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Abstract: Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignan-
cies, frequently manifests as cognitive impairment and substantially diminishes patients’ quality of life. Despite its 
profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments 
are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom 
alleviation rather than achieving a radical cure or reversing the injury process. This article provides a comprehensive 
review of the various pathogenic mechanisms and therapeutic strategies associated with radioactive brain injury, 
offering insights that may guide the development of novel therapeutic strategies.
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Introduction

Radiotherapy constitutes a principal modality 
for the treatment of malignant tumors, demon-
strating efficacy in the eradication of tumor 
cells; however, it unavoidably inflicts collateral 
damage on adjacent normal tissues [1]. Ra- 
dioactive brain injury (RBI), a common compli-
cation subsequent to radiotherapy for head 
and neck malignancies, results in enduring 
cognitive deficits, significantly compromising 
patients’ quality of life and overall survival [2]. 
Despite its high incidence, the underlying me- 
chanisms of RBI are not well elucidated, and 
efficacious therapeutic interventions remain 
limited [3]. Therefore, elucidating the underly-
ing mechanisms, preventive measures, and the 
development of diagnostic and therapeutic 
strategies for RBI is essential for improving  
the efficacy and prognosis of radiotherapy in 
patients with head and neck malignancies.

RBI was first documented by Fisher in 1930 [4], 
and subsequent research in this domain has 
shown considerable advancement. In the past 
two decades, investigations have predominant-
ly focused on the molecular pathology and ther-

apeutic strategies associated with RBI [5]. 
Clinically, RBI is characterized by a high inci-
dence and often presents with severe cognitive 
impairments and compressive symptoms, such 
as dementia, depression, anxiety, headaches, 
and syncope, thereby significantly affecting the 
prognosis of patients undergoing radiotherapy 
[6]. Based on the timing of symptom onset, RBI 
is classified into acute, early delayed, and late 
delayed injury. Acute injury, manifesting within 
48 hours to several weeks following radiothera-
py, is predominantly attributed to brain edema 
resulting from disruption of the blood-brain bar-
rier (BBB), and is characterized by symptoms 
such as headaches, lethargy, and memory  
loss [7]. Early delayed brain injury, which 
appears 1-4 months post-irradiation, encom-
passes brain edema, alterations in neuronal 
networks, organic damage to the nervous sys-
tem, and transient demyelination [8], frequently 
presenting as fatigue and impaired concen- 
tration. Although these early injuries can be 
severe, they are reversible. In contrast, late 
delayed damage is irreversible and progre- 
ssive [9], typically commencing 4-6 months fol-
lowing radiotherapy, central nervous system 
(CNS) radiation injury is histologically character-
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ized by gray matter damage, ataxia, vascular 
abnormalities, demyelination, and eventual 
white matter necrosis, with potential progres-
sion over subsequent years. In summary, vas-
cular abnormalities and white matter demye- 
lination are the predominant histopathological 
features of this condition [10].

RBI represents a complex pathological condi-
tion modulated by a multitude of factors, such 
as endothelial cell damage, neuroglial cell re- 
sponses, oxidative stress, and autoimmune 
inflammatory reactions. Early intervention in 
RBI is associated with favorable prognoses for 
early-onset cases. Conversely, late-onset RBI 
may progress to radiation necrosis (RN) or leu-
koencephalopathy, both of which are predomi-
nantly irreversible and present significant ther-
apeutic challenges [11]. A variety of treatment 
modalities are available for RBI, predominantly 
pharmacological, with varying degrees of effi-
cacy. Corticosteroids are considered a first-line 
therapy and can significantly alleviate symp-
toms [12]. Additionally, Pentoxifylline and hy- 
perbaric oxygen therapy are frequently utilized. 
Anti-VEGF antibodies, such as bevacizumab, 
have also been employed in the management 
of radiation-induced brain necrosis [13]. For 
patients who do not respond to or cannot toler-
ate pharmacological treatments, surgical inter-
vention is recommended. Alternatively, when 
surgery is contraindicated, Laser Interstitial 
Thermal Therapy (LITT) is regarded as a viable 
salvage option. Furthermore, numerous novel 
therapeutic drugs and methods are currently 
under investigation.

The incidence of progressive and disabling cog-
nitive impairment among survivors who have 
received radiotherapy for craniocerebral tu- 
mors ranges from 50% to 90% [14]. Given the 
current limited understanding of RBI, optimiz-
ing the therapeutic benefits of radiotherapy 
remains challenging. This article aims to eluci-
date the mechanisms underlying RBI and to 
review existing treatment modalities, thereby 
contributing to the development of novel thera-
peutic strategies.

Mechanism of radiation-induced brain injury

Despite extensive research over the past few 
decades, the complete pathogenic mechanism 

of RBI remains incompletely understood. Pre- 
vious studies by Serduc et al. have investigated 
RBI in relation to the brain vascular system, 
neuroglial cells, and hypoxia, with findings vali-
dated in rodent models [15]. To date, the pre-
cise mechanisms underlying RBI continue to be 
elucidated and are generally considered to 
involve a dynamic and complex cascade of pro-
cesses. Several principles have been proposed 
to elucidate its pathogenesis, encompassing 
radiation-induced direct damage [16], immune 
inflammatory responses [17], oxidative stress 
[18], neuroglial cell reactions, and impairment 
of the brain vascular system [19] (Figure 1).

Direct radiation-induced damage

Radiation has the potential to directly damage 
brain tissue. Exposure to radiation often results 
in the disruption of DNA within brain cells, 
which subsequently impairs protein synthesis. 
In the event of irreversible DNA damage, DNA 
repair mechanisms are activated, leading to 
cell cycle arrest and apoptosis [20]. Further- 
more, radiation can harm endothelial cells, 
instigating neuroamide-mediated apoptosis 
and eliciting inflammatory responses. These 
processes ultimately contribute to the disrup-
tion of the BBB and the development of brain 
edema [21].

Radiation has the potential to modulate various 
signaling pathways, thereby impacting cellular 
processes such as growth, proliferation, and 
apoptosis, which collectively contribute to the 
progression of radiation-induced brain injury. 
Notably, the PI3K/AKT signaling pathway is 
known for its robust neuroprotective properties 
and its capacity to mediate brain repair through 
multiple mechanisms. According to research 
conducted by Ji et al., radiation exposure can 
inhibit the PI3K/AKT signaling pathway within 
brain tissue [22], leading to the attenuation  
of synaptic connections, substantial neuronal 
loss, and heightened neuronal apoptosis [23]. 
Radiation additionally disrupts the ERK1/ERK2 
(extracellular signal-regulated kinase) signaling 
pathway, which impacts post-irradiation neuro-
nal survival and activates cell cycle checkpoints 
associated with elevated levels of Trp53 and 
p21 proteins [24]. Moreover, radiation enhanc-
es the expression of cytokines, including tumor 
necrosis factor-α (TNF-α) and transforming 
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Figure 1. Radiation exposure to the brain initiates a complex cascade of reactions involving neurons, vascular 
endothelial cells, and neuroglial cells, which collectively mediate the onset and progression of radiation-induced 
brain injury. Specifically, neuronal response to radiation includes the upregulation of inflammatory factors such as 
TNF-α and TGF-β, which activate inflammatory pathways contributing to brain injury. Additionally, radiation exposure 
induces the increased expression of Trp53 and P21, resulting in the activation of cell cycle checkpoints. Additionally, 
radiation induces DNA double-strand breaks, thereby activating DNA damage repair mechanisms which can lead to 
cell cycle arrest or apoptosis. Furthermore, reactive oxygen species (ROS) generated by the interaction of radiation 
with water molecules and mitochondria not only inflict DNA damage but also facilitate neuronal apoptosis. In terms 
of endothelial cell response, radiation enhances the expression of pro-inflammatory factors such as TNF-α, IL-1β, 
and IL-6 in vascular endothelial cells (VECs), thereby promoting apoptosis and increasing the permeability of the 
BBB. Concurrently, the upregulation of vascular endothelial growth factor (VEGF) results in the aberrant prolifera-
tion of VEGF enhancing vascular permeability and compromising the integrity of the BBB. Regarding the glial cell 
response, radiation exposure detrimentally affects O-2A progenitor cells, leading to a reduction in oligodendrocyte 
production and subsequent demyelination. Additionally, radiation induces the expression of TNF-α and IL-6, which 
activate microglia to secrete substantial amounts of pro-inflammatory factors, facilitating the infiltration of macro-
phages into the BBB. Subsequent to neuronal injury, activated astrocytes undergo proliferation and hypertrophy, 
leading to the upregulation of glial fibrillary acidic protein (GFAP) and the enhanced expression of VEGF and HIF-1, 
thereby exacerbating the compromise of the BBB. Abbreviations: BBB, Blood-brain barrier; VEGF, Vascular endo-
thelial growth factor; VEC, Vascular Endothelial Cell; IR, Ionizing Radiation; TNF-α, Tumor necrosis factor-α; TGF-β, 
Transforming growth factor-β; CCC, Cell Cycle Checkpoint; DSBR, DNA Double-Strand Break Repair; CCA, Cell Cycle 
Arrest; ROS, Reactive Oxygen Species; IF, Inflammatory Factors; GFAP, glial fibrillary acidic protein; HIF-1, Hypoxia-
inducible factor-1.

growth factor-β1 (TGF-β1), as well as various 
transcription factors [25]. These molecular 
alterations promote inflammatory responses 
and contribute to the pathogenesis of RBI.

Numerous preclinical investigations have eluci-
dated that the apoptotic response of brain cells 
to radiation is dose-dependent, manifesting 
within hours post-treatment. For instance, ad- 

ministration of a single large dose (2-10 Gy) of 
whole-brain irradiation has been shown to pre-
cipitate a marked increase in apoptosis within 
the dentate gyrus (DG) of the hippocampus 
within 3-6 hours post-irradiation, subsequently 
leading to significant short-term cognitive defi-
cits [26]. In summary, radiation can inflict direct 
damage on brain tissue through multiple path-
ways, playing a pivotal role, particularly in the 
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early stages of radiation-induced brain injury 
[27].

Immune inflammatory responses

Inflammation is pivotal in the pathogenesis of 
radiation-induced brain injury. Exposure to radi-
ation can inflict varying degrees of damage on 
brain cells, thereby initiating neuroinflammato-
ry processes. Moreover, radiation has the ca- 
pacity to induce both acute and chronic inflam-
matory responses by modulating immune cell 
activity. Excessive inflammatory reactions can 
further aggravate brain injury. Post-radiation 
exposure, there is a marked increase in the 
activity of cyclooxygenase-1 (COX-1) and cyclo-
oxygenase-2 (COX-2), as well as in the synthesis 
of prostaglandin E2 (PGE2) within the brain, 
which collectively promote inflammation in the 
CNS [28]. Furthermore, radiotherapy induces 
the upregulation of numerous pro-inflammatory 
mediators within the CNS, including tumor ne- 
crosis factor-α (TNF-α), interleukin-1β (IL-1β), 
interleukin-6 (IL-6), inducible nitric oxide syn-
thase (iNOS), and matrix metalloproteinase-9 
(MMP-9) [29]. These mediators contribute to 
endothelial cell apoptosis, increased permea-
bility of the BBB, and activation of the nuclear 
factor-kappa B (NF-κB) signaling pathway, ulti-
mately disrupting claudin-5 and precipitating 
early BBB breakdown [30].

In the initial phases post-radiotherapy, the 
secretion of various pro-inflammatory cyto-
kines has the potential to induce neurotoxicity 
in neurons, neural stem cells, and glial cells, 
thereby accelerating neuronal apoptosis, inhib-
iting synaptic plasticity, and exacerbating cere-
bral injury. Interleukin-6 (IL-6) and other inflam-
matory mediators may be activated during 
brain injury, facilitating the release of oxygen 
free radicals [31]. Conversely, anti-inflammato-
ry factors released during the later stages of 
inflammation, such as Interleukin-10 (IL-10), 
can attenuate the inflammatory response, pro-
mote neural tissue repair, and enhance neuro-
nal survival. Therefore, anti-inflammatory the- 
rapy has the potential to mitigate cerebral  
damage and promote functional recovery [32]. 
Consequently, inflammation is increasingly ac- 
knowledged as a critical factor in the onset and 
progression of radiation-induced brain injury. 
Targeting inflammatory pathways for both pre-
vention and treatment presents a promising 
avenue for therapeutic intervention.

Oxidative stress

For an extended period, oxidative stress has 
been identified as a significant contributor to 
both acute and chronic radiation-induced inju-
ries. Oxidative stress arises from an increase  
in intracellular reactive oxygen species (ROS), 
resulting in the damage of lipids, proteins, and 
DNA [33]. The CNS is especially susceptible to 
oxidative damage due to its high content of 
polyunsaturated fatty acids, substantial oxygen 
consumption, and limited antioxidant defenses 
[34]. Research conducted by Marlon et al. dem-
onstrates that exposure to low-dose irradiation 
(0-5 Gy) results in a significant elevation of ROS 
levels within brain tissue, thereby inducing pro-
longed oxidative stress and aggravating neuro-
nal damage [35]. Moreover, this sustained oxi-
dative stress has the potential to impede the 
self-repair mechanisms of compromised neu-
rons, ultimately contributing to cognitive dys-
function [36].

Radiation exposure to water molecules results 
in the generation of ROS and an overproduction 
of free radicals due to mitochondrial damage. 
Consequently, this induces DNA and cell mem-
brane damage, thereby activating multiple sig-
naling pathways that influence cell growth, 
apoptosis, and autophagy [37]. Within the cell 
nucleus, ROS can induce DNA damage, where-
as in the cytoplasm, ROS can compromise cell 
membranes and proteins, leading to impaired 
cellular function or apoptosis. The release  
of oxygen free radicals precipitates neuronal 
death and facilitates the adhesion, migration, 
and activation of neutrophils, thereby exacer-
bating inflammation and resulting in further 
brain tissue damage [38]. The generation of 
ROS is regarded as the principal cause of radia-
tion-induced tissue damage [39]. Furthermore, 
the inflammatory response elicited during brain 
injury also contributes to the release of oxygen 
free radicals. Consequently, the development 
of antioxidant or anti-inflammatory therapeu- 
tic strategies for the treatment of radiation-
induced brain injury is of considerable impor- 
tance.

Neuroglial cell reactions

Glial cells are integral to the pathogenesis and 
progression of radiation-induced brain injury. 
These supportive cells, encompassing astro-
cytes, oligodendrocytes, and microgliap [40], 
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are involved in guiding neuronal migration, 
repairing the nervous system, stimulating im- 
mune responses, and forming myelin sheaths 
and the BBB. Demyelination is a characteristic 
pathological alteration observed in radiation-
induced brain injury [35]. Mature oligodendro-
cytes are critical for the formation of myelin 
sheaths, while O-2A progenitor cells, the pre-
cursors to oligodendrocytes, exhibit high sensi-
tivity to radiation. Radiotherapy can result in 
the depletion of O-2A progenitor cells, thereby 
hindering the replenishment of mature oligo-
dendrocytes and culminating in demyelination 
[41]. Additionally, radiation has the capacity to 
directly induce the death of oligodendrocyt- 
es, further contributing to demyelination. For 
instance, in regions such as the hippocampus 
and temporal lobe, radiation inflicts direct dam-
age on oligodendrocytes, leading to abnormal 
cell proliferation and subsequent peripheral or 
central demyelination. This pathological pro-
cess manifests clinically as acute encephalo-
myelitis and various neurological disorders 
[42].

Microglia, as pivotal immune cells within the 
CNS, undergo significant activation in response 
to whole-brain radiotherapy, thereby eliciting 
pro-inflammatory responses [43]. Radiation-
induced brain injury triggers microglial activa-
tion through various mechanisms, including the 
presence of inflammatory neurotransmitters, 
toxins, and the lack of inhibitory signals within 
the CNS [44]. Upon activation, microglia adopt 
an amoeboid morphology, exhibit enhanced 
phagocytic activity, secrete substantial quanti-
ties of pro-inflammatory mediators, and facili-
tate the infiltration of peripheral macrophages 
into the CNS via the BBB [45]. Microglial activa-
tion exhibits heterogeneity and can be catego-
rized into M1 (pro-inflammatory) and M2 (anti-
inflammatory) phenotypes [46]. M1 microglia 
are characterized by the induction of inducible 
nitric oxide synthase (iNOS) and nuclear factor 
kappa-light-chain-enhancer of activated B cells 
(NF-κB) pathways, leading to the release of  
various pro-inflammatory mediators that can 
inflict damage on surrounding tissues. In con-
trast, M2 microglia facilitate extracellular ma- 
trix (ECM) reconstruction and tissue repair by 
promoting the phagocytosis of cellular debris 
and misfolded proteins, and by secreting ab- 
undant neurotrophic factors that support neu-
ronal survival [47]. Following radiotherapy, 

microglia predominantly exhibit an M1 pheno-
type, which induces both acute and chronic 
inflammatory responses that are critical in the 
pathogenesis of radiation-induced brain injury 
[48]. Persistent activation of microglia is recog-
nized as a significant contributor to radiation-
induced cognitive impairment, and pharmaco-
logical interventions targeting microglial acti- 
vity have demonstrated efficacy in ameliorating 
these deficits in preclinical models [49].

Astrocytes, which serve as supportive cells 
within the CNS, play a crucial role in maintain-
ing the structural and functional integrity of 
neurons. In response to CNS injury, astrocytes 
can undergo proliferation and hypertrophy, 
leading to an upregulation of the activation 
marker GFAP [50]. Research conducted by 
Moravan et al. demonstrated that GFAP levels 
increase within a timeframe of 4 hours to 1 
year following head radiotherapy, suggesting 
prolonged astrocyte activation post-radiation 
[51]. Activated astrocytes contribute to radia-
tion-induced brain injury by secreting cytokines 
such as VEGF and HIF-1. Astrocytes can be cat-
egorized into A1 and A2 phenotypes based on 
their response characteristics. A1-type astro-
cytes, which are induced under inflammatory 
conditions, have been shown to inhibit axon 
regeneration and cause neuronal damage. 
Conversely, under ischemic or hypoxic condi-
tions, astrocytes transition into the A2 pheno-
type, which involves the secretion of various 
neurotrophic factors that promote synaptic for-
mation and exert protective and reparative 
effects [52]. Research indicates that the ne- 
urotrophic factors secreted by activated astro-
cytes are directly associated with neuronal 
function and the integrity of the BBB [53]. 
Therefore, further investigation into the under-
lying mechanisms is warranted.

Brain vascular system damage

The disruption of the BBB is a well-documented 
pathogenic mechanism underlying radiation-
induced brain injury. This condition initially 
presents as cerebrovascular damage, typically 
manifesting within 24 hours post-radiotherapy, 
and subsequently progresses to parenchymal 
brain injury [54]. The damage to the BBB and 
the resultant increase in its permeability are 
pivotal aspects of vascular injury following ra- 
diotherapy [55]. Radiation exposure can induce 
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the overexpression of vascular endothelial 
growth factor (VEGF), which contributes to the 
increased permeability of endothelial cells and 
a reduction in microvascular density within 
brain tissue [56]. Research has demonstrated 
that radiation-induced pericellular senescence 
can result in the production of the senescence-
associated secretory phenotype (SASP), includ-
ing cytokines such as IL-6, TNF-α, and IL-1β. 
These factors adversely impact the integrity of 
the BBB and contribute to the disruption of 
endothelial cell tight junctions [57].

Radiation-induced vascular damage predomi-
nantly impacts endothelial cells, initially mani-
festing as abnormal proliferation, migration of 
smooth muscle cells, and platelet aggregation. 
This pathological process results in the forma-
tion of scar tissue, thickening of the vessel wall, 
and subsequent luminal narrowing or obstruc-
tion, ultimately leading to cerebral tissue isch-
emia and hypoxia-induced necrosis [58]. Se- 
condary cerebral edema and ischemic brain 
necrosis, consequent to vascular damage, are 
the primary contributors to radiation-induced 
brain injury. Moreover, the modification of mi- 
crovasculature is a critical determinant in the 
manifestation of both acute and chronic cogni-
tive side effects in healthy brain tissue subse-
quent to radiotherapy. The early identification 
of radiation-induced microvascular alterations 
is imperative to mitigate the detrimental effects 
of radiation on patients [59].

Treatment of radiation-induced brain injury

In the context of preventing RBI, it is crucial to 
improve the therapeutic ratio of radiotherapy. 
Presently, a growing array of precise radiother-
apy techniques with enhanced efficacy are 
being employed to mitigate damage to normal 
brain tissue. However, due to the ambiguous 
mechanisms underlying RBI, standardized tre- 
atment protocols for this condition remain 
insufficiently developed. Numerous treatment 
modalities have been proposed historically for 
the management of RBI, encompassing corti-
costeroids, surgery, hyperbaric oxygen, hepa-
rin, pentoxifylline, and vitamin E [60], each 
demonstrating varying degrees of efficacy. De- 
spite the advent of several novel approaches 
for addressing RBI, conclusive evidence sub-
stantiating their effectiveness remains elusive. 
Consequently, the pursuit of effective treat-

ments for RBI continues to be beset by sub-
stantial challenges and responsibilities (Table 
1).

Corticosteroids

Corticosteroids, including dexamethasone, 
have historically been considered the gold 
standard for the treatment of radiation-induced 
brain injury. These pharmacological agents 
exhibit significant anti-inflammatory properties 
and are capable of mitigating BBB permeability 
[61]. For patients presenting with symptomatic 
brain injury, corticosteroids are the primary 
therapeutic intervention. They effectively atten-
uate the pro-inflammatory response associat-
ed with radiation-induced brain injury and 
enhance the integrity of the BBB, thereby alle- 
viating the severity of cerebral edema. Dexa- 
methasone, in particular, is commonly adminis-
tered due to its pronounced immunomodulato-
ry effects. Pulse corticosteroid therapy has 
been shown to rapidly alleviate symptoms of 
cerebral RN in the short term [62]. However,  
the therapeutic benefits of corticosteroids are 
transient and primarily supportive rather than 
curative. While corticosteroids can provide sig-
nificant benefits with a relatively low incidence 
of adverse reactions when administered over a 
limited duration, their discontinuation or pro-
longed use without appropriate caution may 
result in serious side effects [63]. Some pa- 
tients with chronic conditions necessitate pro-
longed corticosteroid therapy, which can result 
in numerous concomitant toxicities, rendering 
this approach unsustainable in the long term 
[64].

In the context of immunotherapy, a novel con-
cern has arisen regarding the potential for cor-
ticosteroids’ immunosuppressive properties to 
attenuate the effectiveness of immunothera-
peutic or targeted interventions [65]. Clinically, 
corticosteroids are frequently administered to 
manage inflammation and provide rapid symp-
tom relief in cases of brain injury. Empirical evi-
dence suggests that the concomitant use of 
corticosteroids and hyperbaric oxygen therapy 
results in superior outcomes compared to cor- 
ticosteroid monotherapy [66]. Furthermore, 
corticosteroids may be administered in con-
junction with agents such as mannitol and 
hypertonic saline to enhance the reduction of 
cerebral edema. Nonetheless, the efficacy of 
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Table 1. Common treatments for RBI

Treatment method Principle Advantage Disadvantage Clinical 
trial

Corticosteroids [61-64] Anti-inflammatory, improve BBB Rapid and obvious Ephemeral and supportive Yes
Anti-VEGF therapy [67-70] Anti-inflammatory, anti-angiogenesis Obvious effect and can reduce steroid use risk of hypertension and renal insufficiency Yes 
Laser interstitial hyperthermia [76-78] Ablation of tissue by radiating heat Minimally invasive, can reduce drug use, 

do a biopsy
High application requirements, less data No 

Hyperbaric oxygen Therapy [80-82] Increase dissolved oxygen in the brain Suitable for acute phase, reduce neuronal 
necrosis

Barotrauma risk No 

Surgery [84, 85, 87] Direct resection of lesion Relieve the occupying effect, do a biopsy, 
obvious effect

Big damage, high risk No 

Stem cell therapy [89, 90] Reduce oxidative stress, regulate  
inflammation

Can protect neurons, low side effects Low selectivity, immature technology No 

Targeted microglia therapy [95-98] Decreased microglia activation and 
secretion

Strong pertinence, low side reaction Lack of evidence support and  
experimental verification

No 
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corticosteroids is predominantly observed dur-
ing the initial stages of onset or for short-term 
relief, providing limited advantages for patients 
necessitating long-term or late-stage therapeu-
tic interventions.

Anti-VEGF therapy

Bevacizumab, a humanized monoclonal anti-
body, inhibits the biological activity of vascular 
endothelial growth factor (VEGF) by binding to 
it, thereby attenuating the inflammatory cas-
cade and effectively treating edema [67]. 
Additionally, it reduces endothelial cell proli- 
feration and neovascularization, consequently 
decreasing vascular permeability [68]. A clini-
cal study conducted by Xu et al. evaluated the 
efficacy of bevacizumab in comparison to tradi-
tional steroid therapy for the treatment of radi-
ation-induced brain injury. The study revealed 
that 62.1% of patients in the bevacizumab 
group exhibited significant symptom improve-
ment, a proportion notably higher than the 
42.6% observed in the steroid therapy group. 
Consequently, bevacizumab is postulated to 
mitigate the symptoms of radiation-induced 
brain injury and enhance patient prognosis 
[69]. Additionally, it is recognized as an effica-
cious agent in inhibiting the progression of 
brain RN [70], and it remains the sole therapy 
demonstrated to be effective for this condi- 
tion in randomized controlled trials (RCTs). 
Bevacizumab antagonizes the effects of vas- 
cular endothelial growth factor (VEGF) on brain 
RN and diminishes the necessity for steroid 
administration. Nevertheless, given the irre-
versible nature of brain necrosis, cessation of 
bevacizumab treatment may precipitate the 
recurrence of brain RN [71]. In summary, while 
bevacizumab therapy for RBI shows promising 
results, it lacks sufficient evidence support.

Apatinib is a small molecule inhibitor of multi-
ple receptor tyrosine kinases, with a high selec-
tivity for VEGFR2 [72]. During the investigation 
of RBI, Owen et al. identified VEGF as a critical 
factor contributing to increased BBB per- 
meability and abnormal vascularization [73]. 
Apatinib exerts its effects by inhibiting the 
VEGF-mediated signal transduction pathway 
and preventing the phosphorylation of VEGFR2. 
Research conducted by Xiong et al. demon-
strated that apatinib could mitigate brain 
edema and BBB damage in rats following RBI, 

reduce neuroinflammation, and inhibit astro-
cyte activation [74]. In murine models, adminis-
tration of apatinib was observed to downregu-
late astrocyte activation, ameliorate brain 
hypoxia, mitigate brain edema, and significantly 
alleviate the adverse effects associated with 
acute RBI [75]. These findings indicate that 
apatinib holds potential as a novel therapeutic 
candidate for RBI. However, further investiga-
tion is necessary to validate its neuroprotective 
effects and elucidate the underlying mecha-
nisms of action.

Laser interstitial hyperthermia (LITT)

LITT is a minimally invasive procedure that 
entails the insertion of a laser probe under ste-
reotactic guidance to generate heat and ablate 
targeted tissue. LITT has demonstrated effica-
cy in the ablation therapy of radiation-induced 
brain injury [76]. It is particularly utilized in 
patients whose brain injuries have not respond-
ed to pharmacological treatments, especially in 
cases of steroid-resistant or steroid-dependent 
conditions, or for lesions situated in surgically 
inaccessible regions or in patients with a histo-
ry of multiple surgeries that pose high surgical 
risks [77]. Research indicates that LITT can 
facilitate the successful discontinuation of ste-
roid use in the majority of patients, with com-
plete regression of lesions generally observed 
within weeks post-procedure. A meta-analysis 
conducted by Palmisciano et al. demonstrated 
symptomatic improvement in 61% of patients 
following LITT treatment, with 44% of patients 
achieving cessation of steroid use [71]. In a 
comparative study conducted by Sankey et al., 
examining LITT versus pharmacological treat-
ment for brain RN, it was found that patients 
undergoing LITT were more likely to discontinue 
steroid use at a median of 37 days (84% com-
pared to 53%) and exhibited a lower likelihood 
of radiographic progression (5% compared to 
27%) [78].

Another advantage of LITT is its capability to 
perform biopsies, which can inform decisions 
regarding adjuvant therapy if tumor recurrence 
is confirmed histologically. Given its minimally 
invasive nature, LITT should be considered 
early in the course of lesion recurrence to opti-
mize local control outcomes. Despite its numer-
ous advantages, there is a paucity of direct 
comparative data for LITT, with only a limited 



The mechanisms and treatment of radioactive brain injury

5606	 Am J Cancer Res 2024;14(12):5598-5613

number of patients having undergone this tre- 
atment, and the technology is not yet widely 
accessible [79]. Consequently, LITT remains a 
potential treatment strategy at present.

Hyperbaric oxygen therapy (HBOT)

Radiation exposure can induce vascular fibro-
sis and thrombosis, which subsequently dimin-
ishes blood and oxygen supply to the brain,  
culminating in brain injury. Hyperbaric oxygen 
therapy (HBOT) is frequently employed in the 
treatment of radiation-induced brain injury, par-
ticularly in patients during the acute phase, as 
it enhances cerebral oxygenation. Additionally, 
HBOT has been shown to reduce capillary per-
meability, decrease tissue fluid extravasation, 
and ameliorate cerebral edema. The effective-
ness of hyperbaric oxygen therapy (HBOT) in 
the treatment of radiation-induced brain injury 
has been substantiated through numerous 
studies. Bennett et al., in a comprehensive 
meta-analysis, demonstrated that the progno-
sis for most patients with radiation-induced 
brain injury is favorable following HBOT, signifi-
cantly decreasing the risk of neuronal necrosis 
during the course of treatment [80].

Hyperbaric oxygen therapy (HBOT) has been 
reported to ameliorate both radiographic and 
symptomatic manifestations of radiation-indu- 
ced brain necrosis [81]. A study by Cihan et al. 
indicates that administering 20 sessions of 
HBOT one week following stereotactic radiosur-
gery (SRS) can decrease the incidence of brain 
RN from 20% to 11% [82]. However, the evi-
dence remains predominantly confined to case 
reports, with a scarcity of randomized con-
trolled trials available for corroboration [83]. 
Furthermore, numerous reported cases indi-
cate that hyperbaric oxygen therapy (HBOT)  
is frequently administered in conjunction with 
dexamethasone or bevacizumab. This concur-
rent administration complicates the ability to 
isolate and evaluate the independent effects of 
HBOT. Consequently, while HBOT has the poten-
tial to exert therapeutic effects on tissues and 
vessels through enhanced oxygenation, addi-
tional research is necessary to determine the 
optimal dosage, timing, and application meth-
ods to achieve the most favorable outcomes.

Surgery

Craniotomy is linked to considerable trauma 
and elevated risk, and therefore, it is typically 

not favored as the initial treatment modality for 
radiation-induced brain injury. Nonetheless,  
in cases where patients present with progres-
sive intracranial pressure elevation, prolonged 
dependence on diuretics and steroids for main-
tenance therapy, or radiographic findings sug-
gestive of significant brain edema and mass 
effect, surgical intervention may be warranted 
[84]. Surgical resection is the standard treat-
ment for rapidly progressing, symptomatic radi-
ation-induced brain necrosis, contingent upon 
the lesion’s anatomical location. Furthermore, 
cases of brain RN that are refractory to phar-
macological interventions may require surgical 
intervention to mitigate the mass effect.

Following surgical resection, the resolution of 
edema surrounding the necrotic lesion may 
necessitate several weeks, thereby requiring 
meticulous monitoring [85]. Additionally, surgi-
cal intervention facilitates tissue diagnosis, 
allowing for biopsy to exclude potential tumor 
progression that might have been previously 
undetected. In instances where radiation-
induced brain necrosis coexists with residual 
tumor cells, surgical procedures may contrib-
ute to reducing the overall burden of central 
nervous system (CNS) tumors. However, in 
cases of glioblastoma multiforme (GBM), if RN 
is characterized exclusively by necrosis, overall 
survival rates following surgical intervention or 
combined treatment with bevacizumab are 
comparable to those observed in groups with 
residual tumor cells [86]. Given the objective of 
optimizing the quality of life for patients with 
tumors, addressing distressing symptoms such 
as seizures or headaches offers a justifiable 
rationale for surgical intervention [87].

Stem cell therapy

Mesenchymal stem cells (MSCs) exhibit the 
capacity to repair damaged tissues and de- 
monstrate significant immunomodulatory, anti-
apoptotic, and angiogenic properties [88]. The 
application of MSCs has been shown to miti-
gate oxidative stress and modulate inflamma-
tory responses [89]. Nonetheless, the efficien-
cy of MSCs in homing to target sites remains 
suboptimal, with only a minor proportion of 
administered cells reaching the intended tissue 
following systemic delivery [90], thereby con-
siderably constraining their clinical utility.

Wang et al. demonstrated that umbilical cord 
mesenchymal stem cells (UC-MSCs) can inhibit 
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the secretion of the pro-inflammatory cytokines 
TNF-α and IL-6, while promoting the release of 
the anti-inflammatory cytokine IL-10, thereby 
exerting neuroprotective effects against ra- 
diation-induced brain injury [91]. Furthermore, 
Soria et al. reported that intranasal administra-
tion of human bone marrow mesenchymal stro-
mal cells (hMSCs) facilitates the repair of ra- 
diation-induced brain injury and enhances neu-
rological function [92]. Endothelial progenitor 
cells (EPCs), which serve as precursors to endo-
thelial cells, are integral to the process of angio-
genesis. Transplantation of EPCs has demon-
strated potential in ameliorating damage in- 
duced by radiotherapy to the BBB, tight junc-
tions, and brain capillaries [93]. Consequently, 
leveraging the multifunctional properties of 
stem cells for the treatment of radiation-in- 
duced brain injury may constitute a promising 
therapeutic approach.

Targeted microglia therapy

Following radiation exposure to brain tissue, 
microglial cells swiftly adopt a pro-inflammato-
ry phenotype, characterized by the secretion of 
substantial quantities of inflammatory media-
tors and a concomitant reduction in the release 
of neurotrophic factors [94]. This phenotypic 
shift is pivotal in the pathogenesis and pro- 
gression of radiation-induced brain injury. Con- 
sequently, therapeutic strategies aimed at 
modulating microglial cell activity may hold sig-
nificant promise for the treatment of this condi-
tion. For instance, Pregabalin has been shown 
to attenuate the activation of microglial cells 
and the expression of inflammatory cytokines 
by directly inhibiting the cytoplasmic transloca-
tion of high mobility group box 1 (HMGB1). The 
study conducted by Zhang et al. demonstrat- 
ed that Pregabalin can ameliorate radiation-
induced brain injury by targeting the HMGB1-
TLR2/TLR4/RAGE signaling pathway in microg-
lial cells [95]. Another compound, ShK-170, 
serves as a specific inhibitor of the voltage-gat-
ed potassium (Kv)1.3 channel and has demon-
strated efficacy in protecting mice from radia-
tion-induced brain injury. The pharmacological 
blockade of Kv1.3, achieved through either 
specific short interfering RNA or ShK-170, has 
been shown to inhibit the production of pro-
inflammatory factors and mitigate radiation-
induced neurotoxicity in microglial cells, there-
by alleviating RBI [96].

Furthermore, Fractalkine (FKN) serves as a 
critical mediator in the regulation of microglial 
cell activity. By binding to the CX3CR1 receptor 
on microglial cells, FKN can induce polarization 
towards the M2 phenotype, which may miti- 
gate the effects of radiation-induced brain inju-
ry. Consequently, the promotion of the FKN/
CX3CR1 axis represents a potentially promising 
therapeutic strategy for addressing RBI [97]. 
Additionally, elevated levels of extracellular ATP 
(eATP) in the cerebrospinal fluid (CSF) of RBI 
patients have been correlated with the severity 
of the disease. The P2X7 receptor (P2X7R) is 
an ion-selective purinergic receptor involved in 
microglial cell activation and paracrine signal-
ing. Xu et al.’s study revealed the critical role of 
the ATP-P2X7R axis in RBI and suggested that 
inhibiting this axis may be a potential method 
for treating RBI patients [98].

In conclusion, the microglial cell response to 
RBI involves a complex interplay of various bio-
chemical substances, receptors, and signal- 
ing pathways. Modulation of these pathways, 
through either inhibition or activation, holds 
promise as a potential therapeutic strategy  
for managing RBI. Nevertheless, despite the 
encouraging preliminary findings, there remains 
a significant paucity of experimental data and 
empirical support. Consequently, these thera-
peutic approaches are not yet ready for clinical 
application.

Discussion

Research indicates that 70% of cancer patients 
necessitate radiation therapy at various stages 
of their disease progression [99]. While radia-
tion therapy is efficacious in reducing tumor 
growth, it is also associated with the potential 
for severe brain damage following head and 
neck irradiation [100]. This damage can mani-
fest as cognitive impairments, including defi-
cits in learning and memory, secondary epi- 
lepsy, and progressive dementia [101]. The 
prevalence of radiation-induced brain injury 
consequently imposes a substantial burden  
on healthcare systems and society at large. 
Considering the advantages of timely diagnosis 
and early intervention for patients with RBI, it is 
imperative to enhance awareness and diagnos-
tic rates of the condition. Concurrently, there is 
a critical need to develop more efficacious pre-
ventive and therapeutic strategies to improve 
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the prognosis of patients undergoing radiation 
therapy.

The pathogenesis of RBI is multifaceted, 
encompassing inflammation, oxidative stress, 
vascular damage, and additional contributing 
factors [102]. Studies utilizing animal models 
have demonstrated that radiation therapy can 
compromise the integrity of the BBB, resulting 
in cerebral edema [103]. Furthermore, radia-
tion-induced cellular damage can trigger tissue 
inflammation and the infiltration of immune 
cells, thereby elevating the secretion of various 
inflammatory mediators [104]. This cascade 
perpetuates and exacerbates the inflammatory 
state, culminating in sustained damage to brain 
tissue [105].

At present, there are no well-defined guidelines 
for the diagnosis and treatment of RBI. The 
diagnosis of RBI predominantly depends on 
clinical assessment and imaging techniques, 
which frequently pose difficulties in differenti-
ating RBI from tumor progression [106]. The 
therapeutic approaches commonly employed 
for RBI encompass corticosteroids, bevacizum-
ab, LITT, hyperbaric oxygen therapy, and surgi-
cal intervention. Corticosteroids are consid-
ered the first-line treatment, especially for 
managing symptoms associated with cerebral 
edema, and typically result in rapid symptom-
atic improvement. Bevacizumab, whether ad- 
ministered as a monotherapy or in conjunction 
with other pharmacological agents, has dem-
onstrated efficacy in mitigating radiation-
induced brain injury [107]. Hyperbaric oxygen 
therapy has been shown to alleviate cerebral 
edema by enhancing oxygen concentration, 
thereby potentially reducing the reliance on 
corticosteroids [108]. Furthermore, numerous 
novel therapeutic approaches are currently 
undergoing development and clinical evalua-
tion, thereby expanding the potential treat- 
ment landscape for radiation-induced brain 
injury. In conclusion, the early detection and 
treatment of RBI are essential for effective 
management. Nevertheless, existing diagnos-
tic techniques for RBI are constrained and fre-
quently indistinguishable from tumor progres-
sion [109]. Consequently, the development of 
novel diagnostic strategies or criteria, such as 
the application of biomarkers in patient plasma 
[110], may significantly enhance the prognosis 
for patients with RBI.

Despite the existence of multiple treatment 
modalities for RBI, their overall efficacy re- 
mains ambiguous and is not adequately sub-
stantiated by empirical evidence. Therefore, 
the prevention of RBI is of utmost importance. 
Advanced radiotherapy techniques, such as 
Stereotactic Ablative Radiotherapy (SAS), have 
demonstrated the capability to minimize radia-
tion exposure to adjacent normal tissues [111]. 
Furthermore, the administration of neuropro-
tective agents prior to radiotherapy has been 
shown to mitigate the risk of RBI. For example, 
the pre-radiotherapy administration of erythro-
poietin (EPO) has been found to prevent impair-
ments in hippocampal-dependent learning and 
memory [112]. Furthermore, research conduct-
ed by Zhou et al. indicates that pre-radiothera-
py intranasal administration of a miR-122-5 
antagonist and a miR-741-3p inhibitor can miti-
gate radiation-induced cognitive dysfunction 
and neuronal apoptosis [113]. However, the 
current body of research on the prevention of 
radiation-induced brain injury is limited, pre-
senting significant opportunities for further 
investigation. The feasibility of these interven-
tions remains to be validated through addition-
al studies.

In summary, despite extensive research on RBI 
over the past few decades, numerous critical 
issues remain to be addressed. These include 
elucidating the comprehensive mechanisms 
underlying RBI, developing effective preventive 
strategies, improving early detection rates, 
refining treatment methodologies, and enhanc-
ing the efficacy of radiotherapy. These challeng-
es persist as significant obstacles within this 
field.
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