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Abstract: This study aims to construct and optimize risk prediction models for lymph node metastasis (LNM) in 
endometrial carcinoma (EC) patients, thus improving the identification of patients at high risk of LNM and further 
providing accurate support for clinical decision-making. This retrospective analysis included 541 cases of EC treated 
at The First Affiliated Hospital, Jinan University between January 2017 and January 2022. Various clinical and patho-
logical variables were incorporated, including age, body mass index (BMI), pathological grading, myometrial invasion, 
lymphovascular space invasion (LVSI), estrogen receptor (ER) and progesterone receptor (PR) levels, and tumor size. 
Multivariate Logistic regression analysis was used to identify independent risk factors for LNM. Subsequently, the 
Least Absolute Shrinkage and Selection Operator (LASSO), Extreme Gradient Boosting (XGBoost), RandomForest, 
and Support Vector Machine (SVM), all machine-learning algorithms, were adopted to select features and build 
models. The XGBoost model gave the best performance among all models, with areas under the curve (AUCs) of 
0.876 and 0.832 for training and validation sets, respectively, suggesting its high discriminatory ability and predic-
tion accuracy. Moreover, the calibration curve analysis further verified the consistency of the model-predicted values 
with the actual results, indicating the model’s good applicability at various risk levels. According to the decision 
curve analysis, the XGBoost model showed high net benefits within most risk-threshold ranges, indicating its sub-
stantial practical value in clinical applications. Conclusively, this study successfully builds machine-learning models 
based on multiple clinical and pathological features, which can effectively predict the LNM risk in EC patients. The 
model is expected to provide important references for clinicians in surgical decision-making and the formulation of 
individualized treatment plans, thereby enhancing patient outcomes.
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Introduction

Endometrial carcinoma (EC) is one of the most 
commonly malignancies of the female repro-
ductive system worldwide, ranking second in 
prevalence among such malignancies in China 
[1]. According to global cancer statistics, 
around 420,000 new EC cases were reported 
globally in 2020, accounting for 4.4% of all 
newly diagnosed cancer cases among women 
[2]. The annual EC incidence in China is approxi-
mately 16 per 100,000 women, with a notable 
rise in recent years, especially among younger 
women [3]. Research indicates that a woman’s 
lifetime risk of developing EC is about 3%, a fig-

ure that continues to increase globally [4]. EC 
has a high metastasis rate, with lymphatic 
metastasis being one of the most significant 
routes. Lymph node (LN) metastasis (LNM) not 
only influences the pathological staging and 
treatment decisions but also plays a critical role 
in prognosis and survival rates [5]. Consequen- 
tly, analyzing the influencing factors of LNM is of 
great significance for evaluating patients’ prog-
noses and determining the necessity of LN 
dissection.

Currently, total abdominal hysterectomy plus 
bilateral adnexectomy and evaluation of LNs 
(pelvic and para-aortic LNs) is the standard sur-
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gical modality for EC patients [6]. Precise LN 
assessment and dissection are crucial for 
determining the extent of the lesion, accurate 
staging, prognostic evaluation, and guiding 
subsequent treatment. However, the clinical 
value of lymphadenectomy remains somewhat 
controversial [7]. To a certain extent, lymphad-
enectomy does not reduce survival but may 
heighten the risk of intraoperative and postop-
erative complications, such as vascular injury, 
lymphocele, and lower-limb lymphedema, in EC 
patients [8]. Since the risks and benefits of 
lymphadenectomy vary among patients, effec-
tively identifying high-risk factors for LNM to 
help clinicians select the appropriate scope of 
surgery is a key focus of research [9]. The prog-
nosis of EC is affected by multiple factors, 
including pathological type, age, and molecular 
characteristics. Traditionally, EC is classified as 
either estrogen- or nonestrogen-dependent 
[10].

Despite the demonstrated potential of molecu-
lar typing for prognostic evaluation, its wide-
spread adoption in China has been limited, pri-
marily due to the nascent stage of its clinical 
application and challenges related to the stan-
dardization of detection methods and econom-
ic factors [11]. Consequently, timely identifica-
tion of high-risk populations and implementa-
tion of proactive treatment strategies are cru-
cial for improving patient prognosis. As big data 
and machine learning advance, the construc-
tion of visual statistical models, such as nomo-
grams, has been extensively applied in the 
prognostic prediction of various cancers [12-
14]. However, studies specifically focused on 
predicting LNM in EC remain relatively scarce, 
with a limited sample size [15].

This study is dedicated to building an innova-
tive EC LNM risk prediction model that inte-
grates multiple clinical factors and is optimized 
using advanced machine learning algorithms. 
Unlike previous studies, we not only take tradi-
tional clinical and pathological characteristics 
into account but also introduce a systematic 
integration approach based on multivariate 
analysis to enhance prediction accuracy (ACC) 
and the capacity to guide individualized treat-
ment. Through this approach, this study offers 
a new perspective for LNM risk assessment 
and provides robust support for precise treat-
ment and preoperative decision-making in EC.

Methods and materials

Research design

This retrospective cohort study included 541 
cases of EC diagnosed and treated at The First 
Affiliated Hospital, Jinan University between 
January 2017 and January 2022. For model 
development and validation, the samples were 
randomly assigned to a training set (n = 378) 
and a validation set (n = 163) in a 7:3 ratio. The 
training set served for model building and opti-
mization, while the validation set served to 
assess the models’ predictive performance 
and robustness. This grouping approach en- 
sures adequate training during the model 
development and provides a reliable indepen-
dent evaluation during validation, thereby 
ensuring the external validity of the model. This 
study was approved by The First Affiliated 
Hospital, Jinan University.

Inclusion and exclusion criteria

Inclusion criteria: 1. Patients pathologically 
diagnosed with EC, including endometrioid ade-
nocarcinoma and serous, mucinous, clear-cell, 
and undifferentiated carcinomas, confirmed by 
diagnostic curettage; 2. Patients who under-
went comprehensive staging surgery and were 
confirmed as EC by postoperative pathological 
examination; 3. Patients with complete general 
and pathological information.

Exclusion criteria: 1. Patients who initially 
underwent total hysterectomy and had a sec-
ond operation after EC was pathologically con-
firmed; 2. Patients with pre-operative radiother-
apy, chemotherapy, or hormonal therapy; 3. 
Patients with other concurrent malignant neo-
plastic diseases; 4. Patients with recent sys-
temic or local infectious lesions; 5. Patients 
who had received antibiotic or antiviral treat-
ment within two weeks prior to the surgery; 6. 
Patients with hematological disorders or auto-
immune diseases prior to the operation.

Data collection

Clinical data, including basic demographic 
information, pathological types, and staging of 
patients, were collected. The main research 
variables included age, body mass index (BMI), 
pathological grading, myometrial invasion (MI), 
lymphatic vascular space invasion (LVSI), sta-



Risk factors for lymph node metastasis in endometrial cancer

5771 Am J Cancer Res 2024;14(12):5769-5783

tus of estrogen receptor (ER) and progesterone 
receptor (PR) status, tumor size, and LNM.

Machine-learning model building

The machine learning algorithms used for 
model development included Least Absolute 
Shrinkage and Selection Operator (LASSO), 
Support Vector Machine (SVM), Extreme Gra- 
dient Boosting (XGBoost), and RandomForest. 
To guarantee the models’ optimal performance, 
grid search cross-validation (CV) was employed 
for selecting the optimal hyper-parameters for 
each algorithm. This process entailed iterative 
adjustment of parameters to identify the opti-
mal combination, thus maximizing prediction 
ACC and minimizing the risk of over-fitting. For 
the evaluation of the models’ predictive capac-
ity, a 10-fold CV was carried out on both the 
training and the validation sets. Using this tech-
nique, the data were partitioned into ten sub-
sets, nine of which were utilized for model train-
ing and the rest for performance evaluation. A 
robust assessment of the models’ generaliz-
ability was obtained by repeating this process 
across subsets.

Model assessment

The models’ performance was evaluated using 
several approaches, including the receiver 
operating characteristic (ROC) curve, the area 
under the curve (AUC), sensitivity (SEN), speci-
ficity (SPE), ACC, and precision. The ROC curve 
visually represents the trade-off between the 
true (SEN) and false positive rates (1-SPE) 
across classification thresholds. The AUC 
stands for the model’s overall discriminatory 
ability, while SEN, SPE, ACC, and precision 
assess the model’s performance from various 
evaluation dimensions. Additionally, decision 
curve analysis (DCA) enables a comparison of 
predictive performance and potential practical 
utility among different model by considering 
the actual decision-making risks and the sele- 
ction of prediction probability thresholds. 
Calibration curves were also used to assess 
the models’ predictive ability and the consis-
tency with actual outcomes.

Outcome measurements

1. Analysis of characteristics of LNM patients: 
Disparities in characteristics between LNM and 
non-LNM groups in both the training and valida-

tion sets were compared. 2. Identification of 
independent risk factors for LNM: Independent 
risk factors influencing LNM were identified 
through multivariate Logistic regression analy-
sis. 3. Feature selection and optimization: 
Feature selection and model optimization were 
conducted using LASSO, XGBoost, Random- 
Forest, and SVM models. 4. Predictive perfor-
mance evaluation: The predictive performance 
of each machine-learning model was appraised 
through the ROC curve, AUC, SEN, SPE, and 
other relevant metrics. 5. Calibration capacity 
and consistency evaluation: The consistency of 
the model-predicted values with actual out-
comes was examined using the calibration 
curves. 6. Clinical practicality analysis: The clin-
ical applicability of each model was assessed 
through DCA.

Statistical analyses

The statistical analysis for this study was con-
ducted in two parts. First, SPSS 26.0 was uti-
lized for basic data statistical analyses, employ-
ing t-tests for normally distributed continuous 
variables (expressed as mean ± standard devi-
ation) and rank-sum tests for non-normally dis-
tributed continuous variables (expressed as 
quartiles). Categorical variables were analyzed 
using chi-square tests, and multivariate Logistic 
regression analysis was conducted to deter-
mine independent factors associated with 
LNM. Further advanced analysis was per-
formed using R language (version 4.3.2). For 
LASSO regression analysis, the glmnet pack-
age [16] was utilized. The XGBoost package 
[17] was implemented for the XGBoost model. 
The RandomForest model was constructed by 
means of the randomForest package [18], and 
for the SVM model, the e1071 package [19] 
was utilized. The models’ performance was 
evaluated through the employment of ROC 
curves and AUCs. The ggplot2 package was 
employed for the tasks associated with graph 
plotting. Additionally, the cowplot package was 
utilized to adjust the format and optimize the 
layout of the graphs, enabling clear comparison 
of the models. For DCA, the rmda package was 
employed to evaluate the models’ clinical appli-
cability and the rms package to generate the 
calibration curve for assessing the consistency 
between the predicted probabilities and the 
actual observed results. A P-value less than 
0.05 signified the presence of a statistical 
difference.
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Results

Comparison of baseline data between training 
and validation sets

No significant differences were found between 
the training (n = 378) and validation (n = 163) 
sets in terms of age (P = 0.606), BMI (P = 
0.971), prevalence of diabetes (P = 0.411), 
hypertension (P = 0.130), menopausal status 
(P = 0.884), FIGO staging (P = 0.939), patho-
logical grading (P = 0.346), depth of MI (P = 
0.544), LVSI (P = 0.800), ER status (P = 0.504), 
PR status (P = 0.458), tumor size (P = 0.718), 
pathological type (P = 0.479), and LNM (P = 
0.679). Refer to Table 1 for detailed data. 

Comparison of baseline data between LNM 
and non-LNM patients in both training and 
validation sets

As indicated by Table 2, significant differences 
were observed between LNM and non-LNM 
groups in the training set in terms of FIGO  
staging (P < 0.001), pathological grading (P < 
0.001), depth of MI (P < 0.001), LVSI (P < 
0.001), ER (P = 0.001), PR (P = 0.001), tumor 
size (P = 0.010), and pathological type (P = 
0.001). In the validation set, these variables 
also exhibited significant differences between 
LNM and non-LNM groups (all P < 0.05). 

Multivariate logistic regression analysis results

The results (Table 3) demonstrated that FIGO 
staging (OR = 6.452, 95% CI: 2.555-16.292, P 
< 0.001), pathological grade (OR = 0.04, 95% 
CI: 0.016-0.097, P < 0.001), depth of MI (OR = 
13.169, 95% CI: 3.646-47.561, P < 0.001), 
LVSI (OR = 4.821, 95% CI: 1.682-13.818, P = 
0.003), and pathological type (OR = 0.259, 
95% CI: 0.095-0.709, P = 0.009) were signifi-
cant independent factors influencing LNM, 
while ER, PR, and tumor size did not show sig-
nificant correlation with LNM (all P > 0.05).

Feature selection and optimization of ma-
chine-learning models

Based on the five selected feature factors, four 
machine-learning models - LASSO, XGBoost, 
RandomForest, and SVM - were constructed. 
The LASSO model was optimized by selecting 
the optimal penalty parameter (λ) using cross-
validation (Figure 1A, 1B). In the XGBoost 

model, increasing the number of features 
reduced the error rate, achieving an optimal 
point at a specific feature count (Figure 1C). For 
the RandomForest model, error rates varied 
with the number of iterations and trees, helping 
identify optimal parameters (Figure 1D, 1E). All 
models incorporated the five feature factors, 
except SVM, which excluded pathological type 
(Figure 2).

Comparison of ROC curves in training and vali-
dation sets

The XGBoost model offered the best perfor-
mance in the training set, with an AUC of 0.876 
(95% CI: 0.825-0.926), relatively high SPE 
(85.57%) and SEN (78.08%), and an overall ACC 
of 84.13%. The LASSO and RandomForest 
models showed similar performance, with AUCs 
of 0.858 and 0.853, respectively, an identical 
SPE of 86.89%, a SEN of 78.08%, and an over-
all ACC of 85.19%. Although the SVM model 
had the lowest AUC of 0.732 (95% CI: 0.647-
0.817), it had the highest SPE of 93.11% and 
an overall ACC of 87.30% (Table 4; Figure 3A).

The XGBoost model still performed outstand-
ingly in the validation set, with an AUC of 0.832 
(95% CI: 0.743-0.920), a SPE of 86.05%, a SEN 
of 70.59%, and an overall ACC of 82.82%. The 
LASSO model showed an AUC of 0.81 (95% CI: 
0.722-0.897), a SPE of 88.37%, a SEN of 
67.65%, and an overall ACC of 84.05%. The 
AUC of the RandomForest model was 0.812 
(95% CI: 0.725-0.899), the SPE was 86.05%, 
the SEN was 70.59%, and the overall ACC was 
82.82%. The SVM model achieved an AUC of 
0.701 (95% CI: 0.577-0.826) in the validation 
set but still maintained the highest SPE 
(96.90%) and an overall ACC of 87.73% (Table 
5; Figure 3B).

Calibration and decision curve analysis (DCA)

In both the training and validation sets, the cali-
bration curves indicated that the performances 
of LASSO, XGBoost, RandomForest, and SVM 
models were close to the ideal calibration cur- 
ve, suggesting a favorable consistency between 
the predicted and actual probabilities (Figure 
4). Notably, the LASSO and XGBoost models 
demonstrated the lowest mean absolute error 
(MAE), with a value of 0.017 for the former and 
0.027 for the latter, further corroborating their 
reliability in model calibration. In the DCA, the 
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LASSO, XGBoost, and RandomForest models 
demonstrated relatively high net benefits 
across many threshold ranges, particularly in 
the validation set, suggesting their greater 

potential value in clinical applications. Although 
the SVM model performed relatively less effec-
tively, it still retained certain application value 
within specific threshold ranges (Figure 5).

Table 1. Comparison of baseline data between training set and validation set (7:3)
Variable Training set (n = 378) Validation set (n = 163) p_value
Age 53.97±9.92 53.50±9.68 0.606
Body mass index 24.07±2.21 24.06±2.06 0.971
Diabetes χ2 χ2

    Without 309 138 0.411
    With 69 25
Hypertension
    Without 286 133 0.130
    With 92 30
Pausimenia
    No 102 43 0.884
    Yes 276 120
FIGO staging
    I 28 11 0.939
    II 125 58
    III 126 54
    IV 99 40
Pathological grading
    G1 143 60 0.346
    G2 117 60
    G3 118 43
Myometrial invasion
    < 1/2 113 53 0.544
    ≥ 1/2 265 110
LVSI
    Without 331 144 0.800
    With 47 19
Estrogen receptor
    Negative 39 20 0.504
    Positive 339 143
Progesterone receptor
    Negative 53 19 0.458
    Positive 325 144
Tumor size
    < 2 cm 143 59 0.718
    ≥ 2 cm 235 104
Pathological type
    Others 28 15 0.479
    Endometrioid adenocarcinoma 350 148
LNM
    Without 305 129 0.679
    With 73 34
Note: FIGO: International Federation of Gynecology and Obstetrics; LVSI: lymphatic vascular space invasion; LNM, lymph node 
metastasis.
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Nomogram based on five feature factors

The nomogram serves to calculate the total risk 
score for individual patients and predict the 

probability of a specific clinical outcome (such 
as disease recurrence or metastasis). In the fig-
ure, each feature factor corresponds to an 
independent scale line. Based on the scale line 

Table 2. Comparison of baseline data between LNM and non-LNM patients in both training and valida-
tion sets

Variable
Training set Validation set

Non-LNM group 
(n = 305)

LNM group 
(n = 73) p_value Non-LNM group 

(n = 129)
LNM group 

(n = 34) p_value

Age 54.05±10.15 53.63±8.96 0.727 53.55±9.70 53.29±9.74 0.892
Body mass index 24.02±2.13 24.25±2.54 0.486 24.02±2.10 24.22±1.94 0.605
Diabetes
    Without 244 65 0.072 112 26 0.136
    With 61 8 17 8
Hypertension
    Without 228 58 0.401 106 27 0.712
    With 77 15 23 7
Pausimenia
    No 82 20 0.929 32 11 0.374
    Yes 223 53 97 23
FIGO staging
    I 19 9 < 0.001 6 5 < 0.001
    II 116 9 53 5
    III 105 21 45 9
    IV 65 34 25 15
Pathological grading
    G1 124 19 < 0.001 53 7 0.047
    G2 79 38 42 18
    G3 102 16 34 9
Myometrial invasion
    < 1/2 108 5 < 0.001 49 4 0.004
    ≥ 1/2 197 68 80 30
LVSI
    Without 284 47 < 0.001 121 23 < 0.001
    With 21 26 8 11
Estrogen receptor
    Negative 24 15 0.001 11 9 0.005
    Positive 281 58 118 25
Progesterone receptor
    Negative 34 19 0.001 11 8 0.015
    Positive 271 54 118 26
Tumor size
    < 2 cm 125 18 0.010 51 8 0.084
    ≥ 2 cm 180 55 78 26
Pathological type
    Others 16 12 0.001 7 8 0.001
    Endometrioid adenocarcinoma 289 61 122 26
Note: FIGO: International Federation of Gynecology and Obstetrics; LVSI: lymphatic vascular space invasion; LNM: lymph node 
metastasis.
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Table 3. Multivariate logistic regression analysis
Variable β Standard error χ2 P OR Lower bound Upper bound
FIGO staging 1.864 0.473 15.565 < 0.001 6.452 2.555 16.292
Pathological grading -3.225 0.454 50.482 < 0.001 0.04 0.016 0.097
Myometrial invasion 2.578 0.655 15.481 < 0.001 13.169 3.646 47.561
LVSI 1.573 0.537 8.57 0.003 4.821 1.682 13.818
Estrogen receptor 0.562 0.616 0.833 0.362 1.754 0.525 5.867
Progesterone receptor -0.196 0.554 0.125 0.723 0.822 0.277 2.435
Tumor size 0.657 0.43 2.339 0.126 1.929 0.831 4.478
Pathological type -1.349 0.513 6.923 0.009 0.259 0.095 0.709
Note: FIGO: International Federation of Gynecology and Obstetrics; LVSI: lymphatic vascular space invasion.

Figure 1. Feature factor selection in four machine-learning models. A. Path diagram of penalty parameter selec-
tion in the LASSO model. This figure shows the model’s variation of mean squared error (MSE) with the change of 
regularization parameter (λ). The vertical dashed line indicates the optimal λ determined via cross-validation. B. 
Coefficient path diagram in the LASSO model. This graph shows how the coefficients of different features change at 
different λ values, helping to determine which variables are retained during regularization. C. Influence of different 
feature quantities on the error rate in the XGBoost model. This figure illustrates how the model’s error rate varies as 
the selected feature number elevates and indicates the optimal feature number (i.e. the point with the minimum er-
ror rate). D. Variation of total error with the number of iterations in the RandomForest model. The red and blue lines 
in the figure represent the error rates of the training and validation sets, respectively, demonstrating the model’s 
performance as the number of iterations increases. E. Relationship between the number of trees and the error rate 
in the RandomForest model. This graph presents the trend of error rate variation as the number of trees in the Ran-
domForest increases in both the training and validation sets. Note: LASSO: Least Absolute Shrinkage and Selection 
Operator; SVM: Support Vector Machine; XGBoost: Extreme Gradient Boosting.
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corresponding to each feature factor, clinicians 
can determine the specific score for a patient 
based on their condition. These scores are 
summed to yield the total score, which corre-
sponds to the probability line at the bottom of 
the nomogram, showing the predicted probabil-
ity of the patient experiencing this clinical out-
come. For example, the higher the scores of 
FIGO staging, pathological grading, and MI, the 
greater the risk for the patient. In this way, the 
nomogram can assist clinicians in making more 
precise risk assessments and treatment deci-
sions for individual patients (Figure 6).

Discussion

In this study, we successfully built and opti-
mized several machine-learning models for pre-
dicting lymph node metastasis (LNM) risk in 
endometrial cancer (EC). By analyzing clinico-
pathological data and employing multivariate 
Logistic regression, we identified independent 
risk factors strongly linked to LNM. Four ma- 
chine-learning algorithms, namely the LASSO, 
XGBoost, RandomForest, and SVM, were uti-
lized for feature selection and model construc-
tion. Of them, the XGBoost model outperformed 

Figure 2. Incorporation of feature factors in machine-learning models. A. Incorporation of feature factors in the LAS-
SO model. B. Incorporation of feature factors in the SVM model. C. Incorporation of feature factors in the XGBoost 
model. D. Incorporation of feature factors in the RandomForest model. Note: LASSO: Least Absolute Shrinkage and 
Selection Operator; SVM: Support Vector Machine; XGBoost: Extreme Gradient Boosting.
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others across all performance metrics, with an 
AUC of 0.876 in the training set and 0.832 in 
the validation set, demonstrating its high dis-
criminative ability and predictive ACC. Li et al. 
[20] found that LVSI, deep MI, and CA125 levels 
were intimately associated with LNM in EC 
patients. Sari et al. [21] also identified LVSI and 
pelvic LNM as independent risk factors for 
paraaortic LNM in EC. Additionally, calibration 
curve analysis and DCA further validated the 

predictive ability and clinical application value 
of the XGBoost model. Within most of the risk 
threshold ranges, the XGBoost model exhibited 
relatively high net benefits, suggesting its 
potential application value in clinical decision-
making support.

In comparison to previous studies, our research 
not only adopted multiple machine-learning 
algorithms but also enhanced the models’ pre-

Table 4. ROC curve parameters of models in the training set
Marker AUC CI_lower_upper Specificity Sensitivity Youden_index Cut_off Accuracy Precision F1_Score
LASSO 0.858 0.809-0.906 86.89% 78.08% 64.97% 0.226 85.19% 78.08% 67.06%
XGBoost 0.876 0.825-0.926 85.57% 78.08% 63.66% 0.473 84.13% 78.08% 65.52%
RandomForest 0.853 0.799-0.906 86.89% 78.08% 64.97% 0.104 85.19% 78.08% 67.06%
SMV 0.732 0.647-0.817 93.11% 63.01% 56.13% 0.124 87.30% 63.01% 65.71%
Note: AUC: area under the curve; LASSO: Least Absolute Shrinkage and Selection Operator; XGBoost: Extreme Gradient Boosting; SVM: Support 
Vector Machine.

Figure 3. Comparison of ROC curves of each model in training and validation sets. A. ROC curves in the training 
set, demonstrating the classification performance of various machine learning models, including LASSO, XGBoost, 
RandomForest, and SVM models. B. ROC curves in the validation set, depicting the classification performance of 
LASSO, XGBoost, RandomForest, and SVM models. Note: LASSO: Least Absolute Shrinkage and Selection Operator; 
XGBoost: Extreme Gradient Boosting; SVM: Support Vector Machine.

Table 5. ROC curve parameters of models in the validation set
Marker AUC CI_lower_upper Specificity Sensitivity Youden_index Cut_off Accuracy Precision F1_Score
LASSO 0.81 0.722-0.897 88.37% 67.65% 56.02% 0.226 84.05% 67.65% 63.89%
XGBoost 0.832 0.743-0.920 86.05% 70.59% 56.63% 0.464 82.82% 70.59% 63.16%
RandomForest 0.812 0.725-0.899 86.05% 70.59% 56.63% 0.021 82.82% 70.59% 63.16%
SMV 0.701 0.577-0.826 96.90% 52.94% 49.84% 0.124 87.73% 52.94% 64.29%
Note: ROC: receiver operating characteristic; LASSO: Least Absolute Shrinkage and Selection Operator; XGBoost: Extreme Gradient Boosting; 
SVM: Support Vector Machine.
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Figure 4. Calibration curves of the four models in training and validation sets. A, B. Calibration curves of the LASSO model in the training set and the validation set, 
respectively, illustrating the fitting between the predicted probabilities and the actual probabilities. C, D. Calibration curves of the XGBoost model in the training 
set and the validation set, respectively, demonstrating the fitting between the predicted probabilities and the actual probabilities. E, F. Calibration curves of the 
RandomForest model in the training set and the validation set, respectively, depicting the fitting between the predicted probabilities and the actual probabilities. 
G, H. Calibration curves of the SVM model in the training set and the validation set, respectively, presenting the fitting between the predicted probabilities and the 
actual probabilities.
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dictive performance through systematic fea-
ture selection and model optimization. Parti- 
cularly, the XGBoost model outperformed other 
models in multiple indicators such as AUC, SPE, 
and SEN. This is consistent with findings from a 
systematic review and meta-analysis by Ren et 
al. [22], which indicated that machine-learning 
models combining clinical and radiomics fea-
tures had higher predictive efficiency in predict-
ing LNM. While our results align with this trend, 

discrepancies in other studies may be attribut-
ed to differences in sample sizes, study 
designs, feature selection processes, and mod-
el-tuning strategies. Furthermore, the specific 
variables selected in this study, such as FIGO 
staging, pathological grading, and depth of MI, 
demonstrated significant roles in predicting 
LNM, with their predictive implications being 
widely acknowledged in other related studies. 
For instance, Sun et al. [23] identified positive 

Figure 5. DCA of the four models in training and validation sets. A. Decision curves in the training set, showing the 
net benefits of the LASSO, XGBoost, RandomForest, and SVM models under different probability thresholds. B. Deci-
sion curves in the validation set, showing the net benefits of the LASSO, XGBoost, RandomForest, and SVM models 
under different probability thresholds. Note: DCA: decision curve analysis; LASSO: Least Absolute Shrinkage and 
Selection Operator; SVM: Support Vector Machine; XGBoost: Extreme Gradient Boosting.

Figure 6. A nomogram based on five feature factors.
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peritoneal cytology, cervical stromal infiltration, 
MI ≥ 1/2, and LVSI as independent risk factors 
for pelvic LNM in non-endometrioid adenocarci-
noma patients. Besides, Zhang et al. [24] point-
ed out that EC patients with a tumor diameter 
of ≥ 2 cm, a BMI of ≥ 24 kg/m2, low-grade dif-
ferentiation, and cervical stromal invasion had 
an elevated risk of sentinel LNM. In summary, 
our study reaffirms the effectiveness of 
advanced feature selection and model optimi-
zation to improve LNM prediction accuracy, 
with the XGBoost achieving the most robust 
performance.

In this study, the XGBoost, LASSO, and 
RandomForest models all demonstrated rela-
tively high predictive capabilities in assessing 
the LNM risk in EC patients. However, the 
XGBoost model significantly outperformed the 
other models in terms of the AUC and other 
evaluation indicators. Specifically, the AUC was 
0.876 in the training set and 0.832 in the vali-
dation set in the XGBoost model, indicating a 
relatively high discriminative ability and stabili-
ty. Moreover, the XGBoost model exhibited 
excellent performance in terms of SPE and 
SEN, further validating its applicability and 
robustness across different data sets. In con-
trast, while the LASSO and RandomForest mod-
els also showed solid predictive performance, 
their AUCs and other indicators were slightly 
lower compared to those of the XGBoost model. 
Yang et al. [25] also showed that, when combin-
ing radiomics features and clinical characteris-
tics, the XGBoost model had superior perfor-
mance in predicting LNM in EC. Overall, 
XGBoost was confirmed as the optimal model 
for accurate and stable LNM prediction.

Machine-learning algorithms, especially XG- 
Boost, excel at handling high-dimensional data, 
automatically processing missing values, and 
selecting relevant features. These capabilities 
allows XGBoost to better capture complex rela-
tionships in the data and effectively avoid over-
fitting during model building [26, 27]. Compared 
with traditional statistical methods, machine-
learning algorithms can be trained through mul-
tiple iterations to optimize model parameters, 
thereby significantly enhancing prediction ACC 
and stability [28]. Moreover, XGBoost’s ability 
to handle nonlinear relationships is particularly 
valuable in medical predictive models, as the 
relationships between many biometrics and 

clinical features are often complex and nonlin-
ear [29]. The study by Miller et al. [30] highlight-
ed the potential of machine-learning algorithms 
to improve predictive performance when com-
bining clinical and molecular features. These 
advantages highlight XGBoost’s strong poten-
tial in managing complex medical data for 
robust predictive modeling.

In the feature-screening procedure of this stu- 
dy, FIGO staging, pathological grading, depth of 
MI, LVSI, and pathological type emerged as 
critical factors in predicting LNM. Multivariate 
Logistic regression analysis demonstrated that 
these variables were strongly correlated with 
the LNM risk and were uniformly selected as 
crucial features by the XGBoost, LASSO, and 
RandomForest models. These variables have 
also been extensively verified to possess 
important predictive values in other investiga-
tions. For instances, Ueno et al. [31] revealed 
that LVSI, pathological grading, and tumor size 
played an important role in predicting LNM in 
EC, which is in accordance with our findings. In 
addition, Schivardi et al. [32] found that the 
combination of molecular typing and pathologi-
cal features could significantly enhance the 
predictive capacity for the recurrence risk of EC 
patients, particularly in cases with LNM. Our 
study further validates the importance of these 
variables in accurately predicting LNM risk.

The significance of these variables in our mod-
els may be attributed to their direct reflection of 
tumor aggressiveness and metastatic poten-
tial. LVSI has been widely recognized as an 
important predictor of LNM as a measure of 
tumor invasion through blood vessels and lym-
phatic vessels [33]. The depth of MI reflects the 
spread of the tumor within the uterine wall, and 
deep MI tends to predict a higher risk of metas-
tasis [34]. Pathological types and pathological 
grading reveal the biological behavior and 
malignancy degree of the tumor, which have 
been proven to be strongly related to patient 
outcomes in multiple studies. Huang et al. [35] 
constructed a combined ratio model by analyz-
ing ERα, PR, P53, and Ki67, which showed sig-
nificant ACC in predicting the LNM risk in low-
risk EC patients, further supporting the findings 
of this study. Zanfagnin et al. [36] also noted 
that LVSI, gross pelvic LNM, and uterine serous 
carcinoma, which were also identified by this 
study to be key variables in predicting LNM in 
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EC, were closely linked to the occurrence of 
multiple LNM. Collectively, these factors en- 
hance the model’s capacity to reflect tumor 
characteristics and aid in predicting LNM with 
greater precision.

Limitations and prospects

Despite the construction of an effective LNM 
risk prediction model via multiple machine-
learning algorithms in this study, several limita-
tions remain. First of all, the relatively limited 
sample size and the data being derived from a 
single center may potentially affect the model’s 
generalizability and its applicability across 
diverse populations. The absence of external 
validation also constrains the model’s perfor-
mance in other independent data sets. Addi- 
tionally, variations in ethnicity and clinical back-
grounds might exert an influence on the mod-
el’s predictive performance. Future research 
should validate the model’s robustness using 
multi-center data and introduce novel clinical 
or molecular-biological features for further 
model optimization, thereby broadening its 
application potential in other cancer types.

Conclusion

This study successfully constructed EC LNM 
risk prediction models using multiple machine-
learning algorithms, and XGBoost demonstrat-
ed significant potential in clinical applications. 
By integrating a substantial amount of clinical 
and pathological data, the XGBoost model can 
provide valuable support for clinicians in accu-
rate risk evaluation and decision-making. This 
approach has the potential to improve patient 
prognosis and treatment outcomes by enabling 
more precise, individualized management of EC 
patients at risk for LNM.
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