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Abstract: This study aims to construct and optimize risk prediction models for lymph node metastasis (LNM) in
endometrial carcinoma (EC) patients, thus improving the identification of patients at high risk of LNM and further
providing accurate support for clinical decision-making. This retrospective analysis included 541 cases of EC treated
at The First Affiliated Hospital, Jinan University between January 2017 and January 2022. Various clinical and patho-
logical variables were incorporated, including age, body mass index (BMI), pathological grading, myometrial invasion,
lymphovascular space invasion (LVSI), estrogen receptor (ER) and progesterone receptor (PR) levels, and tumor size.
Multivariate Logistic regression analysis was used to identify independent risk factors for LNM. Subsequently, the
Least Absolute Shrinkage and Selection Operator (LASSO), Extreme Gradient Boosting (XGBoost), RandomForest,
and Support Vector Machine (SVM), all machine-learning algorithms, were adopted to select features and build
models. The XGBoost model gave the best performance among all models, with areas under the curve (AUCs) of
0.876 and 0.832 for training and validation sets, respectively, suggesting its high discriminatory ability and predic-
tion accuracy. Moreover, the calibration curve analysis further verified the consistency of the model-predicted values
with the actual results, indicating the model’s good applicability at various risk levels. According to the decision
curve analysis, the XGBoost model showed high net benefits within most risk-threshold ranges, indicating its sub-
stantial practical value in clinical applications. Conclusively, this study successfully builds machine-learning models
based on multiple clinical and pathological features, which can effectively predict the LNM risk in EC patients. The
model is expected to provide important references for clinicians in surgical decision-making and the formulation of
individualized treatment plans, thereby enhancing patient outcomes.
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Introduction

Endometrial carcinoma (EC) is one of the most
commonly malignancies of the female repro-
ductive system worldwide, ranking second in
prevalence among such malignancies in China
[1]. According to global cancer statistics,
around 420,000 new EC cases were reported
globally in 2020, accounting for 4.4% of all
newly diagnosed cancer cases among women
[2]. The annual EC incidence in China is approxi-
mately 16 per 100,000 women, with a notable
rise in recent years, especially among younger
women [3]. Research indicates that a woman’s
lifetime risk of developing EC is about 3%, a fig-

ure that continues to increase globally [4]. EC
has a high metastasis rate, with lymphatic
metastasis being one of the most significant
routes. Lymph node (LN) metastasis (LNM) not
only influences the pathological staging and
treatment decisions but also plays a critical role
in prognosis and survival rates [5]. Consequen-
tly, analyzing the influencing factors of LNM is of
great significance for evaluating patients’ prog-
noses and determining the necessity of LN
dissection.

Currently, total abdominal hysterectomy plus

bilateral adnexectomy and evaluation of LNs
(pelvic and para-aortic LNs) is the standard sur-
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gical modality for EC patients [6]. Precise LN
assessment and dissection are crucial for
determining the extent of the lesion, accurate
staging, prognostic evaluation, and guiding
subsequent treatment. However, the clinical
value of lymphadenectomy remains somewhat
controversial [7]. To a certain extent, lymphad-
enectomy does not reduce survival but may
heighten the risk of intraoperative and postop-
erative complications, such as vascular injury,
lymphocele, and lower-limb lymphedema, in EC
patients [8]. Since the risks and benefits of
lymphadenectomy vary among patients, effec-
tively identifying high-risk factors for LNM to
help clinicians select the appropriate scope of
surgery is a key focus of research [9]. The prog-
nosis of EC is affected by multiple factors,
including pathological type, age, and molecular
characteristics. Traditionally, EC is classified as
either estrogen- or nonestrogen-dependent
[10].

Despite the demonstrated potential of molecu-
lar typing for prognostic evaluation, its wide-
spread adoption in China has been limited, pri-
marily due to the nascent stage of its clinical
application and challenges related to the stan-
dardization of detection methods and econom-
ic factors [11]. Consequently, timely identifica-
tion of high-risk populations and implementa-
tion of proactive treatment strategies are cru-
cial for improving patient prognosis. As big data
and machine learning advance, the construc-
tion of visual statistical models, such as nomo-
grams, has been extensively applied in the
prognostic prediction of various cancers [12-
14]. However, studies specifically focused on
predicting LNM in EC remain relatively scarce,
with a limited sample size [15].

This study is dedicated to building an innova-
tive EC LNM risk prediction model that inte-
grates multiple clinical factors and is optimized
using advanced machine learning algorithms.
Unlike previous studies, we not only take tradi-
tional clinical and pathological characteristics
into account but also introduce a systematic
integration approach based on multivariate
analysis to enhance prediction accuracy (ACC)
and the capacity to guide individualized treat-
ment. Through this approach, this study offers
a new perspective for LNM risk assessment
and provides robust support for precise treat-
ment and preoperative decision-making in EC.
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Methods and materials
Research design

This retrospective cohort study included 541
cases of EC diagnosed and treated at The First
Affiliated Hospital, Jinan University between
January 2017 and January 2022. For model
development and validation, the samples were
randomly assigned to a training set (n = 378)
and a validation set (n = 163) in a 7:3 ratio. The
training set served for model building and opti-
mization, while the validation set served to
assess the models’ predictive performance
and robustness. This grouping approach en-
sures adequate training during the model
development and provides a reliable indepen-
dent evaluation during validation, thereby
ensuring the external validity of the model. This
study was approved by The First Affiliated
Hospital, Jinan University.

Inclusion and exclusion criteria

Inclusion criteria: 1. Patients pathologically
diagnosed with EC, including endometrioid ade-
nocarcinoma and serous, mucinous, clear-cell,
and undifferentiated carcinomas, confirmed by
diagnostic curettage; 2. Patients who under-
went comprehensive staging surgery and were
confirmed as EC by postoperative pathological
examination; 3. Patients with complete general
and pathological information.

Exclusion criteria: 1. Patients who initially
underwent total hysterectomy and had a sec-
ond operation after EC was pathologically con-
firmed; 2. Patients with pre-operative radiother-
apy, chemotherapy, or hormonal therapy; 3.
Patients with other concurrent malignant neo-
plastic diseases; 4. Patients with recent sys-
temic or local infectious lesions; 5. Patients
who had received antibiotic or antiviral treat-
ment within two weeks prior to the surgery; 6.
Patients with hematological disorders or auto-
immune diseases prior to the operation.

Data collection

Clinical data, including basic demographic
information, pathological types, and staging of
patients, were collected. The main research
variables included age, body mass index (BMI),
pathological grading, myometrial invasion (Ml),
lymphatic vascular space invasion (LVSI), sta-
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tus of estrogen receptor (ER) and progesterone
receptor (PR) status, tumor size, and LNM.

Machine-learning model building

The machine learning algorithms used for
model development included Least Absolute
Shrinkage and Selection Operator (LASSO),
Support Vector Machine (SVM), Extreme Gra-
dient Boosting (XGBoost), and RandomForest.
To guarantee the models’ optimal performance,
grid search cross-validation (CV) was employed
for selecting the optimal hyper-parameters for
each algorithm. This process entailed iterative
adjustment of parameters to identify the opti-
mal combination, thus maximizing prediction
ACC and minimizing the risk of over-fitting. For
the evaluation of the models’ predictive capac-
ity, a 10-fold CV was carried out on both the
training and the validation sets. Using this tech-
nique, the data were partitioned into ten sub-
sets, nine of which were utilized for model train-
ing and the rest for performance evaluation. A
robust assessment of the models’ generaliz-
ability was obtained by repeating this process
across subsets.

Model assessment

The models’ performance was evaluated using
several approaches, including the receiver
operating characteristic (ROC) curve, the area
under the curve (AUC), sensitivity (SEN), speci-
ficity (SPE), ACC, and precision. The ROC curve
visually represents the trade-off between the
true (SEN) and false positive rates (1-SPE)
across classification thresholds. The AUC
stands for the model’'s overall discriminatory
ability, while SEN, SPE, ACC, and precision
assess the model’s performance from various
evaluation dimensions. Additionally, decision
curve analysis (DCA) enables a comparison of
predictive performance and potential practical
utility among different model by considering
the actual decision-making risks and the sele-
ction of prediction probability thresholds.
Calibration curves were also used to assess
the models’ predictive ability and the consis-
tency with actual outcomes.

Outcome measurements
1. Analysis of characteristics of LNM patients:

Disparities in characteristics between LNM and
non-LNM groups in both the training and valida-
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tion sets were compared. 2. Identification of
independent risk factors for LNM: Independent
risk factors influencing LNM were identified
through multivariate Logistic regression analy-
sis. 3. Feature selection and optimization:
Feature selection and model optimization were
conducted using LASSO, XGBoost, Random-
Forest, and SVM models. 4. Predictive perfor-
mance evaluation: The predictive performance
of each machine-learning model was appraised
through the ROC curve, AUC, SEN, SPE, and
other relevant metrics. 5. Calibration capacity
and consistency evaluation: The consistency of
the model-predicted values with actual out-
comes was examined using the calibration
curves. 6. Clinical practicality analysis: The clin-
ical applicability of each model was assessed
through DCA.

Statistical analyses

The statistical analysis for this study was con-
ducted in two parts. First, SPSS 26.0 was uti-
lized for basic data statistical analyses, employ-
ing t-tests for normally distributed continuous
variables (expressed as mean + standard devi-
ation) and rank-sum tests for non-normally dis-
tributed continuous variables (expressed as
quartiles). Categorical variables were analyzed
using chi-square tests, and multivariate Logistic
regression analysis was conducted to deter-
mine independent factors associated with
LNM. Further advanced analysis was per-
formed using R language (version 4.3.2). For
LASSO regression analysis, the glmnet pack-
age [16] was utilized. The XGBoost package
[17] was implemented for the XGBoost model.
The RandomForest model was constructed by
means of the randomForest package [18], and
for the SVM model, the e1071 package [19]
was utilized. The models’ performance was
evaluated through the employment of ROC
curves and AUCs. The ggplot2 package was
employed for the tasks associated with graph
plotting. Additionally, the cowplot package was
utilized to adjust the format and optimize the
layout of the graphs, enabling clear comparison
of the models. For DCA, the rmda package was
employed to evaluate the models’ clinical appli-
cability and the rms package to generate the
calibration curve for assessing the consistency
between the predicted probabilities and the
actual observed results. A P-value less than
0.05 signified the presence of a statistical
difference.
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Results

Comparison of baseline data between training
and validation sets

No significant differences were found between
the training (n = 378) and validation (n = 163)
sets in terms of age (P = 0.606), BMI (P =
0.971), prevalence of diabetes (P = 0.411),
hypertension (P = 0.130), menopausal status
(P = 0.884), FIGO staging (P = 0.939), patho-
logical grading (P = 0.346), depth of MI (P =
0.544), LVSI (P = 0.800), ER status (P = 0.504),
PR status (P = 0.458), tumor size (P = 0.718),
pathological type (P = 0.479), and LNM (P =
0.679). Refer to Table 1 for detailed data.

Comparison of baseline data between LNM
and non-LNM patients in both training and
validation sets

As indicated by Table 2, significant differences
were observed between LNM and non-LNM
groups in the training set in terms of FIGO
staging (P < 0.001), pathological grading (P <
0.001), depth of MI (P < 0.001), LVSI (P <
0.001), ER (P = 0.001), PR (P = 0.001), tumor
size (P = 0.010), and pathological type (P =
0.001). In the validation set, these variables
also exhibited significant differences between
LNM and non-LNM groups (all P < 0.05).

Multivariate logistic regression analysis results

The results (Table 3) demonstrated that FIGO
staging (OR = 6.452, 95% Cl: 2.555-16.292, P
< 0.001), pathological grade (OR = 0.04, 95%
Cl: 0.016-0.097, P < 0.001), depth of MI (OR =
13.169, 95% Cl: 3.646-47.561, P < 0.001),
LVSI (OR = 4.821, 95% Cl: 1.682-13.818, P =
0.003), and pathological type (OR = 0.259,
95% CI: 0.095-0.709, P = 0.009) were signifi-
cant independent factors influencing LNM,
while ER, PR, and tumor size did not show sig-
nificant correlation with LNM (all P > 0.05).

Feature selection and optimization of ma-
chine-learning models

Based on the five selected feature factors, four
machine-learning models - LASSO, XGBoost,
RandomForest, and SVM - were constructed.
The LASSO model was optimized by selecting
the optimal penalty parameter (A) using cross-
validation (Figure 1A, 1B). In the XGBoost
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model, increasing the number of features
reduced the error rate, achieving an optimal
point at a specific feature count (Figure 1C). For
the RandomForest model, error rates varied
with the number of iterations and trees, helping
identify optimal parameters (Figure 1D, 1E). All
models incorporated the five feature factors,
except SVM, which excluded pathological type
(Figure 2).

Comparison of ROC curves in training and vali-
dation sets

The XGBoost model offered the best perfor-
mance in the training set, with an AUC of 0.876
(95% CI: 0.825-0.926), relatively high SPE
(85.57%) and SEN (78.08%), and an overall ACC
of 84.13%. The LASSO and RandomForest
models showed similar performance, with AUCs
of 0.858 and 0.853, respectively, an identical
SPE of 86.89%, a SEN of 78.08%, and an over-
all ACC of 85.19%. Although the SVM model
had the lowest AUC of 0.732 (95% CI: 0.647-
0.817), it had the highest SPE of 93.11% and
an overall ACC of 87.30% (Table 4; Figure 3A).

The XGBoost model still performed outstand-
ingly in the validation set, with an AUC of 0.832
(95% Cl: 0.743-0.920), a SPE of 86.05%, a SEN
of 70.59%, and an overall ACC of 82.82%. The
LASSO model showed an AUC of 0.81 (95% CI:
0.722-0.897), a SPE of 88.37%, a SEN of
67.65%, and an overall ACC of 84.05%. The
AUC of the RandomForest model was 0.812
(95% CI: 0.725-0.899), the SPE was 86.05%,
the SEN was 70.59%, and the overall ACC was
82.82%. The SVM model achieved an AUC of
0.701 (95% CI: 0.577-0.826) in the validation
set but still maintained the highest SPE
(96.90%) and an overall ACC of 87.73% (Table
5; Figure 3B).

Calibration and decision curve analysis (DCA)

In both the training and validation sets, the cali-
bration curves indicated that the performances
of LASSO, XGBoost, RandomForest, and SVM
models were close to the ideal calibration cur-
ve, suggesting a favorable consistency between
the predicted and actual probabilities (Figure
4). Notably, the LASSO and XGBoost models
demonstrated the lowest mean absolute error
(MAE), with a value of 0.017 for the former and
0.027 for the latter, further corroborating their
reliability in model calibration. In the DCA, the
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Table 1. Comparison of baseline data between training set and validation set (7:3)

Variable Training set (n = 378) Validation set (n = 163) p_value
Age 53.97+9.92 53.504+9.68 0.606
Body mass index 24.07+2.21 24.06+2.06 0.971
Diabetes X2 X
Without 309 138 0.411
With 69 25
Hypertension
Without 286 133 0.130
With 92 30
Pausimenia
No 102 43 0.884
Yes 276 120
FIGO staging
| 28 11 0.939
Il 125 58
1 126 54
% 99 40
Pathological grading
Gl 143 60 0.346
G2 117 60
G3 118 43
Myometrial invasion
<1/2 113 53 0.544
>1/2 265 110
LVSI
Without 331 144 0.800
With 47 19
Estrogen receptor
Negative 39 20 0.504
Positive 339 143
Progesterone receptor
Negative 53 19 0.458
Positive 325 144
Tumor size
<2cm 143 59 0.718
>2cm 235 104
Pathological type
Others 28 15 0.479
Endometrioid adenocarcinoma 350 148
LNM
Without 305 129 0.679
With 73 34

Note: FIGO: International Federation of Gynecology and Obstetrics; LVSI: lymphatic vascular space invasion; LNM, lymph node

metastasis.

LASSO, XGBoost, and RandomForest models
demonstrated relatively high net benefits
across many threshold ranges, particularly in
the validation set, suggesting their greater
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potential value in clinical applications. Although
the SVM model performed relatively less effec-
tively, it still retained certain application value
within specific threshold ranges (Figure 5).
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Table 2. Comparison of baseline data between LNM and non-LNM patients in both training and valida-

tion sets
Training set Validation set
Variable Non-LNM group LNM grou Non-LNM group LNM grou
(n= 30gs) i (n =g73)p pvalue 12%) P (n =g34)p pvalue
Age 54.05+10.15 53.63+8.96 0.727 53.55+9.70 53.29+9.74 0.892
Body mass index 24.02+2.13 24.25+2.54 0.486 24.02+2.10 24.22+1.94 0.605
Diabetes
Without 244 65 0.072 112 26 0.136
With 61 8 17 8
Hypertension
Without 228 58 0.401 106 27 0.712
With 77 15 23 7
Pausimenia
No 82 20 0.929 32 11 0.374
Yes 223 53 97 23
FIGO staging
| 19 9 <0.001 6 5 <0.001
Il 116 9 53 5
1 105 21 45 9
v 65 34 25 15
Pathological grading
Gl 124 19 <0.001 53 7 0.047
G2 79 38 42 18
G3 102 16 34 9
Myometrial invasion
<1/2 108 5 <0.001 49 4 0.004
>1/2 197 68 80 30
LVSI
Without 284 47 <0.001 121 23 <0.001
With 21 26 8 11
Estrogen receptor
Negative 24 15 0.001 11 9 0.005
Positive 281 58 118 25
Progesterone receptor
Negative 34 19 0.001 11 8 0.015
Positive 271 54 118 26
Tumor size
<2cm 125 18 0.010 51 8 0.084
>2cm 180 55 78 26
Pathological type
Others 16 12 0.001 7 8 0.001
Endometrioid adenocarcinoma 289 61 122 26

Note: FIGO: International Federation of Gynecology and Obstetrics; LVSI: lymphatic vascular space invasion; LNM: lymph node

metastasis.

Nomogram based on five feature factors

The nomogram serves to calculate the total risk
score for individual patients and predict the
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probability of a specific clinical outcome (such
as disease recurrence or metastasis). In the fig-
ure, each feature factor corresponds to an
independent scale line. Based on the scale line
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Table 3. Multivariate logistic regression analysis

Variable B Standard error X2 P OR Lower bound Upper bound
FIGO staging 1.864 0.473 15.565 <0.001 6.452 2.555 16.292
Pathological grading -3.225 0.454 50.482 < 0.001 0.04 0.016 0.097
Myometrial invasion 2.578 0.655 15.481 <0.001 13.169 3.646 47.561
LVSI 1.573 0.537 8.57 0.003 4.821 1.682 13.818
Estrogen receptor 0.562 0.616 0.833 0.362 1.754 0.525 5.867
Progesterone receptor -0.196 0.554 0.125 0.723 0.822 0.277 2.435
Tumor size 0.657 0.43 2.339 0.126 1.929 0.831 4.478
Pathological type -1.349 0.513 6.923  0.009 0.259 0.095 0.709

Note: FIGO: International Federation of Gynecology and Obstetrics; LVSI: lymphatic vascular space invasion.
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Figure 1. Feature factor selection in four machine-learning models. A. Path diagram of penalty parameter selec-
tion in the LASSO model. This figure shows the model’s variation of mean squared error (MSE) with the change of
regularization parameter (A). The vertical dashed line indicates the optimal A determined via cross-validation. B.
Coefficient path diagram in the LASSO model. This graph shows how the coefficients of different features change at
different A values, helping to determine which variables are retained during regularization. C. Influence of different
feature quantities on the error rate in the XGBoost model. This figure illustrates how the model’s error rate varies as
the selected feature number elevates and indicates the optimal feature number (i.e. the point with the minimum er-
ror rate). D. Variation of total error with the number of iterations in the RandomForest model. The red and blue lines
in the figure represent the error rates of the training and validation sets, respectively, demonstrating the model’s
performance as the number of iterations increases. E. Relationship between the number of trees and the error rate
in the RandomForest model. This graph presents the trend of error rate variation as the number of trees in the Ran-
domForest increases in both the training and validation sets. Note: LASSO: Least Absolute Shrinkage and Selection
Operator; SVM: Support Vector Machine; XGBoost: Extreme Gradient Boosting.
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Figure 2. Incorporation of feature factors in machine-learning models. A. Incorporation of feature factors in the LAS-
SO model. B. Incorporation of feature factors in the SVM model. C. Incorporation of feature factors in the XGBoost
model. D. Incorporation of feature factors in the RandomForest model. Note: LASSO: Least Absolute Shrinkage and
Selection Operator; SVM: Support Vector Machine; XGBoost: Extreme Gradient Boosting.

corresponding to each feature factor, clinicians
can determine the specific score for a patient
based on their condition. These scores are
summed to yield the total score, which corre-
sponds to the probability line at the bottom of
the nomogram, showing the predicted probabil-
ity of the patient experiencing this clinical out-
come. For example, the higher the scores of
FIGO staging, pathological grading, and MlI, the
greater the risk for the patient. In this way, the
nomogram can assist clinicians in making more
precise risk assessments and treatment deci-
sions for individual patients (Figure 6).
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Discussion

In this study, we successfully built and opti-
mized several machine-learning models for pre-
dicting lymph node metastasis (LNM) risk in
endometrial cancer (EC). By analyzing clinico-
pathological data and employing multivariate
Logistic regression, we identified independent
risk factors strongly linked to LNM. Four ma-
chine-learning algorithms, namely the LASSO,
XGBoost, RandomForest, and SVM, were uti-
lized for feature selection and model construc-
tion. Of them, the XGBoost model outperformed

Am J Cancer Res 2024;14(12):5769-5783
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Table 4. ROC curve parameters of models in the training set

Marker AUC  Cl_lower_upper Specificity Sensitivity Youden_index Cut_off Accuracy Precision F1_Score
LASSO 0.858 0.809-0.906 86.89%  78.08% 64.97% 0.226 85.19% 78.08%  67.06%
XGBoost 0.876  0.825-0.926 85.57%  78.08% 63.66% 0.473 84.13% 78.08%  65.52%
RandomForest 0.853  0.799-0.906 86.89%  78.08% 64.97% 0.104 85.19% 78.08%  67.06%
SMV 0.732  0.647-0.817 93.11%  63.01% 56.13% 0.124 87.30% 63.01% 65.71%

Note: AUC: area under the curve; LASSO: Least Absolute Shrinkage and Selection Operator; XGBoost: Extreme Gradient Boosting; SVM: Support

Vector Machine.

A Training set
o
8 -
o _
o
—~ o |
x e
=
=
2 'f lasso : 85.7826
S 944 Xgboost : 87.5612
.! RandomForest : 85.2571
i SMV : 73.2136
s |
I !|
i
i
J
o
T T T T T
100 80 60 40 20 0

Specificity (%)

Sensitivity (%)

Validation set

o
S -
o _
@D
o _
©
lasso : 80.9622
f Xgboost : 83.1509
RandomForest : 81.2244
SMV :70.1322
o
«
o -
T T T T T
80 60 40 20 0

Specificity (%)

Figure 3. Comparison of ROC curves of each model in training and validation sets. A. ROC curves in the training
set, demonstrating the classification performance of various machine learning models, including LASSO, XGBoost,
RandomForest, and SVM models. B. ROC curves in the validation set, depicting the classification performance of
LASSO, XGBoost, RandomForest, and SVM models. Note: LASSO: Least Absolute Shrinkage and Selection Operator;
XGBoost: Extreme Gradient Boosting; SVM: Support Vector Machine.

Table 5. ROC curve parameters of models in the validation set

Marker AUC  Cl_lower_upper Specificity Sensitivity Youden_index Cut_off Accuracy Precision F1_Score
LASSO 0.81  0.722-0.897 88.37% 67.65% 56.02% 0.226 84.05%  67.65% 63.89%
XGBoost 0.832  0.743-0.920 86.05% 70.59% 56.63% 0.464 82.82%  70.59% 63.16%
RandomForest 0.812 0.725-0.899 86.05% 70.59% 56.63% 0.021 82.82% 70.59% 63.16%
SMV 0.701  0.577-0.826 96.90% 52.94% 49.84% 0.124 87.73% 52.94% 64.29%

Note: ROC: receiver operating characteristic; LASSO: Least Absolute Shrinkage and Selection Operator; XGBoost: Extreme Gradient Boosting;

SVM: Support Vector Machine.

others across all performance metrics, with an
AUC of 0.876 in the training set and 0.832 in
the validation set, demonstrating its high dis-
criminative ability and predictive ACC. Li et al.
[20] found that LVSI, deep MlI, and CA125 levels
were intimately associated with LNM in EC
patients. Sari et al. [21] also identified LVSI and
pelvic LNM as independent risk factors for
paraaortic LNM in EC. Additionally, calibration
curve analysis and DCA further validated the
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predictive ability and clinical application value
of the XGBoost model. Within most of the risk
threshold ranges, the XGBoost model exhibited
relatively high net benefits, suggesting its
potential application value in clinical decision-
making support.

In comparison to previous studies, our research

not only adopted multiple machine-learning
algorithms but also enhanced the models’ pre-
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Figure 4. Calibration curves of the four models in training and validation sets. A, B. Calibration curves of the LASSO model in the training set and the validation set,
respectively, illustrating the fitting between the predicted probabilities and the actual probabilities. C, D. Calibration curves of the XGBoost model in the training
set and the validation set, respectively, demonstrating the fitting between the predicted probabilities and the actual probabilities. E, F. Calibration curves of the
RandomForest model in the training set and the validation set, respectively, depicting the fitting between the predicted probabilities and the actual probabilities.
G, H. Calibration curves of the SVM model in the training set and the validation set, respectively, presenting the fitting between the predicted probabilities and the

actual probabilities.
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Figure 6. A nomogram based on five feature factors.

dictive performance through systematic fea- discrepancies in other studies may be attribut-
ture selection and model optimization. Parti- ed to differences in sample sizes, study
cularly, the XGBoost model outperformed other designs, feature selection processes, and mod-
models in multiple indicators such as AUC, SPE, el-tuning strategies. Furthermore, the specific
and SEN. This is consistent with findings from a variables selected in this study, such as FIGO
systematic review and meta-analysis by Ren et staging, pathological grading, and depth of Ml,
al. [22], which indicated that machine-learning demonstrated significant roles in predicting
models combining clinical and radiomics fea- LNM, with their predictive implications being
tures had higher predictive efficiency in predict- widely acknowledged in other related studies.
ing LNM. While our results align with this trend, For instance, Sun et al. [23] identified positive
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peritoneal cytology, cervical stromal infiltration,
Ml > 1/2, and LVSI as independent risk factors
for pelvic LNM in non-endometrioid adenocarci-
noma patients. Besides, Zhang et al. [24] point-
ed out that EC patients with a tumor diameter
of > 2 cm, a BMI of > 24 kg/m?, low-grade dif-
ferentiation, and cervical stromal invasion had
an elevated risk of sentinel LNM. In summary,
our study reaffirms the effectiveness of
advanced feature selection and model optimi-
zation to improve LNM prediction accuracy,
with the XGBoost achieving the most robust
performance.

In this study, the XGBoost, LASSO, and
RandomForest models all demonstrated rela-
tively high predictive capabilities in assessing
the LNM risk in EC patients. However, the
XGBoost model significantly outperformed the
other models in terms of the AUC and other
evaluation indicators. Specifically, the AUC was
0.876 in the training set and 0.832 in the vali-
dation set in the XGBoost model, indicating a
relatively high discriminative ability and stabili-
ty. Moreover, the XGBoost model exhibited
excellent performance in terms of SPE and
SEN, further validating its applicability and
robustness across different data sets. In con-
trast, while the LASSO and RandomForest mod-
els also showed solid predictive performance,
their AUCs and other indicators were slightly
lower compared to those of the XGBoost model.
Yang et al. [25] also showed that, when combin-
ing radiomics features and clinical characteris-
tics, the XGBoost model had superior perfor-
mance in predicting LNM in EC. Overall,
XGBoost was confirmed as the optimal model
for accurate and stable LNM prediction.

Machine-learning algorithms, especially XG-
Boost, excel at handling high-dimensional data,
automatically processing missing values, and
selecting relevant features. These capabilities
allows XGBoost to better capture complex rela-
tionships in the data and effectively avoid over-
fitting during model building [26, 27]. Compared
with traditional statistical methods, machine-
learning algorithms can be trained through mul-
tiple iterations to optimize model parameters,
thereby significantly enhancing prediction ACC
and stability [28]. Moreover, XGBoost’s ability
to handle nonlinear relationships is particularly
valuable in medical predictive models, as the
relationships between many biometrics and
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clinical features are often complex and nonlin-
ear [29]. The study by Miller et al. [30] highlight-
ed the potential of machine-learning algorithms
to improve predictive performance when com-
bining clinical and molecular features. These
advantages highlight XGBoost’s strong poten-
tial in managing complex medical data for
robust predictive modeling.

In the feature-screening procedure of this stu-
dy, FIGO staging, pathological grading, depth of
MI, LVSI, and pathological type emerged as
critical factors in predicting LNM. Multivariate
Logistic regression analysis demonstrated that
these variables were strongly correlated with
the LNM risk and were uniformly selected as
crucial features by the XGBoost, LASSO, and
RandomForest models. These variables have
also been extensively verified to possess
important predictive values in other investiga-
tions. For instances, Ueno et al. [31] revealed
that LVSI, pathological grading, and tumor size
played an important role in predicting LNM in
EC, which is in accordance with our findings. In
addition, Schivardi et al. [32] found that the
combination of molecular typing and pathologi-
cal features could significantly enhance the
predictive capacity for the recurrence risk of EC
patients, particularly in cases with LNM. Our
study further validates the importance of these
variables in accurately predicting LNM risk.

The significance of these variables in our mod-
els may be attributed to their direct reflection of
tumor aggressiveness and metastatic poten-
tial. LVSI has been widely recognized as an
important predictor of LNM as a measure of
tumor invasion through blood vessels and lym-
phatic vessels [33]. The depth of Ml reflects the
spread of the tumor within the uterine wall, and
deep Ml tends to predict a higher risk of metas-
tasis [34]. Pathological types and pathological
grading reveal the biological behavior and
malignancy degree of the tumor, which have
been proven to be strongly related to patient
outcomes in multiple studies. Huang et al. [35]
constructed a combined ratio model by analyz-
ing ERa, PR, P53, and Ki67, which showed sig-
nificant ACC in predicting the LNM risk in low-
risk EC patients, further supporting the findings
of this study. Zanfagnin et al. [36] also noted
that LVSI, gross pelvic LNM, and uterine serous
carcinoma, which were also identified by this
study to be key variables in predicting LNM in
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EC, were closely linked to the occurrence of
multiple LNM. Collectively, these factors en-
hance the model's capacity to reflect tumor
characteristics and aid in predicting LNM with
greater precision.

Limitations and prospects

Despite the construction of an effective LNM
risk prediction model via multiple machine-
learning algorithms in this study, several limita-
tions remain. First of all, the relatively limited
sample size and the data being derived from a
single center may potentially affect the model’s
generalizability and its applicability across
diverse populations. The absence of external
validation also constrains the model’s perfor-
mance in other independent data sets. Addi-
tionally, variations in ethnicity and clinical back-
grounds might exert an influence on the mod-
el's predictive performance. Future research
should validate the model’s robustness using
multi-center data and introduce novel clinical
or molecular-biological features for further
model optimization, thereby broadening its
application potential in other cancer types.

Conclusion

This study successfully constructed EC LNM
risk prediction models using multiple machine-
learning algorithms, and XGBoost demonstrat-
ed significant potential in clinical applications.
By integrating a substantial amount of clinical
and pathological data, the XGBoost model can
provide valuable support for clinicians in accu-
rate risk evaluation and decision-making. This
approach has the potential to improve patient
prognosis and treatment outcomes by enabling
more precise, individualized management of EC
patients at risk for LNM.
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