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Abstract: Hypoxia-inducible factors (HIFs) regulate cellular oxygen balance and play a central role in cancer metas-
tasis and angiogenesis. Despite extensive research on HIFs, successful therapeutic strategies remain limited due 
to the intricate nature of their regulation. In this study, we identified SPATA20, a relatively understudied protein with 
a thioredoxin-like domain, as an upstream regulator of HIF-1α. Depleting SPATA20 induced HIF-1α expression, sug-
gesting a tumor-suppressive role for SPATA20 in cancer cells. SPATA20 depletion increased HIF-1α protein levels and 
transcriptional activity without affecting its degradation. It appears that SPATA20 inhibits the de novo synthesis of 
HIF-1α, possibly by repressing the cap-dependent translation process involving AKT phosphorylation. Additionally, 
depletion of SPATA20 promoted cancer cell migration and invasion, which can be reversed by pharmacological inhi-
bition of HIF-1α. Clinical data analysis revealed an inverse correlation between SPATA20 expression and colorectal 
cancer progression, providing evidence of its role as a potential biomarker. Utilizing SPATA20 as an indicator for HIF-
1α-targeting therapy may be an attractive strategy for treating patients with hypoxia-driven cancers. In conclusion, 
this study demonstrates that SPATA20 deficiency promotes cancer progression by activating the HIF-1α signaling 
pathway.
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Introduction

Hypoxia-inducible factors (HIFs) are key regula-
tors of cellular oxygen homeostasis [1]. In the 
context of cancer progression, HIFs play a criti-
cal role by regulating the transcriptional activa-
tion of genes associated with metastasis and 
angiogenesis [2, 3]. Despite extensive research 
efforts aimed at targeting HIFs for cancer ther-
apy, only a limited number of approaches have 
proven to be successful [4].

HIF proteins are heterodimeric basic helix-loop-
helix (bHLH) transcription factors, composed of 
an α-subunit, which responds to changes in 

oxygen levels, and a β-subunit (also known as 
aryl hydrocarbon receptor nuclear translocator, 
ARNT), which is expressed constitutively [5-7]. 
Under normal oxygen conditions (referred to as 
normoxia), HIF-α is hydroxylated at conserved 
proline residues by HIF prolyl hydroxylases 
(PHDs) [7]. Subsequently, the von Hippel-Lindau 
tumor suppressor (VHL), an E3 ubiquitin ligase, 
binds to hydroxylated HIF-α, inducing its protea-
somal degradation through ubiquitination [8]. 
However, in hypoxic conditions, HIF-α under-
goes stabilization and translocation to the 
nucleus. In the nucleus, it associates with its 
heterodimeric partner, HIF-β, forming an active 
transcriptional complex. This complex then 
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binds to hypoxia-responsive elements (HREs) 
located in the promoter or enhancer region of 
target genes, resulting in their transactivation 
[6, 9].

Previous studies have found that HIF-1 inter-
acts with a class of small redox proteins, lead-
ing to crosstalk between hypoxic response and 
cellular redox homeostasis [10-17]. Spermato- 
genesis-associated protein 20 (SPATA20) is a 
relatively understudied protein that contains  
a conserved thioredoxin-like domain at the 
N-terminal region, which includes a character-
istic CXXC motif that may act as a potential 
catalytic site for the redox regulation of sub-
strates [18]. SPATA20 is aberrantly expressed 
in the testis and involved in the development 
and maturation of sperm [18-21]. Recent pro-
teomic and whole-exome sequencing (WES) 
studies have suggested its potential role in 
colorectal cancer, although its exact function 
remains unclear [22, 23].

In this study, we identified SPATA20 as a novel 
upstream regulator of HIF-1α. Our investiga-
tions revealed that depleting SPATA20 increas-
es both the protein abundance and transcrip-
tional activity of HIF-1α. These findings shed 
light on the tumor-suppressive function of 
SPATA20 in cancer cells, thereby providing evi-
dence for the potential therapeutic use of HIF 
inhibitors in treating patients affected by hypox-
ia-driven cancers with low levels of SPATA20 
expression.

Materials and methods

Cell culture

Human colon cancer (DLD-1 and HCT116), and 
liver cancer (Hep3B) cell lines were obtained 
from the American Type Culture Collection 
(ATCC, Manassas, VA). Human kidney cancer 
(SNU-349) and Tera-1 testicular cell lines was 
obtained from the Korean Cell Line Bank  
(Seoul, South Korea). Human umbilical vein 
endothelial cells (HUVECs) were purchased 
from PromoCell (Heidelberg, Germany). Human 
Sertoli cells (HSerCs) were purchased from 
ScienCell Research Laboratories (Carlsbad, 
CA). Cell culture reagents were purchased from 
GenDEPOT (Katy, TX), unless otherwise speci-
fied. DLD-1, HCT116, SNU-349, and Tera-1 cells 
were cultured in RPMI complemented with 10% 
heat-inactivated fetal bovine serum (FBS) and 
1% penicillin-streptomycin. Hep3B cells were 

cultured in DMEM. HUVECs were cultured in 
endothelial cell growth medium with a supple-
ment mixture (PromoCell). HSerCs were cul-
tured in Sertoli cell medium with a supplement 
mixture (ScienCell Research Laboratories). The 
cells were maintained under standard condi-
tions of 37°C and 5% CO2 in a humidified atmo-
sphere. For hypoxic challenge, cells were incu-
bated in a hypoxia chamber (Memmert, Sch- 
wabach, Germany) set to an oxygen concentra-
tion of 1%.

Plasmids and siRNAs 

Plasmid DNA constructs encoding SPATA20 or 
SPATA20 shRNA were purchased from OriGene 
(Rockville, MD). EPO- and VEGF-luciferase plas-
mids were constructed as described previously 
[24, 25]. The plasmids were verified through 
standard DNA sequencing. Small interfering 
RNAs (siRNAs) were obtained from IDT 
(Coralville, IA) and Bioneer (Daejeon, South 
Korea), and their sequences are listed in 
Supplementary Table 1. Plasmids and siRNAs 
were transfected using jetPRIME (Polyplus, 
Illkirch-Graffenstaden, France) and RNAiMAX 
(Thermo Fisher Scientific, Waltham, MA) 
reagents, respectively, following the manufac-
turer’s instructions.

Reagents and antibodies

Dimethyloxalylglycine (DMOG) and MG132 
were purchased from MedChemExpress (Mon- 
mouth Junction, NJ). Cycloheximide was pur-
chased from Merck (Darmstadt, Germany). The 
antibodies used in this study include anti-SPA-
TA20 (HPA031442) from Merck, anti-GFP 
(#2956), anti-AKT (#9272), and anti-phospho-
AKT (#9271) from Cell Signaling Technology 
(Danvers, MA), and anti-α-tubulin (sc-5364) 
and anti-β-tubulin (sc-9104) from Santa Cruz 
Biotechnology (Dallas, TX). The anti-HIF-1α anti-
body was raised in a rabbit, as previously 
described [26].

Enzyme-linked immunosorbent assay (ELISA)

A HIF-1α sandwich ELISA kit (Thermo Fisher 
Scientific) was used according to the manufac-
turer’s instructions. The ELISA microplates 
were loaded with standards and samples, and 
then placed on a shaker at room temperature 
for a 2-hour incubation period. Subsequently, 
the wells were washed three times before the 
addition of biotinylated detection antibodies to 
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each well. After a 1-hour incubation, the wells 
were washed three times to eliminate unbound 
antibodies. Streptavidin-HRP was added to 
each well, and the plate was incubated for 30 
minutes. After washing the wells three times, 
TMB substrates were added to each well and 
the plates were further incubated for 30 min-
utes in the dark. The enzymatic reaction was 
stopped by the addition of a stop solution, and 
the absorbance at a wavelength of 450 nm was 
measured using a microplate reader.

Western blot analysis

Protein samples were boiled in SDS sample 
buffer at 95°C for 5 to 10 minutes. The dena-
tured proteins were then separated by SDS-
PAGE and transferred onto an Immobilon-P 
membrane (Merck). The membrane was 
blocked with 5% skim milk and probed with the 
specified primary antibodies. Secondary anti-
bodies were applied, and the bands were visu-
alized using ECL Western substrates (Enzy- 
nomics, Daejeon, South Korea).

Luciferase reporter assay

The luciferase assay was conducted using the 
EZ luciferase assay system (Enzynomics). Cells 
were transfected with the specified reporter 
plasmids and subsequently lysed with lucifer-
ase lysis buffer. The resulting lysates were then 
mixed with a reaction buffer containing sub-
strates, and the luciferase activities were ana-
lyzed using the Victor X Light luminescence 
plate reader (PerkinElmer, Waltham, MA). 
β-galactosidase activities were measured to 
normalize for transfection efficiency.

Quantitative reverse transcription PCR (RT-
qPCR)

Total RNA was isolated using TRIzol reagent 
(Thermo Fisher Scientific), and cDNA synthesis 
was carried out with the M-MLV cDNA synthesis 
kit (Enzynomics). RT-qPCR was performed on 
96-well optical plates using the qPCR master-
mix (Enzynomics). The expression levels of the 
target genes were determined relative to the 
expression of ACTB. qPCR primer sequences 
are provided in Supplementary Table 2.

Immunoprecipitation (IP)

Cells were lysed using IP buffer supplemented 
with protease and phosphatase inhibitors 

(GenDEPOT). After clearing the cell debris via 
centrifugation, the remaining lysates were  
incubated with the indicated antibodies at 4°C 
with slow rotation overnight. Subsequently, pro-
tein A/G-conjugated beads from Bio-Rad 
Laboratories (Hercules, CA) were added and 
incubated for an additional hour. The precipi-
tates were washed three times and then resus-
pended in sample buffer.

Conditioned media preparation

Cells were placed in serum-free media contain-
ing antibiotics before being cultured under 
either hypoxia or 1 mM DMOG for 24 hours. The 
conditioned media were retrieved and subse-
quently subjected to centrifugation at room 
temperature for 3 minutes. The resulting super-
natants were filtered through a syringe filter 
with a diameter of 0.45 μm and stored at -20°C 
until they were used for downstream analysis.

Transwell assays

Transwell migration and invasion assays were 
conducted using permeable inserts (8 μm pore 
size) purchased from Corning (Corning, NY). For 
the invasion assay, the inserts were coated 
with growth factor-reduced basement mem-
brane extract (BME) obtained from R&D 
Systems (Minneapolis, MN). The cells were 
seeded onto the upper chambers in serum-free 
medium, while the lower chambers were filled 
with medium containing FBS, and then incubat-
ed under hypoxic conditions or treated with 1 
mM DMOG for 24 hours. The cells located on 
the lower surface of the transwell insert were 
fixed using a 4% paraformaldehyde solution 
and subsequently stained with H&E. Cells from 
five random fields of each membrane were 
counted using a microscope.

Tube formation assay

Tube formation assay was conducted using the 
Cultrex in vitro angiogenesis assay kit, which 
was purchased from R&D Systems. Passage 
3-4 HUVECs were suspended in the condi-
tioned media and then seeded in a 96-well 
plate coated with growth factor-reduced BME. 
After a 6-hour incubation period, the cells were 
treated with a 2 μM Calcein AM solution. Tube 
formation was assessed using fluorescence 
microscopy, and the number of branch points, 
junctions, and tube lengths were analyzed 
using ImageJ software.
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Analysis of public database

Clinical data of patients with colorectal cancer 
were obtained from publicly available databas-
es, including the International Cancer Genome 
Consortium (ICGC), The Cancer Genome Atlas 
(TCGA), the Genotype-Tissue Expression (GTEx), 
and the Gene Expression Omnibus (GEO). Gene 
alteration frequency was analyzed using the 
cBioPortal platform. Differential analysis of 
RNA-seq and gene chip data was performed on 
the TNMplot platform.

Tissue microarray analysis

Tissue microarray comprised of human colorec-
tal cancer and normal tissues was purchased 
from SuperBioChips Laboratories (Seoul, South 
Korea). The array slide was subjected to a 
1-hour drying process at 60°C, followed by 
autoclaving the dewaxed slide in an antigen 
retrieval agent and subsequent treatment with 
3% hydrogen peroxide. Primary antibodies were 
used overnight at 4°C, followed by the applica-
tion of biotinylated secondary antibodies at 
room temperature for 1 hour on the next day. A 
peroxidase-based detection system was used 
to visualize the resulting immune complex. 
Each tissue core was evaluated by multiplying 
the staining intensity by the percentage of posi-
tive cells.

Statistical analysis

The data analysis was conducted using Excel 
and Prism 9 software. The experimental results 
are presented as means with their correspond-
ing standard deviations (SDs). Statistical signifi-
cance was determined based on a p-value of 
less than 0.05.

Results

Depletion of SPATA20 increases the protein 
levels of HIF-1α

Previous studies have shown that redox pro-
teins, such as thioredoxins, can interact with 
HIF-1α, thereby controlling its stability and 
activity [15, 27]. To identify potential candi-
dates, we selected the top 20% of the 127 pro-
teins classified as thioredoxin-like fold proteins 
based on their co-expression with HIF-1α in the 
ICGC/TCGA pan-cancer study [28]. These can-
didates were then subjected to an ELISA-based 

siRNA screening (Figure 1A). Within the pool  
of candidates, the depletion of SPATA20 led to 
a significant increase in the HIF-1α protein 
level. This finding was further validated by 
depleting SPATA20 using two different siRNAs 
(Supplementary Figure 1A and 1B) in both 
human tumor cells and normal testis cells 
exposed to hypoxia (Figure 1B and 1C, 
Supplementary Figure 2A and 2B) or treated 
with DMOG (Figure 1D and 1E, Supplementary 
Figure 2C and 2D), which is a hypoxia mimetic 
agent that inhibits the 2-oxoglutarate (2-OG)-
dependent hydroxylation of HIF-1α, leading to 
the stabilization of the HIF-1α protein [29]. 
Furthermore, the knockdown of SPATA20 in 
VHL-mutant SNU-349 cells, which express HIF-
1α under normoxia, also led to an elevation in 
HIF-1α protein levels (Figure 1F). These data 
demonstrate that the depletion of the thiore-
doxin-like protein SPATA20 increases the pro-
tein levels of HIF-1α.

Depletion of SPATA20 activates HIF-1α and 
induces its target gene expression

To evaluate the effect of SPATA20 on HIF-1α 
transcriptional activity, we utilized luciferase 
reporter plasmids containing the HRE sequence 
of the EPO enhancer. This sequence is a  
well-known HIF target. When the transcription 
factor HIF-1α binds to the EPO HRE sequence, 
it leads to an increase in luciferase activity, 
which reflects the upregulation of HIF-1α 
expression. Under hypoxic conditions, knock-
down of SPATA20 increased the activity of HIF-
1α on EPO-luciferase (Figure 2A, Supplemen- 
tary Figure 3A), while it did not affect the activ-
ity on the mutant form of EPO-luciferase, which 
is unable to bind to HIF-1α due to a mutation in 
the HRE region. These findings were further 
validated in cells treated with DMOG (Figure 
2B, Supplementary Figure 3B). We also utilized 
another luciferase reporter plasmid harboring 
an HRE from the VEGF promoter. Similarly, 
VEGF-luciferase activity was enhanced by 
SPATA20 depletion under hypoxic and hypo- 
xia-mimetic conditions (Figure 2C and 2D). 
Furthermore, to assess the effects of SPATA20 
on HIF-1α target genes, we measured the 
mRNA expression levels of plasminogen activa-
tor urokinase (PLAU), endothelin 1 (EDN1), 
heme oxygenase 1 (HMOX1), and adrenomedul-
lin (ADM) (Figure 2E-H, Supplementary Figure 
3C-F). SPATA20 knockdown resulted in up- 
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regulated expression of proangiogenic genes. 
Collectively, these data indicate that SPATA20 
depletion results in HIF-1α activation, thereby 
inducing the transcription of its downstream 
genes.

Restoration of SPATA20 suppresses HIF-1α in 
cells depleted of SPATA20

Meanwhile, ectopic expression of SPATA20 did 
not significantly change the protein levels of 

Figure 1. SPATA20 knockdown increases HIF-1α protein levels. (A) Hep3B cells were transfected with the indicated 
siRNAs and lysed for analysis using an HIF-1α sandwich ELISA kit. Quantification of HIF-1α protein levels is present-
ed as means and SDs (n = 3). ****P < 0.0001 compared to the si-Ctrl group by one-way ANOVA. (B-E) Hep3B and 
DLD-1 cells were transfected with indicated siRNAs and incubated in hypoxia (B, C) or treated with 1 mM DMOG (D, 
E) for 8 hours. Cell lysates were analyzed by Western blotting with the indicated antibodies. The bar graphs display 
the band intensities of HIF-1α protein normalized to the intensities of α-tubulin in the hypoxia or DMOG groups. Data 
are presented as means and SDs (n = 3). *P < 0.05 and **P < 0.01 compared to the si-Ctrl groups by Student’s t-
test. (F) VHL-mutant SNU-349 cells were transfected with indicated siRNAs and subjected to Western blotting. Data 
are presented as means and SDs (n = 3). *P < 0.05 by Student’s t-test.
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HIF-1α under hypoxia or DMOG (Supplementary 
Figure 4A-C). Similarly, the overexpression of 
SPATA20 in VHL-mutant SNU-349 cells like- 

wise had no effect on the levels of HIF-1α pro-
tein (Supplementary Figure 4D). Furthermore, 
SPATA20 overexpression had no effect on 

Figure 2. SPATA20 knockdown activates HIF-1α and induces the expression of HIF-1α target genes. (A, B) Hep3B 
cells expressing EPO-luciferase plasmids were transfected with the indicated siRNAs and then incubated in hypoxia 
(A) or treated with 1 mM DMOG (B) for 24 hours. Cells were lysed and subjected to the luciferase assay. (C, D) Cells 
were transfected with VEGF-luciferase and indicated siRNAs and then incubated in hypoxia (C) or treated with 1 mM 
DMOG (D) for 24 hours. Cells were lysed and subjected to luciferase assay. β-galactosidase activities were mea-
sured to normalize for transfection efficiency. Data represents the mean ± SD (n = 3). **P < 0.01, ***P < 0.001 
and ****P < 0.0001 by two-way ANOVA. (E-H) Cells were transfected with indicated siRNAs and cultured in hypoxia 
for 24 hours. Cells were lysed for RNA extraction, and the mRNA expression levels of PLAU (E), EDN1 (F), HMOX1 
(G), and ADM (H) were measured by RT-qPCR. Relative expression levels were determined by normalizing to ACTB 
expression levels. Data represents the mean ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 
0.0001 compared to the si-Ctrl groups by Student’s t-test.
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either the HIF1A mRNA or pre-mRNA expres-
sion levels (Supplementary Figure 4E and 4F). 
To address this issue, we established a 
SPATA20-depleted cell line that was stably 
transfected with a lentiviral SPATA20 shRNA 
vector. shRNA-mediated depletion of SPATA20 
increased the protein levels of HIF-1α under 

hypoxic or DMOG-treated conditions (Figure 3A 
and 3B). Ectopic re-expression of SPATA20 in 
these cells successfully inhibited HIF-1α pro-
tein levels (Figure 3C). In EPO-luciferase as- 
says, the re-expression of SPATA20 reversed 
the activating effects of SPATA20 depletion on 
HIF-1α transcriptional activity (Figure 3D and 

Figure 3. Restoration of SPATA20 reverses the HIF-1α activation induced by SPATA20 knockdown. (A, B) DLD-1 
cells were depleted of SPATA20 with lentiviral SPATA20 shRNA. Cells were incubated in hypoxia (A) or treated with 
1 mM DMOG (B) for 8 hours. Cell lysates were analyzed by Western blotting with the indicated antibodies. The bar 
graphs display the band intensities of HIF-1α protein normalized to the intensities of α-tubulin in the hypoxia or 
DMOG groups. Data are presented as means and SDs (n = 3). *P < 0.05 and **P < 0.01 by Student’s t-test. (C) 
SPATA20 knockdown cells were transfected with GFP-SPATA20 and incubated in hypoxia for 8 hours. Cell lysates 
were analyzed by Western blotting. Data are presented as means and SDs (n = 5). *P < 0.05 by one-way ANOVA. (D, 
E) Cells were transfected with EPO-luciferase and indicated plasmids and then incubated in hypoxia (D) or treated 
with 1 mM DMOG (E) for 24 hours. Cells were lysed and subjected to luciferase assay. β-galactosidase activities 
were measured to normalize for transfection efficiency. Data represents the mean ± SD (n = 3). **P < 0.01, ***P 
< 0.001 and ****P < 0.0001 by two-way ANOVA. (F-I) Cells were transfected with indicated plasmids and cultured 
in hypoxia for 24 hours. Cells were lysed for RNA extraction, and the mRNA expression levels of PLAU (F), EDN1 (G), 
HMOX1 (H), and ADM (I) were measured by RT-qPCR. Relative expression levels were determined by normalizing to 
ACTB expression levels. Data represents the mean ± SD (n = 3). **P < 0.01, ***P < 0.001, and ****P < 0.0001 
by two-way ANOVA.
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Figure 4. SPATA20 knockdown increases the cap-dependent translation of HIF-1α. (A) Hep3B cells were transfected 
with indicated siRNAs and treated with 1 mM DMOG for 8 hours followed by 50 μM cycloheximide (CHX) treatment 
for indicated time periods. Cells were lysed and subjected to Western blotting. The band intensities of HIF-1α pro-
tein were normalized to the intensities of α-tubulin. Relative band intensities to the non-CHX-treated groups were 
displayed as line graphs at the right panel with calculated slope values (β). Data are presented as means and 
SDs (n = 3). ns, non-significant (P > 0.05 by Student’s t-test). (B) Cells were transfected with indicated siRNAs and 
treated with 10 μM MG132 for indicated time periods. Relative band intensities to the non-MG132-treated groups 
were displayed as line graphs at the right panel with calculated slope values (β). *P < 0.05 by Student’s t-test. (C, 
D) Cells were transfected with indicated siRNAs and lysed for RNA extraction. HIF1A mRNA (C) and HIF1A pre-mRNA 
(D) expression levels were measured by RT-qPCR. ns, non-significant (P > 0.05 by Student’s t-test). (E, F) Cells were 
transfected with HIF1A 5’ UTR-luciferase plasmid and indicated siRNAs and then incubated in hypoxia (E) or treated 
with 1 mM DMOG (F) for 24 hours. The structure of the luciferase reporter plasmid containing the 5’ UTR region 
of HIF1A mRNA is displayed in the top panel. Cells were lysed and subjected to luciferase assay. β-galactosidase 
activities were measured to normalize for transfection efficiency. Data are presented as means and SDs (n = 3). 
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 by two-way ANOVA. (G, H) Cells were transfected with 
indicated siRNAs and then incubated in hypoxia or treated with 1 mM DMOG for 8 hours. Cell lysates were analyzed 
by Western blotting with the indicated antibodies. The bar graphs display the band intensities of phospho-AKT nor-
malized to the intensities of total AKT in the hypoxia and DMOG groups. Data are presented as means and SDs (n = 
3). *P < 0.05 compared to the si-Ctrl groups by Student’s t-test.
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3E). Similarly, SPATA20 re-expression counter-
acted the effects of SPATA20 depletion on HIF-
1α target genes (Figure 3F-I). These findings 
suggest that SPATA20 may require additional 
interacting partners to efficiently regulate HIF-
1α, and further studies are needed to clarify 
the underlying mechanisms.

Depletion of SPATA20 enhances HIF-1α syn-
thesis

Given the potential role of SPATA20 in mediat-
ing redox reactions, we conducted an IP assay 
to investigate the possible protein-protein inter-
action between HIF-1α and SPATA20. However, 
the IP results did not provide any evidence of a 
direct interaction between the two proteins 
(Supplementary Figure 5). Subsequently, we 
investigated the mechanism by which SPATA20 
regulates HIF-1α expression. To evaluate whe- 
ther SPATA20 decreases HIF-1α protein levels 
through degradation, we analyzed the degrada-
tion rate of HIF-1α by initially treating cells with 
DMOG to stabilize HIF-1α, followed by treating 
the cells with cycloheximide (CHX), a transla-
tion inhibitor (Figure 4A). No significant differ-
ence was found in the degradation rate of HIF-
1α between the control group and the SPATA20 
knockdown group. This suggests that SPATA20 
does not regulate HIF-1α protein through pro-
teasomal degradation. Meanwhile, the accu-
mulation rate of HIF-1α increased when cells 
were treated with MG132, a proteasome inhibi-
tor (Figure 4B). As a result, we anticipated that 
SPATA20 may control the transcription or trans-
lation of HIF-1α. We performed RT-qPCR to 
assess the expression of HIF1A mRNA and  
pre-mRNA, but no significant differences were 
observed between the control group and the 
SPATA20 knockdown group (Figure 4C and 4D). 
Since the transcription of HIF-1α did not show 
an increase with SPATA20 knockdown, we pro-
ceeded to investigate whether SPATA20 gov-
erns the translation of HIF-1α. We utilized a 
luciferase reporter plasmid containing the 5’ 
untranslated region (5’ UTR) region of HIF1A 

mRNA, which replicates the cap-dependent 
translation of HIF-1α. The luciferase activity 
was observed to be enhanced by SPATA20 
knockdown in both normoxia and hypoxia, as 
well as with DMOG treatment (Figure 4E and 
4F). Furthermore, since the translation of HIF-
1α is regulated by the protein kinase B (AKT) 
pathway [30], we analyzed the activation status 
of AKT following the depletion of SPATA20 
(Figure 4G and 4H). Notably, the knockdown of 
SPATA20 resulted in elevated expression of the 
active, phosphorylated form of AKT (Ser 473) 
under both hypoxic and DMOG-treated condi-
tions. In conclusion, these findings suggest that 
the depletion of SPATA20 enhances the synthe-
sis of HIF-1α protein.

Depletion of SPATA20 promotes the migration 
and invasion of hypoxic cancer cells

The unfavorable prognosis of cancer can be 
attributed to the metastatic potential of tumor 
cells [31, 32]. Given the critical role of HIF-1α in 
hypoxia-induced cancer metastasis [33, 34], 
we focused on examining the effects of 
SPATA20 on cell migration. Transwell assays 
were conducted to evaluate the migratory and 
invasive properties of cells. SPATA20 siRNAs 
increased the migratory ability of HCT116 cells 
under hypoxic conditions (Figure 5A). Likewise, 
the knockdown of SPATA20 in DMOG-treated 
conditions resulted in an increased number of 
migrated cells (Figure 5B). In transwell invasion 
assays, SPATA20 knockdown promoted cell 
invasion in both hypoxic and DMOG-treated 
conditions (Figure 5C and 5D). Similar results 
were observed in Hep3B cells as well 
(Supplementary Figure 6A-D). Next, we exam-
ined whether inhibiting HIF-1α could reverse 
the pro-migratory and pro-invasive effects 
induced by SPATA20 depletion. We treated can-
cer cells with YC-1, an HIF-1α inhibitor, and 
observed its dose-dependent suppression of 
the migration/invasion of SPATA20-depleted 
cells under hypoxic (Figure 6A and 6C) and 
DMOG-treated conditions (Figure 6B and 6D). 

Figure 5. SPATA20 knockdown promotes the migration and invasion of cancer cells. (A, B) HCT116 cells were trans-
fected with indicated siRNAs and subjected to transwell migration assays under hypoxia (A) or with 1 mM DMOG 
(B) added to the lower chambers. Representative images of migrated cells are shown. The scale bars represent 
100 μm. The average number of migrated cells was calculated from five random microscopic fields. (C, D) Cells 
were transfected with indicated siRNAs and subjected to invasion assays under hypoxia (C) or with 1 mM DMOG (D) 
added to the lower chambers. Representative images of invaded cells are shown. The average number of invaded 
cells was calculated from five random microscopic fields. Data are presented as means and SDs (n = 3). *P < 0.05, 
**P < 0.01, ***P < 0.001, and ****P < 0.0001 by two-way ANOVA.
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Figure 6. Inhibition of HIF-1α by YC-1 abrogates the pro-migratory and invasive effects induced by SPATA20 knock-
down (A, B) HCT116 cells were transfected with indicated siRNAs and subjected to transwell migration assays under 
hypoxia (A) or with 1 mM DMOG (B) added to the lower chambers. YC-1 was added at specified doses. Representa-
tive images of migrated cells are shown. The average number of migrated cells was calculated from five random 
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In summary, the depletion of SPATA20 acceler-
ates hypoxic cell migration and invasion, sug-
gesting that SPATA20-deficient cancer cells are 
more prone to enhancing their metastatic 
potential mediated by HIF-1α.

Depletion of SPATA20 promotes the angiogen-
ic potential of endothelial cells

Since it is well known that angiogenesis is acti-
vated by hypoxia [35], we examined the motility 
of endothelial cells to evaluate the effect of 
SPATA20 on angiogenesis. In transwell migra-
tion assays, HUVECs were cultured in condi-
tioned media collected from SPATA20-depleted 
cancer cells grown under hypoxic or DMOG-
treated conditions. In both conditions, the num-
ber of migrated cells in the SPATA20 knock-
down groups was significantly higher when 
compared to the control groups (Figure 7A and 
7B). Similarly, in transwell invasion assays, the 
invasion of HUVECs was facilitated by SPATA20 
knockdown in both hypoxia and DMOG (Figure 
7C and 7D). Subsequently, in order to evaluate 
the effects of SPATA20 knockdown on the tube 
formation ability of endothelial cells, we per-
formed an in vitro tube formation assay utili- 
zing HUVECs. The results demonstrated an 
increase in the formation of a vascular network 
in the SPATA20 knockdown groups compared 
to the control groups. The SPATA20 knock- 
down groups exhibited a higher number of junc-
tions and branches, as well as an increased 
total tube length (Supplementary Figure 7A-D). 
These findings, along with the RT-qPCR results 
(Figure 2E-H), provide further evidence that the 
depletion of SPATA20 enhances the angiogenic 
potential of endothelial cells by upregulating 
HIF-1α downstream pro-angiogenic factors.

Downregulation of SPATA20 is associated with 
poor prognosis in patients with colorectal can-
cer

A previous study reported that genetic variants 
of SPATA20 were detected in the WES of 
patients with early-onset colorectal cancer 
[23]. To investigate the clinical implications of 
SPATA20 in colorectal cancer, publicly available 

datasets from multiple institutions were ana-
lyzed using the cBioPortal database. In accor-
dance with the WES data, several mutations of 
SPATA20 were detected in a small subset of 
patient populations (Figure 8A). Moreover, 
SPATA20 expression levels were compared 
between normal and tumor tissues to assess 
the potential association of SPATA20 with dis-
ease development. In the TCGA/GTEx datasets, 
SPATA20 mRNA expression was downregulated 
in tumor tissues compared to normal tissue 
(Figure 8B). Additionally, in GEO datasets, 
SPATA20 expression was also lower in tumor 
than in normal tissue (Figure 8C). To validate 
this public data, IHC analysis was performed on 
a tumor microarray containing 59 tissue sec-
tions from patients with colorectal cancer. 
While SPATA20 was highly expressed in normal 
tissue, it was downregulated in primary and 
metastatic tumor tissues (Figure 8D and 8E). 
Furthermore, a Kaplan-Meier survival analysis 
of TCGA primary colorectal cancer samples 
revealed that low expression of SPATA20 cor-
relates with a poor survival rate (Figure 8F and 
8G). Overall, these findings suggest a negative 
correlation between SPATA20 expression and 
the development and progression of colorectal 
cancer.

Discussion

Hypoxia is a commonly observed feature in 
solid cancers [36]. The hypoxic tumor microen-
vironment can induce resistance to convention-
al chemotherapeutic agents [37-39]. Currently, 
targeting the HIF-1α pathway is being investi-
gated as a novel therapeutic option for specific 
types of cancers linked to hypoxia [3, 40-42]. In 
this study, we present SPATA20 as a novel 
upstream regulator of HIF-1α that could poten-
tially be used as a therapeutic and prognostic 
biomarker for hypoxia-driven cancers.

Although SPATA20 has been reported to be 
associated with colorectal cancer and cholan-
giocarcinoma, its biological function and role in 
cancer remain largely unknown [22, 23]. In pre-
vious studies, redox regulation of HIF-1α by the 
thioredoxin system has been investigated [18]. 

microscopic fields. The scale bars represent 100 μm. (C, D) Cells were transfected with indicated siRNAs and sub-
jected to invasion assays under hypoxia (C) or with 1 mM DMOG (D) added to the lower chambers. YC-1 was added 
at specified doses. Representative images of invaded cells are shown. The average number of invaded cells was 
calculated from five random microscopic fields. Data are presented as means and SDs (n = 3). *P < 0.05, **P < 
0.01, ***P < 0.001, and ****P < 0.0001 by one-way ANOVA.
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As SPATA20 is a member of the thioredoxin-like 
fold proteins, which possesses a potential cat-
alytic motif, it was anticipated that this domain 
might play an key role in regulating HIF-1α by 
controlling its redox status [18]. However, no 
evidence was found to suggest a direct interac-
tion between HIF-1α and SPATA20. In fact, 
SPATA20 appears to function as an inhibitor of 
cap-dependent translation of HIF-1α. Our data 
suggest that SPATA20 indirectly regulates HIF-
1α by controlling the phosphorylation of AKT at 
Ser473, which is involved in the translation pro-
cess of HIF-1α. Further research is necessary 
to clarify whether SPATA20 exhibits redox activ-
ity and modulates HIF-1α through AKT in a 
redox-dependent manner.

In our experimental settings, while knockdown 
of SPATA20 successfully induced HIF-1α, ecto-
pic expression of SPATA20 did not alter the 
expression of HIF-1α. This suggests that 
SPATA20 may require additional factors for its 
activity on HIF-1α, or it may need to form a pro-
tein complex to effectively bind and regulate 
HIF-1α. Thioredoxin reductases are integral 
parts of the thioredoxin system that reduce oxi-
dized thioredoxin proteins by transferring elec-
trons [43]. This system maintains redox homeo-
stasis in cells, and thioredoxin reductases and 
thioredoxin proteins have a complementary 
relationship in its regulation. Therefore, it is 
possible that SPATA20 may require a specific 
thioredoxin reductase as a partner for the  
proper redox regulation of HIF-1α, if it has  
such activities. Identifying potential SPATA20-
interacting proteins that are involved for HIF- 
1α regulation would be of research interest. 
Further investigation is required for a more 
comprehensive understanding of SPATA20 as 
an upstream regulator of HIF-1α.

The role of SPATA20 in human diseases, aside 
from sperm disorders, has been limited [20, 
44]. However, it has been demonstrated that 
SPATA20 could serve as a biomarker for the 

early detection of cholangiocarcinoma [22]. 
More recently, mutations in SPATA20 have 
been implicated in the development of early-
onset colorectal cancer [23]. In the current 
study, we discovered that the expression of 
SPATA20 is low in colorectal cancer through  
the analysis of public data and IHC of patient 
tissue samples. Furthermore, SPATA20 expres-
sion was found to be reduced in metastatic 
cancer compared to primary cancer. We veri-
fied that SPATA20-deficient cancer cells exhib-
ited enhanced metastatic and angiogenic activ-
ities. These activities appear to be mediated,  
at least partially, through the activation of the 
HIF-1α pathway. HIF-1α inhibitors, such as 
YC-1, may have anti-cancer effects in SPATA20-
deficient patients. Currently, several HIF-1α 
inhibitors are undergoing clinical trials for dif-
ferent types of cancer, and SPATA20 could be 
investigated as a potential indicator for HIF-1α-
target therapy [45].

In conclusion, while previous studies on the 
function of SPATA20 were primarily focused on 
the male reproductive system, our study has 
revealed a novel role of SPATA20 in regulating 
the expression of HIF-1α in cancer. Developing 
SPATA20 as a biomarker for HIF-1α-targeting 
therapy may be an attractive strategy for treat-
ing patients with hypoxia-driven cancers.
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upper chambers, and conditioned media collected from cancer cells transfected with the indicated siRNAs under 
hypoxia (A) or with 1 mM DMOG (B) were added to the lower chambers. Representative images of migrated cells 
are shown. The scale bars represent 100 μm. The average number of migrated cells was calculated from five ran-
dom microscopic fields. (C, D) HUVECs were seeded in the upper chambers of BME-coated transwell inserts, and 
conditioned media collected from cells transfected with the indicated siRNAs under hypoxia (C) or with 1 mM DMOG 
(D) were added to the lower chambers. Representative images of invaded cells are shown. The average number of 
invaded cells was calculated from five random microscopic fields. Data are presented as means and SDs (n = 3). *P 
< 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 by two-way ANOVA.
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Supplementary Table 1. List of siRNAs
Name Sequence (5’-3’)
Ctrl UUGAGCAAUUCACGUUCAUTT
SPATA20 #1 AGGUGAAGCAUCCCAACUGACUAGA
SPATA20 #2 GUGUUGCUGAGAAUACGAGAACAGT

Supplementary Table 2. List of primers used in RT-qPCR
Name Sequence (5’-3’)
EDN1 Forward: CTACTTCTGCCACCTGGACATC 

Reverse: TCACGGTCTGTTGCCTTTGTGG
PLAU Forward: GGCTTAACTCCAACACGCAAGG 

Reverse: CCTCCTTGGAACGGATCTTCAG
HMOX1 Forward: CCAGGCAGAGAATGCTGAGTTC 

Reverse: AAGACTGGGCTCTCCTTGTTGC
ADM Forward: GACATGAAGGGTGCCTCTCGAA 

Reverse: CCTGGAAGTTGTTCATGCTCTGG
HIF1A Forward: TATGAGCCAGAAGAACTTTTAGGC 

Reverse: CACCTCTTTTGGCAAGCATCCTG
HIF1A pre-mRNA Forward: GTCTGCGAGAAAACTTTGTAA 

Reverse: ATGTGTGCATTTTACCTGAGT
ACTB Forward: CACCATTGGCAATGAGCGGTTC 

Reverse: AGGTCTTTGCGGATGTCCACGT

Supplementary Figure 1. Cells were transfected with indicated siRNAs and analyzed by Western blotting. The bar 
graphs display the band intensities of SPATA20 protein normalized to the intensities of α-tubulin. Data are presented 
as means and SDs (n = 3).



HIF-1α regulation by SPATA20

2 

Supplementary Figure 2. HSerC and Tera-1 cells were transfected with indicated siRNAs and incubated in hypoxia (A, B) or treated with 1 mM DMOG (C, D) for 8 
hours. Cell lysates were analyzed by Western blotting with the indicated antibodies. The bar graphs display the band intensities of HIF-1α protein normalized to the 
intensities of α-tubulin in the hypoxia or DMOG groups. Data are presented as means and SDs (n = 3). *P < 0.05 and **P < 0.01 compared to the si-Ctrl groups by 
Student’s t-test.
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Supplementary Figure 3. (A, B) Tera-1 cells were transfected with EPO-luciferase plasmid and indicated siRNAs 
and then incubated in hypoxia (A) or treated with 1 mM DMOG (B) for 24 hours. Cells were lysed and subjected to 
the luciferase assay. Data represents the mean ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 
0.0001 by two-way ANOVA. (C-F) Cells were transfected with indicated siRNAs and cultured in hypoxia for 24 hours. 
Cells were lysed for RNA extraction, and the mRNA expression levels of PLAU (C), EDN1 (D), HMOX1 (E), and ADM (F) 
were measured by RT-qPCR. Relative expression levels were determined by normalizing to ACTB expression levels. 
Data represents the mean ± SD (n = 3). **P < 0.01, ***P < 0.001, and ****P < 0.0001 compared to the si-Ctrl 
groups by Student’s t-test.
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Supplementary Figure 4. (A-C) Hep3B, DLD-1, Tera-1 cells were transfected with GFP or GFP-SPATA20 plasmid and 
incubated in hypoxia or treated with 1 mM DMOG for 8 hours. Cell lysates were analyzed by Western blotting using 
the indicated antibodies. (D)  VHL-mutant SNU-349 cells were transfected with GFP or GFP-SPATA20 plasmid and 
analyzed by Western blotting. (E, F) Hep3B cells were transfected with GFP or GFP- SPATA20 plasmid and lysed for 
RNA extraction. HIF1A mRNA (E) and pre-mRNA (F) expression levels were measured by RT-qPCR. Data are pre-
sented as means and SDs (n = 3). ns, non-significant (P > 0.05 by Student’s t-test).
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Supplementary Figure 5. Cells were transfected with GFP-tagged SPATA20 and then treated with 10 μM MG132 for 6 
hours. The resulting cell lysates were subjected to immunoprecipitation (IP) using an anti-GFP antibody. Cell lysates 
and precipitated samples were analyzed by Western blotting.
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Supplementary Figure 6. (A, B) Hep3B cells were transfected with indicated siRNAs and subjected to transwell 
migration assays under hypoxia (A) or with 1 mM DMOG (B) added to the lower chambers. Representative images 
of migrated cells are shown. The scale bars represent 200 μm. The average number of migrated cells was calculated 
from five random microscopic fields. (C, D) Cells were transfected with the indicated siRNAs and subjected to inva-
sion assays under hypoxia (C) or with 1 mM DMOG (D) added to the lower chambers. Representative images of 
invaded cells are shown. The average number of invaded cells was calculated from five random microscopic fields. 
Data are presented as means and SDs (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 by two-
way ANOVA with Dunnett’s multiple comparisons test.

Supplementary Figure 7. SPATA20 knockdown enhances the angiogenic potential of endothelial cells. (A) HUVECs 
were seeded onto basement membrane extract-coated wells and cultured with conditioned media collected from 
cancer cells transfected with the indicated siRNAs under hypoxia. Representative images of tube formation are 
shown. (B-D) Tubular networks were analyzed in random microscopic fields using the Angiogenesis Analyzer ImageJ 
plugin program. The number of junctions (B), branches (C), and total tube length (D) were analyzed. Data are pre-
sented as means and SDs (n = 3). *P < 0.05 and **P < 0.01 by Student’s t-test.


