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Abstract: The use of routine adjuvant radiotherapy (RT) after breast-conserving surgery (BCS) is controversial in 
elderly patients with early-stage breast cancer (EBC). This study aimed to evaluate the efficacy of adjuvant RT for 
elderly EBC patients using deep learning (DL) to personalize treatment plans. Five distinct DL models were devel-
oped to generate personalized treatment recommendations. Patients whose actual treatments aligned with the DL 
model suggestions were classified into the Consistent group, while those with divergent treatments were placed in 
the Inconsistent group. The efficacy of these models was assessed by comparing outcomes between the two groups. 
Multivariate logistic regression and Poisson regression analyses were used to visualize and quantify the influence of 
various features on adjuvant RT selection. In a cohort of 8,047 elderly EBC patients, treatment following the Deep 
Survival Regression with Mixture Effects (DSME) model’s recommendations significantly improved survival, with 
inverse probability of treatment weighting (IPTW)-adjusted benefits, including a hazard ratio of 0.70 (95% CI, 0.58-
0.86), a risk difference of 4.63% (95% CI, 1.59-7.66), and an extended mean survival time of 8.96 months (95% CI, 
6.85-10.97), outperforming other models and the National Comprehensive Cancer Network (NCCN) guidelines. The 
DSME model identified elderly patients with larger tumors and more advanced disease stages as ideal candidates 
for adjuvant RT, though no benefit was seen in patients not recommended for it. This study introduces a novel DL-
guided approach for selecting adjuvant RT in elderly EBC patients, enhancing treatment precision and potentially 
improving survival outcomes while minimizing unnecessary interventions.
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Introduction

Breast cancer is the most prevalent cancer 
among women, and its incidence increases 
with age [1]. Approximately 30% of invasive 
breast cancer diagnoses and half of all breast 
cancer-related deaths occur in women aged 70 
years and older [2]. Despite advancements in 
medical care over the past two decades, mor-
tality rates have significantly declined in young-
er patients, but survival rates for elderly pa- 
tients have not improved [3]. This disparity is 
primarily due to older patients being more vul-
nerable to frailty and comorbidities, making it 
necessary to tailor their treatment differently 
from that of younger patients [4, 5].

Standard treatment for early-stage breast can-
cer (EBC) generally includes breast-conserving 
surgery (BCS) followed by adjuvant radiotherapy 
(RT) [6]. However, the suitability of this approa- 
ch for elderly patients is still debated [7]. 
Notably, the PRIME II trial, reported by Kunkler 
et al. [8], showed no significant benefit from 
adjuvant RT in women over 65 with low-risk EBC 
(T1-2, node-negative, and estrogen receptor 
(ER)-positive), which is consistent with the Na- 
tional Comprehensive Cancer Network (NCCN) 
recommendations suggesting the potential om- 
ission of RT in similar cases [6]. Conversely, a 
study by Wang et al. [2], using data from the 
National Cancer Database, found that omitting 
RT may increase mortality in elderly patients, 
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highlighting the complexities of determining 
effective treatment in this population. Precision 
medicine, which tailors healthcare based on 
individual patient characteristics, is becoming 
increasingly important in this context [9].

Traditional methods for evaluating treatment 
effects, such as randomized controlled trials 
(RCTs) and large-scale observational studies, 
often fail to account for individual differences, 
potentially leading to overgeneralizations [10]. 
To assess treatment heterogeneity, the conven-
tional approach involves subdividing patients 
into representative subgroups and conducting 
RCTs within each group. However, this is costly, 
time-consuming, and ethically challenging [11]. 
Additionally, observational studies are particu-
larly prone to biases, which complicate the in- 
ference of unbiased individual treatment ef- 
fects (ITE) [10]. Prior research [12, 13] has 
demonstrated that deep learning (DL)-based 
treatment recommendation systems can effec-
tively predict ITE, identify treatment heteroge-
neity, and select the most suitable treatments 
for individual patients. For this reason, we 
chose DL for the subsequent statistical analy-
sis and treatment recommendation in this 
study.

By employing a DL model, our goal is to identify 
elderly EBC patients who would benefit from 
adjuvant RT, thereby optimizing treatment 
plans to enhance survival outcomes while mini-
mizing unnecessary interventions.

Methods

Study design and setting

As a population-based retrospective cohort 
study, this study seeks to offer tailored treat-
ment recommendations for elderly patients 
with EBC through the application of deep learn-
ing (DL). Participants were drawn from the 
Surveillance, Epidemiology, and End Results 
(SEER) 18 database, covering cancer patients 
across 18 U.S. regions, approximately repre-
senting 27.8% of the national population [14]. 
Adherence to the “Enhanced Guidelines for 
Reporting Observational Studies in Epidemio- 
logy” was maintained throughout this study 
[15].

This study focused on female patients aged 65 
and older diagnosed with ductal, lobular, or 

mixed ductal-lobular carcinoma as their pri- 
mary cancer between 2010 and 2015, who 
underwent BCS. Exclusion criteria included:  
(1) incomplete demographic data; (2) missing 
human epidermal growth factor receptor (HER), 
estrogen receptor (ER) or progesterone pecep-
tor (PR) status; (3) carcinoma in situ; (4) unspec-
ified laterality or presence of bilateral breast 
cancer; (5) undetermined TNM stage or tumor 
size; (6) metastatic breast cancer; (7) unspeci-
fied axillary lymph node status; (8) absence of 
data on adjuvant RT; (9) unknown histologic 
grades and types; and (10) incomplete follow-
up or presence of multiple malignancies. The 
selection process is depicted in Figure 1A.

Data on demographic variables (sex, age, race, 
income, marital status), tumor attributes (loca-
tion, size, laterality, histological grade, type, 
and TNM stage), and treatment specifics 
(administration of adjuvant RT) were extracted 
from the SEER database. Cases with any miss-
ing clinical characteristics were not included. 
Primary study endpoints were overall survival 
(OS) - the period from diagnosis to death from 
any cause - and breast cancer-specific survival 
(BCSS), the interval from diagnosis to breast 
cancer-related death. Subjects alive as of 
December 31, 2020, were censored. Tumor 
staging followed the guidelines of the 7th edi-
tion of the American Joint Committee on Cancer 
Staging Manual.

Algorithms

The T-learner employs dual models to estimate 
the ITE as ITE = µ1(χ) - µ0(χ), where µ1 and µ0 are 
models trained on distinct treatment cohorts 
[16]. While the T-learner mitigates some con-
founding effects, its performance may still suf-
fer due to unequal predictive accuracy [10] and 
skewed treatment assignments [17] resulting 
from disparities in patient numbers and base-
line characteristics across treatment groups.

Balanced Individual Treatment Effect for 
Survival data (BITES) [17], a semi-parametric 
DL survival regression model, optimizes treat-
ment arm comparisons by maximizing the 
p-Wasserstein distance using Integral Proba- 
bility Metrics. This approach effectively add- 
resses imbalances in both covariate spaces 
[18] and latent representations [19]. Unlike  
the T-learner, which uses separate estimators, 
BITES employs a unified model architecture 
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Figure 1. Inclusion process and model architecture. A: Inclusion process. B: The model architecture of Deep Survival 
Regression with Mixture Effects.



Deep learning for RT decisions in elderly EBC patients

5888 Am J Cancer Res 2024;14(12):5885-5896

with dual output heads, enhancing consistency 
across treatment group comparisons due to its 
end-to-end training.

The Deep Survival Regression with Mixture 
Effects (DSME) [20] synthesizes elements from 
the T-learner, representation-based, and sub-
classification causal inference strategies. Pre- 
sented in Figure 1B, DSME comprises a shared 
network paired with dual risk networks. It gen-
erates balanced representations similar to 
BITES. Each risk network in DSME, represent-
ing a specific treatment group, consists of a 
finite mixture of K neural networks. Patient 
assignment to these networks is governed by a 
gating function g(.) [21], allowing for subgroup 
differentiation within the risk networks. DSME 
utilizes outputs from the shared network as a 
posterior and maximizes patient representa-
tion via the Q(.) function [21], enhancing risk 
stratification [10]. This model not only address-
es heterogeneity within each subgroup but also 
refines the proportional hazard assumption to 
a conditional proportional hazard assumption, 
valid only within each latent group.

Calculation of individual treatment effect

In estimating the ITE, each patient provides 
only one observable outcome, with the coun- 
terfactual scenario remaining unobservable. 
Therefore, these outcomes must be inferred 
through predictive modeling. The individual sur-
vival distribution, derived from predicted log 
hazard ratios and treatment-specific baseline 
hazards, indicates changes in survival probabil-
ity over time.

We conceptualized the potential outcome as 
the duration until a predetermined mortality 
threshold (50%), termed time at risk (TaR). The 
formulation is as follows: ITETaR(X;P) = TaRdo T=1; 

P=50% - TaRdo T=0; P=50%, where P represents the set 
mortality rate, X denotes the covariates, and 
TaRT=1 and TaRT=0 represent the predicted time 
intervals under two distinct treatment condi-
tions, respectively. This approach facilitates 
the derivation of individualized treatment rec-
ommendations based on the ITE values.

Model development, validation, and treatment 
recommendation

We trained a total of five models: DSME,  
BITES, Cox Mixtures with Heterogeneous 

Effects (CMHE) [22], DeepSurv [23], and the 
Cox Proportional Hazards model (CPH). Deep- 
Surv and CPH utilized the T-learner structure  
for training and application.

Initially, patients diagnosed in 2010 were des-
ignated as an external testing cohort and 
excluded from model exposure. From the 
remaining dataset, 70% of the patients were 
randomly selected for the training set used to 
develop the models, while the remaining 30% 
formed a testing set that remained unseen by 
the models to assess performance. During 
model development, fivefold cross-validation 
was employed to optimize hyperparameters, 
training models on four-fifths of the training 
data and validating on the remaining fifth. 
Training was automatically halted if there was 
no decrease in validation loss after 1,000 
iterations.

To assess the impact of model recommenda-
tions, patients were categorized into recom-
mended (Consis.) and anti-recommended 
(Inconsis.) groups, based on the alignment 
between the actual treatment received and the 
model’s recommendations. We calculated the 
multivariate hazard ratio (HR), 10-year risk dif-
ference (RD), and the difference in 10-year 
restricted mean survival time (DRMST) bet- 
ween these groups to evaluate the protective 
effects of the models. Inverse probability treat-
ment weighting (IPTW) was employed to adjust 
for baseline imbalances between the Consis. 
and Inconsis. groups. All models were stan-
dardized in their approach to calculating ITE.

Statistical analyses

Statistical analyses were conducted using R 
version 4.1.3 and Python version 3.8. For 
reporting purposes, continuous variables were 
described using the median and interquartile 
range (IQR), while categorical variables were 
presented as counts and percentages (%). The 
comparison of Kaplan-Meier (KM) survival 
curves was facilitated through the application 
of the log-rank test.

Results

Patients

In this study, 8,047 elderly female breast can-
cer patients with complete follow-up data who 
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satisfied the inclusion criteria were analyzed. 
The overall mortality rate was recorded at 
18.4% (95% CI: 17.6%-19.3%) across a median 
follow-up duration of 75 months (IQR: 57-96). 
Patients had a median age of 73 years (IQR: 
68-79) and a median tumor size of 11 mm (IQR: 
7-15). Of these, 4,648 (57.8%) received adju-
vant radiation therapy, while the remaining 
3,399 (42.2%) did not undergo radiation treat-
ment. Detailed baseline clinical characteristics 
are summarized in Table S1.

Model performance

The study included 2,097 patients in the test-
ing set and 1,468 diagnosed in 2010 for the 
external testing set. We assessed performance 
metrics over a 10-year horizon for both sets. To 
mitigate potential biases from better prognos-
tic factors in the Consis. group, IPTW was 
applied to adjust for baseline imbalances, 
encompassing demographic and tumor charac-
teristics such as age, race, marital status, 
income, location, laterality, histology, grade, 
TNM stage, tumor size, breast cancer subtype, 
and axillary lymph node status. However, treat-
ment variables were not adjusted to prevent 
the introduction of unmeasured confounding. 
Comprehensive model performances are de- 
tailed in Table 1.

Integrated Brier Score (IBS) was employed to 
quantify the discrepancies between the pre-
dicted and actual survival distributions in both 
factual and counterfactual scenarios. Within 
the testing sets, CPH exhibited superior dis-
crimination, the IBS values were 0.12 (95% CI, 
0.11-0.13) for the non-RT group (IBSa) and 0.08 
(95% CI, 0.07-0.09) for the RT group (IBSb). 
Similarly, in the external testing sets, IBSa was 
0.13 (95% CI, 0.11-0.14) and IBSb was 0.08 
(95% CI, 0.07-0.09), which closely followed by 
BITES, with respective IBS values in the testing 
set of 0.12 (95% CI, 0.11-0.132) and 0.08 (95% 
CI, 0.07-0.09), and in the external testing set of 
0.12 (95% CI, 0.11-0.14) and 0.08 (95% CI, 
0.08-0.09).

The models predicted factual and counterfac-
tual survival using baseline covariates, lead- 
ing to ITE and treatment recommendations. 
Survival benefits from model recommenda-
tions were assessed by comparing the protec-
tive effects of Consis. group versus Inconsis. 
group. Metrics used to evaluate model perfor-

mance were adjusted with IPTW, minimizing  
the influence of other prognostic factors. 
Additionally, comparisons were made with 
NCCN guidelines, which advise pT2 patients 
with grade 3 tumors to receive adjuvant RT.  
For HR+ and HER2- patients over 70 with pT1 
disease or over 65 with pT ≤ 3 cm, adjuvant RT 
may be omitted. Comparisons were drawn 
between patients whose treatment aligned 
with NCCN guidelines and those who did not.

In the testing set, following the DSME recom-
mendation led to the most significant survival 
improvement (IPTW-adjusted HR: 0.70, 95% CI, 
0.58-0.86; IPTW-adjusted RD: 4.63, 95% CI, 
1.59-7.66; IPTW-adjusted DRMST: 8.96, 95% 
CI, 6.85-10.97). CMHE showed the best HR 
results (0.70, 95% CI, 0.57-0.85; IPTW-adjusted 
HR: 0.70, 95% CI, 0.57-0.86). Adhering to NCCN 
guidelines resulted in an increase in 10-year 
survival (IPTW-adjusted DRMST: 4.09, 95% CI, 
1.26-6.93).

In the external testing set, DSME demonstrat- 
ed superior performance (IPTW-adjusted HR: 
0.68, 95% CI, 0.56-0.83; IPTW-adjusted RD: 
10.50, 95% CI, 5.82-15.10; IPTW-adjusted 
DRMST: 11.21, 95% CI, 8.35-14.78), outper-
forming BITES (IPTW-adjusted HR: 0.76, 95% 
CI, 0.62-0.92; IPTW-adjusted RD: 6.90, 95% CI, 
2.26-11.50; IPTW-adjusted DRMST: 3.77, 95% 
CI, 0.47-6.87) and CPH (IPTW-adjusted HR: 
0.81, 95% CI, 0.66-0.99; IPTW-adjusted RD: 
9.26, 95% CI, 4.55-14.00; IPTW-adjusted 
DRMST: 10.47, 95% CI, 7.19-13.44). Following 
NCCN guidelines also extended restricted 
mean survival time (IPTW-adjusted DRMST: 
4.41, 95% CI, 1.16-7.23), although NCCN guide-
lines did not show a protective effect in multi-
variate metrics such as HR (0.94, 95% CI, 0.85-
1.17) and IPTW-adjusted HR (0.93, 95% CI, 
0.90-1.35). Thus, DSME emerged as the most 
effective treatment recommendation tool, sur-
passing other models and NCCN guidelines in 
both testing environments.

The KM curves for DSME’s recommended 
Consis. group versus the Inconsis. group are 
displayed in Figure 2A (OS in the testing set), 
Figure 2B (BCSS in the testing set), Figure 2C 
(OS in the external testing set), and Figure 2D 
(BCSS in the external testing set). The curves 
illustrate a significant survival advantage for 
the Consis. group, with better OS (p value of 
IPTW-adjusted Log-rank test in both testing 
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Table 1. Model performance

Model IBSa IBSb HR IPTW-adjusted 
HR RD (%) IPTW-adjusted RD 

(%) DRMST (month) IPTW-adjusted 
DRMST (month)

Performance in the testing set
    DSME 0.16 (0.11-0.13) 0.08 (0.07-0.09) 0.70 (0.57-0.85) 0.70 (0.58-0.86) 8.60 (5.43-11.80) 4.63 (1.59-7.66) 8.64 (5.95-11.32) 8.96 (6.85-10.97)
    BITES 0.12 (0.11-0.13) 0.08 (0.07-0.09) 0.73 (0.60-0.89) 0.74 (0.60-0.90) 7.67 (4.52-10.80) 3.87 (0.83-6.91) 7.59 (4.93-10.25) 6.08 (4.20-8.95)
    CMHE 0.19 (0.17-0.20) 0.16 (0.15-0.17) 0.70 (0.57-0.85) 0.70 (0.57-0.86) 8.34 (5.17-11.50) 4.49 (1.45-7.53) 8.49 (5.81-11.18) 1.97 (-2.17-5.04)
    DeepSurv 0.17 (0.16-0.18) 0.16 (0.15-0.17) 0.72 (0.59-0.87) 7.30 (0.60-0.89) 8.02 (4.86-11.20) 4.16 (1.12-7.19) 8.11 (5.43-10.78) 7.96 (5.85-10.17)
    CPH 0.12 (0.11-0.13) 0.08 (0.07-0.09) 0.80 (0.66-0.97) 0.83 (0.68-1.02) 6.98 (3.76-10.20) 3.53 (0.45-6.60) 6.84 (4.12-9.57) 6.99 (4.13-9.25)
    NCCN 0.93 (0.81-1.15) 0.92 (0.81-1.10) 4.00 (0.81-7.37) 3.91 (-1.65-7.17) 4.62 (1.57-7.48) 4.09 (1.26-6.93)
Performance in the external testing set
    DSME 0.50 (0.49-0.53) 0.42 (0.41-0.43) 0.68 (0.56-0.83) 0.68 (0.56-0.83) 16.00 (11.10-20.90) 10.50 (5.82-15.10) 11.06 (7.67-14.45) 11.21 (8.35-14.78)
    BITES 0.12 (0.11-0.14) 0.08 (0.08-0.09) 0.74 (0.61-0.91) 0.76 (0.62-0.92) 13.20 (8.23-18.10) 6.90 (2.26-11.50) 9.91 (6.51-13.31) 3.77 (0.47-6.87)
    CMHE 0.18 (0.17-0.19) 0.14 (0.13-0.15) 0.74 (0.61-0.90) 0.75 (0.62-0.92) 13.90 (8.93-18.90) 8.30 (3.65-12.90) 10.42 (6.98-13.86) -1.25 (-3.62-1.47)
    DeepSurv 0.12 (0.11-0.14) 0.08 (0.07-0.09) 0.74 (0.61-0.90) 0.75 (0.62-0.92) 13.80 (8.88-18.80) 8.25 (3.59-12.90) 10.42 (6.98-13.86) -1.29 (-4.37-1.50)
    CPH 0.13 (0.11-0.14) 0.08 (0.07-0.09) 0.78 (0.64-0.96) 0.81 (0.66-0.99) 14.90 (9.84-19.90) 9.26 (4.55-14.00) 10.26 (6.80-13.73) 10.47 (7.19-13.44)
    NCCN 0.94 (0.85-1.17) 0.93 (0.90-1.35) 4.80 (-0.41-7.37) 3.91 (-1.65-7.17) 3.96 (0.69-6.95) 4.41 (1.16-7.23)
DSME, Deep Survival regression with Mixture Effects; BITES, Balanced Individual Treatment Effect for Survival data; CMHE, Cox Mixtures with Heterogeneous Effects; CPH, Cox proportional hazards model; 
NCCN, National Comprehensive Cancer Network treatment guidelines; IBS, integrated Brier score; HR, hazard ratio; RD, 10-year risk difference; DRMST, the difference in the 10-year restricted mean survival 
time; a, integrated Brier score in the non-radiation group; b, integrated Brier score in the adjuvant radiation group. Bolded font indicates that the model performs best in this metric. NCCN guidelines recom-
mend pT2 patients with grade 3 or grade 3 to receive adjuvant RT. As for patients with HR+ and HER2-, they are suggested to consider omit adjuvant RT if they are over 70 years old and with pT1 disease or 
they are over 65 years old and with pT no bigger than 3 cm.
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Figure 2. The Kaplan-Meier curves of Consis. and Inconsis. groups. A: The Kaplan-Meier curves of Consis. versus 
Inconsis. groups of overall survival in the testing set. B: The Kaplan-Meier curves of Consis versus Inconsis groups 
of breast cancer-specific survival in the testing set. C: The Kaplan-Meier curves of Consis. versus Inconsis. groups 
of overall survival in the external testing set. D: The Kaplan-Meier curves of Consis versus Inconsis groups of breast 
cancer-specific survival in the external testing set. P value was calculated using Log-rank test; IPTW-adjusted P val-
ues was calculated using inverse probability treatment weighting-adjusted Log-rank test.

sets < 0.0001) and BCSS (p value of IPTW-
adjusted Log-rank test in the testing set 
=0.0030; in the external testing set =0.0304).

The potential impact of treatment proportion 
imbalances on DSME’s protective effect was 
scrutinized by calculating the interventional 
natural direct effect (INDE) and the interven-
tional natural indirect effect (INIE), as initially 
suggested by Diaz et al. [24]. Treatment vari-
ables were considered as mediators, and 
adjustments were made for baseline character-
istics. Figure S1A and S1B display the INDE and 
INIE for the testing and external testing sets, 
respectively, expressed as slopes in a linear 
regression model. The DSME recommenda- 
tion influenced OS directly, with INDE values of 
-0.15 (95% CI, -0.20 to -0.10) in the testing set 
and -0.24 (95% CI, -0.26 to -0.21) in the exter-

nal testing set, and INIE values of 0.07 (95% CI, 
0.01 to 0.12) and 0.08 (95% CI, 0.05 to 0.10), 
respectively, indicating that these effects were 
not mediated by the treatments administered.

Further, the standardized mean difference 
(SMD) before and after IPTW adjustment is 
depicted in Figure S2A and S2B for the testing 
and external testing sets. The IPTW correction 
successfully balanced the covariates, achiev-
ing an SMD of less than 0.1 between groups, 
thereby demonstrating effective control of con-
founding variables across both sets [25].

Treatment heterogeneity

The heterogeneity of treatment effects was 
explored by assessing variations in the average 
treatment effect (ATE) across different patient 
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subgroups, revealing differential responses to 
the same treatment based on distinct patient 
characteristics. Patients were categorized into 
groups based on whether DSME and NCCN 
guidelines recommended radiotherapy. This 
analysis encompassed both the testing and 
external testing populations. Figure S3A and 
S3B illustrate the HR and IPTW-adjusted HR  
for patients recommended and not recom-
mended for RT, respectively.

For patients advised to receive radiotherapy, 
both DSME and NCCN guidelines showed a pro-
tective effect, with IPTW-adjusted HR of 0.71 
(95% CI, 0.62-0.82) and 0.40 (95% CI, 0.17-
0.94) respectively. Conversely, among those 
advised against radiotherapy, it emerged as a 
risk factor when DSME indicated a negative 
ITE, with an IPTW-adjusted HR of 1.84 (95% CI, 
1.09-2.90). Notably, the NCCN guidelines failed 
to discern patients who would not benefit from 
RT, highlighting a critical limitation in identifying 
suitable candidates for this treatment.

Deep learning-based treatment insights

ITE values quantify the difference in TaR bet- 
ween patients undergoing RT versus those who 
do not, reflecting the additional time before a 
patient’s mortality risk reaches 50% due to RT. 
Considering regional differences among pa- 
tients, a mixed-effect linear regression model 
was employed. This model, applied to the agg- 
regate data from both testing and external test-
ing sets, predicts ITE based on covariates with 

the reporting region as a random effect. In this 
context, the beta coefficients indicate that 
when holding other variables constant, the 
presence of a specific covariate or a one-unit 
increase in it, extends the time until a patient’s 
mortality risk reaches 50% when receiving RT 
compared to not receiving it. These findings are 
detailed in Figure 3A.

It was observed that for every 1 mm increase in 
tumor size, adjuvant RT extended a patient’s 
survival by an additional 0.11 months (95% CI: 
0.05-0.17) over 10 years. Furthermore, adju-
vant RT was more effective in patients of 
advanced age (0.36, 95% CI, 0.32-0.41), those 
with HER-positive status (0.24, 95% CI, 0.12-
0.32), and those with grade 4 tumors (1.09, 
95% CI, 0.78-1.44). Conversely, adjuvant RT 
was less beneficial, and not recommended, for 
patients with PR-positive status (-0.21, 95% CI, 
-0.35 to -0.09), grade 1 tumors (-2.49, 95% CI, 
-3.38 to -1.14), stage IA cancer (-2.59, 95% CI, 
-3.79 to -1.39), and tumors located in the left 
breast (-2.27, 95% CI, -2.81 to -1.74).

Model interpretation

We employed SurvSHAP(t) to analyze the func-
tional outputs of DSME, marking the first in- 
stance of using this method to provide a time-
dependent interpretation based on a robust 
theoretical foundation [26]. Figure 3B displays 
the accumulated influence of the eight most 
critical variables, sorted by aggregated Shapley 
values across 500 observations. The horizontal 

Figure 3. Model interpretation. A: Interpretation of model recommendation behavior. B: Interpretation of overall 
output using SurvSHAP(t).
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bars chart the frequency with which each vari-
able ranks in importance, from highest to low-
est, with distinct colors marking the ranks.

Laterality emerged as the paramount prognos-
tic factor in 135 cases, surpassing other signifi-
cant factors such as tumor size, breast cancer 
subtype, and TNM stage.

Additionally, we conducted a case study on a 
randomly selected patient from the testing set, 
with the findings presented in Figure S4. 
Through DSME analysis, this patient’s survival 
probabilities under various treatment scenari-
os were distinctly illustrated. This approach 
enables the calculation of several survival met-
rics, such as differences in mortality, TaR, and 
restricted survival time, aiding patients in mak-
ing informed decisions about the most suitable 
treatment options.

Discussion

The routine use of adjuvant RT after BCS in 
elderly patients with EBC remains a subject of 
debate [8]. This controversy arises from the 
variable absolute benefits of RT, which depend 
significantly on individual patient characteris-
tics and are particularly contentious among 
elderly patients due to their increased frailty 
and risk of complications [27]. Omitting adju-
vant RT can undoubtedly spare patients from 
side effects such as breast pain, dermatitis, 
and potential cardiac and pulmonary risks, 
while also reducing time and financial burdens 
[28]. Therefore, it is crucial to balance the need 
to avoid overtreatment with the necessity of 
not compromising patient survival.

In this study, we thoroughly evaluated the 
DSME model, which demonstrated superior 
performance compared to state-of-the-art or 
commonly used models, real-world physician 
choices, and NCCN guidelines. After rigorously 
adjusting for bias, following DSME recommen-
dations extended patient survival by 11 months 
within a 10-year period, a significant improve-
ment compared to those who did not follow the 
recommendations. Although NCCN guidelines 
also extended survival and effectively identi- 
fied suitable candidates for radiotherapy, these 
benefits were statistically significant only in uni-
variate analyses.

Treatment decisions often require an under-
standing of complex interactions among fea-

tures rather than reliance on static guidelines 
[29]. Our study highlights that DL models, such 
as DSME, are particularly adept at managing 
this complexity, as evidenced by their more 
robust protective effects compared to NCCN 
guidelines. While CPH showed better discrimi-
nation, it did not surpass the protective capa-
bilities of other models incorporating advanc- 
ed causal inference techniques. This suggests 
that accurate prognosis prediction is crucial, 
but integrating statistical methods to derive 
unbiased ITE from observational data is equally 
vital for effective treatment recommendations.

The nature of artificial intelligence-guided inter-
vention studies allows us to glean insights into 
DL-based treatment recommendations by ana-
lyzing model behaviors associated with ITE val-
ues. In our study, we controlled for potential 
confounders by maintaining other covariates 
constant. Consequently, our findings are largely 
independent of confounding variables, com-
pared to outcomes derived from traditional 
methods. This independence from confounders 
not only makes the results quantifiable but  
also provides a crucial foundation for visualiz-
ing how baseline characteristics influence the 
relative efficacy of RT. This approach enhances 
our understanding of treatment dynamics in  
a way that is directly applicable to clinical 
decision-making.

In line with clinical consensus [3, 6], elderly 
patients with higher-risk features, such as larg-
er tumor sizes, HER2-positive status, and grade 
4 tumors, are found to benefit from adjuvant 
RT. Patients in older age groups with more 
advanced disease are even more likely to ben-
efit, possibly due to a balance between their life 
expectancy and RT toxicity. Conversely, lower-
risk patients [8], including those with hormone 
receptor (HR)-positive status, grade 1 tumors, 
and stage IA, are generally advised to forgo 
adjuvant RT. Additionally, elderly EBC patients 
with tumors located in the left breast may suf-
fer adverse effects from adjuvant RT, potential-
ly due to the increased risk of cardiac disease 
linked to left-sided RT [30].

Clinicians and patients need effective tools to 
discuss various treatment options, particularly 
those that clearly highlight survival benefits. 
Developing a graphical treatment recommen-
dation system that showcases individual sur-
vival metrics and comparative analyses can 
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greatly simplify the understanding of complex 
data for patients, their families, and healthcare 
providers. Traditionally, it has been challenging 
to precisely identify which patients would ben-
efit most from specific treatments and to pro-
vide individualized post-treatment outcome fo- 
recasts [9, 31]. Most existing models tend to 
rely on patient characteristics to establish pro- 
gnostic factors, potentially introducing biases 
toward certain treatments [32]. The DSME 
model excels in addressing these challenges by 
offering a clear method to communicate tai-
lored outcomes based on different treatment 
scenarios, thus fulfilling a critical need in clini-
cal decision-making.

Limitations

This study has several noteworthy limitations. 
To begin with, the SEER database, while exten-
sive, lacks access to several critical variables, 
including Ki67, BRCA status, positive margin 
presence, and detailed information on RT ad- 
ministration. These biological markers play a 
crucial role in accurately assessing the progno-
sis and treatment outcomes of elderly breast 
cancer patients. Without them, the depth of our 
analysis is somewhat restricted, and the preci-
sion of the DSME model’s treatment recom-
mendations may be compromised. In addition, 
the SEER database does not provide data on 
quality of life (QoL) or progression-free survival, 
which are essential for evaluating the broader 
impact of treatments, especially for elderly 
patients. As a result, our study focuses pri- 
marily on survival outcomes, leaving a gap in 
understanding how treatments affect patient 
well-being.

Another limitation stems from the retrospective 
design of this study, which inherently introduc-
es potential selection bias and unmeasured 
confounding factors. Relying on previously col-
lected data limits control over the quality and 
consistency of the variables, which could influ-
ence the accuracy of treatment outcome as- 
sessments. Moreover, the absence of impor-
tant patient information, such as comorbidities, 
which are particularly relevant in older popula-
tions, further complicates the ability to control 
for all variables and fully account for patient 
health profiles.

Finally, while the DSME model demonstrated 
robust statistical performance, it has not yet 

been validated in real-world clinical settings. 
The absence of prospective clinical trials or 
real-world studies limits the model’s current 
generalizability and its practical application in 
clinical decision-making. Moving forward, fu- 
ture research should prioritize validating the 
DSME model through such trials and real-world 
implementations to ensure its effectiveness  
in broader clinical environments. Additionally, 
incorporating missing biological markers, QoL 
data, and prospective validation would greatly 
enhance the model’s reliability and improve the 
comprehensiveness of its recommendations 
for elderly breast cancer patients.

Conclusions

This study is the first to evaluate a DL-guided 
method for selecting adjuvant RT in elderly EBC 
patients. The DSME model provides crucial 
insights, suggesting that adjuvant RT benefits 
patients with larger tumors, advanced age, or 
later stages, while those with early-stage, HR- 
positive disease, or left-sided tumors might 
omit it.
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Table S1. Patients
No radiotherapy

(n=3,399)
Radiotherapy

(n=4,648)
Age, median (IQR), y 74.0 (69.0-81.0) 72.0 (68.0-77.0)
Tumor size, median (IQR), mm 11.0 (8.0-16.0) 10.0 (7.0-15.0)
Race-White 2,908 (85.6) 4,066 (87.5)
Marriage-Married 1,431 (42.1) 2,324 (50.0)
Income-Higher than 70,000$ 1,092 (32.1) 1,725 (37.1)
Laterality-Right 1,640 (48.2) 2,276 (49.0)
Laterality-Left 1,759 (51.8) 2,372 (51.0)
Human epidermal growth factor receptor 2-positive 263 (7.7) 268 (5.8)
Estrogen receptor-positive 3,091 (90.9) 3.834 (82.5)

Progesterone receptor-positive 2,762 (81.3) 3,444 (74.1)
Grade
    G1 1,209 (35.6) 1,587 (34.1)
    G2 1,598 (47.0) 2,174 (46.8)
    G3 586 (17.2) 882 (19.0)
    G4 6 (0.2) 5 (0.1)
Histology
    Ductal 2,898 (85.3) 4,004 (86.1)
    Lobular 314 (9.2) 405 (8.7)
    Ductal-lobular 187 (5.5) 239 (5.1)
Location
    Upper outer quadrant 1,160 (34.1) 1,759 (37.8)
    Upper inner quadrant 536 (15.8) 698 (15.0)
    Lower outer quadrant 241 (7.1) 311 (6.7)
    Lower inner quadrant 221 (6.5) 338 (7.3)
    Central/overlapping 923 (27.2) 1,281 (27.6)
    Nipple/axillary tail 20 (0.6) 34 (0.7)
    Breast/NOS 298 (8.8) 227 (4.9)
T stage
    T1a 412 (12.1) 735 (15.8)
    T1b 1,119 (32.9) 1,677 (36.1)
    T1c 1,450 (42.7) 1,779 (38.3)
    T1mic 27 (0.8) 50 (1.1)
    T2 391 (11.5) 407 (8.8)
TNM stage
    IA 3,008 (88.5) 4,241 (91.2)
    IB 0 (0.0) 0 (0.0)
    IIA 391 (11.5) 407 (8.8)
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Figure S1. Causal path of Self-Normalizing Balanced individual treatment effect for survival data recommendations. 
A: Causal path of Self-Normalizing Balanced individual treatment effect for survival data recommendations in the 
testing set. B: Causal path of Self-Normalizing Balanced individual treatment effect for survival data recommenda-
tions in the external testing set. DSME, Deep Survival Regression with Mixture Effects; INDE, interventional natural 
direct effect; INIE, interventional natural indirect effect; X indicates patients’ baseline features, which were adjusted 
as intermediate confounders.

Figure S2. The standardized mean difference before and after inverse probability treatment weighting. A: The stan-
dardized mean difference before and after inverse probability treatment weighting in the testing set. B: The stan-
dardized mean difference before and after inverse probability treatment weighting in the external testing set. IPTW, 
inverse probability treatment weighting.
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Figure S3. Average treatment effect and treatment heterogeneity. A: Average treatment effect and treatment het-
erogeneity in the testing set. B: Average treatment effect and treatment heterogeneity in the external testing set.
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Figure S4. The individual survival distribution predicted by model. RT, radiotherapy; ITE, individual treatment effect; 
TAR, time at risk; DSME, Deep Survival Regression with Mixture Effects.


