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Abstract: Acute myeloid leukemia (AML) is a malignant blood disorder and the most common type of acute leukemia 
in adults. Notwithstanding the plethora of therapeutic modalities, a significant cohort of patients fail to respond to 
treatment and experience relapse. Anoikis, a distinct modality of programmed cell death, has been linked to cancer 
progression. However, the prognostic significance of anoikis in AML remains unclear. In this study, a non-negative 
matrix factorization algorithm was utilized to efficiently reduce the dimensions of merged datasets. We used differ-
ential analysis, weighted gene co-expression network analysis (WGCNA), univariate Cox regression, and least abso-
lute shrinkage and selection operator (LASSO) regression to identify genes associated with prognosis and develop 
a risk scoring model. Immunohistochemistry was conducted to assess the expression levels of key genes in clinical 
samples. The association between risk score and the tumor microenvironment (TME), stemness, clinical character-
istics, and immunotherapy was evaluated. We identified 41 AML anoikis-related genes (ANRGs) related to survival, 
and seven genes were chosen to develop prognostic models. The prognostic risk score combined with the clinical 
and pathological features of AML was used to develop a nomogram, and decision curve analysis demonstrated 
the net clinical benefit of the model. Furthermore, analysis of ANRGs revealed that PDGFRB inhibition significantly 
reduced the proliferation of AML cells, promoted apoptosis, and inhibited AML progression both in vitro and in vivo, 
indicating that PDGFRB plays a crucial role in AML development.
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Introduction

Acute myeloid leukemia (AML) is a genetically 
diverse clonal disorder of hematopoietic stem 
cells characterized by high relapse and mortal-
ity rates [1, 2]. The treatment paradigms for 
AML were developed decades ago, resulting in 
a long-term disease-free survival rate of only 
approximately 30-40% following standard che-
motherapy [3]. Given the limited therapeutic 
arsenal, with treatment primarily reliant on 
standard cytarabine and anthracyclines, dis-
ease persistence or recurrence is common 
among patients with AML [4]. Patients with 
recurrence or refractory AML have a poor prog-
nosis, with overall survival (OS) of less than 

10% after three years [5, 6]. Therefore, identify-
ing new biomarkers for predicting the prognosis 
of patients with early-stage AML is crucial to 
enable timely clinical interventions to delay dis-
ease progression.

Anoikis results from the disruption of cell-to-cell 
or cell-ECM attachment and presents a distinct 
type of programmed apoptosis that is essential 
for maintaining tissue equilibrium by eliminat-
ing misplaced or dislodged cells [7, 8]. Anoikis 
is primarily initiated by the interaction of two 
key apoptotic pathways: mitochondrial interfer-
ence and the activation of cellular death recep-
tors [9]. Anoikis, originally observed in the epi-
thelial and endothelial cells, has emerged as a 
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crucial determinant of cancer invasion and 
metastasis [10]. Anoikis resistance enables 
unanchored cells to bypass death-inducing sig-
nals, thereby facilitating their survival in ad- 
verse environments [11, 12]. Although ANRGs 
are recognized to significantly influence tumor 
development and progression, there is a pau-
city of studies systematically assessing the 
implications of anoikis in AML.

In this study, we explored the prognostic sig- 
nificance of ANRGs in AML and devised a prog-
nostic scoring model utilizing these genes. 
Furthermore, we explored the variations in the 
TME based on risk stratification. The explora-
tion of ANRG expression patterns not only 
enhances our understanding of AML but also 
aids in crafting highly personalized and accu-
rate therapeutic strategies.

Materials and methods

Data collection

From The Cancer Genome Atlas (TCGA-AML), 
we sourced RNA-seq transcriptome data along 
with pertinent clinical details such as sex, age, 
subtype, and survival. Data on somatic muta-
tions and copy number variations (CNVs) were 
extracted from TCGA. A collection of 41 ANRGs 
was obtained from the GSEA portal.

Characteristics of ANRGs

Initially, we probed the interrelations among 
diverse ANRGs. We also investigated the preva-
lence of somatic mutations, genetic loci, and 
CNVs in ANRGs. Furthermore, we examined the 
expression profiles of 41 ANRGs across various 
AML subtypes. Using the GlioVis datasets, we 
conducted a univariate Cox regression analysis 
on 31 ANRGs, subsequently illustrating the 
findings through forest plots.

Consensus clustering

Consensus clustering was employed to detect 
distinct patterns of ANRG expression by utiliz-
ing the k-means method to analyze the expres-
sion of anoikis regulators. Subsequently, uni-
form manifold approximation and projection 
(UMAP) was employed to verify the clustering 
results, implemented using the R package 
“ggplot2”.

Developing and validating prognostic signa-
tures utilizing ANRGs

We conducted univariate Cox regression analy-
sis to identify genes linked to survival, followed 
by least absolute shrinkage and selection oper-
ator (LASSO) regression analysis with the R 
package “glmnet”. The penalty regularization 
parameter λ was established through tenfold 
cross-validation. Subsequently, a multiple-vari-
able Cox regression model was employed to 
identify key genes and calculate their respec-
tive coefficients. Kaplan-Meier (K-M) and time-
dependent receiver operating characteristic 
(ROC) curve analyses were utilized to assess 
the predictive capability of the models.

Exploring the correlation between risk score 
and immune cell infiltration

The relative densities of the infiltrative immune 
cells were calculated using CIBERSORT and 
ssGSEA. We employed CIBERSORT to estimate 
the proportions of immune cell types in both 
low- and high-risk factions, and each sample 
contained scores for all discernible immune 
cell types. Spearman’s rank correlation analy-
sis was used to assess the correlation between 
risk score metrics and immune cell infiltration.

Construction and evaluation of a predictive 
nomogram

A nomogram incorporating clinicopathological 
features and risk scores was created, an inter-
nal calibration plot was generated to assess 
the accuracy, and the time-C index was 
employed to validate the prognostic effective-
ness of the nomogram. DCA was used to evalu-
ate net clinical benefit [13].

Tumor immune single-cell hub database

The tumor immune single-cell hub is a compre-
hensive online repository dedicated to scRNA-
seq, centered on the tumor microenvironment 
(TME) [14]. This database was used to system-
atically explore the TME heterogeneity across 
diverse datasets and cell types.

RNA extraction and quantitative real-time PCR 
(qRT-PCR)

Plasma specimens were procured from 60 
patients with AML, along with negative controls 
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(Control) and patients in complete remission 
(CR). This study was approved by the Ethics 
Committee of our hospital. Total RNA was 
extracted from plasma specimens or cells 
using the TRIzol reagent (Invitrogen, USA). cDNA 
synthesis was performed using HiScript II 
(Vazyme, China), followed by qRT-PCR on an 
AB7300 thermocycler (Applied Biosystems, 
USA) with primers sourced from Sango Bio- 
tech, China. GAPDH served as endogenous 
control, with relative expression magnitudes 
determined via the 2-ΔΔCT method. The following 
primers were used in this study: PDGFRB F: 
5’-GCCACACTCCTTGCCCTTTAAG-3’; R: 5’-CTCA- 
CAGACTCAATCACCTTCCATC-3’. GAPDH F: 5’-GG- 
ACGCATTGGTCGTCTGG-3’; R: 5’-TTTGCACTGG- 
TACGTGTTGAT-3’.

PDGFRB siRNA#-1: CACCATTCCATGCCGAGTA- 
AC; siRNA#-2: CCAAAGGAGGACCCATCTATA.

Cell culture

HS-5, HL-60, and MOLM-13 cells were obtain- 
ed from ATCC (Manassas, VA, USA). AML cells 
were cultured in RPMI-1640 medium (Gibco, 
USA) supplemented with 10% FBS (Gibco) in a 
humidified incubator with 5% CO2.

Cell proliferation assay and flow cytometry

Cell proliferation was evaluated using the 
CCK-8 assays. After incubation with EdU work-
ing solution (10 μM) for 2 h, the cells were treat-
ed with 4% paraformaldehyde for 15 min 
Subsequently, the 10-min immersion in 0.3% 
Triton X-100 in PBS was performed. After incu-
bation, the cells were treated with a click reac-
tion solution for 30 min in the dark. Sub- 
sequently, images were acquired using a fluo-
rescence microscope (Nikon, Tokyo, Japan) and 
analyzed with ImageJ. CCK-8 and Annexin 
V-FITC apoptosis assay kits to ascertain cellular 
viability and apoptosis. The proportion of apop-
totic cells was assessed via flow cytometry 
analysis.

Protein extraction and western blot

Protein extraction and Western blotting were 
conducted using previously established meth-
ods. Antibodies were as follows: PDGFRB 
(1:1,000; CST) and GAPDH (1:5,000; Origene). 
An electrochemiluminescence (ECL) system 
was used to visualize the protein bands, and 

ImageJ software was employed to measure the 
grayscale values. This approach allowed for the 
assessment of relative protein levels, which 
were then normalized to GAPDH for accurate 
quantification.

Mouse experiments

To establish xenograft models, 6-week-old fe- 
male NSG mice were acclimated to a specific 
pathogen-free facility for a week. Subsequently, 
MOLM-13 cells (1×107 cells, 0.1 mL PBS) were 
injected subcutaneously into NSG mice. When 
the tumor volume was approximately 150 mm3, 
the mice were randomly classified into three 
groups: control, si-NC, and si-PDGFRB, with 
four mice allocated per group. Cholesterol-
conjugated si-NC or si-PDGFRB (50 nmol) was 
administered via intratumoral injection in both 
groups, three times a week for two weeks.  
The control mice were injected with 150 μL of 
PBS. All animals were slaughtered, and the 
tumor volume was determined using the follow-
ing equation: V (volume) = (length width2)/2; 
extracted and imaged tumor tissue. The tu- 
mors were then extracted for histopathological 
analysis.

Statistical analysis

Statistical analyses were performed using R 
software version 4.1.3, and the data are pre-
sented as mean ± standard deviation. Student’s 
t-test was employed for comparing two groups, 
whereas one-way analysis of variance (ANOVA) 
was utilized for comparing groups of three or 
more. Statistical significance was defined as P 
< 0.05.

Results

ANRGs expression and genetic variants in AML

Forty-one patients with ANRGs were included in 
this study. A network plot was constructed to 
provide a comprehensive overview of the com-
plex interactions between ANRGs and their 
prognostic value in AML (Figure 1A). The forest 
plot underscores 31 ANRGs, of which 14 were 
correlated with an adverse prognosis (Figure 
1B). We procured CNV data from the TCGA 
repository to delve into the chromosomal modi-
fications and positioning of these ANRGs 
(Figure 1C, 1D). As shown in Figure 1D, the pre-
dominant amplified alterations for HGF, PTK2, 
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BRMS1, and BST2 were located on chromo-
somes 7, 8, 11, and 19, respectively, whereas 
PDGFRB was mainly “loss” and located on chro-
mosome 5.

ANRGs consistently clustered the AML cell mo-
lecular subgroups

To elucidate the role of ANRGs in AML, we used 
31 ANRGs for consensus clustering with the 
Consensus Cluster Plus module within R. 
Assemblages were segregated into two distinct 
subtypes, clusters A and B. Survival analysis 
indicated a pronounced disparity in prognosis 
between these subtypes (Figure 2A). PCA, 
UMAP, and tSNE were used to test the cluster-
ing accuracy (Figure 2B). Gene Ontology (GO) 
pathway analysis revealed that genes within 
cluster B were predominantly associated with 
mitochondrial localization and the retinoic  
acid receptor signaling cascade, among other 
pathways (Figure 2C). Using the GSVA mo- 
dule, we analyzed the divergent enrichment of 

KEGG pathways between clusters B and A 
(Figure 2D). Cluster B predominantly pertain- 
ed to the cell cycle, chemokine signaling path-
ways, cytokines, and cytokine receptors (Figure 
2E).

Gene expression and immune infiltration in the 
two subtypes

A box plot was used to delineate the ANRG 
expression patterns in the two subgroups. 
Notably, PTK2, BCL2L11, SRC, BMF, PDK4, 
SOD2, PDGFRB, and HOXA10 were expressed 
at significantly lower levels in cluster B than in 
cluster A whereas other AML genes exhibited 
higher expression levels. Given their associa-
tion with OS, these differentially expressed 
genes may serve as pivotal molecules influenc-
ing the prognosis of patients with AML and tar-
geted therapy (Figure 3A). Differences in the 
magnitude of immune cell infiltration were also 
observed (Figure 3B). Specifically, the numbers 
of activated CD4+, CD8+, and B lymphocytes in 

Figure 1. Exploring ANRG variations and expression patterns in AML. A. Network diagram illustrating the interplay 
of 41 ANRGs in AML. B. Forest plot showing the top 31 ANRGs. C. Frequency of CNV in 31 ANRGs in TCGA-AML. D. 
Chromosomal regions and alterations in ANRGs.
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Figure 2. AML subgroups based on ANRGs. A. Patients with AML were categorized into two gene clusters (A and B). B. PCA, UMAP, and t-SNE identified two subtypes 
according to the expression of ANRGs. C, D. ANRGs of the two gene clusters were analyzed using GO and KEGG. E. GSVA analysis examined the varying enrichment 
of KEGG pathways between cluster B.
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cluster B were markedly lower than those in 
cluster A.

Developing and validating an ANRG prognostic 
model with good performance

To investigate the clinical significance of 
ANRGs, we incorporated 41 ANRGs in the 
LASSO-penalized Cox regression analysis (Fig- 
ure 4A, 4B). The composite risk score derived 
from the seven-ANRG signature is referred to 
as “ANRGscore”. Prognostic index (PI) = (0.469* 
SRC expression level) + (0.415* BMF expres-
sion level) + (0.436* the expression level of 
HMGA1) + (0.337* PDGFRB expression level) + 
(2.885* the expression level of S100A7) - 
(4.02* the expression level of ONECUT1) + 
(0.364* the expression level of HOXA10). We 
randomized a cohort of patients with AML to 
delineate between the training and test sets. 

among immune cells in AML patients may offer 
insights into the composition of the immune 
microenvironment in distinct tumor types 
(Figure 5D). The seven-gene feature, founda-
tional to the AML core model, exhibited distinct 
expression patterns between the high- and low-
risk groups and showed strong correlations 
with multiple immune cell infiltrates (Figure 5E, 
5F). Furthermore, by estimating the expression 
profile score, we derived the stromal and 
immune scores for both groups (Figure 5G). 
Finally, we explored the potential drug suscepti-
bility of these groups (Figure S1).

Designing a predictive nomogram for patients 
with AML

Considering the pivotal role of clinical and  
pathological characteristics in the prognostic 
model, we integrated the AML core model with 

Figure 3. Gene expression and immune infiltration patterns within the two 
subtypes. A. Expression patterns of ANRGs in the two subtypes. B. Expres-
sion patterns of immune infiltration in two subtypes.

ROC curves for OS at 1, 3, and 
5 years demonstrated that 
the model had good predic-
tive performance (Figure 4C). 
K-M analyses indicated that a 
higher risk score in this model 
corresponded to poorer sur-
vival (P < 0.001) (Figure 4D). 
DCA of the risk factors is 
shown in Figure 4E. Risk 
scores differed significantly 
between the two subtypes 
(Figure 4F). The alluvial dia-
gram depicts the changes in 
ANRG clusters, ANRG score, 
and survival status.

GSEA and immunological 
activity analysis with different 
risk scores

We further examined the TME 
landscape of patients with 
AML in the high- and low-risk 
groups (Figure 5A). As the risk 
score increased, a discernible 
reduction in the prevalence  
of activated mast and T cells 
was observed (Figure 5B). 
Moreover, monocytes consti-
tuted a greater proportion of 
the immune cell spectrum in 
AML (Figure 5C), indicating  
a significant factor contribut-
ing to the poor prognosis of 
AML. Studying the correlation 
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Figure 4. Identified ANRG prognosis signature. A. Utilization of LASSO-identified ANRGs. B. Coefficient profiles of 
prognostic ANRGs. C. Time-dependent ROC curves for OS at 1, 3, and 5 years. D. K-M analysis reveals varying prog-
noses in the risk group of the subtype. E. DCA curve illustrating the net clinical benefit associated with the formu-
lated model. F. Risk score established in two clusters and a comprehensive alluvial diagram depicting the subtype 
and survival status.
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Figure 5. Immune landscape associated with diverse risk scores. A. Comparison of infiltrative immune cell proportions across diverse risk scores. B. Correlation 
analysis of risk scores with the proportions of activated mast cells and T cells in AML samples. C. Differences in immune cellular components. D. Correlation among 
immune cells. E. Heat map showing gene expression patterns in the seven hub ANRGs. F. Correlation between immune cell populations and the seven hub ANRGs. 
G. Estimated expression profile scores in the high- and low-risk fractions.
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the clinical data to formulate a nomogram 
(Figure 6A). The calibration plot validated the 
nomogram (Figure 6B). Notably, the cumulative 
hazard curve revealed a gradual increase in the 
risk of OS in patients with AML and high scores 
on the nomogram (Figure 6C). A forest plot 
showed that age, sex, and risk score were the 
primary influencing variables in the nomogram 
(Figure 6D). These results indicate that a nomo-
gram incorporating AML-based risk scores 
could serve as an effective approach for prog-
nostic assessment in clinical practice.

ANRGs and TME correlation analysis

We examined the expression of five genes in 
the TME using the single-cell dataset AML_
GSE116256 from the TISCH database. The 
GSE116256 dataset encompasses 13 cell 
clusters and 22 distinct cell types; a detailed 
depiction of their distribution and numerosity is 

presented in Figure 7A. BMF predominantly 
manifests within malignant and immune cells, 
notably B cells and mono/macro cells. High 
HMGA1 expression was observed across 
diverse cell types and was detected in EryPro, 
GMP, and Tprolif. HOXA10 was expressed in 
EryPro, GMP, HSC, Mono/Macro, and promo- 
nocytes, whereas PDGFRB and SRC were 
expressed at lower levels in immune cells 
(Figure 7B, 7C). We investigated the role of 
PDGFRB in the development of AML.

PDGFRB promotes AML progression

We conducted qRT-PCR analyses on peripheral 
blood samples obtained from patients with 
AML, healthy subjects, and patients in CR and 
found that PDGFRB expression was significant-
ly upregulated in patients with AML (Figure 8A). 
Elevated PDGFRB expression was observed in 
both HL-60 and MOLM-13 cells (Figure 8B). 

Figure 6. Prognostic nomogram of the cohort of patients with AML. A. Nomogram plot derived from ANRG score and 
clinicopathological characteristics. B. Calibration plot for validating the nomogram. C. Cumulative hazard curve plot 
representing the probability of survival over time. D. Forest plot summary of multivariable Cox regression of clinical 
characteristics, with risk score in patients with AML.
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Figure 7. ANRG expression in AML TME-associated cells. 
A. Comprehensive cellular type in GSE116256, and the 
proportion of each cell type. B, C. Percentage and expres-
sion levels of BMF, HMGA1, HOXA10, PDGFRB, and SRC.
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Moreover, we found that both both siRNA-#1 
and siRNA-#2 effectively reduced PDGFRB 
expression. However, siRNA-#2 was chosen for 
subsequent experiments due to its superior 
inhibitory effect (Figure S2A, S2B). CCK-8 and 
EdU assays revealed diminished proliferative 
capability of AML cells after PDGFRB knock-
down (Figure 8C, 8D). FISH assays confirmed 
the cytoplasmic localization of PDGFRB (Figure 
8E). For a more comprehensive analysis of  
the PDGFRB characteristics in cancer stem 
cells, we established tumor suspension micro-
spheres using a non-adhesive suspension cul-
ture system and observed the formation of 
floating spherical colonies within seven days. 
After PDGFRB knockdown, there was a signifi-
cant reduction in both the volume and quantity 
of tumor spheres (Figure 8F). The apoptosis 
assays revealed that PDGFRB knockdown 
induced apoptosis in AML cells (Figure 8G). 
Collectively, these data suggest that PDGFRB 
knockdown inhibits AML progression in vitro.

PDGFRB is correlated with the prognosis of 
patients with AML

Patients with AML exhibiting elevated PDGFRB 
expression had poor overall and progression-
free survival trajectories compared with their 
counterparts with diminished PDGFRB expres-
sion (Figure 9A, 9B). Furthermore, ROC curve 
analysis revealed that PDGFRB was an underly-
ing biomarker for AML screening (Figure 9C). 
Moreover, a cohort of 60 patients with AML, 
along with clinicopathological parameters and 
survival data, was incorporated to investigate 
the correlation between PDGFRB and pro- 
gnosis. We observed a positive correlation 
between PDGFRB expression and risk status  
(P = 0.048), whereas no significant associa-
tions were found with other clinicopathological 
characteristics, including age, sex, WBC, PLT, 
FAB subtypes, and CR (Figure 9D). In conclu-
sion, we found that higher PDGFRB expression 
was correlated with a poorer prognosis in 
patients with AML.

PDGFRB promotes tumor growth

To investigate the effect of PDGFRB knockdown 
on tumor growth in vivo, a xenograft tumor 
model of MOLM-13 cells was established and 
intratumorally injected with si-PDGFRB or si-NC. 
As shown in Figure 10A, tumor volume and 
weight were markedly lower in the si-PDGFRB 
group than in the other groups (Figure 10B, 
10C). Following the retrieval of subcutaneous 
tumor tissues, immunohistochemistry was per-
formed. H&E staining revealed more necrotic 
areas in the si-PDGFRB group than in the other 
groups. The results indicated that xenograft 
tumors with PDGFRB knockdown exhibited 
weak fluorescence signal by ki-67 staining 
(red). H&E staining revealed more necrotic 
areas in the si-PDGFRB group than in the other 
groups, and a strong fluorescence signal was 
observed by TUNEL staining (green) (Figure 
10D). Collectively, these findings indicate that 
PDGFRB may contribute to AML oncogenesis 
both in vitro and in vivo.

Discussion

Anoikis serves as a crucial defense mechanism 
in organisms, preventing dislodged cells from 
aberrantly adhering to new matrices, thereby 
preserving the integrity of cellular growth. 
Eosinophil apoptosis depends on the intrinsic 
and extrinsic pathways [15]. Eosinophil apopto-
sis is initiated by an array of intracellular cues, 
including DNA damage, endoplasmic reticulum 
stress, and mitochondrial damage, all of which 
play central roles in apoptotic process [16]. 
Dysregulated apoptosis, a characteristic of 
neoplastic cells, enhances tumor incursion, 
migration, distant organ metastasis, and the 
emergence of drug resistance [17-19]. Anoikis 
genes play a pivotal role in the occurrence, 
invasion, migration, formation of distant organ 
metastases, and drug resistance [20]. In addi-
tion, ANRGs were highly efficient in predicting 
the prognosis of renal-cell carcinoma. These 
seven types of ANRGs were closely related to 

Figure 8. Impact of PDGFRB knockdown on AML cell functions. A. Expression analysis of PDGFRB in patients with 
AML, healthy donors (Control), and patients in complete remission (CR). B. qRT-qPCR analysis of PDGFRB in HL-60 
and MOLM-13 cells, as well as HS-5 cells. C. Cell proliferation analysis of AML cells with PDGFRB knockdown. D. 
Decreased percentage of EdU-positive cells after PDGFRB knockdown in AML cells. E. FISH assay confirming the 
localization of PDGFRB knockdown in the cytoplasm. Scale bar: 20 μm. F. Images of HL-60 and MOLM-13 cells after 
PDGFRB knockdown for 7 days. Scale bar: 50 μm. G. Flow cytometry revealing cell apoptosis of HL-60 and MOLM-
13 cells after 24 h. The data represent the mean ± standard deviation from three independent experiments. **P 
< 0.01, ***P < 0.001.
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Figure 9. PDGFRB is correlated with the prognosis of patients with AML. A, B. K-M analysis of the correlation of PDG-
FRB levels with OS and disease-free survival of patients with AML. C. ROC curve analysis revealed that PDGFRB is 
a potential biomarker for distinguishing patients with AML from healthy controls. D. Correlations between PDGFRB 
proportion and clinicopathological characteristics of 60 patients with AML. The data represent the mean ± standard 
deviation from three independent experiments. **P < 0.01.

immune cell infiltration and immune checkpoint 
genes, contributing to the development of per-
sonalized and precise treatment strategies 
[21]. Multigene analysis elucidates the intricate 
interplay among diverse factors influencing the 
resistance of eosinophilic enzymes in tumor 
pathology. Therefore, in the age of precision 
cancer medicine, this multigene approach can 
be used to characterize tumor biology and 
guide clinical decision-making.

AML exhibits heterogeneous cytogenetic and 
molecular profiles. It is characterized by delay- 
ed maturation and unregulated proliferation of 
bone marrow stem cells, and an accurate prog-
nostic prediction is still lacking [22, 23]. In this 
study, we developed a prognostic risk score 
model for AML utilizing disparities in ANRG 
expression. We assessed the predictive value 

of risk scores in determining the AML response 
to immunotherapy and investigated variations 
in the expression of immune-related cells in 
tumors categorized by high- and low-risk scores. 
Patients with lower risk scores notably exhibit-
ed extended OS, demonstrating the depend-
ability of this risk score model in predicting 
immunotherapy outcomes for patients. TME 
has an important impact on tumor metastasis 
and the potency of precision therapies [24, 25]. 
The TME is a self-regulating ecosystem com-
prising tumor, stromal, and immune cells with 
non-cellular components [26, 27]. We investi-
gated the proportions of 22 immune cell types 
across various AML subtypes. Notably, in the 
high-risk cohort characterized by poor survival, 
the infiltration of activated monocytes signifi-
cantly increased, highlighting their essential 
role in AML development. Furthermore, we 
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identified five genes, BMF, HMGA1, HOXA10, 
PDGFRB, and SRC, which were characterized by 
robust risk scores. Previous studies have elu- 
cidated the relationships between specific 
genes, tumorigenesis, and pathogenesis. The 
pro-apoptotic protein BMF, which induces apo- 
ptosis during cellular detachment, facilitates 
breast duct luminal formation [28]. BMF inhibi-
tion supports anoikis resistance and tumor 
transmission, especially in E-cadherin-depleted 
metastatic breast carcinomas [29]. HMGA1, a 
non-histone chromosomal protein, acts as an 
“architectural” transcription factor, facilitating 
the assembly of “enhanceosome”. Owing to its 
high expression in various malignancies and 
minimal levels in healthy adults, HMGA1 has 
emerged as a potential “tumor marker” [30, 
31]. HOXA10, a member of the HOX family, sig-
nificantly affects embryonic development and 
oncogenic progression [32-34]. It potentially 
enhances the epithelial-mesenchymal transfor-
mation process in gastric cancer via TGFB2/
Smad/METTL3 signaling, thereby facilitating 
the invasion and metastasis of gastric cancer 

cells [35]. SRC, a member of the expansive 
membrane-associated non-receptor protein ty- 
rosine kinase lineage, regulates several signal-
ing pathways, including the PI3K/Akt and MAPK 
pathways, which elicit a plethora of cellular out-
comes. SRC activation decreases anoikis via 
its downstream target Akt [36]. Across various 
colon cancer cell lines, anoikis resistance is 
associated with SRC expression levels; the 
change in anoikis correlates with the change in 
SRC levels, demonstrating that SRC plays a key 
function in the resistance to anoikis triggered 
by the tight junction protein claudin [37].

PDGFRB promotes cancer stem cell character-
istics and epithelial-mesenchymal transforma-
tion in sarcomas [38]. PDGFRB is highly ex- 
pressed in epithelial ovarian cancer and is a 
potential therapeutic target for this disease 
[39, 40]. These findings suggest that PDGFRB 
is upregulated in AML and associated with poor 
survival. PDGFRB knockdown suppressed the 
proliferation and induced apoptosis of AML 
cells, suggesting that PDGFRB is involved in 

Figure 10. PDGFRB knockdown suppresses tumor formation. A. Effects of suppression of PDGFRB knockdown on 
tumor volume and weight. B, C. Tumor volume and weight in control, si-NC, and si-PDGFRB mice. D. HE were identi-
fied using immunohistochemistry. Ki-67 (red) and TUNEL (green) were identified using immunofluorescence. Scale 
bar: 50 μm. The data represent the mean ± standard deviation from three independent experiments. **P < 0.01.
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AML progression. Additionally, PDGFRB knock-
down inhibited tumor growth, suggesting that 
PDGFRB is a potential cancer-related gene in 
AML.

Although our riskScore and the nomogram con-
structed from it demonstrated superior predic-
tive performance, single-cell anoikis studies 
may offer more precise insights into AML pro-
gression and patient prognosis owing to cellu-
lar heterogeneity. Moreover, the limited infor-
mation obtained in this investigation requires a 
larger number of study participants to adjust 
the prediction model.

In conclusion, the model can accurately predict 
the survival of patients with AML, and a nomo-
gram derived from the model can aid physi-
cians in tailoring personalized AML treatments. 
Future research on the underlying molecular 
mechanisms linked with AML and prospective 
randomized clinical trials are clinically signifi-
cant and offer precise treatment approaches.
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Figure S1. Determination of new promising compounds targeting ANRGs.
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Figure S2. Relative protein (S2A) and mRNA (S2B) levels of PDGFRB in HL-60 and MOLM-13 cells transfected with 
PDGFRB knockdown (siRNA-#1 and siRNA-#2). Data are shown as mean ± SD of three independent experiments. 
**P < 0.01, ***P < 0.001. NC, negative control.


