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Abstract: The current study aims to develop and validate machine learning (ML) models for the prediction of can-
cer status by the non-invasive urinary proteomic in a population-based cohort. In this retrospective study, urinary 
proteome profiles in 804 cases from the FLEMENGHO cohort were measured by mass spectrometry. After feature 
selection by LASSO on both clinical variables and urinary proteome profile, benchmark models by clinical variables 
were built with six different ML algorithms. Proteome-based models and combined models were built and compared 
with the benchmark models. The models’ performance, i.e. area under the curve (AUC) was compared by Delong 
method. The 95% confidence interval was estimated by the bootstrapping method. The best-performing model was 
explained by Shapley Additive Explanations (SHAP) method. The predictive role of proteome biomarkers in longitudi-
nal cancer diagnosis was also explored. A clinical model, based on age, blood sugar and blood lipid profile, yielded 
the best AUC of 0.75 (0.68-0.82), with 0.80 (0.72-0.91) for the proteome model based on 13 selected biomarkers 
and 0.83 (0.77-0.90) for the combined model (P=0.01 for comparison with clinical model). SHAP on the support 
vector machine in the combined setting showed that except for age, proteome biomarkers contribute to the final pre-
diction of the model. After adjusting with clinical factors, three proteome biomarkers are independent risk factors for 
longitudinal cancer development. Urinary proteome profiling, together with fine-tuned machine learning algorithms, 
demonstrates the predictive potential for cancer diagnosis transparently.
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Introduction

Cancer remained a huge burden for the health-
care system globally, with an estimated two mil-
lion new cases and six hundred thousand can-
cer-related deaths in 2023 [1, 2]. Currently, 
clinically adopted diagnostic methods include 
radiology, pathological examination, and body 
fluid (blood, cerebral spinal fluid, etc.) tests 
dedicated to well-established cancer biomark-
ers such as alpha-fetoprotein, CA125, circulat-
ing tumor DNA and so on. A great majority of 
cancer types were diagnosed in the metastatic 
stage, which is associated with a dismal prog-
nosis [1].

Development of novel, non-invasive and easy-
to-implement diagnosis/screening techniques 

may boost cancer early diagnosis and ultimate-
ly improve patients’ survival. Urinary samples, 
which are of large volume and easy to collect, 
represent a potential candidate. Previously, the 
detection of cancer cells in urine samples facili-
tates diagnosis, staging, and treatment moni-
toring of urinary tract malignancy [3]. Further- 
more, given the development of biotechnology, 
cancer DNA debris, even in low abundance in 
urine, can provide a highly sensitive and specif-
ic diagnosis of urinary tract malignancies [4] 
and such methods were adopted in clinical 
practices. Protein debris from malignant, apop-
totic, and necrotic cells into the blood and 
milieu are filtered and reabsorbed in the kid-
neys and accumulated in the urine. Urine pro-
tein excretion is typically less than 150 mg per 
day for healthy individuals and is utilized as a 
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biomarker for diagnosis and monitoring kidney-
involved diseases like SLE and kidney failure 
[5]. Stable peptides and a few infrequent but 
crucial proteins may be tested with robustness 
in the urine [6].

Based on mass spectrometry coupled with dif-
ferent separation techniques (like liquid chro-
matography, and electrophoresis), the urinary 
proteome represents a high-throughput, sensi-
tive, and cheap method, which provides the 
quantity for up to thousands of proteins [7]. The 
application of proteome in urinary tract cancer 
has been explored with high accuracy [8, 9]. 
Given the tumor heterogeneity and inter-individ-
ual variation, a single biomarker strategy may 
not lead to sufficient discrimination between 
cancer patients and healthy individuals and 
thus a combinatorial method would be pre-
ferred. Furthermore, despite information rich-
ness (high dimensionality) in the urinary pro-
teome, most urinary proteins are not cancer-
specific and are confounded by other co-vari-
ates (sex, ageing) [10, 11], thus a dedicated 
selected proteome-based signature may pro-
vide a more accurate cancer diagnosis. 

Feature engineering was performed to prese-
lect biomarkers that are highly relevant to can-
cer diagnosis to avoid overfitting. To handle the 
high-dimensional data, machine learning (ML) 
algorithms may learn the complex association 
between various protein biomarkers and can-
cer diagnosis. ML has been widely applied in 
medical research, especially to high-dimen-
sional data like proteome, genetic sequencing, 
radiomics, transcriptomics and so on. A ran-
dom forest classifier based on five protein 
markers was constructed to preoperationally 
differentiate benign and malignant ovarian 
tumours based on data from a single cancer 
center, with an AUC of 0.952 in the test data- 
set [12]. This study included patients admitted 
to a centralized cancer center, with a diagnosis 
of either benign or malignant ovarian cancer, 
thus posing the risk of selection bias. 
Furthermore, the classifier is only eligible for 
classification between benign and malignant 
ovarian cancer (assumingly excluding other 
cancer types).

Therefore, a study elaborating on the diagnos-
tic role of the urinary proteome in a general 
population is necessary, which may be helpful 
for community screening. Additionally, the pre-
diction for the risk of cancer development in a 

longitudinal setting via urinary proteomics was 
also elaborated. To this end, we designed this 
cross-sectional study based on a population-
based Flemish Study on Environment, Genes 
and Health Outcomes (FLEMENGHO) cohort, 
whose enrollment can date back to 1985 with 
an initial participation rate of 78% [13].

Given the complexity of proteome data, we 
adopted an explainable machine-learning  
technique for the prediction of cancer diagno-
sis [14]. Additionally, the future risk of develop-
ing cancer in a cancer-free population was 
assessed in longitudinal settings by Cox regres-
sion analyses, after adjusting for clinical 
covariates.

Methods

The retrospective study was approved by the 
ethics committee of KU Leuven. The predictive 
role of the proteome in cancer diagnosis was 
elaborated in both cross-sectional (cancer  
status at the time of urine sampling) and longi-
tudinal (cancer status after urine sampling) 
settings.

Study population

This research was based on the population-
based Flemish Study on Environment, Genes, 
and Health Outcomes cohort (FLEMENGHO). 
Starting from 1985, the initial participation 
rate was 78%. Written consent was acquired 
from every participant. Participants were peri-
odically followed up until 2016-12-31. Using a 
95% confidence level with a 5% margin of error, 
a sample of 385 is sufficient to answer our 
research question. The inclusion criterion is 
having proteome measurement documented 
and having the validated outcome data availa-
ble. Finally, 804 participants were included in 
the current study (Figure 1). 

Clinical data

The following clinical data were routinely col-
lected: sex, age, body mass index (BMI), the 
status of a current smoker, the status of cur-
rent alcohol intake, history of a cardiovascular 
event, usage of antihypertensive drugs. Blood 
pressure was repeatedly measured for 5 times 
after sitting for 10 minutes. Fasting blood sam-
ple was collected for measurement of serum 
creatine, blood sugar level, total cholesterol 
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and low-density lipiprotein (LDL) cholesterol. 
BMI is defined as body mass (kilogram) divided 
by the square of the body height (meter). The 
serum creatine and blood sugar are expressed 
in µmol/L and mmol/L. History of a cardiova- 
scular event includes stroke, myocardial infarc-
tion, acute coronary syndrome, coronary artery 
bypass graft, percutaneous transluminal coro-
nary angioplasty, congestive heart failure, 
pacemaker implantation, aortic aneurysm, pul-
monary heart disease, pulmonary embolism or 
infarction, artheriosclerosis, other peripheral 
vascular disease, arterial embolism or throm-
bosis, gangrene, other diseases of arteries  
and arterioles. The mean blood pressure is 
defined as diastolic blood pressure + 1/3 
[systolic blood pressure - diastolic blood pres-
sure]. Cancer diagnosis status was collected at 
the time of urine sampling from medical history 
and updated during follow-up.

Urinary proteomics

Proteome data were collected with the follow-
ing pipeline: sample preparation, proteome 
analyses by capillary electrophoresis (Beckman 

Coulter, Fullerton, CA) followed by mass spec-
trometry (micrOTOF MS, Bruker Daltonics, 
Bremen, Germany) and sequencing of the pep-
tide (MosaiquesVisu software), as described in 
previous publications [15, 16]. Mass spectrum 
data were processed to produce a raw list of 
peptides with their molecular mass, migration 
time, and signal intensity. To ensure the compa-
rability of various data sets, these raw lists 
were calibrated using internal urinary reference 
peptides [17, 18]. By fragmenting peptides and 
comparing the fragmentation spectra to the 
previously sequenced peptides from the Hu- 
man Urinary Proteome Database, identified 
peptides were annotated [19]. Post-transla- 
tional modifications and particular mass spec-
tra were taken into account while annotating 
proteins. When peptides from separate sam-
ples had differences in their molecular weight 
and migration time of 100 parts per million and 
one minute, respectively, those peptides were 
considered to be the same. Peptides were 
excluded from further analyses when they were 
undetectable in more than 30% of cases. As a 
result, 351 of the 3346 urine peptides were 
included for further analyses.

Figure 1. Flowchart of the study, consisting of data cleaning, feature selection and model training and validation. 
Data are shown as rectangles in olive, with operations on data as hexagons in yellow, excluded data as squares in 
grey and machine learning algorithms in rectangles in green. Abbreviations: LASSO: least absolute shrinkage and 
selection operator, AUC: area under the curve, CI: confidence interval.
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Outcomes

The primary outcomes for cross-sectional anal-
yses and longitudinal analyses were cancer 
status and incidence of cancer after baseline 
urinary proteome measurement, respectively. 
Physicians ascertained the diagnosis against 
the medical records of general practitioners or 
hospitals.

Statistical analyses

Continuous variables were shown as either 
mean ± standard deviation or median ± inter-
quartile range as appropriate and were com-
pared by t-test or Mann-Whitney U test as 
appropriate. Categorical variables were de- 
scribed as frequency and percentage and 
either Chi-square analyses or the Fisher’s exact 
test was applied as appropriate. A two-sided 
p-value of less than 0.05 was considered sta-
tistically significant.

Machine learning: feature selection

After randomly splitting the entire dataset as 
training data (fine-tuning and validation) and 
test data in a ratio of 7:3, we performed feature 
selection in the training dataset (Figure 1; 
Supplementary Table 1). The distribution nor-
mality of each peptide was checked and log 
transformation at a base of 10 was applied in 
case of violation of normality. Proteome fea-
tures missing in more than 30% of participants 
were excluded from the current study, and for 
those missing values, interpolation with medi-
an value was performed. After normalization 
for each biomarker, to select proteome fea-
tures that are highly relevant to cancer diagno-
sis, the least absolute shrinkage and selection 
operator (LASSO) method was adopted, during 
which only the important features were retain- 
ed in the model due to its regularization con-
straint. To ensure generalizability, 80% of the 
training data were randomly sampled to tune 
the LASSO, and this process was repeated 
1000 times. To achieve a balance between 
model simplicity and model robustness, we 
empirically define that only the biomarkers  
that were retained in more than 98% of 1000 
cycles were included. Finally, a correlation 
matrix based on Person’s coefficient was built 
to exclude any potential collinearity. Similarly, 
the feature selection of the abovementioned 
clinical variables was also executed. For the 
modelling of the clinical and clinical-proteome 
model, only these preselected features were 
enrolled.

Given the low incidence of cancer in 
FLEMENGHO (< 5%), which may lead to deterio-
rated performance for ML algorithms, we 
adopted random upsampling of the minor  
class (positive cancer diagnosis) to the numb- 
er of the major class (cancer-free individual). 
Upsampling was applied to the training data for 
model training, but not to the test data.

Machine learning: modelling

To prove the predictive value of proteome bio-
markers, three categories of models were 
developed: models based on only clinical vari-
ables, models based on only proteome varia-
bles and models based on both clinical and 
proteome variables (combined model). The 
models based on clinical variables represent 
the benchmark models. For each of the three 
categories, ML modelling by different algo-
rithms was conducted, including logistics 
regression, naïve Bayes, XGBoost, support vec-
tor machine, extra tree, and adaptive boosting.

To get the best performance of these algo-
rithms, hyperparameter tuning was performed 
by the grid search method to achieve higher 
AUC, with respective tunable hyperparameters 
for each algorithm. Among these, untuned 
logistic regression served as a baseline algo-
rithm. ML models were built based on the scikit-
learn package in Python 3.10 [20].

For each model built, given the binary classifi-
cation nature, model performance in the test 
data was quantitatively evaluated by AUC, spec-
ificity, sensitivity, and weighted f1 score, as 
defined below.

Specificity
TP FN
TP=
+

Sensitivity
TN FP
TN=
+

1
2

f score
precisi n recall
precisi n recall

=
+

) )

q

q^ h

1 1Weighted f score w f score
1

i
i

N

i= #
=

/

Where wi is the average number of true instanc-
es for each label.

Comparison between models was conducted 
by the Delong method [21]. 95% confidence 
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interval (CI) for each of the measures above 
was estimated by bootstrapping 80% of cases 
with a repetition of 2000 times.

Machine learning: explainable ML

To give consistent and locally correct attribu-
tion values for each feature in the model built 
by the support vector machine, we computed 
SHapley Additive exPlanation (SHAP) values for 
each variable [14]. This unifying strategy is 
used to describe the results of any machine 
learning model. The SHAP values assess the 
significance of the output that would arise from 
the inclusion of each feature and demonstrate 
this as feature importance. The intensity and 
direction of the impact (either positive or nega-
tive association) of each variable on the output 
probability were shown in a summary plot. The 
decision plot of each case shows how the pre-
diction of each case was made from the same 
starting point at the bottom to the various prob-
abilities. The initial probability of being cancer 
for each case is around 5% (if no ML model pre-
diction was executed, based on the ratio of 
cancer over non-cancer) and the inclusion of 
more input variables will dynamically change 
this probability and finally reach the output 
probability.

Exploration of the predictive role of the pro-
teome in a longitudinal setting

Patients with a previous cancer diagnosis at 
the time of urine sampling were excluded from 
this setting. In a univariate Cox regression set-
ting, each proteome biomarker was input to cal-
culate the corresponding hazard ratio (HR) and 
p-value. For biomarkers associated with a sig-
nificant p-value in a univariate setting, each of 
these biomarkers was input into a multivariate 
Cox model, with adjustment for clinical varia-
bles mentioned above, to calculate the corre-
sponding HR and p-value.

Data and code availability

The data used here can be shared under rea-
sonable request with the corresponding author.

Model availability

The model used here can be shared in the fol-
lowing Github link: https://github.com/VAIOJu- 
venia/Proteome_prediction.git.

Result

Clinicopathological characteristics of the study 
population

Based on the study flowchart, 804 participants 
were included in this study (Figure 1; Table 1). 
Within the cohort, participants with cancer 
diagnoses are generally older (P < 0.01), with 
higher blood sugar levels (P < 0.01), higher 
mean blood pressure (P=0.02), higher preva-
lence of heart disease (P < 0.01) and a higher 
administration rate of anti-hypertensive drugs 
(Table 1). Baseline characteristics between 
training and test data show no significant differ-
ence between the two datasets (P > 0.05), 
except for the total-to-low cholesterol ratio 
(Supplementary Table 1).

Feature selection

Three clinical variables (age, blood sugar and 
high-to-low cholesterol ratio) and 13 peptide 
biomarkers (e11452, e11855, e09989, 
e16811, e07093, e10266, e12488, e07622, 
e19885, e01132, e15237, e08463 and 
e06068) were retained in 98% of feature selec-
tion cycles by LASSO regression. The correla-
tion matrix reveals no strong correlation 
between any two biomarkers (Figure 2). 
Additionally, a comparison of the normalized 
value of selected biomarkers revealed statisti-
cal differences between cancer and non-can-
cer patients (Supplementary Figure 1). Based 
on database annotation, these biomarkers 
mostly corresponded to the collagen family. 
Specifically, these are collagen alpha-1(I) chain, 
collagen alpha-1(II) chain, collagen alpha-1(III) 
chain, collagen alpha-1(III) chain, uromodulin, 
collagen alpha-1(I) chain, collagen alpha-1(I) 
chain, gelsolin, collagen alpha-1(I) chain, matrix 
Gla protein, collagen alpha-1(III) chain, fibrino-
gen alpha chain and collagen alpha-1(III) chain.

Explainable ML prediction in different models

After hyperparameter tuning, clinical models 
show equivalent predicting power with pro-
teome models in all ML algorithms (P > 0.05 for 
algorithm-wise comparison) (Supplementary 
Table 2). The best-performing clinical model 
was built by logistic regression, with an AUC of 
0.75 (0.68-0.82), with extra trees in the pro-
teome-based model, with an AUC of 0.80 (0.72-
0.91). Interestingly, the combined models con-
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structed by support vector machine showed 
significantly better prediction over the clinical 
model (P < 0.05, Figure 3). These findings were 
further supported by other metrics (Table 2). 
Algorithm-wise comparison in each input 
modality shows consistent performance in clin-

ical data and different performance among 
algorithms in proteome and combined models 
(Supplementary Figure 2).

We represented all characteristics used in the 
combined model along with the SHAP summary 

Table 1. Baseline demographic and clinical characteristics of the participants
Categories All (n=804) Non-cancer (n=763) Cancer (n=41) P value
SEX - no. (%) 0.59
    Male 396 (49.25) 378 (49.54) 18 (43.90)
    Female 408 (50.75) 385 (50.46) 23 (56.10)
Age - yr (SD) 50.94 ± (15.77) 50.01 ± (15.47) 68.16 ± (10.47) < 0.01
BMI - kg/m2 (SD) 26.51 ± (4.34) 26.47 ± (4.34) 27.22 ± (4.23) 0.18
Blood sugar - mmol/L (SD) 4.94 ± (0.78) 4.91 ± (0.72) 5.43 ± (1.43) < 0.01
Total to low cholesterol - ratio (SD) 3.87 ± (1.03) 3.87 ± (1.04) 3.77 ± (0.88) 0.85
Current smoker - no. (%) 0.78
    No 643 (79.98) 609 (79.82) 34 (82.93)
    Yes 161 (20.02) 154 (20.18) 7 (17.07)
Current alcohol intake - no. (%) 0.32
    No 248 (30.85) 232 (30.41) 16 (39.02)
    Yes 556 (69.15) 531 (69.59) 25 (60.98)
Heart event history - no. (%) < 0.01
    No 741 (92.16) 709 (92.92) 32 (78.05)
    Yes 63 (7.84) 54 (7.08) 9 (21.95)
Serum creatine - µmol/L (SD) 84.00 ± (15.85) 83.97 ± (15.90) 84.56 ± (14.94) 0.73
Hypertension treatment - no. (%) < 0.01
    No 593 (73.76) 575 (75.36) 18 (43.90)
    Yes 211 (26.24) 188 (24.64) 23 (56.10)
Mean blood pressure - mmHg (SD) 96.28 ± (10.73) 96.13 ± (10.81) 99.23 ± (8.49) 0.02
Abbreviations: SD: standard deviation, BMI: body mass index. Categorical variables were presented with the number of each 
category and the corresponding percentage. Numeric variables were presented with mean and standard deviation.

Figure 2. Pearson correlation matrix of the selected proteome features and clinical features.
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plot of the support vector machine algorithm in 
the test dataset to determine which features 
had the most impact on the prediction model 
(Figure 4). The summary plot indicates the rela-

tionship between the value of a feature and the 
impact on the prediction. The decision plot’s 
straight vertical line marks the model’s base 
value. The coloured line is the prediction. 

Figure 3. Receiver-operating-characteristic (ROC) curves for prediction of cancer diagnosis by either clinical model, 
proteome model or combined model via different algorithms. Models by support vector machine, extra trees, lo-
gistic regression, naïve Bayes, XGBoost and AdaBoost were built. The proteome model and combined model were 
compared with the clinical model with the Delong test. Abbreviations: Ref: reference, SVM: support vector machine.
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Feature values are printed next to the predic-
tion line for reference. Starting at the bottom of 
the plot, the prediction line shows how the 
SHAP values accumulate from the base value 
to arrive at the model’s final score at the top of 

the plot. Decision plots are a literal representa-
tion of SHAP values, making them easy to inter-
pret. Age is listed as the most important fea-
ture, which is positively associated with the 
probability of cancer diagnosis, whereas the 

Table 2. Summary of comparison of different modalities for each algorithm
Algorithms Input ACC AUC Specificity Sensitivity F1 score
AdaBoost Clinical 0.89 (0.88-0.91) 0.73 (0.66-0.81) 0.92 (0.91-0.94) 0.11 (0.00-0.20) 0.91 (0.89-0.93)
AdaBoost Proteome 0.91 (0.90-0.93) 0.69 (0.59-0.79) 0.94 (0.93-0.96) 0.11 (0.00-0.20) 0.92 (0.91-0.94)
AdaBoost Combined 0.93 (0.91-0.94) 0.80 (0.74-0.85) 0.96 (0.95-0.97) 0.11 (0.00-0.20) 0.93 (0.91-0.95)
Extra trees Clinical 0.94 (0.92-0.95) 0.65 (0.53-0.77) 0.97 (0.97-0.98) 0.00 (0.00-0.00) 0.93 (0.91-0.95)
Extra trees Proteome 0.96 (0.95-0.98) 0.80 (0.72-0.91) 1.00 (1.00-1.00) 0.00 (0.00-0.00) 0.94 (0.93-0.97)
Extra trees Combined 0.95 (0.94-0.97) 0.78 (0.70-0.86) 0.99 (0.99-1.00) 0.00 (0.00-0.00) 0.94 (0.93-0.96)
Logistic Clinical 0.76 (0.74-0.79) 0.75 (0.68-0.82) 0.78 (0.75-0.80) 0.33 (0.14-0.50) 0.83 (0.81-0.86)
Logistic Proteome 0.77 (0.75-0.80) 0.77 (0.70-0.84) 0.79 (0.76-0.81) 0.44 (0.25-0.67) 0.84 (0.82-0.86)
Logistic Combined 0.82 (0.80-0.85) 0.82 (0.76-0.89) 0.84 (0.81-0.86) 0.44 (0.25-0.67) 0.87 (0.85-0.89)
Naive Bayes Clinical 0.85 (0.82-0.87) 0.73 (0.66-0.80) 0.87 (0.85-0.89) 0.33 (0.14-0.50) 0.89 (0.87-0.91)
Naive Bayes Proteome 0.84 (0.82-0.87) 0.76 (0.67-0.85) 0.85 (0.83-0.88) 0.44 (0.25-0.67) 0.88 (0.87-0.90)
Naive Bayes Combined 0.89 (0.88-0.91) 0.80 (0.73-0.87) 0.91 (0.90-0.94) 0.33 (0.14-0.50) 0.91 (0.90-0.93)
SVM Clinical 0.89 (0.88-0.91) 0.68 (0.60-0.76) 0.91 (0.90-0.93) 0.33 (0.14-0.50) 0.91 (0.90-0.93)
SVM Proteome 0.92 (0.91-0.94) 0.70 (0.61-0.80) 0.94 (0.93-0.96) 0.33 (0.14-0.50) 0.93 (0.92-0.95)
SVM Combined 0.95 (0.94-0.97) 0.83 (0.77-0.90) 0.97 (0.97-0.98) 0.44 (0.25-0.67) 0.96 (0.94-0.97)
XGBoost Clinical 0.90 (0.88-0.92) 0.70 (0.59-0.84) 0.92 (0.91-0.94) 0.22 (0.00-0.33) 0.92 (0.90-0.93)
XGBoost Proteome 0.93 (0.92-0.95) 0.69 (0.58-0.81) 0.96 (0.95-0.97) 0.22 (0.00-0.40) 0.94 (0.92-0.96)
XGBoost Combined 0.92 (0.91-0.94) 0.78 (0.69-0.89) 0.94 (0.93-0.96) 0.33 (0.14-0.50) 0.93 (0.92-0.95)
Abbreviations: ACC: accuracy, AUC: area under the curve, SVM: support vector machine.

Figure 4. Explainability of the support vector machine in the combined model by the SHAP value plot and decision 
plot. The SHAP summary plot (A) and decision plot (B) for support vector machine in combined model. 
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proteome biomarker (e07093) shows a nega-
tive association (Supplementary Figure 3; 
Figure 4A). Similarly, variables in the top rows 
contribute more to the models’ output as a 
probability of being classified as cancer cases, 
as shown in the decision plot (Figure 4B).

Predictive role of proteome biomarkers in a 
longitudinal setting

After excluding participants with a cancer his-
tory, 757 participants were retained in the lon-
gitudinal cohort, among which 57 positive can-
cer diagnoses were observed. The follow-up 
time was a median of 9.11 years [interquartile 
range (IQR): 7.50-9.82]. Univariate Cox regres-
sion showed that 48 peptides were significan- 
tly associated with cancer diagnosis in the 
future (Supplementary Table 3).

The multivariable Cox regression model for 
each of the proteome biomarkers was adjusted 
for clinical variables (sex, age, body mass index 
(BMI), the status of a current smoker, the sta-
tus of current alcohol intake, serum creatine, 
blood sugar, history of a cardiovascular event, 
administration of antihypertensive drugs, mean 
blood pressure and ratio of total cholesterol to 
LDL cholesterol) and the proportional hazard 
ratio assumption was met. Multivariable Cox 
regression showed that e03142, e05044, 
e08442 and e18831 are independent risk fac-
tors (Supplementary Table 3). These peptides 
were annotated as matrix metalloprotein-
ase-24, collagen alpha-1(I) chain, collagen 
alpha-2(I) chain, and collagen alpha-1(I) chain.

Discussion

The population-based study demonstrates ML 
models for the prediction of cancer in a general 
population by urinary proteome. Specifically, it 
meets its preset aims: 1. Demonstration of 
extra predictive power from proteome profiling; 
2. Demonstration of the predictive value of  
proteome in longitudinal risk of developing 
cancer.

The urinary proteome profiling is an informa-
tive, and non-invasive tool for the classification 
of a wide spectrum of diseases. Swensen et al. 
developed a database of urinary proteome pro-
filing from various medical conditions, including 
healthy individuals (n=10), renal transplant 
recipients with acute rejection (n=10) or stable 

grafts (n=10), patients with non-specific pro-
teinuria (n=10), and prostate cancer (n=5) 
patients. Here, they discovered hundreds of 
disease-related proteins, and for instance, ser-
pin B3, renin receptor, and periostin are bio-
markers for renal failure and prostate cancer, 
respectively [22]. To ensure the simplicity of the 
model and easiness of translational applica-
tion, we adopted critical feature selection by 
LASSO which identifies 13 peptides. However, 
the detailed cause-effect association between 
identified peptides and cancer development 
remained unexplored in the current population. 
Among these 13 peptides, the majority are 
from the collagen family. Collagen is identified 
as a biomarker of non-cancer diseases like dia-
betes-related kidney disease, diastolic left ven-
tricular dysfunction, liver fibrosis, interstitial 
fibrosis and tubular atrophy in chronic kidney 
disease, and bone resorption and bisphospho-
nate treatment in kidney transplant patients 
[23-27]. From a biological perspective, collagen 
is a major component of the extracellular matrix 
in normal tissue and cancer microenvironment. 
In addition, collagen, interacting with cancer 
cells as well as inflammatory cells, contributes 
to the proliferation, invasion, metastasis, treat-
ment resistance, anti-cancer immunity regula-
tion, hypoxia regulation and so forth [28]. In line 
with previous publications, collagen has been 
identified as a prognostic biomarker for a vari-
ety of cancer types [28]. For example, the high-
er mRNA and protein level of type I collagen, 
measured by polymerase chain reaction and 
immunohistochemistry respectively, are asso-
ciated with a poorer prognosis in non-muscle 
invasive bladder cancers [29]. Additionally, 
urine proteome reveals that ANXA11, CDC42, 
NAPA and SLC25A4 were positively associated 
with the risk of gastric lesion progression into 
malignancy, with an AUC (95% confidence inter-
val) of 0.92 (0.83-1.00), based on a case-con-
trol study of 255 cases from Linqu, China, a 
high-risk area for gastric cancer [30]. Urinary 
peptide signature represents a biomarker for 
the diagnosis of colorectal cancer and the 
development of liver metastases. Collagen was 
identified as a predictive biomarker for the 
diagnosis of colorectal liver metastases in a 
Western Europe population [31]. However, no 
peptide related to collagen was included in the 
signature, based on a case-control study of 
657 healthy control and 993 colorectal cancer 
patients in an Asian population [32]. The dis-
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parity among these results, together with our 
data, may be attributed to the different races of 
participants. The findings here, together with 
other studies, highlight the potential role as 
well as the heterogeneity of collagen in carcino-
genesis, calling for a multi-center trial consist-
ing of multiracial participants.

Given that different ML models perform differ-
ently depending on the training dataset charac-
teristics, six ML algorithms were trained with 
hyperparameter tuning to achieve the best per-
formance. Here, the support vector machine 
outperforms others and detects a significant 
difference. Although other algorithms can illus-
trate the difference between different input 
modalities, the difference is not statistically 
significant. This may be attributed to the rela-
tively weaker stratification power of these algo-
rithms and the relatively small sample size of 
the current study.

Among commonly collected clinical variables 
(sex, age, blood tests, cardiovascular treatment 
and so on) that were reported to be associated 
with cancer development [33-35], only age, 
blood sugar level and lipid profile were retained 
after LASSO regression here. The disparity 
between our results and other publications 
may be explained partially by different partici-
pant characteristics (generally older popula- 
tion here), and data collection and processing 
strategies. The derived clinical model shows 
comparable performance with the proteome-
based model. Interestingly, the combinational 
model has produced a significantly higher AUC 
value than any single modality, which indicates 
that the urinary proteome can provide extra 
and complementary predictive information 
than clinical variables. Since the clinical vari-
ables can be easily obtained, the implementa-
tion of the combined model will not require 
extra examination or tests. Furthermore, the 
superior performance of the combined model 
also implies the necessity of the clinical infor-
mation, which hopefully may boost the perfor-
mance of the proteome-only pipeline [12, 36]. 
The SHAP summary plot for the support vector 
machine with combined input exhibited some 
similar predictors known to be associated with 
cancer development and additionally, our plot 
revealed additional novel predictors from uri-s from uri-
nary proteome.

Compared with case-control studies, this study 
utilized data from a healthy cohort, represent-
ing the generalizability of the conclusion here. 

However, for a population-based setting, one of 
the practical questions is the lower incidence 
of events of interest, namely class imbalance, 
which may lead to insufficient training of ML 
models. Based on our data (around 5% of can-
cer diagnoses), we performed random duplica-
tion for upsampling. In the model validation 
process, accuracy was not adopted here due to 
the class imbalance.

The study has the following limitations. Firstly, 
the result here is based on a single cohort, with 
one detection method and further external vali-
dation is suggested to confirm the generaliz-
ability of the ML models proposed. Secondly, 
detailed information on cancer including, stag-
ing, histology is missing, which limits the sub-
group analyses. Thirdly, the exclusion of cases 
with urological malignancy, which may have an 
impact on the urinary proteome, was not done 
here as the main aim was to establish a cancer 
signature for all. Additionally, the total number 
of cancer cases is relatively limited for sub-
group analyses.

In conclusion, this study demonstrated the fea-
sibility of the prediction of cancer diagnosis by 
urinary proteome empowered by fine-tuned 
machine learning algorithms. A further valida-
tion with larger sample sizes in a multi-centre 
setting may assist the clinical screening of can-
cer for general purposes in the future.
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Supplementary Table 1. Baseline demographic and clinical characteristics of the participants
Categories All (n=804) Train (n=562) Test (n=242) P value
SEX - no. (%) 0.96
    Male 396 (49.25) 276 (49.11) 120 (49.59)
    Female 408 (50.75) 286 (50.89) 122 (50.41)
Age - yr (SD) 50.94 ± (15.77) 51.43 ± (15.81) 49.80 ± (15.62) 0.23
BMI - kg/m2 (SD) 26.51 ± (4.34) 26.58 ± (4.33) 26.34 ± (4.36) 0.33
Blood sugar - mmol/L (SD) 4.94 ± (0.78) 4.83 ± (0.52) 5.03 ± (0.63) 0.26
Total to low cholesterol - ratio (SD) 3.87 ± (1.03) 3.92 ± (1.05) 3.74 ± (0.96) 0.03
Current smoker - no. (%) 0.70
    No 643 (79.98) 452 (80.43) 191 (78.93)
    Yes 161 (20.02) 110 (19.57) 51 (21.07)
Current alcohol intake - no. (%) 0.49
    No 248 (30.85) 178 (31.67) 70 (28.93)
    Yes 556 (69.15) 384 (68.33) 172 (71.07)
Heart event history - no. (%) 1.00
    No 741 (92.16) 518 (92.17) 223 (92.15)
    Yes 63 (7.84) 44 (7.83) 19 (7.85)
Serum creatine - µmol/L (SD) 84.00 ± (15.85) 84.20 ± (14.17) 83.70 ± (15.52) 0.52
Hypertension treatment - no. (%) 0.86
    No 593 (73.76) 416 (74.02) 177 (73.14)
    Yes 211 (26.24) 146 (25.98) 65 (26.86)
Mean blood pressure - mmHg (SD) 96.28 ± (10.73) 96.37 ± (10.48) 96.07 ± (11.28) 0.61
Abbreviations: SD: standard deviation, BMI: body mass index. Categorical variables were presented with the number of each 
category and the corresponding percentage. Numeric variables were presented with mean and standard deviation.

Supplementary Figure 1. Comparison of normalized values of selected features between cancer and non-cancer 
groups. Abbreviations: *: P ≤ 0.05, **: P ≤ 0.01, ****: P ≤ 0.0001.
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Supplementary Table 2. Tuned hyperparameters for different models under various input modalities
Algorithms Parameter Clinical Proteome Combined
SVM C 1 1 0.1

class_weight Balanced Balanced Balanced
gamma 0.1 auto 0.1
kernel poly poly Poly

Extra trees class_weight Balanced Balanced Balanced
criterion gini gini gini

max_depth 20 10 10
n_estimators 50 50 50

Naïve Bayes var_smoothing 0.811 1.000 1.000
XGBoost learning_rate 0.2 0.1 0.2

max_depth 5 4 3
scale_pos_weight 100 10 99

AdaBoost learning_rate 1 1 1
n_estimators 300 300 300

Abbreviation: SVM: support vector machine.



Prediction of cancer by proteomics and machine learning

3 



Prediction of cancer by proteomics and machine learning

4 

Supplementary Figure 3. Feature importance by SHAP. Abbreviations: BSUG: blood sugar, T-LCHOL: total to low 
cholesterol ratio, SHAP: Shapley Additive Explanations.

Supplementary Figure 2. Receiver-operating-characteristic (ROC) curves for prediction of cancer diagnosis by each 
algorithm via different input modalities. Models by support vector machine, extra trees, logistic regression, naïve 
Bayes, XGBoost and AdaBoost were built. The proteome model and combined model were compared with the clini-
cal model with the Delong test. Abbreviations: Ref: reference, SVM: support vector machine.
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Supplementary Table 3. Multivariate Cox regression for proteome data in prediction of a future can-
cer diagnosis
Peptide Protein Name Abbreviations HR (95% CI) P value
e00340 Matrix Gla protein MGP 1.0 (1.0 ± 1.0) 0.45
e01132 Matrix Gla Protein MGP 1.0 (1.0 ± 1.0) 0.09
e01274 POTE ankyrin domain family member F POTEF 1.0 (1.0 ± 1.0) 0.58
e03016 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.98
e03142 Matrix metalloproteinase-24 MMP24 1.0 (1.0 ± 1.0) 0.02
e03180 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.64
e03248 Protocadherin-9 PCDH9 1.0 (1.0 ± 1.0) 0.11
e04419 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.42
e05044 Collagen alpha-1(I) chain COL1A1 0.99 (0.99 ± 1.0) 0.02
e05074 Collagen alpha-2(I) chain COL1A2 1.0 (1.0 ± 1.0) 0.05
e05560 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.74
e05830 Collagen alpha-1(XXII) chain COL22A1 1.0 (1.0 ± 1.0) 0.37
e06154 Collagen alpha-2(I) chain COL1A2 1.0 (1.0 ± 1.0) 0.35
e06213 Collagen alpha-1(III) chain COL3A1 1.0 (1.0 ± 1.0) 0.43
e06288 Collagen alpha-2(I) chain COL1A2 1.0 (1.0 ± 1.0) 0.22
e06650 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.23
e06733 Fibrinogen alpha chain FGA 1.0 (1.0 ± 1.0) 0.91
e06839 Collagen alpha-2(I) chain COL1A2 1.0 (0.99 ± 1.0) 0.15
e06961 Collagen alpha-1(III) chain COL3A1 1.0 (1.0 ± 1.0) 0.52
e07098 Collagen alpha-1(V) chain COL5A1 1.0 (1.0 ± 1.0) 0.52
e07132 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.09
e07513 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.34
e07678 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.74
e08188 Collagen alpha-1(III) chain COL3A1 1.0 (1.0 ± 1.0) 0.69
e08442 Collagen alpha-2(I) chain COL1A2 1.0 (1.0 ± 1.0) 0.02
e09449 Collagen alpha-1(III) chain COL3A1 1.0 (1.0 ± 1.0) 0.13
e09697 Collagen alpha-1(XXV) chain COL25A1 1.0 (1.0 ± 1.0) 0.45
e10771 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.07
e11008 Collagen alpha-2(V) chain COL5A2 1.0 (1.0 ± 1.0) 0.07
e11073 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.75
e11325 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.53
e11641 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.06
e11753 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.46
e11780 Collagen alpha-1(III) chain COL3A1 1.0 (1.0 ± 1.0) 0.17
e12851 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.87
e12949 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.81
e12986 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.59
e13065 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.61
e13707 Collagen alpha-1(III) chain COL3A1 1.0 (1.0 ± 1.0) 0.44
e14204 Collagen alpha-2(XI) chain COL11A2 1.0 (1.0 ± 1.0) 0.43
e14837 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.05
e15323 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.26
e17280 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.65
e17856 Collagen alpha-1(III) chain COL3A1 1.0 (1.0 ± 1.0) 0.46
e18831 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0
e18864 Collagen alpha-1(II) chain COL2A1 1.0 (1.0 ± 1.0) 0.58
e18867 Collagen alpha-1(III) chain COL3A1 1.0 (1.0 ± 1.0) 0.85
e19885 Collagen alpha-1(I) chain COL1A1 1.0 (1.0 ± 1.0) 0.61
e20065 Collagen alpha-1(III) chain COL3A1 1.0 (1.0 ± 1.0) 0.91


