model’s Brier 
score loss after permuting feature values, with 
this process repeated through a 10-fold cross-
validation resampling strategy for statistical 
reliability. This approach enabled identification 
of which features’ importance for model predic-
tions varies over time, providing insights crucial 
for time-sensitive clinical decision-making.

Development of a web risk calculator and a 
staging system

The ST was employed to determine the cut-off 
value for the risk score, thereby classifying pa- 
tients into high-risk, medium-risk, and low-risk 
group. Furthermore, a web-based application 
was developed to make these predictive mod-
els accessible online, utilizing the R package 
“shiny” for its development [30].

Statistical analysis

Kolmogorov-smirnov test was used to assess 
whether the data followed a normal distribu-
tion. For normally-distributed continuous vari-
ables, the data were described as mean ± stan-
dard deviation and compared using the t-test. If 
continuous variables did not conform to a nor-

mal distribution, the MannWhitney U test was 
used, and results were presented as median 
(interquartile range). Categorical data were pre-
sented as numbers and frequencies, and either 
the Chi-square test or Fisher’s exact test was 
used for comparisons. Kaplan-Meier (KM) sur-
vival analysis and the log-rank test were utilized 
to assess differences in OS across the high-risk 
and low-risk group. All statistical tests were 
two-sided, with P-values <0.05 indicating sta-
tistical significance. All figure illustrations and 
statistical analyses were conducted using R 
version 4.2.3.

Results

Characteristics of training and validation co-
horts

A total of 5,901 patients with limb and trunk 
STS who underwent radical resection were 
identified. Among them, 2,181 patients who did 
not meet the inclusion criteria were excluded. 
Consequently, 3,720 patients were included in 
the analysis.

The baseline characteristics of the training 
cohort (n = 3,298) and validation cohort (n = 
422) are presented in Table 1. In the training 
cohort, the median age is 62 and the median 
follow-up time is 4 years. Among them, 55.3% 
were male. In the validation cohort, the median 
age is 51 and the median follow-up time is 4.71 
years. Among them, 56.6% were male.

Predictor selection

Ten variables from the training cohort were 
included for the selection of predictor. Using six 
machine learning learners and applying the 
WM, we obtained six feature subsets, the de- 
tails of which are displayed in Table 2.

Model development, validation, and evaluation

For the development of model using the train-
ing cohort, six feature subsets were processed 
through six machine learning learners and sub-
sequently validated internally in the training 
cohort using the 10-fold cross-validation resa-
mpling strategy and externally in the validation 
cohort. This process resulted in a total of 36 
machine learning models specifically designed 
for predicting OS.
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Table 1. Baseline characteristics of the cohort
Training cohort  

N = 3,298
Validation cohort  

N = 422 P

Sex 0.650
    Female 1473 (44.7%) 183 (43.4%)
    Male 1825 (55.3%) 239 (56.6%)
Age (years) 62.0 [48.0; 73.0] 51.0 [38.0; 62.0] <0.001
Site <0.001
    Lower limb 1959 (59.4%) 203 (48.1%)
    Trunk or pelvis 706 (21.4%) 137 (32.5%)
    Upper limb 633 (19.2%) 82 (19.4%)
Size (cm) 7.60 [4.30; 13.5] 4.50 [3.00; 6.50] <0.001
AJCC T <0.001
    T1 1055 (32.0%) 247 (58.5%)
    T2 1016 (30.8%) 139 (32.9%)
    T3 600 (18.2%) 28 (6.64%)
    T4 627 (19.0%) 8 (1.90%)
AJCC N 0.960
    N0 3210 (97.3%) 410 (97.2%)
    N1 88 (2.67%) 12 (2.84%)
AJCC M <0.001
    M0 3099 (94.0%) 304 (72.0%)
    M1 199 (6.03%) 118 (28.0%)
AJCC stage <0.001
    I 768 (23.3%) 164 (38.9%)
    II 787 (23.9%) 92 (21.8%)
    III 1494 (45.3%) 46 (10.9%)
    IV 249 (7.55%) 120 (28.4%)
Grade <0.001
    G1 797 (24.2%) 207 (49.1%)
    G2 704 (21.3%) 143 (33.9%)
    G3 1797 (54.5%) 72 (17.1%)
Adjuvant radiotherapy 0.149
    No 1706 (51.7%) 202 (47.9%)
    Yes 1592 (48.3%) 220 (52.1%)
Adjuvant chemotherapy <0.001
    No 2827 (85.7%) 298 (70.6%)
    Yes 471 (14.3%) 124 (29.4%)
Follow-up time (years) 4.00 [1.75; 6.67] 4.71 [2.77; 7.00] <0.001
Survival status 0.292
    Alive 2377 (72.1%) 315 (74.6%)
    Dead 921 (27.9%) 107 (25.4%)

Initial evaluation focused on the C-index, with 
rankings the average C-indexes of 36 predic-
tion models displayed in Figure 2. The CIT + 
AORSF model (CAM) showcased the highest 
average C-index of two cohorts at 0.843, mak-
ing it the most effective model among all. The 

C-index for CAM was 0.849 
(95% CI 0.837-0.859) in the 
training cohort and 0.837 (95% 
CI 0.809-0.871) in the valida-
tion cohort, marking the high-
est values compared to other 
models.

The time-dependent calibra-
tion curves, along with the 1, 3, 
and 5-year calibration curves 
for CAM, demonstrate that 
CAM achieved good calibration 
in the training cohort and the 
validation cohort (Figure 3).

The AUC of the prediction 
model at 1, 3, 5, and 10 years 
highlighted predictive accuracy 
of the CAM. In the training 
cohort, CAM achieved an AUC 
of 0.898 (95% CI 0.876-0.917) 
at 1 year, 0.884 (95% CI 0.869-
0.898) at 3 years, and 0.891 
(95% CI 0.877-0.904) at 5 
years (Figure 4A). In the valida-
tion cohort, CAM achieved an 
AUC of 0.876 (95% CI 0.805-
0.940) at 1 year, 0.863 (95% CI 
0.822-0.902) at 3 years, and 
0.883 (95% CI 0.842-0.922) at 
5 years (Figure 4B).

The DCA for the CAM demon-
strated a consistent net bene- 
fit in the training cohort and 
three validation cohorts over a 
range of threshold probabilities 
(Figure 5). In two cohorts, the 
CAM outperformed the ‘treat 
none’ and ‘treat all’ strategies, 
indicating that it had practical 
utility in decision-making.

Model interpretation and de-
velopment of stage system

The time-dependent feature 
importance curves show the 

varying importance of each predictor in CAM 
over time (Figure 6). The results indicate that 
the age, tumor size, and the tumor grade are 
the most important factors over the follow-up 
period. To further enhance the usability of the 
model, we developed a web-based risk calcula-
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Table 2. Feature subsets after WM feature selection
Learner Feature subset
GB Age, Size, Lung metastasis, Grade, and Chemotherapy
ST Age, Size, Lung metastasis, and Grade
CIT Age, Size, AJCC N, Lung metastasis, Other metastasis, Grade, Chemotherapy, and Radiotherapy
RSF Age, Size, AJCC N, Lung metastasis, Other metastasis, Grade, and Radiotherapy
CRF Age, Site, Size, AJCC N, Lung metastasis, Other metastasis, Grade, Chemotherapy, and Radiotherapy
AORSF AJCC N
WM, Wrapper method; GB, Gradient Boosting; ST, Survival Tree; CIT, Conditional Inference Tree; RSF, Random Survival Forest; 
CRF, Conditional Random Forest; AORSF, Accelerated Oblique Random Survival Forest Model.

Figure 2. Concordance index of 36 machine learning models. The C-index for 
the 36 machine learning models was calculated for the training cohort and 
the validation cohort. Ranking of the models was based on the average C-
index two cohorts. GB, Gradient Boosting; ST, Survival Tree; CIT, Conditional 
Inference Tree; RSF, Random Survival Forest; CRF, Conditional Random For-
est; AORSF, Accelerated Oblique Random Survival Forest; C-index, concor-
dance index.

tor (https://zlyygk8778.shinyapps.io/CAMfor- 
STS/). Additionally, we developed a staging sys-

tem based on CAM, utilizing 
the ST learner to categorize 
DA patients into two risk 
groups according to CAM’s 
risk scores. The KM survival 
curves indicate that, in both 
the training cohort and the 
validation cohort, the OS of 
the low-risk group (risk score 
<51.5) is longer than that of 
the high-risk group (risk score 
≥51.5), and the difference is 
statistically significant (Figure 
7).

Comparing the performance 
of CAM with other nomo-
grams and predict models

We compared CAM’s perfor-
mance with 42 established 
STS nomograms and prognos-
tic models [10, 11, 17, 18, 
31-69] (Table 3). The results 
showed that CAM outper-
formed other nomograms and 
prediction models, achieving 
the highest C-index and AUC 
at 3- and 5-year. Consequen- 
tly, the comparison of CAM 
with 42 nomograms and pre-
diction models revealed that 
the prediction efficiency of 
CAM was better than them.

Discussion

In this study, we developed 
and validated a machine lea- 
rning-based model to predict 
OS in postoperative STS pa- 

tients. The prognostic model exhibited accura-
cy in the training and validation cohorts. In 
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Figure 3. Evaluating the calibration of CAM by time-dependent calibration curves. A. Time-dependent calibration curve of training cohort; B. Time-dependent calibra-
tion curve of validation cohort; C. 1-year calibration curve for training cohort; D. 1-year calibration curve for validation cohort; E. 3-year calibration curve for training 
cohort; F. 3-year calibration curve for validation cohort; G. 5-year calibration curve for training cohort; H. 5-year calibration curve for validation cohort. CAM, Condi-
tional Inference Tree + Accelerated Oblique Random Survival Forest Model.
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Figure 4. Evaluating the predictive accuracy of CAM by time-dependent ROC curves. A. Time-dependent ROC curves 
training cohort; B. Time-dependent ROC curves validation cohort. CAM, Conditional Inference Tree + Accelerated 
Oblique Random Survival Forest Model.

terms of predictive values, CAM generally exhib-
its a high C-index and AUC, indicating the mod-
el’s accuracy and stability in predicting OS. 
Additionally, the time-dependent calibration 
curves and DCA demonstrate the excellent cali-
bration and clinical net benefit of PAM. Our 
study indicates that CAM has the potential to 
identify postoperative OS in STS patients. This 
can assist clinicians in assessing the severity 
of the disease, facilitating patient follow-up, 
and aiding in the formulation of adjuvant treat-
ment strategies.

In our research, a total of 36 models were 
developed, utilizing 6 distinct machine learning 
learners for both feature selection and model 
development. This approach mirrors the meth-
odology of Liu et al., who employed a similar 
strategy to develop an immune long non-coding 
RNA (lncRNA)-based prognostic model for over-
all survival in colorectal cancer [16]. Unlike 
many studies that rely solely on traditional Cox 
regression and least absolute shrinkage and 
selection operator (LASSO) for model develop-
ment, our method incorporated a broader ran- 
ge of techniques. This diversification allowed 
for the creation of a predictive model with 
enhanced performance, marking a significant 
bedside innovation within this study [10, 11].

Recently, the development of predictive models 
has gained significant attention among clinical 

scientists. Therefore, the standardized devel-
opment and validation of predictive models are 
crucial, and our study adhered rigorously to 
these standards. Finhn et al. noted that the 
proliferation of predictive models has been 
accompanied by an increasing awareness of 
the need for standards to ensure their accura-
cy. A significant milestone was the publication 
of the TRIPOD guidelines nearly a decade ago 
[22, 70]. Wolff et al. developed a tool to assess 
the risk of bias and the applicability of predic-
tion model studies [20]. This tool includes 20 
signal questions designed to enable research-
ers to self-assess their studies. Florian 
Markowetz proposed a checklist for useful clini-
cal prediction tools aimed at making clinical 
prediction models impactful for patients [21]. 
The aforementioned checklist and tools were 
used to standardize our research.

CAM incorporates clinical characteristics like 
age, size, N stage, lung metastasis, other meta- 
stasis, Grade, adjuvant chemotherapy and 
adjuvant radiotherapy. These clinical character-
istics are notably easily obtainable. Parameters 
like age, adjuvant chemotherapy and adjuvant 
radiotherapy information can be sourced from 
patients’ histories and medical records. Infor- 
mation on regional lymph node involvement 
and distant metastasis can be determined via 
imaging assessments. Tumor size is ascertain-
able through physical examination, imaging, 
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Figure 5. Evaluating the net benefit of CAM by DCA. A. 1-year DCA for training cohort; B. 3-year DCA for training 
cohort; C. 5-year DCA for training cohort; D. 1-year DCA for validation cohort; E. 3-year DCA for validation cohort; F. 
5-year DCA for validation cohort. CAM, Conditional Inference Tree + Accelerated Oblique Random Survival Forest 
Model; DCA, Decision curve analysis.

Figure 6. Interpretation the CAM by time-dependent feature importance 
curves. CAM, Conditional Inference Tree + Accelerated Oblique Random Sur-
vival Forest Model.

and postoperative pathology. Likewise, tumor 
grade can be ascertained from postoperative 
pathological analysis. The advantage of such 

easily obtainable characteris-
tics is that, even in areas with 
limited medical resources, if 
these features are accessible, 
the CAM can accurately pre-
dict patient prognosis.

Age and Grade feature in 
numerous nomograms, under-
scoring their clear prognostic 
significance [48, 49, 71, 72]. 
In this study, there was a sig-
nificant difference in the over-
all age of patients between 
the training cohort and the 
validation cohort. However, 
the CAM still demonstrated 
excellent validation perfor-
mance, highlighting its gener-
alizability and applicability 
across different patient popu-
lations. Tumor size, a major 
prognostic factor, is included 
in many nomograms [23, 58, 
60]. Unlike T staging, using 
tumor size as a continuous 

variable allows for more personalized and accu-
rate prognostication in STS patients. The N 
stage indicates lymph node metastasis in STS 
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Figure 7. Performance of the CAM staging system in the training cohort and validation cohort. A. Training cohort; B. 
Validation cohort.

patients, with studies showing that patients 
with lymph node metastasis generally have 
poorer prognoses [73-78]. Distant metastasis 
is an important reason for the poor prognosis 
of soft tissue sarcoma. Overall survival is gen-
erally lower in patients with soft tissue sarco-
mas who have distant metastases compared 
with those who do not. The five-year survival 
rate for patients with soft tissue sarcoma can 
range from a high of 80% to 90% (early-stage 
disease) to a low of 15% to 30% (late-stage dis-
ease with distant metastases) [79]. Even if dis-
tant metastases are controlled, patients are at 
higher risk for recurrence than those without 
distant metastases [1].

In terms of treatment, Radiotherapy’s role in 
improving local control of STS in the extremities 
and trunk was established by two early ran-
domized controlled trials, and it is a vital auxil-
iary treatment for STS [80, 81]. Regarding the 
efficacy of adjuvant chemotherapy post-sur-
gery, research results are inconsistent. Some 
studies suggest that for certain types of high-
risk soft tissue sarcomas, an appropriate che-
motherapy regimen may improve disease-free 
survival and overall survival rates [82-84].

Despite survival prediction challenges, re- 
search indicates that quantifying prognosis 
benefits most cancer patients by facilitating 
end-of-life discussions and minimizing aggres-
sive care. CAM plays a crucial role in this con-
text. Oncologists can utilize CAM to assess 
patient risk and survival probability during fol-
low-up, guiding treatment decisions effectively. 
Additionally, inputting non-treatment data into 
CAM to compare risk scores and survival prob-
ability with or without adjuvant treatment can 
inform the potential benefit of adjuvant treat-
ment, thereby guiding its use. This strategy sig-
nificantly benefits the personalized treatment 
of STS.

Our study demonstrates multiple innovations 
and strengths. First, our study encompassed a 
considerable total sample size and comprised 
an external validation cohort from our center. 
Second, we utilized a wide array of machine 
learning methods and distinctly separated fea-
ture selection from modeling to acquire a 
broader spectrum of modeling solutions. This 
approach differs from many studies that merely 
use machine learning algorithms without im- 
plementing such strategies [15, 85, 86]. Third, 
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Table 3. The C-index and AUC of CAM and 42 existing nomograms or prognostic models

Author or model
C-index in  
training  
cohort

C-index in validation cohort

AUC at 3 
years in  
training 
cohort

AUC at 5 
years in  
training 
cohort

AUC at 3 
years in  

validation 
cohort

AUC at 5 
years in  

validation 
cohort

CAM 0.843 0.837 0.884 0.891 0.863 0.883
Kattan et al. (MSKCC) 0.77 0.76 NA NA NA NA
Callegaro et al. (Sarculator) 0.767 0.698; 0.77; 0.762; 0.726 NA NA NA NA
Zhang-Lyu et al. 0.684 0.74 0.721 0.713 0.721 0.718
Wang-He et al. 0.729 0.735 0.747 0.725 0.736 0.712
Zhou et al. 0.757 0.697 NA NA NA NA
Wu et al. 0.814 0.837 <0.85 <0.85 <0.85 <0.85
Zheng et al. 0.788 0.767 0.803 0.787 0.8 0.74
van Praag et al. 0.677 (CV) NA NA NA NA
Zhan et al. 0.744 0.803 0.788 0.771 0.734 0.756
Wang-Wang et al. 0.756 0.757 0.785 0.795 0.814 0.812
Liu et al. 0.765 0.721 0.84 0.746
Zhu et al. NA NA 0.751 0.757 0.775 0.829
Shen et al. 0.775 0.935 NA 0.647 NA
Sekimizu et al. 0.75 (CV) NA NA NA NA
Crombé et al. 0.65 NA NA NA NA
Yang-Ma et al. 0.722 0.676 NA NA NA NA
Zeng et al. 0.78 0.73 NA 0.82 NA 0.77
Ma et al. 0.748 0.746
Yeramosu et al. NA NA NA 0.891 NA 0.791
Zhang-Li et al. 0.817 0.832 0.809 0.802 0.76 0.771
Shuman et al. 0.78 NA NA NA NA
Gu et al. NA NA 0.815 0.823 NA NA
Le et al. 0.84 0.76 NA NA NA NA
Qi et al. NA NA 0.686 0.716 0.636 0.651
Xu et al. 0.759 0.766 0.799 0.8 0.82 0.805
Yang-Ding et al. 0.78-0.86 0.45-0.60 NA NA NA NA
Dai et al. 0.77 0.75 0.82 0.811 0.773 0.764
Szkandera et al. 0.78 NA NA NA NA
Dalal et al. 0.827 NA NA NA NA
Ye et al. 0.79-0.81 0.79-0.81 0.842 0.841 0.862 0.839
Liu et al. 0.666 NA NA NA NA NA
Huang-Zhou et al. NA NA 0.843 0.841 0.835 0.828
Yan et al. 0.686 0.7 NA NA NA NA
Xing et al. 0.733 0.728 0.823 0.829 0.768 0.754
Zhu et al. 0.76 NA NA NA NA
Li-Yin et al. NA NA 0.768 0.794 NA NA
Tong et al. 0.8 0.789 0.86 NA 0.84 NA
Li-Zhang et al. 0.823 0.803; 0.768 0.84 0.83 0.90; 0.75 0.84; 0.80
Huang et al. NA NA 0.738 0.762 0.82 0.766
Song et al. 0.819 0.831 NA NA NA NA
Jiang et al. 0.757 0.749 0.733 0.728 0.765 0.772
Yang et al. 0.74 (CV) NA NA NA NA
CAM, Conditional Inference Tree + Accelerated Oblique Random Survival Forest Model; CV, Cross-validation.

our careful learners selection allowed for com-
putation involving continuous, unordered cate-

gorical, and ordered categorical variables. We 
intentionally excluded learners unable to man-
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age categorical variables, like the LASSO, whi- 
ch are suitable solely for continuous variables, 
minimally applicable to binary categorical vari-
ables, and unsuitable for multiple categorical 
variables. Forth, in terms of model evaluation, 
we integrated almost all widely recognized 
prognostic model evaluation methods. Fifth, as 
mentioned before, the clinical characteristics 
required for CAM can be easily obtained, which 
is conducive to the promotion of CAM in various 
situations. Sixth, we compared CAM with 42 
existing nomograms and prognostic models, 
confirming that CAM stands as the best-per-
forming prognostic model in terms of predictive 
performance among the existing ones.

Our research presents certain limitations. Most 
of the machine learning learners we utilized are 
parametric models, in contrast to non-paramet-
ric models like the Cox proportional hazard 
model. Parametric models lack the ability to 
create clear and easily understandable nomo-
grams, rendering them less interpretable. Al- 
though nomogram cannot be generated, we 
developed CAM-stage system and a web calcu-
lator. Enter the patient’s corresponding clinical 
characteristics into the website to obtain the 
risk score, CAM stage, and predicted survival 
probability. In addition, we also use feature 
importance scores to try our best to explain 
CAM. In the future, should there be advance-
ments in the interpretability of parametric mod-
els, we will pursue further explanation and 
interpretation of CAM. Finally, although we 
included the NCC cohort for external validation 
of the model, further multicentric retrospective 
or prospective large-scale validation cohorts 
are required to verify the reliability of the CAM. 
We plan to conduct a prospective study in the 
future to further validate and update the CAM.

In summary, our study developed the CAM for 
accurately predicting OS in STS patients who 
underwent radical resection. CAM demonstrat-
ed stable and excellent predictive performance, 
calibration, and clinical net benefit in the inde-
pendent validation cohort. With its outstanding 
accuracy and reliability, CAM may serve as an 
effective tool for predicting postoperative OS  
in STS and guiding adjuvant therapy after 
surgery.
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