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Abstract: Metastasis is the leading cause of cancer-associated mortality. Although advances in the targeted treat-
ment and immunotherapy have improved the management of some cancers, the prognosis of metastatic can-
cers remains unsatisfied. Therefore, the specific mechanisms in tumor metastasis need further investigation. 
6-O-endosulfatases (SULFs), comprising sulfatase1 (SULF1) and sulfatase 2 (SULF2), play pivotal roles in the post-
synthetic modifications of heparan sulfate proteoglycans (HSPGs). Consequently, these extracellular enzymes can 
regulate a variety of downstream pathways by modulating HSPGs function. During the past decades, researchers 
have detected the expression of SULF1 and SULF2 in most cancers and revealed their roles in tumor progression 
and metastasis. Herein we reviewed the metastasis steps which SULFs participated in, elucidated the specific roles 
and mechanisms of SULFs in metastasis process, and discussed the effects of SULFs in different types of cancers. 
Moreover, we summarized the role of targeting SULFs in combination therapy to treat metastatic cancers, which 
provided some novel strategies for cancer therapy.
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Introduction

Cancer is a serious public health challenge and 
the second leading cause of global mortality 
[1]. With earlier diagnosis, advances in local 
disease management and adjuvant therapies, 
the overall survival of patients with many solid 
cancers has increased [2, 3]. However, meta-
static diseases are still incurable to a large 
extent, which are responsible for over 90% of 
cancer-associated mortality [4-6]. The activa-
tion of invasion and metastasis is a crucial hall-
mark of cancer, but the understanding about 
specific process and mechanism of metastasis 
remains limited [7].

Metastasis is a multistep cell-biological pro-
cess characterized by a series of molecular and 
phenotypic alterations, facilitating the dissemi-
nation and colonization of cancer cells from a 
primary tumor to distant organ sites [8, 9]. 
Briefly, tumor metastasis process can be divid-

ed into 7 steps: 1) epithelial cells in primary 
tumors invade locally through surrounding 
extracellular matrix (ECM) and stromal cell lay-
ers, 2) intravasate into the lumina of blood ves-
sels, 3) survive the rigors of transport through 
the vasculature, 4) arrest at distant organ sites, 
5) extravasate into the parenchyma of distant 
tissues, 6) initially survive in these foreign 
microenvironments in order to form micro 
metastases, and 7) reinitiate their proliferative 
programs at metastatic sites, thereby generat-
ing macroscopic, clinically detectable neoplas-
tic growths [6, 9-11]. Each step of the invasion-
metastasis is driven by the acquisition of genet-
ic and/or epigenetic alterations within tumor 
cells and the interaction of nonneoplastic stro-
mal cells. Firstly, mutations of some cancer-
associated genes initiate and promote metas-
tasis. Notably, the loss of cancer suppressor 
p53 or the mutation of proto-oncogene EGFR 
could allow cancer cells to acquire characteris-
tics that are conducive to metastasis [12, 13]. 
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Secondly, some signaling pathways that can 
promote metastasis are activated in the pro-
cess of late-stage cancer metastasis, such as 
TGF-β and WNT/β-catenin signals [14, 15]. 
Thirdly, cancer cells in invasion-metastasis cas-
cade may undergo morphological changes and 
develop mesenchymal phenotypes [7, 16]. 
Moreover, the modulating of tumor microenvi-
ronment can impact metastasis as well, which 
is associated with immune cells and stromal 
cells [17, 18].

In recent years, much attention has been paid 
to exploring novel molecules which can impact 
receptor binding and signal transduction. 
Heparan sulfate proteoglycans (HSPGs) are 
classical co-receptors for numerous heparan 
sulfate (HS) binding growth factors and cyto-
kines, thereby influence receptor complex  
formation and cell signaling [19-21]. The 
6-O-endosulfatases (SULFs), including SULF1 
and SULF2, are enzymes which selectively 
remove 6-O-sulfate groups from HS [22]. 
Consequently, SULFs can modulate structure 
and function of HS and regulate some critical 
biological pathways [23, 24]. Dysregulation of 
SULFs has been reported in numerous cancers, 
correlating with tumor metastasis [25, 26]. In 
this review, our primary focus is the compre-
hensive analysis of SULFs’ functions in the pro-
cess of tumor metastasis, aiming to offer 
potential therapeutic strategies for metastatic 
cancer.

The structure and function of HSPGs and 
SULFs

HSPGs are evolutionarily ancient subclass of 
proteoglycans which are composed of core pro-
tein and covalently attached HS glycosamino-
glycan chains [27-29]. Based on their subcellu-
lar location, HSPGs are divided into three cate-
gories: extracellular HSPGs, exemplified by 
perlecan and type XVIII collagen; membranal 
HSPGs, represented by syndecans and glypi-
cans; and the sole intracellular HSPG, serglycin 
[28, 30, 31]. HSPGs can bind to numerous bio-
active molecular ligands, act as scaffolds for 
protein connections, and regulate receptor 
complexes formation by their HS chains [32, 
33]. Therefore, the structure and modification 
of HS chains become key points of HSPGs bio-
logical functions [33, 34]. Following their bio-
genesis in endoplasmic reticulum and Golgi 

apparatus, HS chains experience various of 
modifications including N-deacetylation and 
N-sulfation, epimerization and O-sulfation. 
Subsequent post-synthetic modifications are 
catalyzed by heparinase and SULFs. Among 
them, heparinase cleave HS chains at the level 
of glucuronic acid residues, while SULFs cata-
lyze the hydrolysis of 6-O sulfates [35]. These 
processes influence the interaction of HS 
chains and their ligands, thereby modulating a 
series of biological behaviors including cell 
growth and adhesion, as well as tumor progres-
sion and metastasis [36] (Figure 1A).

SULFs attracted researchers’ attention in 2001 
when Dhoot G.K. et al. identified SULF1 and dis-
covered that SULF1 could regulate HSPG-
dependent WNT and FGF signaling by releasing 
them from HSPGs [37, 38]. Subsequently, a 
closely related protein which shared similar 
structural domain with SULF1 was identified as 
SULF2. Both SULF1 and SULF2 are heterodi-
mers linked by disulfide bond, and studies have 
revealed that SULFs are initially synthesized as 
preproproteins, then cleaved into N-terminal 
75-kDa subunits and C-terminal 50-kDa sub-
units by furin-type proteinase [39, 40]. SULFs 
are composed of three functional regions: the 
N-terminal sulfatase catalytic regions, the 
hydrophilic domain (HD) which bind to HS 
chains, and the end of C-terminal subunits 
which have significant homology to glucos-
amine-6-sulfatase and play roles of specific 
recognition regions [35, 41, 42] (Figure 1B). 
After secreted into extracellular matrix (ECM), 
SULFs participate in modifications of HS chains 
and regulate the HS-dependent cell signaling. 
SULFs can modulate not only FGF and WNT sig-
naling, but also the HS-binding growth factors 
family like hepatocyte growth factor (HGF), 
platelet-derived growth factor (PDGF), vascular 
endothelial growth factor (VEGF), Transforming 
growth factor-β (TGF-β), and some downstream 
pathways such as AKT, MAPK, NF-kB, etc. 
Numerous previous studies have verified the 
significant roles of SULFs in tumor initiation and 
progression [25, 43-45].

Despite similar structure and substrate speci-
ficity of SULF1 and SULF2, the pathological 
function of these two enzymes in cancer is dis-
tinct [46, 47]. Previous studies have revealed 
the oncogenic roles of SULF2 across various 
cancer types [40, 41]. However, the role of 
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SULF1 in tumorigenesis and tumor progression 
seems inconsistent. In ovarian cancers and 
breast cancers, SULF1 can inhibit tumor pro-
gression and reduce chemoresistance of cispl-
atin, while the overexpression of SULF1 in 
colorectal cancer (CRC) and pancreatic cancer 
is usually connected with advanced stages and 
poor prognosis [48-51].

Specific mechanisms of SULFs in tumor me-
tastasis

The roles of SULF1 and SULF2 in tumor metas-
tasis exhibit variability across different types of 
cancers. Previous studies have demonstrated 
the pro-metastasis roles of SULF2 in most can-
cers, while the functions of SULF1 vary accord-
ing to types of cancers [47, 52]. Therefore, 
SULFs may regulate tumor metastasis via dif-
ferent molecular mechanisms. Desulfation of 
HSPGs is the essential mechanism of SULFs in 
regulating metastasis. Based on this mecha-
nism, SULFs can influence the reprogramming 

of tumor microenvironment (TME) and epitheli-
al mesenchymal transition (EMT) process in 
metastasis. Moreover, epigenetic modifications 
of SULF1 and SULF2 play critical roles.

SULFs regulate tumor metastasis by HSPGs 
associated pathways

The 6-O sulfation of HS chains has been  
proved to regulate the binding of HSPGs to 
ligands and receptors, which influence metas-
tasis pathways either directly or indirectly [53]. 
SULFs mainly regulate HSPGs associated path-
ways through different methods. On the one 
hand, 6-O sulfated HS chains are common stor-
age sites for many bio-active ligands, and 
SULFs can facilitate the release of these 
ligands. On the other hand, SULFs may influ-
ence the co-receptor complexes formation and 
regulate the downstream signaling [38, 54, 
55]. In this text, these mechanisms of SULFs 
are discussed according to HSPGs associated 
signaling pathways in tumor metastasis, such 

Figure 1. The structure and function of HSPGs and SULFs. A. HSPGs are divided into extracellular, membranal and 
intracellular subtypes according to their cellular location. HSPGs are composed of the core proteins and HS chains. 
After biogenesis HSPGs undergo a series of modifications, among them SULFs catalyze hydrolysis of 6-O sulfates. B. 
The biogenesis of SULFs. SULFs are synthesized as preproproteins. After removal of the signal peptide, SULFs are 
cleaved by the furin-type proteinase and the fragments are joined by disulfide bonds. GlcA: glucuronic acid, GlcNAc: 
N-acetyl glucosamine, 2-OST: 2-sulfotransferase, 3-OST: 3-sulfotransferase, 6-OST: 6-sulfotransferase, NDST: N-
deacetylase/N-sulfotransferase, GLCE: glucuronic acid epimerase, HPSE: heparinase.
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as WNT/β-catenin, TGF-β/SMAD, FGF and other 
HS-binding growth factors (GFs). Moreover, 
some downstream pathways indirectly regulat-
ed by SULFs are involved as well (Figure 2).

WNT/β-catenin

WNT refers to a cluster of secreted glycopro-
teins. Up to now, researchers have identified 
19 WNT ligands, which serve diverse functions 
in regulation of different pathways [56]. Among 
them, WNT1, WNT3A and WNT8 activate the 
canonical WNT pathway by binding to frizzled 
and lipoprotein receptor 5/6, subsequently  
triggering the nuclear functions of β-catenin. 
Meanwhile, WNT5 and WNT11 activate small 
GTPases and the protein kinase JNK, which is 
the non-canonical pathway. Both pathways play 
important roles in tumor initiation and progres-
sion [57, 58]. HSPGs function as co-receptors 
and storage sites of WNT ligands, while SULFs 
predominantly influence the canonical WNT/β-

catenin pathway in tumor metastasis [59]. In 
gastric cancer, SULF1 inhibits cell invasion by 
downregulating β-catenin and downstream 
Cyclin D1 and c-Myc [60]. Moreover, studies in 
prostate cancer reported that SULF1 could 
reduce WNT3a-driven bone metastasis [61]. As 
for SULF2, most recent researches proved pro-
metastasis function of SULF2 by activating 
WNT/β-catenin pathway. In CRC, both SULF1 
and SULF2 were reported to alter HS chains 
substitution pattern, thereby increase the accu-
mulation of active β-catenin and induce inva-
siveness of cancer cells [62]. In another exam-
ple, SULF2 was reported to form a ternary com-
plex with WNT3A and transmembrane HSPG 
glypican 3 (GPC3). Then the desulfation of 
GPC3 by SULF2 enhanced the release of WNT 
proteins, promoting their binding with Frizzled 
receptors [63]. Roughly, SULF2 is recognized 
for promoting tumor metastasis by activating 
WNT signaling pathway, while the role of SULF1 
alters in different cancers.

Figure 2. Specific mechanisms of SULFs in tumor metastasis. SULFs mainly regulate tumor metastasis through influ-
encing the HS-related signaling pathways. For each, the modifications of HS-chains by SULFs can affect the release 
of bio-active ligands or the formation of co-receptor complex. Various pathways are involved in and regulate the me-
tastasis associated processes including proliferation, migration, invasion, EMT, angiogenesis and TME remodeling.
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TGF-β/SMAD

TGF-β is a multifunctional cytokine which plays 
crucial roles in malignant evolution of cancer 
cells [64]. TGF-β can bind to type II receptor, 
attribute to phosphorylation of type I receptor 
and SMADs, then activate downstream genes 
[65]. The TGF-β signaling pathway can modu-
late tumorigenesis, cell invasion and microenvi-
ronment modification in diverse cancers [66]. 
SULFs mainly regulate TGF-β signaling path- 
way by desulfating HS chains, thereby enhanc-
ing the release of TGF-β. SULF1 has been found 
upregulated in HCC and is associated with poor 
prognosis [67]. Renumathy Dhanasekaran et 
al. found that SULF1 could inhibit the interac-
tion of TGFβ1 and its sequestration rece- 
ptor TGFBR3. Consequently, overexpression of 
SULF1 could promote TGFβ1 secretion and 
lead to activation of downstream signaling, 
then enhance HCC cells migration and invasion 
[68, 69]. Likewise, SULF2 can induce TGF-β sig-
naling in similar methods. In pancreatic ductal 
adenocarcinoma (PDAC), SULF2 induces the 
TGF-β/SMAD pathway by regulating GDF15, a 
member of the TGF-β superfamily [70]. The 
activation of TGF-β/SMAD pathway by SULF2 
was also reported in lung cancers, which con-
tributed to invasiveness of tumor cells [44, 71]. 
In conclusion, TGF-β signaling is a key player in 
tumor metastasis, and SULFs exhibit similar 
functions of activating TGF-β signaling via 
HSPG-mediated methods, thereby promoting 
tumor metastasis in vitro and in vivo.

FGF

The fibroblast growth factors (FGF) and their 
corresponding receptors play critical roles in 
various biological processes, especially differ-
entiation, proliferation and tumorigenesis [72, 
73]. FGFs bind to and dimerize cognate recep-
tors, then interact with HSPGs and establish 
stable ligand/receptor complexes [74]. The 
desulfation of HS chains by SULFs may influ-
ence the functions of HSPGs and accordingly 
regulate FGF signaling pathway [75]. Recent 
studies proved the distinct modifications of HS 
chains mediated by SULF1 and SULF2 [42, 76]. 
Generally, SULF1 is regarded as an inhibitor for 
FGF signaling. In breast cancers, it was report-
ed that transcriptional silence of SULF1 under 
hypoxia could enhance FGFR2 phosphoryla-
tion, thereby facilitating cell migration and inva-

sion [77]. Similarly, researches in head and 
neck squamous carcinoma (HNSC) also showed 
that SULF1 could inhibit tumor metastasis by 
downregulating FGF signaling [78]. In contrast, 
SULF2 was reported to exert different func-
tions. Further exploration in HCC by Lai JP et al. 
revealed that SULF2 could promote FGF signal-
ing by upregulating GPC3, leading to increased 
FGF2 binding and inducing tumor growth and 
metastasis [79]. Previous experiments have 
concluded the distinct function of SULF1 and 
SULF2 in modulating the FGF signaling 
pathway. 

Other HS-binding GFs signaling pathways

Apart from the signaling pathways mentioned 
above, other HS-binding growth factors can be 
modulated by SULFs as well. EGFR is the trans-
membrane receptor for various ligands includ-
ing epidermal growth factor (EGF), heparin-
binding EGF (HB-EGF), transforming growth fac-
tor α (TGF-α) and amphiregulin (AR) [80]. 
SULF1-mediated desulfation of cell surface 
HSPGs has been implicated in the reduction of 
EGFR phosphorylation, leading to the inhibition 
of tumor metastasis [81, 82]. In contrast, 
SULF2 could increase the release of EGFR 
ligands and induce the downstream pathways. 
Recent researches in HCC found that SULF2 
stimulated EGFR signaling and facilitated lipo-
calin 2 transcription, thereby induced tumor 
progression [83]. Another set of growth factors, 
hepatocyte growth factors (HGFs), and their 
receptor c-Met are linked to tumorigenesis and 
metastasis [84]. As shown in previous work, 
SULF1 was regarded as a suppressor of HGF 
signaling, which consequently promoted apop-
tosis of HCC cells [85]. Researches also 
revealed that downregulation of SULF1 by EZH2 
could facilitate phosphorylation of c-Met and 
activation of downstream signaling in chondro-
sarcomas [86]. PDGFs are firstly identified in 
active platelet and belong to HS-binding GFs 
family [87]. They can bind to PDGF receptors 
and promote their dimerization and phosphory-
lation, thereby regulate various downstream 
pathways and promote cancer progression and 
metastasis [88]. Recent researches reported 
that SULF2 knockdown in glioblastoma caused 
remarkable decrease of PDGFRα activation, 
and overexpression of SULF2 in cholangiocarci-
noma induced PDGFRβ and downstream YAP 
signaling activation [45, 89]. Additionally, dys-
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regulation of SULFs in many cancer types can 
impact VEGFs, thereby modulating angiogene-
sis - an integral process in metastasis [90, 91].

Indirectly activated signaling pathways

In addition to binding with heparan sulfate (HS) 
growth factors, SULFs play a pivotal role in indi-
rectly regulating numerous classical signaling 
molecules and pathways associated with 
tumors, exerting either pro- or anti-metastatic 
functions. Predominantly implicated pathways 
include MAPK and PI3k/AKT. As formerly pub-
lished, experiments in lung cancer and ovarian 
cancer cells demonstrated that loss of SULF1 
could induce tumorigenesis and metastasis via 
activating phosphorylation of ERK and AKT [92, 
93]. Additionally, in malignant mesothelioma, 
overexpression of Syndecan-1 could impede 
the release of SULF1, consequently stabilizing 
heparan sulfate (HS) chains and activating the 
MAPK pathway [94]. Conversely, SULF2 was 
reported to activate the MAPK and AKT path-
ways in several kinds of cancers [95, 96]. Signal 
transducer and activator of transcription 3 
(STAT3) plays significant roles in cell prolifera-
tion, differentiation, metabolism and malignant 
characteristic [97, 98]. Canonical STAT3 signal-
ing is initiated by Janus kinase (JAK), while the 
non-canonical pathway exhibit crosstalk with 
MAPK or AKT signaling [99]. Researchers found 
that exogenous SULF1 in breast cancer could 
inhibit STAT3 phosphorylation in non-canonical 
signaling pathway independent of JAK2, then 
induce cell cycle arrest and inhibit cell migra-
tion and invasion [100]. Contrastingly, recent 
studies have reported that SULF2 influences 
the canonical JAK/STAT3 signaling. For exam-
ple, SULF2 could induce HCC growth and migra-
tion by upregulating GLI1 and transcriptionally 
activating JAK/STAT3 signaling [101]. Further- 
more, the overexpression of SULF2 induced by 
radiotherapy could induce interleukin-6 secre-
tion, then increase STAT3 phosphorylation and 
mediate malignant effects [102, 103]. More- 
over, NF-κB, the critical transcription factor in 
immune and inflammation responses could be 
promoted by SULF2 [104]. SULF2 could acti-
vate NF-κB signaling and stimulate the secre-
tion of inflammatory cytokines in HCC by upreg-
ulating GPC3 [105]. These results have illumi-
nated the functions of SULFs in indirectly regu-
lating various metastasis signaling pathways.

SULFs regulate tumor metastasis by repro-
gramming TME

Tumor microenvironment (TME) is constituted 
by not only malignant cells, but also the fibro-
blasts, stromal cells, immune cells and vascu-
lature, which exert different functions in tumor 
initiation and progression [106, 107]. Repro- 
gramming of the TME mainly influences the 
metastasis process in 3 different ways includ-
ing angiogenesis, ECM reorganization and 
immune response alteration [108-110]. Recent 
studies have focused on the roles of SULFs in 
TME reprogramming. Firstly, as HSPGs partici-
pate in composition of ECM, SULFs serve as 
important ECM-related molecular capable of 
modulating ECM reorganization. SULF1 was 
identified as a hub ECM gene in bladder can-
cers and gastric cancers, potentially influencing 
the maintenance of tissue homeostasis and 
patient prognosis [111, 112]. Immuno-histo- 
chemistry (IHC) assays in cancer tissues 
showed high expression of SULF1 in stromal 
cells, which could independently predict lymph 
node metastasis [113]. SULF2 is also related to 
ECM remodeling. For example, the cancer asso-
ciated fibroblasts of HCC could release stromal 
SULF2 into ECM, which could influence the 
modification of GPC3 in ECM and promote HCC 
metastasis by activating downstream mole-
cules like β-catenin, STAT3 and NF-κB [114]. 
Furthermore, researchers indicated that high 
expression of SULF2 in hepatic stellate cells 
could increase the levels of collagen I and 
α-SMA, thereby promoting liver fibrosis, which 
is an important risk factor for HCC [115]. 
Secondly, SULFs could modulate tumor angio-
genesis in the metastasis process, mainly 
through VEGF signaling pathway. Researchers 
found that loss of SULF1 in several types of 
cancers could facilitate phosphorylation of 
VEGFR2 and promote angiogenesis [116]. And 
investigations in human umbilical vein endo-
thelial cells (HUVEC) indicated that silence of 
SULF1 could promote cell proliferation under 
stimulation of VEGF, FGF2 and HGF [90]. 
However, SULF2 were suggested to promote 
angiogenesis in vitro and in vivo. On the one 
hand, overexpression of SULF2 by the telomer-
ic protein TRF2 in the vasculature of many can-
cer types could induce VEGF-A release, then 
promote HUVEC cells differentiation and tubule-
formation [91]. On the other hand, studies in 
endothelial tip cells indicated that SULF2 could 
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upregulate VEGFR2 and the co-receptor NRP, 
thereby facilitate VEGFA-induced sprouting 
angiogenesis [117]. Moreover, SULF1 and 
SULF2 were reported as immune regulators, 
stimulating macrophage phagocytosis and anti-
gen presentation in response of proinflamma-
tory stimuli and inflammation [118]. In bladder 
cancers, researchers also demonstrated that 
SULF2 could promote M2 polarization of mac-
rophage via increasing IL-8 release and activat-
ing JAK/STAT3 signaling [119]. SULF1 was 
upregulated in gastric cancers and positive 
related to CD8+ T cells, CD4+ T cells and mac-
rophage infiltration [120]. Further investiga-
tions in the mechanisms of how SULFs regulate 
immune response and tumor progression are 
needed.

SULFs regulate tumor metastasis by affecting 
EMT process

EMT is an essential biological procedure in 
which cells lose epithelial characteristics (e.g., 
cell polarity and adhesion) and transform into 
mesenchymal phenotypes [121, 122]. The EMT 
process encompasses diverse morphological 
and functional alterations of related cells, along 
with downregulation of epithelial markers like 
E-cadherin and upregulation of mesenchymal 
markers such as N-cadherin and vimentin 
[123]. EMT significantly augments the aggres-
sive behavior of tumor cells, facilitating their 
invasion of adjacent or distant tissues and 
thereby contributing to tumor metastasis [124, 
125]. In the prevailing view, SULF1 and SULF2 
exerted different functions in EMT process. 
Traditionally identified as an EMT inhibitor, 
SULF1 was shown in recent studies to suppress 
hepatocellular carcinoma (HCC) cell EMT by 
inhibiting the MAPK and AKT pathways [126]. 
Moreover, Mahmoud et al. made further explo-
ration of SULF1 in HCC by constructing overex-
pressed and knockdown murine HCC cell lines. 
Their findings revealed that SULF1 could atten-
uate HCC cells EMT by downregulating meso-
thelin, thus inhibit cells growth and invasion in 
vitro and in vivo [127, 128]. In contrast, SULF2 
was reported to upregulate SNAI1 and vimentin 
to promote EMT in HCC [129]. Additionally, 
researches in breast cancer showed SULF2 
could promote activity of MMP9, and overex-
pression of SULF2 in prostate cancer contrib-
uted to upregulation of mesenchymal markers 
CD44, N-cadherin and vimentin [130, 131]. In 

conclusion, SULF1 and SULF2 play different 
roles in EMT regulation, which is an important 
process in tumor metastasis.

Epigenetic modification of SULFs modulate 
tumor metastasis 

Besides regulating HS-related pathways, tumor 
microenvironment and EMT process, different 
types of epigenetic modification in SULFs can 
also influence the metastasis process in sev-
eral cancers. Alternative splicing (AS) is one 
kind of critical post-transcriptional modification 
which produces diverse mRNA transcripts by 
differential ligation of 3’ and 5’ end in exons 
[132, 133]. During recent decades, several  
different AS of SULFs were discovered and 
reported in metastasis process. For instance, 
researchers isolated two different AS of SULF1 
which were named as SULF1A and SULF1B. 
Further investigation showed that SULF1A and 
SULF1B exerted opposing functional activities 
in regulating angiogenesis and WNT signaling 
[134]. And the first effective tumor-specific 
SULF2 AS was found in lung tumor samples, 
which could induce HGF and MAPK signaling 
[135]. More recent studies verified the expres-
sion of various short AS variants of SULF1 and 
SULF2 in PDAC and breast cancers. In PDAC, 
the expression of SULF1/SULF2 variants 
showed distinctions in different regions and dif-
ferent stages in PDAC progression. Specifically, 
SULF1 variants were consistently expressed in 
epithelial acinar cells, while SULF2 variants 
mainly located in stromal cells. Both variants 
could reduce the facilitation of cell growth by 
SULF1 and SULF2. In breast cancers, research-
ers showed that SULFs short AS contributed to 
lymphatic metastasis [136-138]. Epigenetic 
silencing of SULFs were also reported in many 
types of cancers. In ovarian cancers, research-
ers demonstrated that the overexpression of 
variant hepatic nuclear factor 1 (vHNF1) inhib-
ited SULF1 transcription via binding to its pro-
moter, which also contributed to cisplatin resis-
tance [139]. The demethylating agent 5’-aza-
2’-deoxycytidine could reverse the epigenetic 
silencing of SULF1 and restore sensitivity to 
chemotherapy [48]. Similarly, Tessema et al. 
also showed the methylation silencing of 
SULF2. SULF2 methylation could inhibit tumor 
metastasis and sensitize tumor cells to topoi-
somerase-1 inhibitors, thereby improve the 
overall survival [140]. These results had dem-
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onstrated the epigenetic modifications of 
SULFs could impact tumor metastasis and tol-
erance to chemotherapeutics. 

Distinct functions of SULFs in metastasis of 
different types of cancers

SULFs can regulate tumor metastasis through 
different mechanisms. Although SULF1 and 
SULF2 obtain similar molecular structure and 
exert analogous desulfation functions toward 
HS chains, their biological behaviors vary from 
different types of cancers. We analyzed the 
expression of both SULF1 and SULF2 in TCGA 
database and the results were showed in 
Figure 3. In our review, the concrete roles of 
SULFs in different types of cancers are summa-
rized, which can facilitate researchers to realize 
the relationship between SULFs and tumor 

metastasis. The detailed information is con-
cluded in Table 1.

Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the most 
prevalent form of liver cancer, which ranks the 
third leading cause of cancer-associated mor-
tality [141]. Previous evidence uncovered the 
abnormal expression of SULFs in HCC. In the 
prevailing view, SULF1 was defined as a tumor-
suppressor in HCC. Lai et al. reported the meth-
ylation silencing and loss of heterozygosity 
(LOH) in SULF1, which downregulated SULF1 
and facilitated tumor growth and inhibited che-
motherapy apoptosis [85, 142]. The anti-
metastasis role of SULF1 was also demonstrat-
ed though suppression of AKT and MAPK sig-
naling [126]. However, further studies in some 

Figure 3. The expression of SULFs in different types of cancers. A, B. SULF1 and SULF2 have similar structure 
and desulfation function, but their expression varies in different cancers. The results were analyzed in TCGA data-
base. GBMLGG: glioblastoma and low-grade glioma, GBM: glioblastoma multiforme, LGG: low-grade glioma, CESC: 
cervical squamous cell carcinoma, LUAD: lung adenocarcinoma, COAD: colon adenocarcinoma, COADREAD: colon 
adenocarcinoma and rectum adenocarcinoma, BRCA: breast invasive carcinoma, ESCA: Esophageal carcinoma, 
STES: stomach and esophageal carcinoma, KICH: kidney chromophobe, KIRP: kidney renal papillary cell carcinoma, 
KIRC: kidney renal clear cell carcinoma, KIPAN: pan-kidney cohort, STAD: stomach adenocarcinoma, PRAD: prostate 
adenocarcinoma, UCEC: uterine corpus endometrial carcinoma, HNSC: head and neck squamous cell carcinoma, 
LUSC: lung squamous cell carcinoma, LIHC: liver hepatocellular carcinoma, THCA: thyroid carcinoma, PAAD: pancre-
atic adenocarcinoma, BLCA: bladder urothelial carcinoma, CHOL: cholangiocarcinoma.
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Table 1. The functions of SULFs in different types of cancers

Cancer type Functional 
SULFs Specific functions in metastasis Molecular mechanisms and related pathways Ref.

HCC SULF1 Downregulated by LOH and methylation silencing Influence of epigenetic modification [85, 142]

Suppress proliferation, invasion and EMT, inhibit lymphatic metastasis Attenuate AKT and MAPK pathways [126, 128, 164]

Promote migration, invasion and EMT Activate HS-related TGF-β/SMAD pathway [68]

SULF2 Increase macrophage migration and recruitment, promote EMT process Activate NF-κB and STAT3 pathways, remodel TME [114, 129]

Promote proliferation, migration and invasion Promote proliferation, migration and invasion [63, 79]

Promote angiogenesis and liver fibrosis Activate HS-related TGF-β/SMAD pathway, remodel TME [115, 143]

Breast Cancer SULF1 Downregulated by LOH and methylation silencing Influence of epigenetic modification [145]

Suppress proliferation, migration and invasion, induce cell cycle arrest and apoptosis Attenuate HS-related FGF, HGF, and downstream AKT, MAPK, 
STAT3 pathways

[52, 77, 100]

Inhibit angiogenesis Attenuate HS-related FGF and VEGF pathways, remodel TME [90]

SULF2 Promote angiogenesis and lymph angiogenesis Activate HS-related VEGF pathway, remodel TME [146, 165]

Transform DCIS into invasive ductal carcinoma Not mentioned [131]

CRC SULF1 Overexpress in advanced and metastatic CRC, associate with poor prognosis Not mentioned [50, 166]

Promote proliferation and invasion Activate HS-related FGF and WNT pathways [62, 149]

SULF2 Promote angiogenesis Activate HS-related VEGF pathway, remodel TME [91]

Serve as biomarkers of microenvironment and invasion Not mentioned [149-151]

Promote proliferation, migration and invasion Activate HS-related WNT and downstream MAPK, AKT 
pathways

[62, 96]

NSCLC SULF1 Suppress proliferation and tumorigenesis in previous views
Upregulated in NSCLC tissues by broader analyses

Modulate AKT and MAPK pathways [93, 153, 154]

SULF2 Promote γ-Irradiation-Induced metastasis Not mentioned [167]

Inhibit metastasis while methylated silenced Influence of epigenetic modification [140]

Promote migration, invasion and EMT Activate HS-related WNT and TGF-β/SMAD pathways [44, 155]

Ovarian Cancer SULF1 Downregulated by LOH and methylation silencing Influence of epigenetic modification [48, 139]

Reduce micro vessel density and inhibit angiogenesis Attenuate HS-related FGF and VEGF pathways, remodel TME [90, 116]

Suppress proliferation and invasion, induce cell apoptosis Attenuate AKT and MAPK pathways [92]

GBM SULF2 Overexpressed in mesenchymal and pro-neural subtypes GBM Positively correlate with PDGFRA expression [160, 163]

Promote proliferation, migration, and invasion Activate HS-related PDGF pathway [89]

Prostate Cancer SULF2 Promote migration, invasion and EMT Activate HS-related WNT pathway [130]

Bladder Cancer SULF2 Promote polarization of M2 macrophages Activate IL8/STAT3 pathway, remodel TME [119]

Serve as diagnostic and prognostic marker, promote lymph node metastasis Not mentioned [168]
SULF1 and SULF2 have been reported to influence tumor metastasis of HCC, breast cancers, NSCLC, CRC, ovarian cancers, GBM, prostate cancers and bladder cancers. The specific mechanisms are showed above.
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HCC revealed that high expression of SULF1 
was associated with poor prognosis, and SULF1 
could increase TGFβ releasing and promote 
invasion and EMT [68]. Unlike the controversial 
function of SULF1 in HCC, SULF2 was proved as 
an oncogenic factor. It was demonstrated that 
overexpression of SULF2 could stimulate HCC 
cells migration, invasion and EMT by activating 
HS-related TGF-β, FGF, WNT signaling, as well 
as TME reorganization [19, 63, 79, 143]. In 
summary, both SULFs participate in HS-related 
pathways and TME regulation, but the specific 
role of SULF1 in HCC need further inves- 
tigation.

Breast cancer

Breast cancer remains the foremost contribu-
tor to both cancer incidence and mortality 
among women [144]. Different effects of SULFs 
have been reported in breast cancer. SULF1 is 
downregulated in breast cancer cells and tis-
sue samples, which is correlated with high 
methylation of 5’ promoter region [145]. SULF1 
can influence numerous processes in metasta-
sis of breast cancer such as migration, inva-
sion, EMT, angiogenesis and induce cell cycle 
arrest and apoptosis [77, 100]. These effects 
are mainly associated with the modulation of 
HS-related pathways. In contrast, SULF2 is usu-
ally regarded as a promoter of metastasis in 
breast cancer. Ashwani Khurana et al. provide 
substantiation that SULF2 could prompt the 
transition from ductal carcinoma in situ (DCIS) 
to more invasive ductal carcinoma [131]. 
Further studies also showed significant effect 
on HS-related pathways mediated by SULF2 
[146, 147]. With the recent advances, SULF1 
and SULF2 exhibit contrasting functions in 
breast cancer while modulate similar signaling 
pathways.

Colorectal cancer

Researches in CRC showed consistent onco-
genic functions of SULF1 and SULF2 [47, 148]. 
SULFs were considered promising invasion-
related biomarkers. Anastasia et al. demon-
strated that SULFs could be defined as poten-
tial microenvironment factors in CRC, while the 
augmented cell migration activity was also 
proved through exogenous SULF1 and SULF2 
[62, 149]. More recent gene analysis showed 
that SULF2 upregulation might account for 
local invasion of CRC [150]. In addition, SULF2 

was regarded as one of microsatellite instabili-
ty (MSI) biomarkers, whose identification could 
reflect assessment of therapy stratification and 
overall survival [151]. 

Non-small cell lung cancer

Lung cancer is the most common type of can-
cer and the leading cause of cancer-associated 
morality. Non-small cell lung cancer (NSCLC) 
represents about 80-85 percent of lung can-
cers [152]. In the past debates, SULF1 was 
identified as an inhibitor of MAPK and AKT sig-
naling, thereby suppressed tumor progression 
and metastasis [93]. However, more recent 
studies showed that NSCLC tissues expressed 
higher level of SULF1 compared with nonmalig-
nant adjacent tissues [153]. Overexpression of 
SULF1 could facilitate migration and invasion 
of NSCLC cells [154]. SULF2 were defined as an 
oncogene for NSCLC. Previously investigations 
revealed that SULF2 could promote tumor 
metastasis through activating TGF-β/SMAD 
and WNT signaling pathways [44, 155]. In a 
word, the current view is that SULFs are consis-
tently served as promoter of NSCLC. 

Ovarian cancer

Ovarian cancer is the fourth most common can-
cer of female worldwide [156]. Abundant of 
researches have showed that SULF1 is a known 
suppressor in ovarian cancers [157]. The role 
of inhibiting metastasis by SULF1 is reflected 
through several aspects. Firstly, the loss of 
SULF1 in ovarian cancer is caused by LOH and 
epigenetic silencing, as well as upregulation of 
suppressive transcription factor vHNF [48, 
139]. Secondly, SULF1 participate in remodel-
ing of microenvironment through inhibiting 
angiogenesis [90, 116]. Thirdly, SULF1 regulate 
metastasis process via HS-related GF signaling 
[54, 92]. Moreover, researchers also found that 
single nucleotide polymorphisms (SNPs) of 
SULF1 could alter the aggressiveness and 
prognosis of ovarian cancers [158]. However, 
there were few studies about SULF2 in ovarian 
cancer, which still need more investigation to 
explore the specific mechanisms.

Glioblastoma multiforme

Glioblastoma multiforme (GBM) represents 
about 80% of the malignant brain tumors in 
adults [159]. The dysregulation of HS-related 
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GF and RTK signaling plays a pivotal role in 
facilitating the invasive properties of GBM cells 
within neighboring brain tissues [160, 161]. 
Therefore, SULFs have been regarded as cru-
cial regulator in GBM. Previous studies showed 
that expression of SULF1 and SULF2 depended 
on different GBM subtype [162]. For example, 
SULF1 was downregulated in classical and neu-
ral GBM, related to amplification of EGFR. 
Meanwhile, enrichment expression of SULF2 in 
mesenchymal and pro-neural GBM was associ-
ated with abnormal PDGFRα stimulation [160, 
163]. Phillips et al. verified the decreased 
PDGFRα activation in SULF2 knock-out mice, 
and SULF2 mainly regulated HS-related path-
ways in pro-neural type of GBM [89]. In brief, 
SULFs exhibit different expression in different 
subtypes of GBM, and affect GBM develop-
ment and metastasis together.

SULFs are promising targets of adjuvant ther-
apy in metastatic cancers

Except for surgery resection, adjuvant therapy 
also plays critical roles in the treatment of 
malignant solid tumors [169]. Adjuvant treat-
ments consist of chemotherapy, radiotherapy, 
immunotherapy, etc. [170]. However, the effica-
cies of these therapeutics are still limited by 
adverse effect, drug susceptibility and toler-
ance. In recent evidence, more and more stud-
ies paid attention to roles of SULFs in neoadju-
vant therapy. Firstly, SULFs regulate adverse 
effects of adjuvant therapies, particularly in 
radiotherapy. γ-irradiation is the most common 
used ionizing radiation method. However, it 
may induce invasion of cancer cells, posing a 
major challenge for radiotherapy. Interestingly, 
Jung et al. revealed that γ-irradiation-induced 
invasion were mediated by SULF2. Their find-
ings showed that the transcriptional upregula-
tion of SULF2 induced by ionizing radiation 
could promote the invasiveness of cancer cells 
via STAT3 and β-catenin pathways [102, 171]. 
Further investigation suggested that den-
drobine could inhibit ionizing radiation-induced 
invasion through suppressing SULF2 expres-
sion and ionizing radiation-induced signaling 
[167]. Secondly, SULFs could impact the thera-
peutic sensitivity of drugs or radiotherapy, 
which is a promising target for combination 
therapy. It was reported that high expression of 
SULF1 could enhance the efficacy of Palbociclib, 
a CDK4/6 inhibitor, in inducing cell cycle arrest 

and apoptosis, thus inhibiting proliferation, 
EMT and invasion in triple-negative breast can-
cer [100]. In HCC, researchers reconstructed 
radiation-inducible oncolytic adenovirus over-
expressing SULF1 and transferred them into 
HCC cells. The over-expression of SULF1 
induced by I131 radiation could enhance cellu-
lar sensitivity to radioimmunotherapy [172]. 
Moreover, the deactivation of SULF2 via muta-
tion or inhibitors exhibited an increased sus-
ceptibility of liver cancer to sorafenib [83]. 
Thirdly, SULFs mediated chemotherapy resis-
tance in many types of cancers. For example, 
cisplatin is a common antitumor drug which is 
widely applied in lung cancer, ovarian cancer, 
prostate cancer, HNSC and malignant lympho-
ma. Many previous studies showed loss of 
SULF1 in HCC, malignant mesothelioma, HNSC 
and especially ovarian cancer contributed to 
cisplatin resistance [78, 85, 173-175]. In con-
trast, artificially knocking down SULF2 could 
decrease cisplatin resistance in cholangiocar-
cinoma, and monoclonal antibody targeting 
SULF2 could inhibit cholangiocarcinoma pro-
gression [45]. OKN-007, one enzymatic activity 
inhibitor of SULF2, could suppress tumor 
growth and metastasis in HCC and GBM [176, 
177]. The combination therapy value of OKN-
007 with other drugs were also validated in 
HCC and GBM [83, 178, 179]. Collectively, 
these findings underscore the significant role of 
SULFs in influencing adjuvant therapy and pres-
ent promising novel targets for therapy.

Conclusion and prospect

Tumor metastasis constitute a complex multi-
step biological process characterized by the 
dysregulation of pivotal molecules and signal-
ing pathways, remaining the predominant 
cause of mortality in malignant solid tumors. 
This review predominantly centers on elucidat-
ing the role of SULFs in modulating tumor 
metastasis. SULF1 and SULF2 contain similar 
regions which can selectively cut out 6-O-sulfate 
group from HS chains of HSPGs. For this rea-
son, modification of HSPGs by SULFs accounts 
for the primary mechanism of SULFs in modu-
lating metastasis process. 

Recent researches have showed that SULF2 
appears to promote tumor progression and 
metastasis, but the function of SULF1 is still 
controversial. In the majority of cancers, SULF1 
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act as an inhibitor to tumor progression and 
metastasis. However, conflicting studies indi-
cate a pro-metastasis role of SULF1 in specific 
cases of HCCs, CRCs, and NSCLCs. This  
suggests that SULF1 may exert varied effects 
on tumor metastasis within certain cancer 
contexts.

Researchers dedicated significant attention to 
the intricate interplay between cancer cells and 
their microenvironment in the quest for cancer 
therapy. SULFs play a crucial role in modifying 
HSPGs within the tumor microenvironment, 
impacting the availability of exogenous ligands. 
Targeting SULFs show a noteworthy reduction 
in adverse effects and drug resistance, accom-
panied by an enhancement in therapeutic sen-
sitivity. Except for previously reported adenovi-
rus, inhibitor or antibodies, we advocate for the 
exploration of genetic and biological methods 
to target SULFs. Advanced nanomedicine sys-
tems, such as liposomes, supramolecules, 
dendrimers, in conjunction with aptamers, 
offer promising avenues for delivering small-
molecule inhibitors or gene segments to target 
SULFs within cancer cells. And the RNA thera-
peutics targeting SULFs, including small inter-
fering RNAs (siRNA), microRNAs (miRNA), anti-
sense oligonucleotides (ASOs), can be envel-
oped into the nanomedicine system [180, 181]. 
Given the direct or indirect regulation of numer-
ous signaling pathways by SULFs, we propose 
potential synergistic effects by combining sig-
naling inhibitors with SULFs-targeted therapeu-
tics. In conclusion, we summarized the roles of 
SULFs in tumor metastasis, and elucidated the 
potential application of targeting SULFs in 
tumor adjuvant therapy.
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