
Am J Cancer Res 2024;14(11):5400-5410
www.ajcr.us /ISSN:2156-6976/ajcr0160875

https://doi.org/10.62347/MALY3908

Original Article
Machine learning models using multiparametric MRI  
for preoperative risk stratification in endometrial cancer

Vu Pham Thao Vy1,2, Jerry Chin-Wei Chien3,4, Wiwan Irama5, Hao-Yang Wu3, Tzu-I Wu6,7,8, Wei-Yu Chen9,10, 
Chia-Hao Liang11, Truong Nguyen Khanh Hung12, Wilson T Lao3,4, Wing P Chan3,4

1International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; 2De-
partment of Radiology, Thai Nguyen National Hospital, Thai Nguyen 24000, Vietnam; 3Department of Radiology, 
Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; 4Department of Radiology, School of Medicine, 
College of Medicine, Taipei Medical University, Taipei 110, Taiwan; 5Department of Radiology, Keelung Hospital, 
Ministry of Health and Welfare, Keelung 201, Taiwan; 6Department of Obstetrics and Gynecology, Wan Fang Hos-
pital, Taipei Medical University, Taipei 116, Taiwan; 7Cancer Center, Wan Fang Hospital, Taipei Medical University, 
Taipei 116, Taiwan; 8Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei 
Medical University, Taipei 110, Taiwan; 9Department of Pathology, Wan Fang Hospital, Taipei Medical University, 
Taipei 116, Taiwan; 10Department of Pathology, School of Medicine, College of Medicine, Taipei Medical Univer-
sity, Taipei 110, Taiwan; 11Ph.D. Program of Interdisciplinary Medicine, National Yang Ming Chiao Tung University, 
Taipei 112, Taiwan; 12Department of Orthopedic and Trauma, Cho Ray Hospital, Ho Chi Minh 70000, Vietnam

Received September 30, 2024; Accepted November 10, 2024; Epub November 15, 2024; Published November 
30, 2024

Abstract: This study evaluated the efficacy of machine learning and radiomics of preoperative multiparameter MRIs 
in predicting low- vs high-risk histopathologic features and early vs advanced FIGO stage (IA vs IB or higher) in en-
dometrial cancer. This retrospective study of patients with endometrial cancer histologically confirmed from 2008 
through 2023 excluded those with: (a) previous treatment for endometrial carcinoma, (b) incomplete MRI examina-
tions or low-quality MR images, (c) incomplete pathology reports, (d) non-visualized tumors on MRI, or (e) distant 
metastases. In total, 110 radiomic features were extracted using commercial PACS built-in software following seg-
mentation after sagittal T2-weighted imaging (T2WI), contrast enhanced T1-weighted imaging (CE-T1WI), and diffu-
sion weighted imaging (DWI). The radiomic features from each imaging sequence were utilized for initial modeling. A 
combined model, which included features retained from all 3 sequences, was then established. The area under the 
receiver operating characteristic curve (AUC) determined the efficacy of each model. For 5 specific histopathologic 
features, the combined model achieved AUCs of 0.87 (95% CI, 0.85-0.90), 0.90 (95% CI, 0.88-0.92), 0.88 (95% CI, 
0.87-0.90), 0.88 (95% CI, 0.86-0.92), and 0.87 (95% CI, 0.86-0.90). This model incorporated 38 radiomic features: 
12 from T2WI, 17 from CE-T1WI, and 9 from DWI. In conclusion, an MRI radiomics-based model can differentiate 
between early- and advanced-stage endometrial cancer and between low- and high-risk histologic markers, giving 
it the potential to predict high risk and stratify preoperative risk in those with endometrial cancer. The findings may 
aid personalized preoperative assessments to guide clinical decision-making in endometrial cancer.
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Introduction

Endometrial cancer (EC) is a type of cancer that 
arises from the inner epithelial lining of the 
uterus. More than 417000 people were diag-
nosed with EC in 2020 [1], and it is estimated 
that more than 67000 people in the US will be 
diagnosed with cancer of the uterus in 2024 
[2]. Although EC occurs most frequently in post-
menopausal women, each year, a greater pro-

portion of younger women is diagnosed with EC 
in Asia [3, 4]. Therefore, it is important to clas-
sify patients at an early age and manage them 
appropriately. The International Federation of 
Gynecology and Obstetrics (FIGO) staging me- 
thod divides all ECs into 1 of 4 pathologic stag-
es [5]. People with stage I comprise 80% of all 
ECs, and the 5-year survival rate exceeds 95%, 
the highest of all gynecological cancers [6]. 
Comparatively, those with stage III or stage IV 
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ECs have 5-year survival rates of 50-65% [7] or 
15%-19% [8, 9], respectively. Stage I-II ECs are 
considered to carry low or intermediate risks 
and have low recurrence rates and favorable 
overall survival rates [10]. Early diagnosis is 
associated with a better prognosis and a great-
er 5-year survival rate; therefore, an accurate 
initial diagnosis and timely treatment play 
important roles in EC management. Impor- 
tantly, because the treatment plan and follow-
up therapy depend on the stage of EC, detec-
tion during the early stages can decrease the 
need for extensive surgical intervention or adju-
vant therapies, consequently reducing medical 
costs, morbidity, and mortality.

Magnetic resonance imaging (MRI) plays roles 
in diagnosing EC, detecting advanced disease, 
strategizing radiation ports, tracking response 
to treatment, and evaluating post-treatment 
surveillance to detect recurrence. In conven-
tional MRI, ECs are viewed using T1- and 
T2-weighted imaging (T2WI) as well as contrast-
enhanced (CE) imaging to detect malignant 
lesions [11]. Both T2WI and CE imaging along 
with diffusion-weighted imaging (DWI) are es- 
sential for evaluating myometrial invasion of 
EC. Because DWI enhances tumor detection 
and characterization as well as visualization of 
small implants in peritoneal carcinomatosis, it 
is an essential MRI sequence. In clinical prac-
tice, the DWI protocol should incorporate at 
least 1, but preferably 2, planes: an axial 
oblique plane along the uterus and a sagittal 
plane. Obtaining both T2WI and DWI on the 
same plane allows image fusion and enhances 
anatomical correlation. To avoid pitfalls, it is 
important to evaluate DWI images with the cor-
responding apparent dispersion coefficient 
(ADC) maps and anatomical images. Several 
studies explored the role of DWI with ADC for 
evaluating tumor grade, but results proved 
ambiguous [12-15]. In EC, incorporating CE 
T1WI with T2WI improved diagnostic accuracy 
up to 92% [16, 17].

The stage of EC as determined by imaging 
depends on visual assessments by trained 
radiologists, and variability will be found be- 
tween observers and institutional protocols 
[18]. The imaging tumor profile includes a large 
number of quantitative imaging characteristics 
that can be used in multidimensional models 
for defining diseases and predicting clinical and 
biological results, opening the way to a promis-
ing approach for tailoring treatment strategies. 

Several recent studies have also examined 
MRI-based tumor characteristics in EC and 
linked them to aggressive phenotypes [18-20]. 
Radiomics is a cost-effective and non-invasive 
method used to characterize tissue intensity, 
shape, and texture by quantifying the imaging 
phenotype of the region of interest (ROI). The 
process involves several fundamental steps, 
such as image acquisition and preprocessing, 
ROI annotation, feature extraction and selec-
tion, and model construction and prediction, 
with the primary objective of connecting exten-
sive extracted image information with clinical 
and biological data. Radiomics serves not only 
as a clinical decision making tool but also as a 
research tool for uncovering new molecular dis-
ease pathways [21, 22]. Hence, we hypothe-
sized that using MRI-based radiomics can 
enhance differentiation between the various 
types of EC.

We performed this study to assess the diagnos-
tic accuracy of 3-dimensional radiomics-based 
XGBoost models using MRI to differentiate low-
risk from high-risk histopathologic features and 
early FIGO stage (IA) from advanced FIGO stage 
(IB or higher) EC. We extracted radiomic fea-
tures to establish 4 radiomic models: 3 single-
sequence models, each based on 1 imaging 
technique, and a combined model that used 
radiomic features from all 3 sequences. The 
models were compared in their abilities to pre-
dict histopathologic features in EC.

Materials and methods

This retrospective study was approved by the 
Joint Institutional Review Board of the Taipei 
Medical University (Approval No. N 202312087). 
The need for informed consent was waived by 
the Joint Institutional Review Board of the 
Taipei Medical University because of the retro-
spective nature of the study. All methods were 
performed in accordance with standardized 
guidelines and regulations.

Study participants

We identified potential study participants using 
the cancer registry database at our hospital, 
seeking those who received diagnoses of histo-
logically confirmed EC between January, 2008 
and December, 2023 after undergoing total 
hysterectomies with bilateral salpingo-oopho-
rectomies subsequent to 1.5-T MRI. We exclud-
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ed those who had (a) previous treatments for 
EC, (b) incomplete MRI protocols or low-quality 
MR images, such as motion artifacts, (c) incom-
plete pathology reports, (d) non-visualized MRI 
tumors to obtain the ground truth, or (e) distant 
metastases. The final sample was randomly 
divided into 2 groups, a training set and a test 
set.

MR imaging

A 3-T GE scanner (Discovery MR750; GE 
Healthcare, Waukesha, WI) or a 1.5-T Siemens 
scanner (MAGNETOM Avanto 1.5T, Siemens 
Healthcare, Erlangen) with phased-array ab- 
dominal coils was used to obtain MRI sequenc-
es. All patients were required to breathe freely 
while in the supine position during data acquisi-
tion. The following sequences were obtained: 
axial T1WI, axial T2WI, coronal and sagittal 
T2-weighted imaging with fat saturation, DWI 
with b values of 0 and 880 s/mm2 and an ADC 
map, and CE-T1WI with fat saturation. All imag-
es were performed with the following settings: 
matrix, 512 × 512; FOV, 207 × 207 mm2; and 
slice thickness, 3.0 mm.

Original MRI staging reports were also recorded 
for comparison. These reports included image 
reading by 2 gynecologic radiologists who fol-
lowed the imaging criteria for staging EC [23]. 

Surgical histopathologic analyses

Every patient underwent a comprehensive sur-
gical procedure including total hysterectomy, 
bilateral salpingo-oophorectomy, and bilateral 
pelvic lymphadenectomy sampling. The resect-
ed uterus was meticulously sliced every 3-4 
mm to ensure thorough histopathologic exa- 
mination, and the slices were stained for analy-
sis with hematoxylin and eosin. Gynecologic 
pathologists examined the specimens to de- 
termine tumor subtype, histopathologic gra- 
de, the presence of deep myometrial invasion 
(MI), adenomyosis status, and lymphovascular 
space invasion (LVSI). Tumor grade was either 
low grade (including FIGO grades 1 and 2 endo-
metrioid carcinoma) or high grade (FIGO grade 
3 endometrioid carcinoma or non-endometrioid 
histologic findings for the purposes of radiomic 
modeling). To assess the risk of prognosis, 
grade was further divided into early stage (IA) 
or advanced stage (IB or higher) according to 
the European Society for Medical Oncology 
guidelines [24].

Radiomic feature extraction and analysis

Tumor ROIs were segmented on sagittal T2WI, 
CE-T1WI, and DWI because this is well-accept-
ed for identifying the region of EC. Using 
QUIBIM, a PACS built-in software, 2 senior radi-
ologists manually delineated the ROIs, and 
lesions were identified and manually segment-
ed on the images from each MRI sequence. The 
ROIs were defined as areas of abnormal hy- 
pointensity compared to the normal endome-
trium. All contours were reviewed by a radiolo-
gist with more than 20 years of experience in 
gynecological MRI. Contour modifications, if 
necessary, were manually performed by a 
senior radiologist, and consensus between 2 
readers was reached for annotation. All radiolo-
gists were blinded to the clinical and histopath-
ologic results. These annotated images were 
deemed to act as ground truth for further model 
training and validation datasets. Using QUIBIM, 
110 radiomic features were extracted after 
segmenting pelvic MR images, and the radiomic 
results were stored in a database. The extract-
ed features were divided into eight groups: (i) 
first-order statistics, (ii) shape-based 3-dimen-
sional features, (iii) shape-based 2-dimension-
al features, (iv) grey-level co-occurrence matri-
ces, (v) grey-level run length matrices, (vi) grey-
level size zone matrices, (vii) neighboring grey 
tone difference matrices, and (viii) grey-level 
dependence matrices. For each set of prepro-
cessing parameters, radiomic features were 
extracted; the set demonstrating the greatest 
feature stability under ROI variations was cho-
sen. Radiomic features preselected for their 
reproducibility, lack of correlation, and discrimi-
natory power were the only ones utilized in con-
structing the XGBoost model.

Feature stability was assessed using a 2-way 
random effect, single rater, absolute agree-
ment model to obtain the intraclass correlation 
coefficient (ICC) based on data extracted from 
the annotations of 2 readers. Features were 
deemed stable if the lower bound of the ICC 
95% confidence interval was ≥ 0.75. A MinMax 
scaler (range, 0-1) was fitted to the training 
data and then used to transform the dataset. 
Subsequently, features with low variance (< 
0.01) and those that were highly intercorrelated 
(Pearson correlation coefficient ≥ 0.80) were 
removed. Using the remaining features, an ini-
tial XGBoost classifier was trained to assess 
the predictive power of each feature. The most 
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predictive features were selected using Se- 
lectKBest, and a final XGBoost classifier, 
trained using these features, was applied to an 
independent test set. Models were trained on 
the training set for histopathologic feature clas-
sification, and diagnostic performance was 
then evaluated on both the training and test 
sets, using bootstrapping to generate confi-
dence intervals.

Statistical analyses of the diagnostic perfor-
mances of radiomics versus radiologists

The radiomic features from each image se- 
quence (CE-T1W, T2W, and DWI) were utilized to 
establish the initial models. A combined model, 
which incorporated the features from all 3 
sequences, was also established, then dimen-
sion reduction was applied.

Based on the retained features, the final 
XGBoost classifier was trained on the training 
set, then applied to the test set. Its diagnostic 
performance and that of radiologist staging 
were compared to the ground truth as deter-
mined by histology. The estimated value of the 
extracted volume was reported in the form of 
an area under the curve (AUC). The DeLong test 
was used to compare the AUCs of various 
receiver operating characteristic curves, thus 
determining diagnostic efficacy. The correla-
tions between each radiomic characteristic and 
histopathological results were investigated, 
finding either the Spearman rank correlation 
coefficient or the points-biserial correlation 

ing set (median age, 56 years; range, 34-81 
years), and 20 were assigned to the test set 
(median age, 56 years; range, 35-80 years). In 
total, 31 diagnoses were confirmed as early 
FIGO stage (IA), and 35 were confirmed as 
advanced FIGO stage (IB or higher). All clinical 
and pathologic information is presented in 
Table 1.

Using preoperative MRI, radiologists correctly 
assessed FIGO stage in 53 ECs (see Tables S1 
and S2). Of the 33 ECs found to be stage IA, 28 
were correctly classified; however, 3 were actu-
ally stage IB, 1 was actually stage II, and 1 was 
actually stage III. The sensitivity and specificity 
of MRI in stage IA were 90.3% and 87.8%, 
respectively. Compared with postoperative pa- 
thology, the diagnostic accuracy of preopera-
tive MRI was 0.80 (53 of 66 patients). 

The ROI of each tumor was manually drawn 
independently (Figure 2) by 2 radiologists. A 
total of 110 radiomic features were extracted 
across all 3 sequences based on QUIBIM after 
segmentation. The constituent ratios of fea-
tures yielding acceptable ICCs (≥ 0.75) were 
87.3% (96 of 110) on CE-T1WI, 81.2% (90 of 
110) on T2WI, and 78.2% (86 of 110) on DWI. 
Features that remained consistent despite 
changes in image preprocessing parameters 
and variations in contour delineation (with  
ICC ≥ 0.75) and which were also not highly cor-
related with each other or had low variance 
were retained for subsequent analysis (Figure 
3).

Figure 1. Patient selection flowchart.

coefficient, which were plot-
ted on a correlation heat map. 
The Mann-Whitney test (or 
Kruskal-Wallis test, as appro-
priate) was used to nonpa- 
rametrically compare clinical 
variables with the radiomic 
characteristics in each set.

Results

From January, 2008 to De- 
cember, 2023, a total of 123 
patients underwent surgical 
treatment for EC. The appli- 
cation of exclusion criteria 
excluded 57 patients, result-
ing in a study set of 66 
patients (Figure 1). Of these, 
46 were assigned to the train-
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From CE-T1WI, QUIBIM extracted 110 radiomic 
features, 14 of which were excluded from fur-
ther analysis because of poor reproducibility 
(ICC < 0.75). The remaining 96 features were 
retained for the next step.

Using the variance and pairwise correlation 
requirements, another 28 features were exclud-
ed, resulting in 68 features retained in total. 
Using SelecKBest, the top 25 features were 
selected for training the XGBoost model. Similar 
processes were used on the T2WI and DWI 
sequences. Finally, a combined model was 
established by merging the retained radiomic 
features from all 3 sequences, and this model 
was compared to each single-sequence model.

The AUCs for classifying deep MI, FIGO stage, 
grade, adenomyosis status, and LVSI were 0.88 
(95% confidence interval [CI], 0.83-0.89), 0.74 
(95% CI, 0.71-0.76), 0.73 (95% CI, 0.70-0.76), 
0.80 (95% CI, 0.77-0.82), and 0.79 (95% CI, 
0.77-0.83), respectively (Figure 4). The accura-
cy metrics of all models are shown in Table 2. 
The DeLong test showed no statistically signifi-
cant differences in AUCs among the 3 models 
(all P > 0.05).

was the basis for assessment (deep MI, 0.87; 
FIGO stage, 0.90; grade, 0.88; adenomyosis 
status, 0.88; and LVSI, 0.87). Comparatively, 
the radiomics analysis was superior to our 
human specialist in MRI staging EC (0.79).

Several recent studies of EC have investiga- 
ted the relationships between radiomic fea-
tures in MRI and histopathologic results. Some 
of these studies used a single MRI sequence 
for radiomic feature extraction, while others 
extracted features from 2 or 3 planes of up to 2 
sequences. In this study, we focused only on 
the sagittal plane as viewed using CE-T1WI, 
T2WI, and DWI.

A major challenge in treatment planning and 
prognostication for EC is the preoperative 
assessment of risk factors such as deep MI, 
LVSI, adenomyosis status, and nodal metasta-
sis, all of which are critical for tailoring surgery 
and subsequent therapy. Standard MRI has 
demonstrated high sensitivity (81%-90%) and 
specificity (82%-91%) in evaluating deep MI 
[25-27]. A systematic review reported that the 
use of MRI for assessing LVSI in EC is diagnosti-
cally accurate (AUC, 0.82; sensitivity, 73%; and 

Table 1. Demographic characteristics and histopathologic 
findings in both the training and test sets of patients

Characteristics Training set
(N=46)

Test set
(n=20) P Value

Age (mean ± SD, year) 56.13 56.6
Overall FIGO stage 0.27
    IA 22 9  
    IB-IV 24 11
Deep myometrial invasion 0.48
    Absent 9 4
    Present 37 16  
Lymphovascular space invasion 0.18
    Absent 29 12  
    Present 17 8
Histopathologic grade 0.54
    Low (grade 1 or 2) 41 17
    High (grade 3 or non endometrioid) 6 3
Pelvis lymph node metastasis 0.51
    Absent 38 17  
    Present 8 3
Adenomyosis 0.16
    Absent 31 13
    Present 15 7  

The combined model demonstrat-
ed AUCs of 0.87 (95% CI, 0.85-
0.90), 0.90 (95% CI, 0.88-0.92), 
0.88 (95% CI, 0.87-0.90), 0.88 
(95% CI, 0.86-0.92), and 0.87 
(95% CI, 0.86-0.90) for the same 5 
histopathologic features, respec-
tively. This model incorporated  
38 radiomic features (17 from 
CE-T1WI, 12 from T2WI, and 9 
from DWI). The 10 features with 
the greatest importance scores 
based on the combined model are 
shown in Table S3. The combined 
model performed better than each 
individual model (all P < 0.05).

Discussion

In this study, radiomics-based 
machine learning models were 
developed to noninvasively identi-
fy high-risk histopathologic fea-
tures of ECs using multiparametric 
MRI. We found that a combined 
model based on XGBoost algo-
rithms performed well when AUC 
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specificity, 77%) [28]. However, the accuracy of 
standard qualitative MRI evaluation is highly 
dependent on reader experience, leading to 
considerable interobserver variability. For ex- 
ample, Chen et al. [29] reported an AUC of 
0.847 when identifying deep MI, whereas  
Dong et al. [30] reported an AUC of 0.792. 
Comparatively, our combined model yielded an 
AUC of 0.87. However, when including cases 
with superficial MI, which has additional risk 
factors such as lymph node metastases, risk 
stratification can be confounded. According to 
the European Society for Medical Oncology 
guidelines, FIGO stage IA lesions are truly con-
sidered low risk [5]. Therefore, distinguishing 
FIGO stage IA lesions from higher stage lesions 
can be more clinically relevant than radiomics 
studies that consider only the presence or 
absence of deep MI without assessing FIGO 
stage [31, 32] because this can potentially con-

found results. When classifying FIGO stage, we 
used a radiomics signature that was more rigor-
ous than that proposed by Yan et al. [33] and 
similar to that proposed by Yang et al. [34]. 
Notably, our models demonstrated superior 
performance in detecting LVSI compared to the 
model proposed by Luo et al. [35], which com-
bined features extracted from T2WI, DWI, and 
ADC maps.

MRI interpretations may vary between trained 
radiologists due to differences in image per-
ception, experience levels and subtle nuances 
in feature identification. These interpretation 
discrepancies may introduce biases, potential-
ly affecting the selection of features, model 
performance, and overall reproducibility of the 
results. Recognizing these limitations and dis-
cussing possible ways of reducing interpreta-
tion variability, such as standardized reporting 

Figure 2. Tumor segmentation, feature extraction, and histogram analysis using QUIBIM. The region of interest was 
segmented on the sagittal plane in each imaging modality: T2WI, DWI, and CE-T1WI.



ML models in endometrial cancer

5406	 Am J Cancer Res 2024;14(11):5400-5410

protocols or consensus readings, will strength-
en the validity and reproducibility of the study. 
In our study, features were considered stable 
only if the lower bound of the 95% confidence 
interval for the ICC was ≥ 0.75. The AUC values 
for each single-sequence model were greater 
than 0.7, indicating that single-sequence mod-
els have some predictive ability. Furthermore, 
the combined model demonstrated significant-
ly greater predictive performance compared to 
each of the 3 single-sequence models (all P < 
0.05). In the future, perhaps T2WI and DWI can 
be combined without the benefit of CE-T1WI, 
thus reducing the use of contrast, but without 
losing diagnostic quality. It should be noted 
that positron emission tomography/computed 
tomography has not been reliable in predicting 
high-risk EC because it tends to have high 
false-negative rates [36]. The radiomics mod-
els developed in this study could support the 
preoperative classification of EC risk factors, 

consistent with preliminary studies that used 
MRI-based texture analysis on small sample 
sizes [37].

This study has some limitations. First, its retro-
spective design suggests a potential risk of 
selection bias, emphasizing the importance of 
confirming our results through prospective vali-
dation. Second, the sample was relatively small 
and was collected in a single center, also poten-
tially introducing selection bias. The limited 
sample size in model training may affect its 
ability to generalize effectively. Small data sets 
are susceptible to overfitting, which can result 
in inconsistent performance in real-world sce-
narios. Future studies should be aimed at 
expanding sample size, especially by collecting 
data from multiple centers, in order to improve 
the relevance of the model in different clinical 
settings. Finally, our sample was not balanced 
in the distribution of histopathologic features, 

Figure 3. Correlation heat map of radiomic 
features extracted from CE-T1W imaging. Fea-
tures with low variance (< 0.01) and those 
highly correlated to others (Pearson correla-
tion coefficient ≥ 0.80) were removed before 
the next step of feature selection was per-
formed.
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specifically histopathologic grade. For machine 
learning strategies to be effective in building 
reliable models based on small sample sizes, 
data distribution should be similar between the 
training and test sets. This imbalance might 
compromise the model’s reliability and general-
izability. Future studies should consider strate-
gies to address this issue, such as data aug-
mentation techniques, SMOTE, to improve the 
representation of minority classes, or the use 

of weight loss functions and balanced sampling 
during model training to reduce biases. In addi-
tion, targeted data collection efforts to obtain a 
more balanced sample across histopathologi-
cal levels would strengthen the clinical applica-
bility and predictive accuracy of the model.

Our model demonstrated strong diagnostic per-
formance in identifying high-risk cases and 
holds promise for preoperative risk stratifica-

Figure 4. The ROC curves for classifying deep myometrial invasion, International Federation of Gynecology and Ob-
stetrics stage, high-grade tumors, adenomyosis status, and lymphovascular space invasion for each model: (A) The 
sagittal CE-T1WI model, (B) The sagittal T2WI model, (C) The sagittal DWI model, and (D) The combined model. ROC 
receiver operating characteristic, AUC area under the ROC curve.

Table 2. Performance of the 4 models in classifying 5 histopathologic features

Histopathologic features
CE T1W model T2W model DWI model Combined model

AUC 95% CI AUC 95% CI AUC 95% CI AUC 95% CI
Deep myometrial invasion 0.88 0.83-0.89 0.69 0.65-0.71 0.69 0.66-0.71 0.87 0.85-0.90
FIGO stages 0.74 0.71-0.76 0.74 0.70-0.77 0.65 0.63-0.68 0.90 0.88-0.92
Grades 0.73 0.70-0.76 0.80 0.76-0.82 0.80 0.77-0.81 0.88 0.87-0.90
Adenomyosis status 0.80 0.77-0.82 0.74 0.72-0.78 0.74 0.70-0.79 0.88 0.86-0.92
Lymphovascular space invasion 0.79 0.77-0.83 0.85 0.83-0.86 0.74 0.72-0.78 0.87 0.86-0.90
The combined model achieved the best AUC for most features.
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tion using MRI in patients with endometrial 
cancer. Potential real-world challenges, such as 
the training needs of clinical staff, data com-
patibility with existing electronic health records 
(EHRs) and regulatory considerations, will be 
addressed by including examples or case sce-
narios showing how their model could improve 
patient outcomes, such as personalizing surgi-
cal planning and following-up management. 

Conclusions

In this study, an MRI radiomics model was 
developed by integrating radiomic features 
from 3 common imaging sequences, CE-T1WI, 
T2WI, and DWI. While further evidence is nec-
essary before radiomics can be employed for 
clinical decision-making, our model exhibited 
promising diagnostic performance in predicting 
high risk and showed the potential for use in 
preoperative risk stratification using MRI in 
those with EC.
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Table S3. The 10 most important features based on feature importance score in the combined model
Radiomic feature MRI sequence Feature importance score
Firstorder-Kurtosis-Value CE-T1W 0.97826
GLSZM-Zoneentropy-Value CE-T1W 0.95652
GLSZM-Graylevelvariance-Value T2W 0.95652
GLRLM-Highgraylevelrunemphasis-Value DWI 0.94392
GLRLM-Graylevelvariance-Value CE-T1W 0.94333
GLSZM-Zoneentropy-Value T2W 0.93342
Shape-Majoraxislength-Value T2W 0.92344
GLRLM-Graylevelnonuniformity-Value DWI 0.91282
GLCM-Inversedifferencemomentnormalized-Value CE-T1W 0.91182
GLRLM-Graylevelnonuniformity-Value CE-T1W 0.90281

Table S1. Comparison of preoperative MRI staging by radiologists and pathological staging

MRI staging
Pathological Staging

Total
Ia Ib II III IV

Ia 28 3 1 1 0 33
Ib 1 15 0 1 0 17
II 1 1 4 2 0 8
III 1 0 0 3 1 5
IV 0 0 0 0 3 3
Total 31 19 5 7 4 66

Table S2. Preoperative staging of MRI diagnostic test evaluation index
MRI staging Sensitivity Specificity
Ia 90.30% 87.80%
Ib 78.90% 94.10%
II 80.00% 93.90%
III 62.50% 96.70%
IV 75.00% 95.00%


