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Abstract: Liver hepatocellular carcinoma (LIHC) is a major contributor to cancer-related mortality worldwide, posing 
substantial diagnostic and therapeutic challenges. Although zinc finger proteins (ZNFs) are known to play a role in 
LIHC, the specific function of ZNF248 remains poorly understood. In this study, we analyzed genomic and clinical 
data from The Cancer Genome Atlas (TCGA) to elucidate the role of ZNF248 through differential expression analy-
sis, bioenrichment, immune response correlation, and drug sensitivity evaluation. Machine learning was employed 
to identify prognostic signatures derived from ZNF248, which were further validated using Receiver Operating 
Characteristic (ROC) analysis. Functional assays, including Western blot and rescue experiments, were performed 
to assess the impact of ZNF248 on the PI3K/AKT signaling pathway. Our results demonstrate that ZNF248 is signifi-
cantly overexpressed in LIHC patients and is associated with poor prognosis. Bioenrichment analysis revealed acti-
vation of oncogenic pathways, and elevated ZNF248 expression correlated with increased immune cell infiltration 
and enhanced immune scores, thereby influencing both immunotherapy response and drug sensitivity. Functional 
assays further confirmed that ZNF248 promotes LIHC progression and invasion, while silencing ZNF248 inhibited 
the PI3K/AKT pathway - a phenomenon reversible by the AKT activator SC79. These findings suggest that ZNF248 
contributes to LIHC progression through the PI3K/AKT pathway and may represent a novel immunotherapeutic 
target and prognostic biomarker for LIHC.
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Introduction

Liver cancer is one of the most significant  
global health challenges, consistently ranking 
among the leading causes of cancer-related 
deaths [1]. Liver hepatocellular carcinoma 
(LIHC) is the predominant subtype, accounting 
for approximately 90% of primary liver cancers 
[2]. Current therapeutic approaches for LIHC 
include surgical resection, organ transplanta-
tion, local radiotherapy, and drug therapy [3]. 
Notably, hepatectomy is considered the stan-
dard radical treatment, but only a small propor-
tion of patients, primarily those in early stages, 
are eligible for this procedure [4]. The lack of 
early biomarkers for LIHC often results in diag-
noses at intermediate to advanced stages, 

leading to poor prognosis and significantly 
impacting global health [3]. Thus, identifying 
new diagnostic and therapeutic targets is cru-
cial for improving LIHC patient survival rates.  

Zinc Finger Protein 248 (ZNF248), a member of 
the zinc finger protein family, is located on chro-
mosome 10p11 and encodes a 579-amino acid 
protein with a predicted molecular weight of 
67.1 kDa [5]. ZNF248 contains a Kruppel-
related box (KRAB) domain, functioning as a 
regulatory transcription factor [5]. Zuo et al. 
identified ZNF248 as a broad-spectrum long 
interspersed nuclear element-1 (LINE-1)-bin- 
ding agent [6]. LINE-1 retrotransposons are 
mobile genetic elements that may reduce tumor 
suppression in somatic cells and are implicated 
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in LIHC pathogenesis and progression [7]. 
Although the physiological function of ZNF248 
is not well-studied, the ZNF family has been 
shown to play essential roles in various diseas-
es, including cancer [8]. He et al. found that 
overexpression of ZNF384 in LIHC tissues was 
associated with tumor recurrence and promot-
ed LIHC cell proliferation by upregulating cell-
cycle protein D1 [9]. Xie et al. revealed that 
knockdown of ZNF233 inhibited LIHC cell prolif-
eration and tumorigenesis [10]. Wang et al. 
observed that ZNF-148 could induce heat 
shock cell death mediated by the miR-335/
SOD2/ROS axis, promoting breast cancer pro-
gression. However, no studies have yet explored 
the function of ZNF248 in LIHC [11].

Bioinformatic analysis significantly contributes 
to understanding disease pathogenesis, identi-
fying diagnostic markers, and discovering ther-
apeutic targets through the examination of 
genomic, transcriptomic, and proteomic data 
[12]. This study aimed to apply bioinformatic 
analysis to determine the biological role of 
ZNF248 in LIHC. Using data from The Cancer 
Genome Atlas (TCGA), we conducted bioenri- 
chment, immunological correlation analysis, 
genomic characterization, and drug sensitivity 
analysis. We also modeled the prognostic risk 
associated with ZNF248. Ultimately, we identi-
fied ZNF248 as a novel immunotherapeutic bio-
marker for the LIHC immune microenvironment. 
Our study provides promising insights for the 
diagnosis and treatment of LIHC. 

Method

Public data acquisition

Transcriptomic and clinical characterization 
data used in this research were obtained from 
The Cancer Genome Atlas (TCGA) database 
(https://tcgadata.nci.nih.gov/). For subsequent 
analyses, we retrieved the original expression 
profiles (represented as STAR counts) of LIHC 
patients and converted them into a combinato-
rial matrix (depicted as TPM). Survival and clini-
cal information of the patients were gathered 
from the TCGA-LIHC bcr-xml file. The harmo-
nized and standardized pan-cancer dataset 
was sourced from the University of California 
Santa Cruz (UCSC) database (https://xen-
abrowser.net/): TCGA Pan-Cancer (PANCAN,  
N = 10535, G = 60499). From this dataset, we 
extracted the expression data of the ENSG- 

00000198105 (ZNF248) gene in individual 
samples and screened samples derived from 
Solid Tissue Normal, Primary Blood Derived 
Cancer - Peripheral Blood, and Primary Tumor. 
Samples with expression levels of 0 were 
excluded, and the data were normalized by log2 
(x+1). Ultimately, expression data for 26 cancer 
types were acquired, excluding cancer types 
with fewer than three samples. Immunohisto- 
chemistry images for LIHC were obtained from 
the Human Protein Atlas (HPA) database.

Differential analysis

Differentially expressed genes (DEGs) were 
identified using the limma package in the R 
environment. Genes with a P value < 0.05 and 
|Log2 fold-change (log2FC)| ≥ 0.585 were 
defined as DEGs. Volcano plots were generated 
using the ggplot2 V3.3.5 package in R.

Bioenrichment

Gene Set Enrichment Analysis (GSEA) (https://
www.bioincloud.tech/standalone-task-ui/anzy_
GSEA_analysis_hallmark) was employed to 
conduct enrichment analysis on known gene 
sets, such as the Hallmark gene set, to assess 
whether these genes displayed statistically sig-
nificant and consistent differences between 
two biological states [13]. Single-sample GSEA 
(ssGSEA) was used to quantify gene set en- 
richment by calculating the degree of expres-
sion of the gene set in each sample [14]. 
Overlapping DEGs were analyzed for Gene 
Ontology (GO) pathway functional enrichment 
using the Clusterprofiler package in R, including 
GO terms such as biological process (BP), cel-
lular component (CC), and molecular function 
(MF) [15, 16].

Immune-related analysis

Immune cell infiltration in the tumor microenvi-
ronment (TME) of LIHC in the ZNF248 high and 
low expression groups was evaluated using 
seven algorithms: CIBERSORT, MCPcounter, 
xCell, EPIC, TIMER, QUANTISEQ, and ESTIMATE 
[17-22]. Tumor immune dysfunction and ex- 
clusion (TIDE) and immunophenoscore (IPS) 
scores are good predictors of tumor immuno-
therapy response rates, particularly for anti-
CTLA-4 and anti-PD-1 antibody responses [23, 
24]. Thus, using the TIDE (http://tide.dfci.har-
vard.edu/) and IPS algorithms, we evaluated 
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the potential of ZNF248 in predicting immuno-
therapy responses in LIHC patients. Lower TIDE 
scores and higher IPS scores indicate better 
immunotherapy responses.

Genomic characterization

The Tumor Stem Cell Index (mDNAsi, mRNAsi) 
scores in the TCGA-LIHC project were generat-
ed through a quantitative study of stemness in 
tumor samples using a previously published 
machine learning algorithm (OCLR, One Class 
Linear Regression) [25]. Microsatellite instabil-
ity (MSI) and tumor mutation burden (TMB)  
are essential immunotherapy biomarkers [26]. 
We downloaded TMB and MSI scores for 
ZNF248 from the TCGA database. Mutation 
profiles of ZNF248 were also analyzed and visu-
alized using TCGA data. Drug-gene interactions 
and potential drug accessibility genes were 
investigated using the Drug-Gene Interaction 
database (DGIdb) (https://old.dgidb.org/sear- 
ch_categories).

Drug sensitivity analysis

Using the CellMiner database (http://disco- 
ver.nci.nih.gov/cellminer/), RNA-seq expression 
profiles and National Cancer Institute (NCI) - 60 
chemical activity data were downloaded to con-
duct a drug sensitivity study of ZNF248 [27]. 
The study involved FDA-approved or clinically 
tested drugs such as Dacomitinib, Cabozan- 
tinib, and Pentostatin. The “impute”, “limma”, 
“ggplot2”, and “ggpubr” R packages were utili- 
zed.

Nomogram

A nomogram incorporating age, gender, TNM 
stage, and ZNF248 expression was construct-
ed using the R “rms” and “survival” packages 
[28]. The nomograms forecasted the 1-, 3-, and 
5-year overall survival of patients, and calibra-
tion curves were developed to evaluate their 
accuracy. 

Weighted gene co-expression network analysis 
(WGCNA)

WGCNA was used to examine gene expression 
patterns in patient samples [29]. Following 
data preparation, the power function converted 
the correlation matrix into an adjacency matrix. 
The pickSoftThreshold() function analyzed net-

work architecture to determine correlation val-
ues for different soft thresholds. The co-expres-
sion network was constructed based on the 
optimal soft thresholds, and the gene cluster-
ing tree was drawn. Similar modules were 
merged and visualized.

Identification of prognosis signature based on 
machine learning

Multivariate Cox regression analysis, using the 
R “survival” package, determined whether clini-
cal characteristics such as gender, age, tumor 
stage, and ZNF248 expression could be inde-
pendent survival predictors for LIHC patients. 
LIHC patients from the TCGA database serv- 
ed as the training cohort. A machine-learning 
prognostic model, employing Least Absolute 
Shrinkage and Selection Operator (LASSO) 
logistic regression, screened for molecules sig-
nificantly associated with LIHC patient survival 
[30]. Multivariate Cox regression analysis was 
conducted on the genes in the feature set. The 
prognostic feature formula was determined as: 
“Risk score = Expression of A * Coef A + 
Expression of B * Coef B + … + Expression of X 
* Coef X”. The Kaplan-Meier (K-M) method was 
applied for prognostic survival analysis. The 
model’s performance was evaluated using the 
Receiver Operating Characteristic (ROC) curve, 
with an AUC value > 0.7 indicating superior per-
formance [31]. The GSE76427 dataset was 
used as an external validation cohort.

Cell culture and transfection

The hepatocellular carcinoma (HCC) cell lines, 
including PLC/PRF/5, Huh-7, MHCC-LM3, SNU- 
449, HepG2, MHCC97H, and Hep3B, along 
with human normal hepatocytes (LO-2), were 
cultured in Dulbecco’s Modified Eagle’s Me- 
dium (DMEM) or RPMI Medium 1640, both 
sourced from Gibco, supplemented with 10% 
fetal bovine serum (FBS). These cultures were 
maintained at 37°C in a 5% CO2 atmosphere. 
For gene silencing, specific small interfering 
RNAs (siRNAs) targeting ZNF248 were obtain- 
ed from RIBOBIO (Guangdong, China). The 
siRNA sequences employed are detailed in 
Table S1. A non-targeting RNA duplex served as 
the negative control (NC), ensuring it had no 
homology to any sequences within the human 
genome. Transfections were carried out using 
Lipofectamine® 3000 Transfection Reagent 
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(Invitrogen), strictly following the manufactur-
er’s instructions.

RNA isolation and reverse transcription quan-
titative polymerase chain reaction (RT-qPCR) 
procedure

Total RNA was isolated from various hepatocel-
lular carcinoma (HCC) cell lines using Trizol 
reagent (Takara, Japan). This RNA was then 
reverse transcribed to cDNA utilizing the 
PrimeScript RT Reagent Kit (Takara, Japan), 
adhering to the manufacturer’s protocols. Gene 
expression analysis was conducted via RT-qPCR 
using TB Green Premix Ex Taq (Takara, Japan). 
The PCR primers, synthesized by Tsingke 
(Beijing, China), are detailed in Table S1. The 
PCR conditions involved an initial denaturation 
at 95°C for 5 minutes, followed by 40 cycles of 
a three-step PCR process (95°C for 40 sec-
onds, 60°C for 50 seconds, and 72°C for 30 
seconds). Primers were designed and supplied 
by Invitrogen. Gene expression data were quan-
titatively analyzed using the 2-ΔΔCT method, as 
referenced [32].

CCK-8 assay

For the CCK-8 assay, we seeded cells at a den-
sity of 5,000 cells per well in 96-well plates. 
After 24 hours, cells were treated with 10 μL of 
CCK-8 reagent per well. Cell viability was subse-
quently assessed at 24, 48, and 72-hour inter-
vals using a microplate reader (Molecular 
Devices, Rockford, IL, USA). The absorbance 
was measured at an optical density of 460 nm 
to determine cell proliferation rates.

Colony formation assay

For the colony formation assay, Huh-7 and 
MHCC97H cells were plated at a density of 500 
cells per well in six-well plates. The cells were 
cultured under standard conditions at 37°C 
and 5% CO2 for two weeks to allow colony devel-
opment. Following the incubation period, the 
colonies were fixed using 4% formaldehyde and 
subsequently stained with 0.2% crystal violet 
at room temperature for clear visualization. 
Representative colonies were then photo-
graphed and quantified to assess the clonogen-
ic ability of the cells.

5-ethynyl-2’-deoxyuridine (EdU) assay 

To assess cell proliferation, we utilized the 
5-ethynyl-2’-deoxyuridine (EdU) assay, following 

the protocols provided by the BeyoClick™  
EdU Cell Proliferation Kit with Alexa Fluor 555. 
Cells were plated at a density of 20,000 cells 
per well in an 8-well slide and incubated with 
50 µmol/L EdU (dilution 1:1000) for 12 hours 
to incorporate the EdU into actively dividing 
cells. Post-incubation, cells were fixed with 4% 
formaldehyde at 37°C for 20 minutes, followed 
by permeabilization with 0.5% Triton X-100 at 
the same temperature. We then added 100  
μL of Apollo reaction cocktail to the cells and 
incubated them in the dark for 30 minutes. 
After several washes with PBS, the nuclei we- 
re stained with 4’,6-diamidino-2-phenylindole 
(DAPI) at 37°C for 20 minutes. The EdU-labeled 
cells were visualized using a laser scanning 
confocal microscope (Leica SP8). Quantification 
was done by normalizing the number of EdU-
positive cells to the total number of DAPI-
stained cells.

Transwell migration and invasion assays

We conducted migration assays using Matrigel-
free transwell chambers (Corning, USA), and 
invasion assays were performed using cham-
bers pre-coated with Matrigel (BD Biosciences). 
Cells were seeded into the upper chamber of  
a transwell setup (BD Biosciences, Franklin 
Lakes, NJ) at a concentration of 2 × 10^5 cells/
ml. The cells were incubated for 48 hours at 
37°C. Post-incubation, cells remaining on the 
upper surface of the membrane were gently 
removed. Cells that migrated or invaded to the 
bottom of the membrane were fixed with 4% 
paraformaldehyde for 10 minutes. Subsequen- 
tly, the cells were stained with crystal violet 
(Beyotime, China) for 5 minutes for visualiza-
tion. The stained cells were then counted under 
a microscope to assess migration and invasion 
capabilities.

Western blot

Protein expression levels were determined 
using Western blot analysis. Total protein was 
extracted from clinical samples or cell lines 
using RIPA lysis buffer (Beyotime) with 1% 
PMSF (Beyotime). Protein quantification was 
performed using a BCA kit. Proteins were sepa-
rated by 10-12% SDS-PAGE and transferred to 
a PVDF membrane (Millipore, USA). The mem-
brane was blocked with 5% skimmed milk for 1 
hour at room temperature and incubated with 
primary antibodies overnight at 4°C. Afterward, 
secondary antibodies were applied for 1 hour 
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at room temperature. Protein visualization was 
achieved using an ECL kit (SeraCare, USA) and 
imaged with a Bio-Rad ChemiDoc Touch system 
(Bio-Rad Laboratories, USA). Band intensities 
were analyzed using Image Lab software (NIH, 
USA). GAPDH and β-tubulin served as internal 
controls. Details of the antibodies are in Table 
S2.

Statistical analysis

All statistical analyses were performed using R 
software. The statistical threshold for compar-
ing P values was 0.05.

Results

Pan-cancer analysis of ZNF248 and its clinical 
role in LIHC

According to TCGA data, ZNF248 exhibited an 
aberrant expression pattern in multiple can-
cers, suggesting its influential role in cancer 
development (Figure 1A). Significance of differ-
ence analysis revealed that ZNF248 expres-
sion levels were significantly higher in 10 tumor 
tissues compared to normal control tissues: 
LUAD (Tumor: 2.38 ± 0.51, Normal: 2.27 ± 
0.38, P = 0.03), STES (Tumor: 2.38 ± 0.55, 
Normal: 2.17 ± 0.83, P = 0.02), KIRP (Tumor: 
2.71 ± 0.79, Normal: 2.45 ± 0.35, P = 4.8e-4), 
KIPAN (Tumor: 2.84 ± 0.77, Normal: 2.45 ± 
0.35, P = 1.6e-11), COAD (Tumor: 2.21 ± 0.39, 
Normal: 2.07 ± 0.57, P = 7.2e-3), STAD (Tumor: 
2.38 ± 0.57, Normal: 2.14 ± 0.85, P = 0.02), 
KIRC (Tumor: 3.04 ± 0.67, Normal: 2.45 ± 0.35, 
P = 2.4e-24), LIHC (Tumor: 1.44 ± 0.54, Normal: 
0.78 ± 0.23, P = 2.2e-17), PCPG (Tumor: 3.01 ± 
0.55, Normal: 2.06 ± 0.49, P = 0.01), CHOL 
(Tumor: 2.27 ± 0.48, Normal: 1.05 ± 0.23, P = 
2.7e-8). Immunohistochemistry results from 
the HPA database further showed that ZNF248 
protein expression in LIHC tissues was higher 
than in normal tissues (Figure 1B). Additionally, 
we investigated the prognostic role of ZNF248 
in LIHC. The results indicated that high ZNF248 
expression might be associated with poorer 
prognosis in LIHC patients, affecting overall 
survival (OS) and progression-free survival 
(PFS) in the TCGA cohort (Figure 1C, 1D). COX 
regression analysis identified ZNF248 as an 
independent risk factor for LIHC (Figure 1E). 
Further exploration of the clinical relevance of 
ZNF248 in LIHC patients revealed significantly 
elevated ZNF248 expression in female patients, 

those aged ≤ 65, and patients with TNM Stage 
III/IV (Figure 1F-H).

ZNF248 exerts a wide biological regulatory 
effect in LIHC

Patients were divided into two groups based  
on ZNF248 expression levels low- and high-
expression and differential analysis was con-
ducted. There were 1075 upregulated and 263 
downregulated DEGs between the high and  
low ZNF248 expression groups (Figure 2A). 
GSEA of Hallmark pathways identified a posi-
tive correlation between ZNF248 expression 
and pathways like G2M checkpoint, E2F tar-
gets, mitotic spindle, and epithelial-mesenchy-
mal transition (Figure 2B, 2C). ssGSEA analysis 
of 369 samples showed a positive correlation 
of ZNF248 with G2M checkpoint, E2F targets, 
and mitotic spindle (Figure 2D). GO analysis 
indicated that the most enriched terms in BP 
were embryonic organ development, synapse 
organization, and cell-cell adhesion (Figure 2E). 
In terms of CC, enrichment was mainly observed 
in synaptic membrane, apical part of the cell, 
and transporter complex (Figure 2F). For MF, 
terms related to channel activity and trans-
membrane transporter activity were predomi-
nantly enriched (Figure 2G).

ZNF248 can reconstruct the immune microen-
vironment of LIHC

The immune microenvironment of LIHC sam-
ples was evaluated using algorithms like 
CIBERSORT, MCPcounter, xCell, EPIC, TIMER, 
QUANTISEQ, and ESTIMATE. The immune infil-
tration patterns of patients with high and low 
ZNF248 expression differed (Figure 3A). Immu- 
nocorrelation showed that ZNF248 increased 
immune infiltration in the LIHC microenviron-
ment, affecting CD8+ T cells (R = 0.14, P = 
0.0089), T cells (R = 0.18, P = 0.00058), B cells 
(R = 0.38, P = 5.1e-14), fibroblasts (R = 0.29, P 
= 1.6e-08), endothelial cells (R = 0.28, P = 
3.1e-08), macrophages M2 (R = 0.24, P = 
2e-06), and Tregs (R = 0.32, P = 3.8e-10), while 
decreasing NK cell levels (Figure 3B-I). An inter-
action was found between ZNF248 and immu-
nological, estimation, tumor purity, and stromal 
scores (Figure 3J-M). ZNF248 positively corre-
lated with tumor purity score and negatively 
correlated with immune score. High ZNF248 
expression was associated with elevated levels 
of critical immune checkpoints PDCD1, CD274, 
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Figure 1. Expression pattern and clinical role of ZNF248 in liver cancer. A. The landscape of ZNF248 in pan-cancer. 
B. Representative immunohistochemical images of ZNF248 from the HPA database. C, D. Prognostic performance 
of ZNF248 in The Cancer Genome Atlas (TCGA) database. E. Multivariate analysis of ZNF248. F-H. Clinical correla-
tion of ZNF248. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 2. The biological role of ZNF248. A. Differentially expressed genes (DEGs) between the high and low ZNF248 
expression groups. B, C. Enrichment analysis of the Hallmark gene set using Gene Set Enrichment Analysis (GSEA). 
D. Correlation between pathways quantified by the Single Sample Gene Set Enrichment Analysis (ssGSEA) algorithm 
and the expression of ZNF248. E-G. Gene Ontology (GO) analysis of the Differentially Expressed Genes (DEGs). *P 
< 0.05, **P < 0.01, ***P < 0.001.
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Figure 3. The immune landscape of ZNF248 in liver cancer. A. Immune cell infiltration in the Tumor Microenvironment (TME) of liver cancer between high and low 
ZNF248 expression groups. B-I. Correlation between ZNF248 and multiple immune cells. J-M. Correlation of ZNF248 with immune score, estimate score, tumor 
purity score, and stromal score. N-Q. The expression levels of immune escape genes between high and low ZNF248 expression groups.
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and CTLA4, indicating a potential impact on the 
immunotherapeutic response and the effec-
tiveness of immune checkpoint inhibitors in 
LIHC patients (Figure 3N-Q).

Role of ZNF248 in genomic characterization of 
LIHC

MSI is a crucial marker for cancer immunother-
apy [33]. We examined the relationship between 

ZNF248 and MSI, TMB, mRNAsi, and mDNAsi 
(Figure 4A-D). The findings demonstrated a 
favorable correlation between ZNF248 and MSI 
(Figure 4C). In patients with high and low 
ZNF248 expression, the top 3 genes with  
the most differential mutations were TP53, 
CTNNB1, and TTN (Figure 4E). The highest per-
centage of differentially mutated genes was 
TP53 in the high-expression group, with mis-
sense mutation being the most frequent muta-

Figure 4. Genomic characteristics of ZNF248. A-D. Correlation of ZNF248 with mDNAsi, mRNAsi, Microsatellite In-
stability (MSI), and Tumor Mutation Burden (TMB). E, F. Mutation characteristics of high and low ZNF248 expression 
groups. G. Drug-gene interactions and gene druggability information.
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tion type in both high and low ZNF248 expres-
sion groups (Figure 4F). Drug-gene interactions 
and potential drug targets revealed 12 genes 
as potential drug targets, mainly associated 
with clinically actionable transporter and kinase 
(Figure 4G).

Immunotherapy response, drug sensitivity, 
and nomogram mapping of ZNF248 in LIHC 
patients

The TIDE score for each LIHC patient was calcu-
lated. ZNF248 was positively correlated with 
TIDE score and immune rejection and negative-
ly correlated with immune dysfunction (Figure 
5A-C). Further analysis indicated a correlation 
between high ZNF248 expression and non-
responders to immunotherapy (Figure 5D). 
ZNF248 showed a negative correlation with 
ips_CTLA4_neg_PD1_neg, suggesting its in- 
fluence on immune therapy response (Figure 
5E). ZNF248 promoted the sensitivity to 
Cabozantinib while decreasing sensitivity to 
Dacomitinib and Pentostatin (Figure 5F-H). A 
nomogram plot incorporating ZNF248 expres-
sion and clinical characteristics was created 
(Figure 5I). Calibration curves showed good 
agreement between actual and predicted sur-
vival (Figure 5J).

Co-expression analysis of ZNF248-related 
genes based on WGCNA

WGCNA clustering analysis identified the opti-
mal soft threshold as 12 (Figure 5K). A gene 
clustering tree was constructed, dividing genes 
into 9 modules, with the turquoise module 
exhibiting the highest correlation with ZNF248 
(R = 0.77, P = 3e-75) (Figure 5L).

Machine learning identified prognostic signa-
ture based on ZNF248-derived molecules

LASSO logistic regression identified 10 relevant 
hub genes among 221 genes (Figure 6A). 
Multivariable Cox regression analysis deter-
mined prognostic signatures, revealing a posi-
tive correlation between BMI1 and prognosis 
(OR = 1.03, 95% CI = 1.00 to 1.05, P = 0.02) 
(Figure 6B). Data from 259 TCGA patients were 
used as a training set, and 115 LIHC patients 
were used for external validation. Patients in 
the lower-risk group had better OS in both 
cohorts, indicating that low expression predict-
ed a better prognosis (Figure 6C, 6D). The prog-

nostic model demonstrated good predictive 
ability for patient survival (Figure 6E, 1-year 
AUC = 0.79; 3-year AUC = 0.76; 5-year AUC = 
0.74; Figure 6F, 1-year AUC = 0.66; 3-year AUC 
= 0.72; 5-year AUC = 0.80). A positive correla-
tion was observed between the risk score and 
TIDE score, as well as immune exclusion (Figure 
6G, TIDE, R = 0.51, P = 6e-09; Figure 6I, 
Exclusion, R = 0.54, P = 6.1e-10), while a nega-
tive correlation was found with immune dys-
function (Figure 6H, R = -0.67, P = 4.2e-16). 
Non-responders to immunotherapy tended to 
have higher risk scores (Figure 6J).

ZNF248 promotes aggressive traits in HCC 
cells

RT-qPCR results revealed significant overex-
pression of ZNF248 in HCC cells compared to 
control cells (Figure 7A). The efficiency of 
ZNF248 knockdown and overexpression is 
shown in Figure 7B. CCK8 assays demon- 
strated that silencing ZNF248 significantly 
reduced Huh-7 cell proliferation, while overex-
pressing ZNF248 increased MHCC97H cell pro-
liferation (Figure 7C and 7D). These findings 
were corroborated by colony formation as- 
says (Figure 7E and 7F). EdU incorporation 
decreased in ZNF248-silenced Huh-7 cells and 
increased in ZNF248-overexpressing MHCC97H 
cells (Figure 7G and 7H). Transwell migration 
and invasion assays showed that ZNF248 
knockdown markedly reduced Huh-7 cell mig- 
ratory and invasive abilities, while ZNF248 
overexpression enhanced these capabilities in 
MHCC97H cells (Figure 7I and 7J). These 
results underscore ZNF248’s role in promoting 
invasion and progression of HCC cells.

ZNF248 promotes HCC proliferation and inva-
sion via the PI3K-AKT signaling pathway

To investigate the mechanism by which ZNF248 
regulates HCC proliferation and invasion, Gene 
Set Enrichment Analysis (GSEA) was performed. 
The results indicated that the related genes 
were enriched in the PI3K-AKT signaling path-
way (Figure 8A). Western blot analysis revealed 
that the PI3K-AKT signaling pathway was inhib-
ited when ZNF248 was silenced by siRNA, and 
this inhibition was reversed by the PI3K-AKT 
signaling pathway agonist SC79 (Figure 8B). 
Functional assays, including CCK8, EdU, Trans- 
well, and colony formation assays, demonstrat-
ed that silencing ZNF248 inhibited the prolifer-
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Figure 5. The intersection of ZNF248 with immunotherapy and drug sensitivity. A-C. Correlation of ZNF248 with Tumor Immune Dysfunction and Exclusion (TIDE) 
score, immune exclusion score, and immune dysfunction score. D. Analyzing ZNF248 expression in responders and non-responders to immunotherapy. E. The Im-
munophenoscore (IPS) score in high and low ZNF248 expression groups. F-H. Correlation of ZNF248 with drug sensitivity. I. The nomogram plot based on ZNF248. 
J. The calibration curve for 1, 3, and 5 years. K. Optimal power value of Weighted Gene Co-expression Network Analysis (WGCNA). L. Correlation analysis between 
gene modules and ZNF248.
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Figure 6. Identification of the prognostic signature from ZNF248-related genes. A. Least Absolute Shrinkage and Selection Operator (LASSO) regression was utilized 
to identify the hub genes. B. Multivariate Cox regression analysis on genes included in the signature. C-F. The performance of the signature in predicting patient 
survival in the training and external validation sets. G-I. Correlation of risk score with Tumor Immune Dysfunction and Exclusion (TIDE) score, immune exclusion 
score, and immune dysfunction score. J. Analyzing risk score in responders and non-responders to immunotherapy.
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Figure 7. ZNF248 promotes the malignant biological behaviors of HCC cells. (A) ZNF248 mRNA expression levels detected by Reverse Transcription Quantitative 
Polymerase Chain Reaction (RT-qPCR). (B) Knockdown and overexpression efficiency of ZNF248 siRNA and pcDNA detected by RT-qPCR. Functional assays were 
conducted to assess ZNF248 regulation of Hepatocellular Carcinoma (HCC) cell proliferation and invasion, including: (C, D) Cell Counting Kit-8 (CCK-8) assays, (E, F) 
Colony formation assays, (G, H) 5-Ethynyl-2’-deoxyuridine (EdU) assays, (I, J) Transwell assays. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Figure 8. ZNF248 promotes HCC proliferation and invasion via the 
PI3K-AKT signaling pathway. (A) Gene Set Enrichment Analysis 
(GSEA) evaluating functional enrichment of datasets related to sig-
naling pathways involved in ZNF248-related genes. (B) Western blot 
analysis exploring the functional relationships between ZNF248 and 
the PI3K-AKT signaling pathway. Rescue assays, including: (C) CCK8 
assays, (D) EdU assays, (E) Transwell assays, (F) Colony formation as-
says, were conducted to identify whether ZNF248 regulates HCC cell 
proliferation and invasion via the PI3K-AKT signaling pathway. ns: not 
significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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ation and invasion of HCC cells, and these 
effects were reversed by SC79 (Figure 8C-F).

Discussion

Liver hepatocellular carcinoma (LIHC) is one of 
the most prevalent malignancies globally, char-
acterized by high incidence and mortality rates. 
The World Health Organization predicts that 
over 1 million individuals could succumb to liver 
cancer by 2030 [1, 34]. LIHC is often diagnosed 
at an advanced stage due to the low rate of 
early detection and its rapid progression, which 
significantly limits treatment options. Therefore, 
identifying new biomarkers as prognostic and 
therapeutic targets is essential for improving 
LIHC patient outcomes.

In this study, we utilized multiple bioinforma- 
tics approaches to demonstrate that higher 
ZNF248 expression in LIHC is associated with 
adverse clinicopathologic features, shorter sur-
vival time, and a poorer prognosis. Our results 
indicate that ZNF248 is significantly upregulat-
ed in LIHC patients, as confirmed by immuno-
histochemistry. High ZNF248 expression was 
correlated with worse overall survival (OS) and 
progression-free survival (PFS). Furthermore, 
COX regression analysis identified ZNF248 as 
an independent risk factor for LIHC, with sig- 
nificantly higher expression in patients at  
TNM Stage III/IV. These findings were validated 
by functional experiments, confirming that 
ZNF248 promotes LIHC progression.

To further elucidate the molecular mechanisms 
underlying ZNF248’s role in LIHC, we conduct-
ed bioenrichment analysis to identify path- 
ways in which ZNF248 is involved. Gene Set 
Enrichment Analysis (GSEA) and single-sample 
GSEA (ssGSEA) of the Hallmark gene set indi-
cated that ZNF248 is primarily enriched in pro-
cesses related to the G2/M checkpoint, E2F 
targets, mitotic spindle, and epithelial-mesen-
chymal transition (EMT). The G2/M checkpoint 
is crucial for regulating cell entry into mitosis, 
thereby preventing abnormal proliferation and 
allowing genomic surveillance and DNA repair 
[35]. For example, apigetrin-induced cell cycle 
arrest at the G2/M phase has been shown to 
suppress proliferation in Hep3B cells [36]. 
E2Fs, which are potential therapeutic targets 
for LIHC, play critical roles in cell proliferation, 
apoptosis, differentiation, senescence, and the 
DNA damage response [37]. Our findings sug-

gest a positive correlation between ZNF248 
and these cell cycle-related regulators, imply-
ing that ZNF248 may influence pivotal check-
points in the LIHC cell cycle.

The tumor immune microenvironment (TME) is 
a key determinant of tumor growth, prolifera-
tion, and therapeutic response [38]. In our 
analysis, different ZNF248 expression levels in 
LIHC samples were associated with distinct 
immune infiltration patterns. Specifically, high 
ZNF248 expression correlated with increased 
infiltration of CD8+ T cells, T cells, B cells, fibro-
blasts, endothelial cells, M2 macrophages, and 
regulatory T cells (Tregs). These immune com-
ponents play crucial roles in cancer develop-
ment and immune evasion. For example, IFNγ(-)
IL-17(+) CD8 T cells contribute to immunosup-
pression and tumor progression in LIHC, and 
their presence is associated with poor progno-
sis [39]. Similarly, tumor-infiltrating B cells, 
despite their relatively low abundance, have 
been found to correlate with poor differentia-
tion and promote hepatocarcinogenesis [40]. 
Furthermore, exosomes derived from highly 
metastatic cancer cells can activate fibro-
blasts, promoting LIHC lung metastasis [41]. 
Tregs, both circulating and within tumors, con-
tribute to LIHC progression by impairing the 
effector function of CD8+ T cells, particularly in 
hepatitis B virus (HBV)-related cases [42]. Our 
results indicate that ZNF248 may function as 
an immune-associated molecule, with potential 
implications for remodeling the TME in LIHC 
patients.

Tumor immunotherapy, which aims to over-
come immune escape mechanisms and reacti-
vate immune cells to eliminate cancer cells, 
has emerged as a promising treatment strategy 
for LIHC [43]. In our study, we observed higher 
expression of immune checkpoint genes in the 
ZNF248_high group. Additionally, higher Tumor 
Immune Dysfunction and Exclusion (TIDE) 
scores were noted in this group, suggesting 
reduced efficacy of immune checkpoint inhibi-
tion and a higher probability of immune escape 
in patients with elevated ZNF248 expression 
[23]. This highlights the potential role of 
ZNF248 in modulating the response to immu-
notherapy in LIHC.

To assess the prognostic value of ZNF248, we 
developed a prognostic signature based on 
ZNF248-related molecules using the Least 
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Absolute Shrinkage and Selection Operator 
(LASSO) algorithm on TCGA data, and validated 
it with the GSE76427 dataset. The prognostic 
signature demonstrated good predictive perfor-
mance for patient survival, underscoring the 
biological significance of ZNF248 in LIHC. 
However, the study has several limitations. 
Most of the data were derived from the TCGA 
database, which may limit the generalizability 
of our findings to different populations. Future 
research should aim to validate our results 
using local clinical data to ensure broader 
applicability. Additionally, although we explored 
the biological features and functions of ZNF248 
in LIHC, its specific mechanistic role requires 
further investigation through detailed molecu-
lar studies.

Conclusion

In summary, our study identifies ZNF248 as a 
novel immunotherapeutic biomarker that influ-
ences the immune microenvironment in LIHC. 
ZNF248 has a broad regulatory role, including 
the modulation of the TME, impacting immuno-
therapeutic response and prognostic assess-
ment. This study is the first to report on the bio-
logical role of ZNF248 in LIHC, advancing our 
understanding of its potential in targeted pre-
vention, treatment, monitoring, and prognostic 
evaluation of this malignancy.
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Table S1. List of primer sequences for Reverse Transcription Quantitative Polymerase Chain Reaction 
(RT-qPCR) and sequences for siRNAs
Primers Sequence (5’-3’)
ZNF248 Forward TTGGAAATGGAGCCGTATGGA

Reverse CCCAGGTTTTGTCACTCACTTTA
GAPDH Forward AATGGGCAGCCGTTAGGAAA

Reverse GCCCAATACGACCAAATCAGAG
siRNAs Sequence (5’-3’)
si-NC Forward GACUGACUCCCGUGUAAGGACUCAA

Reverse UUGAGUCCUUACACGGGAGUCAGUC
si-ZNF248-1 Forward GACUCCAGUCCCUUGUGGGAAACAA

Reverse UUGUUUCCCACAAGGGACUGGAGUC
si-ZNF248-2 Forward ACUCCAGUCCCUUGUGGGAAACAAU

Reverse AUUGUUUCCCACAAGGGACUGGAGU
si-ZNF248-3 Forward CAGUCCCUUGUGGGAAACAAUCCCU

Reverse AGGGAUUGUUUCCCACAAGGGACUG

Table S2. Antibodies used in this study
Antigens Manufacturers Application
GAPDH #5174, Cell Signaling Technology, Beverly, MA, USA 1:1000 for WB
Anti-rabbit IgG HRP conjugated #7074, Cell Signaling Technology, Beverly, MA, USA 1:1000-1:3000 for WB
Anti-mouse IgG HRP conjugated #7076, Cell Signaling Technology, Beverly, MA, USA 1:1000-1:3000 for WB
ZNF248 #PA5-31967, Invitrogen, Waltham, MA 1:1000 for WB
BrdU ab2284, ABCAM, Cambridge, UK 5 μg per test 
AKT #AF6261, Affinity Biosciences, Cincinnati, OH, USA 1:500-1:2000 for WB
p-AKT (Ser473) #AF0016, Affinity Biosciences, Cincinnati, OH, USA 1:500-1:2000 for WB
PI3K #AF5112 Affinity Biosciences, Cincinnati, OH, USA 1:500-1:2000 for WB
p-PI3K #AF4369, Affinity Biosciences, Cincinnati, OH, USA 1:500-1:2000 for WB
WB, Western Blot.


