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Abstract: Colorectal cancer (CRC) is one of the most common cancers worldwide. Early detection and removal of 
colorectal polyps during colonoscopy are crucial for preventing such cancers. With the development of artificial 
intelligence (AI) technology, it has become possible to detect and localize colorectal polyps in real time during 
colonoscopy using computer-aided diagnosis (CAD). This provides a reliable endoscopist reference and leads to 
more accurate diagnosis and treatment. This paper reviews AI-based algorithms for real-time detection of colorectal 
polyps, with a particular focus on the development of deep learning algorithms aimed at optimizing both efficiency 
and correctness. Furthermore, the challenges and prospects of AI-based colorectal polyp detection are discussed.
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Introduction

Colorectal cancer (CRC) accounts for 10% of  
all cancer types [1]. It has the third-highest  
incidence and second-highest mortality rate 
among cancers globally. The five-year survival 
rate for advanced-stage CRC is merely 14%. 
Colorectal polyps are precancerous lesions 
that have the potential to develop into colorec-
tal cancer over a span of 5-10 years [2]. 
Therefore, early diagnosis of colorectal polyps 
can effectively prevent colorectal cancer. The 
adenoma detection rate (ADR) is a widely rec-
ognized quality indicator for colonoscopy. Me- 
dical evidence suggests that each percentage 
point increase in ADR correlates with a 3% to 
6% decrease in interstitial colorectal cancer 
incidence [3]. Therefore, an effective increase 
in ADR can potentially reduce the incidence of 
colorectal cancer [4].

With the advancement of medical imaging tech-
nology, colonoscopy has emerged as the pre-
dominant method for detecting and diagnosing 
polyps. This procedure uses a camera and a 

flexible tube to examine the bowel. It provides 
high-definition video of the bowel and is suit-
able for visually detecting pathological inflam-
mation and colonic diseases [5]. However, tra- 
ditional endoscopy relies on the physician’s 
experience, making it time-consuming and 
prone to missing small and atypical polyps  
[6]. As artificial intelligence technology rapidly 
advances, computer-aided detection systems 
(CADe) have emerged as formidable tools to 
improve the detection rate and accuracy of pol-
yps [7]. Repici et al. conducted a multicentral, 
randomized controlled study involving 685 sub-
jects to compare high-definition colonoscopy 
with and without the CADe system. The results 
showed that the group using the CADe system 
exhibited a significantly higher ADR than the 
control group. This suggests that the CADe sys-
tem can analyze endoscopic video and accu-
rately identify and localize polyps, thus aiding 
physicians in decision-making [8].

In clinical applications, it is crucial for doctors  
to promptly detect colorectal polyps. However, 
gastroenterologists currently exhibit only 76% 
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accuracy in detecting small polyps (less than 1 
cm) in real-time optics [9], posing significant 
challenges in real-time polyp identification. 
Real-time processing of colorectal polyp detec-
tion algorithms can assist gastroenterologists 
in improving polyp detection rates [10]. There- 
fore, there is an increasing demand for real-
time algorithms, and frame rate has become  
an important metric for measuring the merit of 
detection algorithms. This paper adopts frames 
per second (FPS) as an assessment metric for 
detection rates.

Traditional machine learning algorithms rely 
heavily on hand-crafted descriptors for feature 
learning. The hand-crafted features such as 
color, shape, texture, and edges are extract- 
ed and fed into a machine-learning classifier, 
which separates the lesion from the back-
ground [11]. In recent years, most colonoscopy 
studies on polyp detection have utilized convo-
lutional neural networks (CNNs). Unlike tradi-
tional machine-learning algorithms, deep learn-
ing employs CNNs for both feature extraction 
and classification, enabling the automatic and 
efficient identification of complex patterns and 
features (Figure 1). This process eliminates the 
need for the tedious task of manually designing 
features. Moreover, the deep learning model 
consists of multiple layers of neural networks, 

allowing them to learn complex non-linear rela-
tionships. This architecture facilitates the pro-
gressive extraction of high-level features from 
low-level ones, thereby enhancing extraction 
capabilities. As a result, deep learning has far 
surpassed traditional machine learning meth-
ods in accuracy.

This review explores recent advances in the 
real-time detection of colorectal polyps. We 
present the application of traditional machine 
learning and deep learning [12] algorithms in 
real-time colorectal polyp detection, emphasiz-
ing the potential of deep learning methods to 
improve both detection frame rates and detec-
tion accuracy. The integration of previous stud-
ies is used to analyze the future challenges  
and perspectives of real-time colorectal polyp 
detection algorithms.

Detecting and locating colorectal polyps

Colorectal polyp detection [13] is the process 
of identifying and localizing polyps in the col-
orectum using medical imaging techniques. 
The primary objective of polyp detection algo-
rithms is to determine the presence of polyps in 
medical images accurately. These algorithms 
are helpful during colonoscopy when the de- 
tection system promptly notifies the physician 

Figure 1. Machine Learning and Deep Learning. Machine learning involves manual feature extraction, which is sub-
sequently fed into a classifier, whereas deep learning has both feature extraction and classification done automati-
cally by a convolutional neural network (CNN).
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examining an acoustic signal or a logo as soon 
as the detection system suspects that the 
image or video may contain a polyp. Polyp 
detection algorithms can be broadly classified 
into two categories: (a) machine learning meth-
ods and (b) deep learning methods.

Machine learning methods

Before the popularity of deep learning meth-
ods, traditional machine learning algorithms 
predominantly relied on hand-crafted descrip-
tors for feature learning. Previous methods  
for detecting colorectal polyps primarily used 
shape features [14, 15], texture features [16-
19], color features [20], edge features, or com-
binations of these features [21]. These features 
were then fed into a machine learning classi- 
fier designed to distinguish lesions from the 
background.

Hwang proposed an ellipse shape-based polyp 
detection method to identify the polyp region 
by least squares fitting of ellipses. This method 
achieved a detection rate of 15 FPS [15]. 
Ameling et al. analyzed more than four hours of 
high-resolution colonoscopy videos using four 
texture feature extraction methods based on 
grey-level co-occurrence matrices (GLCMs)  
and local binary patterns (LBPs). The results  
of the study indicated that the authors achie- 
ved classification results of up to 0.96 for  
the area under the receiver operating charac-
teristic (ROC) curve [17]. Ševo proposed a 
model that uses texture analysis for the auto-
matic detection of inflammation, suitable for 
real-time application and parallel processing. 
Experimental results demonstrate that the 
method can detect inflammatory regions in real 
time with more than 84% accuracy. In some 
video frame segments, the detection accuracy 
can reach more than 90% [18]. Iakovidis et al. 
conducted a comparative study of texture  
features for gastric polyp detection in endo-
scopic videos. Among the four texture feature 
extraction methods, texture spectrum (TS) his-
togram, texture spectrum and color histogram 
statistics (TSCHS), LBP histogram, and color 
wavelet covariance (CWC), the CWC gave the 
best results with an area under the ROC curve 
of 88.6% [19].

Giritharan et al. utilized various color and tex-
ture features to detect bleeding lesions in video 
frames. The experimental results showed their 

method exhibited high sensitivity and subjectiv-
ity [21]. Wang et al. introduced a software sys-
tem called “Polyp-Alert”, which aims to assist 
endoscopists in detecting polyps by providing 
visual feedback during colonoscopy. The sys-
tem employs previous edge cross-section visu-
al features and a rule-based classifier to detect 
polyp edges. The software correctly detected 
97.7% (42/43) of polyp shots on 53 randomly 
selected video files of complete colonoscopies, 
achieving polyp detection at rates up to 10 FPS 
[23]. Kominami et al. researched and devel-
oped a real-time image recognition system for 
predicting the histological diagnosis of colorec-
tal lesions in narrow-band imaging. This system 
analyzes the region of interest (ROI) in narrow-
band imaging (NBI) video endoscopic images 
and displays the output values of the Support 
Vector Machine (SVM) in real time. It achieves 
an accuracy of 94.9% at a frame rate of 20 FPS 
[22]. However, the extraction of these features 
is typically performed manually, resulting in a 
lack of robustness and being time-consuming. 
Furthermore, these methods do not effectively 
detect polyps in real time and are associated 
with a high false-positive rate. Therefore, reli-
ably and accurately detecting colorectal polyps 
in real time remains a significant challenge.

Deep learning methods

With the wide application of deep learning in 
medical image processing [24-28], deep le- 
arning-based polyp detection algorithms have 
been proposed in recent years. CNN repre- 
sents a critical architecture within deep learn-
ing. CNN-based detectors can automatically 
extract abstract and discriminative features 
compared to manual feature extraction. Bernal 
et al. compared the effectiveness of manually 
crafted features with CNN-extracted features 
in detecting polyps. They claimed that the CNN-
based approach exhibits superior performance 
[29]. Tajbakhsh et al. proposed a unique three-
way image representation that captures the 
color, texture, shape, and temporal information 
of colon polyps. The method employs CNN to 
learn polyp features at multiple scales to im- 
prove the accuracy of polyp localization. This 
method significantly reduced the false alarm 
rate and the delay in polyp detection compar-
ed to earlier techniques [30]. In 2018, Zhang  
et al. proposed a new regression-based CNN 
pipeline for polyp detection in colonoscopy. 
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However, it achieved a processing speed of 
only 6.5 FPS, which was inadequate for real-
time applications [31]. In 2019, Jiang et al. 
designed a deep learning model called the 
“Artificial Intelligence Endoscopist (AI-dosco- 
pist)” for localization during colonoscopy. The 
system was constructed based on ResNet50 
and YOLO (you only look once). YOLOv2 has  
certain advantages in real-time detection. Com 
bined with the powerful feature extraction 
capability of ResNet50, the system achieves a 
good balance between detection speed and 
accuracy. The results indicated that the AI- 
doscopist successfully localized 124 out of 
128 polyps (polyp base sensitivity of 96.9%)  
in 144 complete colonoscopies with 93.3% 
specificity [32].

Although the above studies are more robust 
than traditional manual extraction methods, 
their diagnostic performance and processing 
speed remain inadequate for real-time clinical 
applications. With the increasing development 
of deep learning, more algorithms have been 
proposed to meet the clinical real-time require-
ments. Among these real-time algorithms, the 
optimization can be divided into two directions: 
improving the detection speed and improving 
the detection correctness.

Algorithms optimization for improving targeting 
frame rate

In colonoscopy, real-time algorithms typically 
require a detection rate of 25 FPS or higher. 
This detection rate is essential for the algo-
rithm to process each image or video frame 
promptly, thereby providing timely feedback to 
the physician. In this section, we summarize 
the methods used to improve the speed of algo-
rithmic detection in the reviewed papers. The 
following methods can be used alone or in com-
bination to increase the frame rate of the algo-
rithm detection.

Use of anchor-free detection algorithms: An 
anchor-based detection algorithm uses pre-
defined anchor frames to regress and classify 
targets. These anchor frames are generated by 
clustering through methods such as K-means 
before training and represent the main distribu-
tion of targets in the dataset. While anchor-
based detection algorithms are the current 
mainstream direction, anchor-free detection 
algorithms eliminate the need for predefined 

anchor frames. These algorithms detect tar-
gets by directly predicting the critical point or 
center of the object, thereby reducing com- 
putational load and enhancing detection  
speed. Consequently, they have gained signifi-
cant attention in recent years [33-35]. Some 
researchers have successfully applied the 
anchor-free method to real-time colonoscopy 
detection and achieved satisfactory results.

Yang et al. proposed the you only look once-
objectbox (YOLO-OB) model, which employs the 
ObjectBox detection head and utilizes a center-
based anchor-free frame regression strategy. 
The algorithm achieved a detection rate of 39 
FPS on the RTX3090 graphics card [36]. Wang 
et al. proposed a new anchor-free polyp net 
(AFP-Net) that formulates objects as centroids. 
They removed the center pool in CenterNet [37] 
and replaced it with a context-enhanced mod-
ule and feature pyramid design for real-time 
response. Additionally, a particular cosine truth 
projection strategy was designed to compen-
sate for the decrease in recall due to the remov-
al of the anchor mechanism. The method can 
achieve a detection speed of 52.6 FPS [38].

Use of lightweight network architecture: Light- 
weight networks seek to decrease the number 
of model parameters and complexity while pre-
serving model accuracy, thereby emerging as a 
prominent research focus in computer vision 
[39-41]. These models are capable of operating 
on resource-constrained devices and enabling 
real-time detection, which is crucial for the 
swift identification of polyps during colonos- 
copy. Consequently, several researchers have 
started to implement lightweight models for the 
real-time detection of colorectal polyps.

Since YOLOv5s exhibits superior feature extrac-
tion capability, Ou et al. chose to build on this 
algorithm by reducing the number of convolu-
tional kernels and removing the large target 
detection head to design a lightweight model 
that enables real-time detection of polyps 
called Polyp-YOLOv5-Tiny. Although this model 
has a slight loss of accuracy, it has a significant 
advantage in model size and detection rate. 
The algorithm can achieve a detection rate of 
113.6 FPS [42]. Yoo et al. proposed a new light-
weight model that replaces the neck of a CNN 
by incorporating a Token-Sharing Transformer 
(TST) into YOLOv5, called YOLOv5-TST. The TST 
module utilizes the attention mechanism of the 
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Figure 2. Principle of two-stage object detection algorithm. Two-stage Object Detection algorithms usually consist 
of two main stages: Region Proposal and Classification and Regression. CNN, convolutional neural network; NMS, 
non-maximum suppression.

Transformer to fuse local and global features. 
This efficient feature fusion reduces redundant 
computations and improves the overall effi-
ciency of the model. The Transformer architec-
ture naturally supports parallel computation, 
which allows for faster processing of large-
scale data compared to traditional CNNs. This 
model reduces the number of parameters in 
the neck without significant performance deg-
radation based on YOLOv5, achieving a de- 
tection speed of 138.3 FPS [43]. The Polyp-
YOLOv5-Tiny model was reproduced in that lit-
erature, and the two models were compared 
using a unified dataset. The results indicate 
that on the Kvasir dataset, YOLOv5m-TST 
achieves a precision of 0.9369, while Polyp-
YOLOv5-Tiny achieves a precision of 0.9072.

Use of algorithms based on one-stage detec-
tion methods: The current object detection 
algorithms are divided into two main types: 
one-stage [44] and two-stage algorithms [45]. 
The two-stage object detection algorithm oper-
ates in two distinct phases to accomplish 
detection. Initially, it generates a set of candi-
date regions that are likely to encompass the 
target object, a process known as region pro-
posal. Subsequently, each of these regions 
undergoes precise classification and localiza-
tion, allowing the algorithm to attain a high 
level of detection accuracy. Finally, non-maxi-
mum suppression (NMS) is used to remove 
redundant bounding boxes (Figure 2). Classical 

two-stage object detection algorithms include 
region-based convolutional neural network 
(R-CNN) and Faster R-CNN. In contrast, one-
stage object detection algorithms perform tar-
get classification and localization in a single 
forward pass. The primary characteristic of 
these algorithms is the omission of the region 
proposal stage, allowing for the direct genera-
tion of class probabilities and positional coordi-
nates of the object, thereby achieving faster 
detection speeds (Figure 3).

The main classical one-stage detectors inclu- 
de YOLO, SSD (Single Shot MultiBox Detector), 
and RetinaNet [48]. A study in 2021 comparing 
the performance of different algorithms for 
polyp detection showed that, in this bench-
marking, the YOLO network achieves state-of-
the-art performance while operating in real-
time [49]. YOLO’s network structure consists of 
24 convolutional layers and two fully connected 
layers, with the convolutional layers dedicated 
to feature extraction. The 1×1 and 3×3 convolu-
tions are used alternately in the convolutional 
layers, where 1×1 convolution is used to reduce 
the dimensionality of the feature space and 
3×3 convolution is used to extract the features. 
The convolutional layer is followed by two fully 
connected layers to further process the fea-
tures and generate the final detection results. 
The network accepts input images sized at 
448×448 pixels, and the final output is a ten-
sor with dimensions of 7×7×30. The primary 
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Figure 3. Principle of the one-stage object detection algorithm. One-stage Object Detection algorithm is faster as 
it generates the class and position coordinates of the target directly from the input image, eliminating the region 
proposal stage. CNN, convolutional neural network; NMS, non-maximum suppression.

Figure 4. Network structure of YOLO (you only look once) algorithm and SSD (single shot multibox detector) algo-
rithm (Adapted with permission from [47]). The YOLO algorithm extracts feature by means of 24 convolutional layers 
and 2 fully-connected layers, the input image is usually of size 448×448. The detection layer divides the image into 
S×S grids (usually 7×7), each of which predicts B bounding boxes (usually 2) along with their confidence and cat-
egory probabilities. Finally, the most appropriate bounding boxes are filtered to remove overlapping boxes. SSD uses 
VGG-16 to extract the feature maps, the input image is typically 300×300 in size, and it adds extra feature layers on 
top of the base network to generate multi-scale feature maps.

YOLO mode processes images in real time at a 
detection rate of 45 FPS [46]. In comparison to 
the YOLO network, SSD adds multiple feature 
layers at the end of the base network, which 
are used to predict the default frames at differ-
ent scales and aspect ratios (Figure 4). This 
enables SSD to effectively handle objects of 
different sizes and detect them at various 

scales, achieving a detection rate of 59 FPS 
[47].

Lee et al. developed and validated a deep  
learning algorithm for polyp detection utilizing 
YOLOv2 on a dataset comprising 8,075 images, 
which included 503 polyps. The algorithm was 
validated using three datasets, which detected 
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Table 1. Comparison of deep learning algorithms for improving frame rate
Categories Method Dataset Result Reference
Machine learning methods Manual extraction of features - FPS: <20 [14-23]
Early deep learning algorithms CNN - FPS: <28 [30-32]
Use of anchor-free detection algorithms YOLO-OB both FPS: 39 [36]

AFP-Net Public FPS: 52.6 [38]
Use of lightweight network architecture Polyp-YOLOv5-Tiny Public FPS: 113.6 [42]

YOLOv5m-TST Public FPS: 138.3 [43]
Use of algorithms based on one-stage detection methods SSD based CNN Public FPS: 32 [52]

SSDGPNet Private FPS: 50 [53]

MP-FSSD Public FPS: 62.5 [54]

YOLOv2 Both FPS: 67.16 [50]

YOLOv4 Public FPS: 122 [51]
CNN, convolutional neural network; YOLO, you only look once; YOLO-OB, you only look once-objectbox; AFP-Net, anchor-free polyp net; TST, 
token-sharing transformer; SSD, single shot multibox detector; SSDGPNet, single shot multibox detector for gastric polyps; MP-FSSD, multiscale 
pyramidal fusion single-shot multibox detector network.

all 38 polyps and seven additional polyps 
detected by the endoscopist. The operation 
speed was 67.16 FPS [50]. Pacal et al. pro-
posed a method for real-time automated polyp 
detection on a small dataset using a model 
based on YOLOv4. The method significantly 
improves the performance of polyp detection 
using various data augmentations, NVIDIA 
TensorRT, and integrated learning models. 
Unlike YOLOv2 and YOLOv3, the architecture  
of this network is modified on Darknet-53,  
and the Cross-Stage-Partial-connections (CSP) 
added to Darknet-53 helps to reduce the com-
putational effort of the model while maintain- 
ing the same accuracy. Their proposed method 
achieves a deferral time of 8.2 ms and a de- 
tection rate of 122 FPS on a single RTX 2080  
TI graphics card. When utilizing the Nvidia 
TensorRT framework, this delay decreases to 
below 4 milliseconds, achieving speeds ex- 
ceeding 250 FPS [51].

In addition to the YOLO algorithm, SSD has 
shown excellent performance in real time. Liu 
et al. implemented a polyp detection method 
based on SSD, where they evaluated three dif-
ferent feature extractors, including ResNet50, 
VGG-16, and Inception-V3, with an additional 
feature layer on top of the base network. Among 
these feature extractors, Inception-V3 obtain-
ed the highest precision and recall, achieving a 
detection speed of 32 FPS, exceeding the mi- 
nimum requirements for clinical applications 
[52]. Zhang et al. reported a CNN for polyp 
detection built on an SSD architecture call- 
ed single shot multibox for gastric polyps 

(SSDGPNet). The results indicated that the 
enhanced SSD can achieve real-time gastric 
polyp detection at 50 FPS [53]. Souaidi et al. 
proposed a deep polyp detection method 
based on multiscale pyramidal fusion single-
shot multibox detector network (MP-FSSD). 
This model introduces an edge pooling layer, a 
splicing module, and a down sampling block on 
top of the SSD to generate a new pyramid layer 
and improve the detection accuracy and speed. 
The results show that the algorithm can achieve 
a test speed of 62.5 FPS [54]. In this section, 
we summarise several methods to improve the 
detection rate of the algorithm and review relat-
ed papers. For better comparison, we present 
the results in Table 1.

Algorithms optimization for improving detec-
tion correctness

In real-time colorectal polyp detection, a high 
correct rate is essential for minimizing resource 
waste associated with repeated examinations 
and enhancing the efficiency of the healthcare 
system. So many methods dedicated to im- 
proving the correct rate of real-time colorectal 
polyp detection algorithms have been pro-
posed. We present these algorithms in five cat-
egories. Before that, we provide a brief over-
view of the evaluation metrics utilized in the 
reviewed literature.

The accuracy of a model refers to the percent-
age of correct predictions made across all 
instances. Precision indicates the proportion  
of samples predicted by the model to be posi-
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a precision of 98.6% and an accuracy of  
98.3%. Furthermore, this model can distinguish 
between cancerous and non-cancerous polyps 
[58].

Use of three-dimensional method: Although 
deep learning has made significant progress in 
medical image processing tasks, the majority 
of existing research has predominantly focused 
on utilizing two-dimensional (2D) deep learning 
to solve 2D image analysis challenges. Re- 
cently, some researchers have advocated for 
the adoption of three-dimensional (3D) deep 
learning methods for detection and segmen- 
tation tasks involving medical data [59-63]. 
These works have shown that 3D methods can 
achieve better performance than 2D methods 
when dealing with 3D medical data [64], as 
they can capture more spatial information and 
fully utilize the 3D spatial information to gener-
ate more discriminative features, thereby en- 
hancing detection accuracy. These works have 
motivated researchers to explore the feasibility 
of 3D deep learning methods in colonoscopy 
video processing.

Yu et al. proposed a three-dimensional fully 
convolutional network (3D-FCN), which con-
verts the fully-connected layer in three-dimen-
sional convolutional neural network (3D-CNN) 
to a convolutional layer. Their approach reduc-
es redundant computations and speeds up 
detection compared to traditional sliding win-
dow methods. By leveraging an integrated 
approach that merges online and offline strate-
gies, this method enhances the encoding of 
spatiotemporal information within videos. The 
results indicated that the algorithm achieved a 
precision of 88.1% [65]. Misawa et al. devel-
oped an AI-assisted system using a 3D-CNN, 
which demonstrated superior performance on 
video datasets compared to other deep learn-
ing methods and could be applied in a clinical 
setting [66]. The following year, the team recon-
structed the CADe system and evaluated its 
performance. The results showed that the de- 
veloped AI system exhibited high sensitivity 
regardless of polyp size and morphology, sug-
gesting its potential for automated polyp detec-
tion [67].

Use of CNN-based models: Although contempo-
rary algorithms such as SSD and YOLO demon-
strate superior speed, they exhibit lower detec-

tive cases that are actually positive cases. 
Sensitivity, or recall, indicates the proportion of 
positive cases that are correctly predicted by 
the model in all samples that are actually posi-
tive cases. Specificity is the proportion of nega-
tive samples correctly identified by the model. 
Intersection over Union (IoU) is used to mea-
sure the degree of overlap between the predict-
ed frame and the real frame. The higher the 
IoU, the closer the predicted frame is to the  
real frame. By changing the threshold value, 
the relationship curve between precision and 
recall is plotted, and the area under the preci-
sion-recall curve is the average precision (AP). 
AP is calculated as follows. Taking the average 
of the APs for all categories is the mean Average 
Precision (mAP). mAP@0.5 indicates that the 
precision-recall curve is plotted, and the area 
under the curve is computed under an IoU 
threshold of 0.5.

Centralizing multiple models in a single algo-
rithm: Integrated learning is an approach aim- 
ed at enhancing efficiency by integrating the 
results of multiple classification models into  
a single high-quality classifier. This method 
strikes a balance between training speed and 
accuracy by combining the prediction results  
of multiple weak learners, thereby significantly 
improving the overall performance of the mo- 
del and compensating for the shortcomings of 
a single model [55].

Zhao et al. developed the Adaptive Small Ob- 
ject Detection Ensemble (ASODE) model. They 
combined SSD with excellent feature extrac- 
tion capability and detection rate with adaptive 
lightweight YOLOv4 to improve the accuracy of 
target polyp detection without significantly 
increasing the memory footprint of the model. 
The model achieves an adenoma detection 
accuracy of 92.70% in video analysis [56]. Ma 
et al. propose a method for real-time polyp 
inspection from colonoscopy videos. They en- 
hanced the overall performance of their algo-
rithm by integrating Swin transformer blocks 
into a CNN-based YOLOv5m network. Their 
method demonstrated a 5.3% improvement in 
accuracy compared to the baseline network, 
achieving an accuracy of 83.6% on the CVC-
ClinicalVideoDB dataset [57]. Sharma et al. 
integrated ResNet, GoogLeNet, and Xception 
into a powerful model for the prediction of video 
frames extracted from colonoscopy, achieving 
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the network’s ability to detect small targets. 
The mean average precision can reach 91.56% 
[54]. Fu et al. proposed a network for real-time 
colorectal polyp detection and diagnosis called 
D2polyp-Net. This network utilizes a double 
pyramid structure that combines shallow spa-
tial information and deep semantic informa- 
tion to improve polyp localization accuracy. The 
detection precision can be up to 80.1% and is 
particularly effective for small-sized polyp 
detection [74]. Additionally, the novel polyp 
detection system DEEP2 based on RetinaNet 
proposed by Livovsky et al. is also well-suited 
for small-size polyp detection. RetinaNet intro-
duces a loss function called Focal Loss, which 
effectively addresses the issue of category 
imbalance and performs well, especially in 
detecting small targets [73]. Wan et al. pro-
posed a YOLOv5 model for polyp detection 
based on a self-attention mechanism. This 
algorithm integrates an attention mechanism 
into the feature extraction process to enhance 
the contribution of information-rich feature 
channels while diminishing the interference 
from irrelevant channels. The experimental 
results showed that the method has a high 
accuracy in detecting small polyps and polyps 
with insignificant contrast [75].

Improving reprocessing methods: In the detec-
tion of colorectal polyps, post-processing meth-
ods can improve the accuracy of the detection 
model by eliminating false positives and reduc-
ing misses when detecting colorectal polyps. 
Lee et al. employed a median filter as a post-
processing method to minimize false alarms, 
because the median filter removes impulse 
noise from the signal while retaining edge infor-
mation well. The sensitivity of the algorithm for 
polyp detection was 96.7% and 90.2% on the 
two image datasets and 87.7% on the video 
dataset. Additionally, the false positive rate 
was reduced from 12.5% to 6.3% after using 
the median filter [50]. Nogueira et al. present a 
deep learning model for real-time polyp detec-
tion based on the pre-trained YOLOv3 architec-
ture, which employs a deeper network structure 
(Darknet-53) to further improve feature extrac-
tion compared to the model of Lee et al. The 
model reduced false positives through a post-
processing step based on a target tracking 
algorithm, achieving a frame rate of approxi-
mately 24 FPS [76]. Krenzer et al. proposed  
an automated polyp detection system called 

tion accuracy. Additionally, one-stage frame- 
works typically perform worse than two-stage 
architectures when detecting small objects. 
Therefore, some CNN-based models have been 
proposed that are capable of automatically 
extracting multi-level features from images, 
thereby enhancing the precision of detection 
results [68].

Urban et al. utilized CNNs for computer-aided 
image analysis to improve polyp detection. The 
algorithm was tested on manually labeled 
images with an accuracy of 96.4% for polyp 
identification [69]. Most existing CNN methods 
detect polyps on each frame independently, 
which may lead to a jittery effect and reduce 
the detection accuracy. Some studies [31, 70, 
71] exploited the temporal dependency bet- 
ween consecutive frames to improve detection 
performance, thereby increasing accuracy and 
reducing false alarms. In addition, Zhang et al. 
employed a tracker to refine the detection 
results of each frame generated by the CNN, 
which can significantly reduce jitter. However, 
their proposed method requires accurate polyp 
detection in the initial frame, which is difficult 
to achieve [31]. Therefore, Zheng et al. pro-
posed an optical flow model combined with an 
on-the-fly trained convolutional neural network 
(OptCNN), which combines a real-time trained 
CNN model with a spatial voting algorithm to 
improve the detection results of a single-frame 
polygon detector [72]. Livovsky et al. proposed 
a novel RetinaNet-based polyp detection sys-
tem DEEP2, which uses a CNN for target detec-
tion, outputs a list of bounding boxes contain-
ing polyps, and filters and aggregates the 
bounding boxes through a temporal logic layer. 
This approach utilizes knowledge from the pre-
vious frame to assist in current detection [73].

Detection of small-sized polyps: Small-sized 
polyps are more likely to be overlooked in real-
time colonoscopy detection. As a result, more 
methods have been proposed for the detection 
of small-sized polyps. SSD mainly utilizes shal-
low features for predictions that lack seman- 
tic information. Consequently, traditional SSD 
architectures are not well-equipped to capture 
both local detailed features and global seman-
tic features, resulting in poor performance on 
small objects. Souaidi et al.’s polyp detection 
method, based on MP-FSSD, utilizes a multi-
scale feature fusion approach that enhances 
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Table 2. Comparison of deep learning algorithms for improving correctness
Categories Method Dataset Result Reference
Machine learning methods Manual extraction 

of features
- Accuracy: <93.2%

AUC: <0.96
[14-23]

Early deep learning algorithms CNN - Precision: <88.6% [30-32]

Centralizing multiple models in a single algorithm YOLOv4+SSD Private Accuracy: 92.7%
Sensitivity: 87.96% (image) 92.31% (video)

[56]

YOLOv5m Public Accuracy: 83.6% [57]

CNN All Accuracy: 98.3%
Precision: 98.6%

[58]

Use of three-dimensional method 3D-FCN Public Precision: 88.1% [65]

3D-CNN Private CADe detected 94% of polyps tested (47/50) [66]

Use of CNN-based models CNN Both Accuracy: 96.4% (processing 1 frame in 10 ms) [69]

OptCNN Public Precision: 84.58 [72]

RetinaNet Private Sensitivity: 99.8% (Polyp appearance time >30 s) [73]

Detection of small-sized polyps CNN Both Precision: 80.1%
mAP@0.5: 81.7%

[74]

MP-FSSD Both mAP@0.5: 91.56% [54]

YOLOv5 Private Precision: 91.3% [75]

Improving reprocessing methods YOLOv2 Both Sensitivity: 96.7% [50]

YOLOv3 Private Precision: 89% [76]

CNN Both Precision: 99.06% [78]

YOLOv4 Both Precision: 96.1% [79]
CNN, convolutional neural network; YOLO, you only look once; SSD, single shot multibox detector; 3D-FCN, three-dimensional fully convolutional network; 3D-CNN, three-
dimensional convolutional neural network; OptCNN, optical flow model combined with an on-the-fly trained convolutional neural network; SSDGPNet, single shot multibox 
detector for gastric polyps; MP-FSSD, multiscale pyramidal fusion single-shot multibox detector network.

ENDOMIND-Advanced, which features a real-
time post-processing method based on robust 
and efficient post-processing (REPP) [77]. This 
system connects bounding boxes across dif- 
ferent frames using linking scores, discarding 
bounding frames that do not meet specific link-
ing and prediction thresholds. The predicted 
frames detected in the past are used to adjust 
the current bounding box. Eventually, the sys-
tem calculates and displays the filtered detec-
tion results. The algorithm can achieve 99.06% 
Precision on the CVC-VideoClinicDB dataset 
while maintaining real-time detection [78]. 
Zhang et al. introduced a novel post-process- 
ing method within the prediction phase of  
the YOLOv4 model, which utilizes neighboring 
frames to assess the detection accuracy of  
the current frame and integrates single-frame 
detection results with spatiotemporal informa-
tion to make the final decision. The results indi-
cate that the precision of this method can 
reach 96.1% on the CVC-ClinicVideoDB datas-
et, fulfilling real-time requirements [79]. In this 
section, we summarise several methods to 
improve the accuracy of the algorithms in the 
reviewed papers and present the main results 
in Table 2.

Challenges and future directions

With the development of AI in recent years, the 
application of AI algorithms to real-time colo-
noscopy detection has emerged as a compel-
ling area of cutting-edge research. Numerous 
studies have demonstrated that AI systems, 
particularly those utilizing Deep Learning tech-
niques, are capable of efficiently analyzing vast 
amounts of colonoscopy video and image data, 
thereby aiding clinicians in the detection pro-
cess during colonoscopies. However, there are 
still challenges in this area.

Firstly, among the many models developed, the 
sensitivity to image analysis is slightly higher 
than video analysis. Possible explanations for 
this observation include: 1) Many of the studies 
were based on image dataset studies, resulting 
in algorithms that do not perform as well on 
video datasets. 2) The quality of certain image 
frames in real-time colonoscopy videos is infe-
rior to that of static images. This limitation can 
be addressed by increasing the training data 
and enhancing the quality of video frames. 
Researchers have proposed many solutions to 
improve the quality of video frames, such as 
exploiting the similarity between consecutive 
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frames to improve the quality of low-quality 
frames given neighboring high-quality frames 
[80, 81]. Another approach is video frame in- 
terpolation, which typically utilizes high-quality 
reference images to synthesize intermediate 
frames to generate high-frame-rate video from 
low-frame-rate video [82].

Secondly, polyps observed in colonoscopy 
images exhibit a variety of sizes, shapes, tex-
tures, colors, and orientations. This diversity 
and complexity make it difficult to generalize 
the model to different types of polyps. Fur- 
thermore, the ability of these models to gener-
alize across different hospitals, devices, and 
patients presents an additional challenge. 
Several solutions have been proposed to 
address this issue: 1) Generating more diverse 
training data through data augmentation tech-
niques such as rotation, scaling, and flipping.  
2) Employing a transfer learning approach that 
utilizes models pre-trained on large-scale data-
sets and then fine-tuned on a specific polyp 
detection dataset. In addition, endoscopic 
video annotation is time-consuming and error-
prone, which makes semi-supervised learning 
algorithms a growing trend.

Conclusion

Colorectal cancer is the third most commonly 
diagnosed malignancy and the fourth leading 
cause of cancer deaths in the world. Colo- 
noscopy detection algorithms can be effective 
in preventing colorectal cancer by improving 
the early detection of colorectal polyps. This 
paper reviews recent research on applying the 
application of conventional machine learning 
and deep learning algorithms for real-time  
colonoscopy detection. A detailed analysis and 
comparison of deep learning algorithms in 
colorectal polyp detection are presented, fo- 
cusing on optimizations in both speed and 
accuracy. Additionally, the challenges associat-
ed with deep learning algorithms in colorectal 
polyp detection are discussed, along with po- 
tential solutions. The review may inform the 
development of AI algorithms in real-time 
detection of colorectal polyps, which will be 
helpful in the early detection and diagnosis of 
colorectal cancer. 
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