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Abstract: Over the past two decades, the gold standard of glioblastoma multiforme (GBM) treatment is unchanged 
and adjunctive therapy has offered little to prolong both quality and quantity of life. To improve pharmacotherapy 
for GBM, galectins are being studied provided their positive correlation with the malignancy and disease severity. 
Despite the use of galectin inhibitors and literature displaying the ability of the lectin proteins to decrease tumor bur-
den and decrease mortality within various malignancies, galectin inhibitors have not been studied for GBM therapy. 
Interestingly, anti-galectin siRNA delivered in nanoparticle capsules, assisting in blood brain barrier penetrance, 
is well studied for GBM, and has demonstrated a remarkable ability to attenuate both galectin and tumor count. 
Provided that the two therapies have an analogous anti-galectin effect, it is hypothesized that galectin inhibitors 
encapsuled within nanoparticles will likely have a similar anti-galectin effect in GBM cells and further correlate to a 
repressed tumor burden.
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Introduction

The year 2005 marks the discovery of temo-
zolomide (TMZ) adjuvant therapy to prior surgi-
cal resection and adjuvant radiotherapy [1]. 
TMZ adjuvant therapy improved median surviv-
ability in a large cohort of patients from 12.1 
months to 14.6 months in comparison to a 
group that solely received surgical resection 
and radiotherapy. In 2014, the large AVAglio 
clinical trial compares the use of angiogenic 
inhibitor bevacizumab with current standard 
therapy of care [2]. Adjuvant bevacizumab ther-
apy was not found to increase survivability but 
did maintain a longer baseline quality of life 
and decreased the need for steroid therapy. 
Notably, addition of the therapy was associated 
with more severe adverse effects, supported 
by a separate clinical trial assessing the effica-
cy of bevacizumab in glioblastoma patients [2]. 
Despite the possibility of a promising new glio-
blastoma therapy, severe side effects and non-
convincing efficacy resulted in the current stan-
dard of care remaining similar to nearly ten 
years prior to the study. Transitioning to the 

year 2019, the CeTeG/NOA-09 trial, a small 
phase 3 clinical study, found that dual therapy 
with TMZ and lomustine appears superior in 
select patients with good clinical correlates of 
prognosis, including a methylated O6-methyl- 
guanine-DNA methyltransferase (MGMT) pro-
moter and a Karnofsky Peformance Score 
greater than 70% [3]; median overall survival 
was noted to be improved from 31.4 to 48.1 
months. Given the introduction of these phar-
macotherapies over almost two decades, medi-
an survivability in GBM patients as of 2023  
is approximately 10-12 months [4] and resear- 
ch has struggled to identify novel efficacious 
pharmacotherapies for treatment. To aid in 
approaching glioblastoma management, GB a 
grade IV astrocytoma, has been recently split 
into two separate diagnoses depending on the 
expression of isocitrate dehydrogenase muta-
tion (IDH status). IDH status, along with addi-
tional factors such as methylated MGMT pro-
moter and Karnofsky Performance Score, are 
just a few critical factors that govern treatment 
approach, which is often limited to surgical 
resection, radiotherapy and TMZ therapy; use 
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of lomustine, bevacizumab, and other agents 
are utilized in unique circumstances. 

Galectin role in neuroinflammation and neuro-
oncology 

Despite a lack of GBM pharmacotherapies pro-
ducing clinical and prognostic benefit over 
decades, identification of anti-GBM molecular 
targets and clinical application with blood brain 
barrier penetrance vectors are showing prom-
ise in the field. Of particular interest, the galec-
tin family of molecules is a protein of increasing 
focus in GBM treatment that is associated with 
pathological processes such as tumor prolifer-
ation and metastasis [5]. Galectins are carbo-
hydrate-binding proteins classified under the 
family of lectins [6]. This family of proteins is 
capable of binding to complex carbohydrates 
through a conserved carbohydrate recognition 
domain (CRD) [7]. Within humans and other ani-
mal species, galectins have an intracellular and 
extracellular presence in various tissues with a 
relatively high incidence of morbidity and mor-
tality, including the prostate, colon, pancreas, 
breast, and brain [7, 8]. Although there are 
approximately 16 galectins identified to date in 
humans and other animals [9, 10], galectin 1, 
3, 4, 8, and 9 are particularly relevant to having 
functional effects on the nervous system malig-
nancies and neuroinflammation. These various 
galectin isoforms share a common theme of 

unique in the intricacy within their CRD and 
N-terminal domains, thereby impacting the gly-
coproteins they can interact with and the physi-
ologic settings they can present in [9]. Gal-1 is 
a 14 kDa protein that has extracellular pres-
ence through cell-membrane interactions in 
addition to intracellular localization. Depending 
on the molecular characteristics of the galec-
tins, these proteins can exert a tumor-promot-
ing or tumor-suppressing environment [12]. The 
significance of Gal-1 in neurological tumor 
microenvironments can be related to its role  
in mediating inflammation and angiogenesis. 
Gal-1 is evidenced to have negative [13, 14] 
and positive neuroinflammatory effects [15] 
within the nervous system; depending on the 
cellular environment, Gal-1 can potentiate or 
attenuate neuroinflammation. Mice who en- 
countered a knockdown of Gal-1 were identifi- 
ed to have reduced brain infiltrating myeloid 
cells and tumor-associated macrophages [16]. 
A pro-angiogenic effect is also encountered 
through analysis of in vitro murine gliomas cells 
with Gal-1 knockdown, demonstrating an eleva-
tion in chemokine ligand 2 (CCL2) and vascular 
endothelial growth factor (VEGF), both critical 
proteins in stimulating vascular growth. In vivo 
analysis of angiogenesis in murine models  
with Gal-1 knockdown further supports in vitro 
results, as these galectin deficient mice are 
noted to have reduced vascular density com-
pared to wild-type mice with preserved Gal-1 

Figure 1. Depicts the cyclical nature of galectin-mediated tumor progres-
sion. Glioma cells upregulate various galectin isoforms found in the central 
nervous system. These glycan-binding proteins mediate various oncogenic 
processes including neuroinflammation, enhanced angiogenesis, apoptosis 
regulation, autophagy induction, and cancer metabolism. These processes 
increase glioma mass and metastatic potential which subsequently pro-
motes a vicious tumor-promoting cycle.

promoting cancer growth th- 
rough neuroinflammation mo- 
dulation, angiogenesis, auto- 
phagy, apoptosis regulation, 
and regulating cancer metab-
olism [11]; a summary of this 
process is depicted in Figure 
1. The following overview will 
serve to elucidate the indivi- 
dual roles of each galectin 
isoform in neuroinflammatory 
settings and highlight how 
each lectin contributes to a 
nervous system tumor mic- 
roenvironment.

Galectin-1 (Gal-1)

Within the galectin family, 
Gal-1 is a member of the first 
group, of which there are 
three groups total [9, 10]. 
These divisions are primarily 
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activity. In opposition to this maladaptive role  
in inflammation, Gal-1 may have neuroprotec-
tive characteristics suggested by its activity in 
autoimmune processes [17]. In autoimmune 
disorders such as multiple sclerosis, mice with 
experimental demyelination treated with Gal-1 
had a decrease in microglial activation with  
a subsequent shift toward an M2-polarized 
microglia and decreased astrocyte activation, 
corresponding to an anti-inflammatory effect 
[17]. Phenotypically, the mice treated with  
Gal-1 expressed less demyelination than their 
control counterparts, consistent with a reduc-
tion in disease severity. In addition to its pro- 
tective effects in multiple sclerosis, Gal-1 
reduces methamphetamine-induced neuroin-
flammation and strengthens the integrity of the 
blood-brain barrier. Evidence of neuroprotec-
tive effects is further displayed through the 
ability of Gal-1 to reduce seizure activity in mice 
with pilocarpine-induced seizures [18]. 

Within Gal-1’s diverse role in immune regula-
tion, there is a close interaction between natu-
ral killer (NK) cells and Gal-1 to promote tumor 
development [19, 20]. In healthy tissue environ-
ments, natural killer cells are able to destroy 
target cells undergoing early malignant trans-
formation through an immune surveillance pro-
cess [19]. Interestingly, glioma cells can evade 
NK-mediated immune surveillance through 
upregulating Gal-1 on their cell surface, giving 
them relative resistance to destruction; glioma 
cells that failed to express Gal-1 were able to 
destroy glioma cells. NK cells are proposed to 
lack glioma-destroying capabilities in Gal-1 ex- 
pressing cells due to the presence of myeloid-
derived suppressor cells (MDSCs). MDSCs are 
immature myeloid cells with a granulocytic or 
monocytic lineage that are formed during 
inflammatory states [21]. In healthy brain tis-
sue, immature myeloid cells typically differenti-
ate into microglia or dendritic cells, however in 
the setting of inflammation, these immatures 
myelocytes form into MDSCs that have a net 
tumor-promoting effect. In malignancies such 
as glioblastoma, the transformed cells upregu-
late Gal-1 to avoid immune surveillance and 
destruction; when Gal-1 is absent from these 
cells, NK-mediated destruction typically occurs. 
NK immune surveillance can be avoided in 
Gal-1 deficient glioma cells when MDSCs are 
depleted from the tumor microenvironment, 
yielding glioma growth [22]. This data suggests 

that Gal-1 expression on glioma cells may 
attenuate MDSC anti-tumor activity, allowing 
for immune surveillance and tumor progres-
sion. Aside from the lectin’s role in inflamma-
tion, Gal-1 may aid the Warburg phenomena  
of glioblastoma tumor growth [23]. In vitro 
silencing of Gal-1 in glioblastoma tumor speci-
mens is associated increased citric acid and 
alpha-ketoglutarate, suggesting a reversal of 
the Warburg effect toward oxidative phos- 
phorylation.

Galectin-3 (Gal-3)

The third group of glycan binding lectins uni- 
quely includes only Gal-3, a 25-35 kDa protein 
which possesses a carbohydrate binding do- 
main in addition to a large N-terminal domain 
that assist in oligomerization to form pentam-
ers [10, 24, 25]. Similar to Gal-1, this lectin 
withholds extracellular and intracellular activity 
but primarily localizes to the cytoplasm [26]. 
Depending on cellular location, Gal-3 can exert 
a variety of effects. Within the cytoplasm, Gal-3 
interacts with proteins such as B-cell-lym- 
phoma-2 (Bcl2), caspases, and metalloprotein-
ase-7, to reduce apoptotic activity, mediate cell 
proliferation and metastasis, and exert a net 
tumor-promoting effect [27-29]. On the con-
trary, Gal-3 exhibits a tumor-regressing effect 
within the nucleus through enhancing Wnt  
transcription through direct-activity with Beta-
catenin [30]. Similar to Gal-1, Gal-3 plays a  
critical role in mediating neuroinflammation, 
primarily through enhancing its response [31]. 
Neuroinflammation is demonstrated to be aug-
mented in Gal-3 mice through interacting with 
toll-like receptors. Knockout of Gal-3 in mice 
with intranigral lipopolysaccharide-induced ne- 
uroinflammation was found to be associated 
with a reduction in proinflammatory markers 
and microglia; evidence of attenuated inflam-
mation through the Gal-3 dependent toll-like 
receptor pathway is further supported in reduc-
ing mice neuroinflammation with hyperbaric 
oxygen treatment [32]. In addition to potentiat-
ing inflammation in animals, this group-3 lectin 
promotes neuro-angiogenesis and attenuates 
apoptosis [33]. Intraparenchymal injection of 
Gal-3 in mice is associated with increased ce- 
rebrovascular density, corresponding with an 
enhanced immunofluorescence of endothelial 
cells, as well as an increased number of blood 
vessels ranging in size. Galectin-3 injected 
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mice further demonstrated a reduction in the 
degeneration of apoptotic neurons. This atten-
uation of apoptosis corresponds with the stim-
ulation of the phosphatidylinositol/AKT path-
way, a critical pathway involved in cell-prolifera-
tion and apoptosis inhibition [33, 34]. These 
joint anti-inflammatory effects in combination 
with pro-angiogenic and anti-apoptotic proper-
ties of the group-3 lectin give it multiple charac-
teristics that assist in tumor growth and prolif-
eration. Gal-3 may also contribute to tumor 
growth through maintaining neuron prolifera-
tion in neuronal cells that are deprived of oxy-
gen, simulating a Warburg-like effect that is 
characteristic of tumor growth in malignancies 
such as GBM [33, 35].

Galectin-4 (Gal-4)

Gal-4 is a member of the second group of gly-
can binding proteins, characterized by two dis-
tinct carbohydrate recognition domains at both 
the C and N-termini [10, 36]. This 17 kDa pro-
tein is primarily found in the gastrointestinal 
tract, although it is also prevalent within the 
genitourinary tract and central nervous system 
[37, 38]. Consistent with the prior mentioned 
lectins, Gal-4 is involved in oncogenesis, pri-
marily through a pro-inflammatory, angiogenic, 
and anti-apoptotic effects [39, 40]. An increase 
in inflammatory cytokines G-CSF, IL-6, GRO 
alpha, and MCP-1, is apparent with intravenous 
injection of Gal-4 in murine models, corre-
sponding with heightened tumor growth. Hu- 
man CD14+ monocytes cultured with galec-
tin-4 have reduced caspase-3 activity and 
decreased apoptosis, thereby promoting mono-
cyte survival [40]. Gal-4 treated monocytes 
also demonstrate an inflammatory response 
with an associated increase in cytokines IL-6, 
IL-10, and TNF-alpha. Within the central ner-
vous system, Gal-4 is hypothesized to be 
involved in myelin regulation, although its role 
is unclear and is skeptic within the community 
[41]. While there is evidence that the absence 
of Gal-4 does not impact the integrity and orga-
nization of oligodendrocytes, other studies sug-
gest that Gal-4 may act as a negative regulator 
of oligodendrocyte synthesis [38]. Gal-4 dis-
plays a higher concentration at demyelinated 
axon segments, suggesting that an inverse 
relationship between the lectin and myelination 
may exist. Myelin has been found to avoid local-
izing to areas on an axon where galectin-4 is 
present, including the nodes of Ranvier [42]. 

This occurrence is currently being studied in 
autoimmune demyelinating disorders such as 
multiple sclerosis, where Gal-4 inhibition may 
express potential for pharmacotherapy. 

Galectin-8 (Gal-8)

The second group of galectins additionally 
includes Gal-8, which also possesses two dis-
tinct carbohydrate recognition domains like 
Gal-4 [10]. This 43 kDa lectin is present in vari-
ety of physiologic tissues (e.g., prostate, colon, 
lung, brain) where it serves an extracellular 
function in angiogenesis and cell-adhesion, as 
well as an intracellular role in autophagy [43-
46]. Angiogenesis regulation appears to be a 
major pro-inflammatory role of Gal-8 [44]. In 
the presence of lipopolysaccharide-induced 
inflammation, endothelial cells upregulate 
Gal-8 isoforms. Endothelial cells are further 
activated by Gal-8 and demonstrate platelet 
adhesion and upregulation of pro-inflammatory 
cytokines (e.g., GRO-α, GM-CSF, and IL-6) [47]. 
The mechanism by which Gal-8 stimulates 
angiogenesis may be explained through its 
interaction with endothelial ligands and vascu-
lar endothelial growth factor (VEGF) [48, 49]. 
CD166, termed activated leukocyte cell ad- 
hesion molecule, is a glycoprotein with angio-
genic properties that has been determined to 
directly interact with Gal-8 [48]; addition of 
anti-CD166 antibodies subsequently decreas- 
ed Gal-8 induced capillary formation. The inter-
action between Gal-8 and VEGF may further 
assist in explaining the role of the lectin in 
angiogenesis. Endothelial cells in the presence 
of Gal-8 and VEGF are noted in some instances 
to significantly enhance endothelial prolifera-
tion and migration [49]. Notably, there is ambi-
guity of the potential interaction between VEGF 
and Gal-8, given that there is evidence suggest-
ing that the lectin can enhance angiogenesis in 
the absence of VEGF, contradicting studies that 
solely identify angiogenesis with both proteins 
present [48, 49]. 

Consistent with the role of Gal-8 in angiogene-
sis, the lectin’s role in cell-adhesion likely 
assists in the development of malignancies. An 
increase of human colon cancer cell adhesion 
to endothelial cells is apparent with the pres-
ence of Gal-4 or Gal-8; this effect is terminated 
with the addition of lactose, thereby occupying 
the galectin binding sites [50]. This pro-onco-
genic activity is further appreciated by observ-
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ing the role of Gal-8 in breast cancer, where a 
knockout of Gal-8 or CD166 yields a reduction 
in tumor growth in a murine model of triple neg-
ative breast adenocarcinoma [51]. Gal-8 also 
plays a role in autophagy, which is a natural cel-
lular recycling process that aids in cell survival 
and maintenance [52]. In the context of glio-
blastoma multiforme, Gal-8 may play a role  
in promoting glioblastoma cell autophagy, 
thereby augmenting cell growth [53]. The 
mechanism through which Gal-8 promotes 
autophagy may be elucidated in the setting of 
neurodegenerative disease [54]. Gal-8 assists 
in autophagy through detecting endomem-
brane damage and recruiting cargo receptor 
nuclear dot protein 52 (NDP52). Recruitment of 
NDP52 in turn initiates autophagy through the 
UNC51-like kinase-1 (ULK1) and TANK-binding 
kinase 1 (TBK1) complexes, resulting in the 
phosphorylation of downstream protein and 
receptors mediating autophagy [53, 55-57]. 

The role of Gal-8 in processes such as angio-
genesis and cell-adhesion can further translate 
to the promotion of glioblastoma growth and 
metastasis [58]. In vitro glioblastoma cells  
display an augmentation of cell growth and 
migration in the presence of Gal-8; this effect  
is abrogated with the addition of lactose. 
Modifying glioblastoma tumor growth through 
enhancing tumor vasculature and cell-adhesion 
properties aids in explaining the tumor-promot-
ing effect that the lectin has on various 
malignancies.

Galectin-9 (Gal-9)

The final member of the galectins with rele-
vance to the central and peripheral nervous 
systems is Gal-9, a group-2 galectin that is 
approximately 34-39 kDa [10, 59]. Consistent 
with the other lectins, Gal-9 interacts in both 
intracellular and extracellular activities, with an 
emphasis of mediating innate and adaptive 
immunity [60]. One of the lectin’s most well-
studied molecular interactions involves the 
interplay between Gal-9 and its receptor Tim-3 
to mediate various inflammatory pathways. T 
cell immunoglobulin and mucin-domain con-
taining-3 (Tim-3) is an immune-checkpoint re- 
ceptor that is found on T cells, dendritic cells, 
and macrophages [61]. High levels of Gal-9 
present in tumor microenvironments activate 
Tim-3 receptors on T cells resulting in T-cell 
exhaustion in tumor-infiltrating leukocytes in 

humans and promoting tumor growth. Tumor 
growth is further regulated by the interactions 
of Gal-9 with Tim-3 on macrophages, as high 
Gal-9 levels can drive M2 macrophage polariza-
tion to enhance angiogenesis and support glio-
blastoma tumor growth [62]. Intriguingly, a con-
trasting effect between Gal-9 and Tim-3 is 
observed in the setting of diffuse pontine glio-
ma, where anti-Tim-3 treatment in mice corre-
sponds with elevated microglial activation and 
a pro-inflammatory state that promotes tumor 
growth [63]. Non-malignant nervous system 
pathologies such as intracerebral hemorrhage 
further support neuroinflammation inducing 
the polarization of microglia and supporting a 
pro-inflammatory environment [64].

Galectins in glioblastoma

In respect to glioblastoma, galectins have dis-
played carcinogenic activity primarily through 
immunosuppression, cell motility alteration, 
angiogenesis suppression, and apoptotic dis-
ruption [58, 65-67]. Analysis of Gal-1 knock-
down in glioblastoma murine models has been 
correlated with a reduction in tumor myelocytes 
and microglia [16, 65]. Subsequent isolation of 
CD8+ T cells in Gal-1 knockdown GBM mice 
demonstrated a weak but significant increase 
in interferon gamma production, suggesting 
that the lectin isotype has an immunosuppres-
sive effect. These results are similarly noted in 
a study by Chen and colleagues who appreciat-
ed a reduction of M2 macrophages, myeloid 
derived suppressor cells, and inflammatory cy- 
tokines including monocyte chemoattractant 
protein-1, VEGFA, and TGF-beta [68]. Galectin 
suppression has also been shown to affect glio-
blastoma cell motility through the modulation 
of specific molecular targets. Integrins in par-
ticular have been observed to regulate various 
malignancies through cell adhesion and intra-
cellular signaling [69]. Gal-1 knockdown in the 
setting of in vitro glioblastoma cells is correlat-
ed with decreased cell membrane integrin 
expression and an intracellular accumulation of 
integrin. The failure of integrin localization to 
the cell membrane suggests a reduced ability 
to assist in cell adhesion and facilitate intracel-
lular signaling through cell membrane interac-
tion. Glioblastoma cell migration and growth 
can further be affected by the silencing of a 
separate galectin isotype that is highly ex- 
pressed in glioblastoma cells. Gal-8 has been 
shown to induce chemotactic migration of in 
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vitro glioblastoma cells. GBM cell motility is 
intriguingly attenuated upon Gal-8 silencing 
with lactose, a well-known carbohydrate that 
inhibits galectin activity; similar results are 
observed with Gal-1 inhibition of GBM cells in 
an analogous study [66], which found the cells 
to lack lamellipodia in contrast to control cells. 

The impairment of angiogenesis in glioblasto-
ma also appears to be regulated partially by 
lectin proteins. GBM tumor infiltrated mice with 
Gal-1 inhibition by siRNA displays a decrease  
in angiogenesis [67]. Glioma-bearing mice st- 
ained with an endothelial cell marker further 
demonstrates a reduction of the marker in 
Gal-1 knockdown mice compared to wildtype 
models; vascular density was further signifi-
cantly reduced [16]. Regarding the effects of 
galectin toward cell cycle regulation and apop-
tosis, Gal-8 silencing has been shown to result 
in a lower proportion of arrested glioblastoma 
cells and an increased proportion of GBM cells 
in a Sub-G1 phase, which represents fractional 
DNA that corresponds to apoptosis [58]. The 
prior mentioned literature on galectin’s role in 
glioblastoma tumor development aids in eluci-
dating the variety of methods by which anti-
galectin therapy can negatively impact the glio-

be applied to the treatment of a novel patholo-
gy, that shares similar characteristics to the 
aforementioned diseases. Integration of these 
galectin inhibitors with nanoparticle delivery 
systems appears both a viable and promising 
option for GBM therapy, considering galectin 
inhibitor treatment success with other malig-
nancies and analogous GBM therapeutic suc-
cess with anti-galectin siRNA therapy [76, 77]. 
As depicted in Figure 2, the galectin inhibitor 
and nanoparticle systems can be integrated 
into a pharmacotherapy that can be tested on 
animal models and optimistically human mod-
els to study the effects on glioblastoma tumor 
cells. The following review seeks to elucidate 
this theory of the possible therapeutic benefit 
of galectin inhibitors in glioblastoma treatment 
provided the advances in anti-galectin siRNA 
therapy and improvements in nanoparticle 
delivery systems.

Galectin inhibitors in pathological processes

Antagonists of galectin are being increasingly 
discovered for application toward varying 
pathologies. As of 2023, galectin inhibitors 
have been experimentally used for treatment  
of cardiovascular disease [78, 79], acute lym-
phoblastic leukemia [80], nonalcoholic steato-

Figure 2. Begins by listing various galectin inhibitors tested in clinical trials 
for non-GBM pathologies. The listed galectin inhibitors, in addition to others 
not mentioned in the figure, can be added to a specific nanoparticle with or 
without TMZ. The galectin-inhibitor nanoparticle complex can then be pre-
pared as a solution that can be administered to glioblastoma animal models, 
such as mice, through intravenous, intranasal, or intracranial routes.

blastoma tumor microenvi- 
ronment. 

Discovery of galectins and 
their application to tumori-
genesis has promoted re- 
search devoted to anti-galec-
tin therapy and carrier-based 
systems for clinical delivery. 
Galectin inhibitor molecules 
are shown to be efficacious 
as primary or assistant thera-
pies across various carcino-
mas and sarcomas [70], as 
well as cardiovascular dis-
ease [71], pulmonary fibro- 
sis [72], SARS-CoV2 infection 
[73], steatohepatitis [74], as 
well as autoimmune disorders 
such as psoriasis [75]. The 
use of galectin inhibitors 
across a spread of pathologi-
cal processes not only show-
cases its therapeutic poten-
tial but further suggests the 
ability of the inhibitor to  
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hepatitis [81], breast and colon cancer [82], 
prostate cancer [83], pancreatic cancer [84], 
multiple myeloma [85], and interestingly SARS-
CoV2 infection [86]. Galectin inhibitors also 
appear to possess the ability to increase sensi-
tivity to existing chemotherapeutics when used 
as an adjunct therapy [87].

As of 2023, there are a multitude of galectin 
inhibitors that have been studied on specific 
pathological processes. Many of these galectin 
inhibitors specifically suppress Gal-3 activity, 
with some notable mentions including MCP 
[88], GR-MD-02 [75], GB1211 [89], and 
GCS100 [90]; these galectin inhibitors and 
many others listed in Table 1 have been tested 
in clinical phase I/II trials or becoming thera-
peutic interests in the treatment of autoim-
mune disorders, non-alcoholic steatohepatitis, 
and various malignancies. Although these 
inhibitors have shown therapeutic efficacy 

across various pathological models in both ani-
mals and humans, these inhibitors have not yet 
gained popularity for glioblastoma pharmaco-
therapy or adjuvant therapy, despite it being 
shown that galectin promotes tumor growth in 
the disease [58, 66, 67, 91, 92]. Blood brain 
barrier permeability, a likely culprit of resis-
tance to the use of aforementioned galectin 
inhibitors, has been appreciated as a predica-
ment of delivering brain tumor therapy to 
patients [93, 94]. Fortunately, with the increas-
ing development of nanoparticles showcasing 
effective BBB permeability [95, 96], drug-carry-
ing capability [95, 97], and minimal adverse 
effects in animal models [95]; it appears that 
these inhibitors could be clinically significant in 
glioblastoma disease treatment. Before engag-
ing in the study of galectins and galectin inhibi-
tors on glioblastoma, a review of galectin inhibi-
tors success in other disease processes will be 
discussed.

Table 1. Displays clinically significant galectin inhibitors, associated pathologies, status of testing in 
clinical trials, adverse effects, and experimented routes of administration

Galectin Inhibitor Relevant Pathology of 
Galectin Inhibitor

Phase I-IV 
Clinical Trial 
Tested (Y/N)

Elicited Adverse Effects 
Studied Route(s) of Ad-
ministration in Human 
Subjects

GR-MD-02 (belapectin) Non-alcoholic steato-
hepatitis

Y QT interval prolongation, headache, dizzi-
ness, nausea

Intravenous, Subcutaneous

GM-CT-01 Non-alcoholic steato-
hepatitis

Intravenous, Subcutaneous

GB1211 Healthy participants, 
Hepatic impairment

Y Gastrointestinal (abdominal pain, diar-
rhea, constipation, dyspepsia), dry mouth, 
dry skin, skin rash, headache, dysuria, 
polyuria, menstruation disturbance

Oral

GCS100 Chronic lymphocytic leuke-
mia, Prostate Adenocar-
cinoma

Y Steroid-sensitive rash Intravenous 

PTX008 Acute lymphoblastic 
leukemia

N N/A

Modified Citrus Pectin 
(MCP)

Cardiac and Renal 
Hypertrophy, Heart Failure, 
Prostate adenocarcinoma

Y None elicited Oral

N-Acetyl-D-Lactosamine 
(N-Lac)

Pulmonary Fibrosis N N/A

3,3-Bis-(4-aryltriazol-1yl) 
thiodigalactosides

Pulmonary Fibrosis N N/A

TD139 Idiopathic Pulmonary 
Fibrosis

Y Taste disturbance, non-productive cough Oral (inhaled)

Prolectin-M SARS-CoV-2 Y Taste disturbance, Shortness of Breath, 
Myalgia

Oral

GB0139 SARS-CoV-2 Y QT interval prolongation with spontane-
ous resolution, nausea, sore throat, oral 
thrush, hair loss

Oral (inhaled)

C-3 aryl-substituted thiodi-
galactoside inhibitors

None N/A N/A N/A

OTX008 Head and Neck Cancer 
Squamous Cell Carcinoma,
Hepatocellular Carcinoma

N N/A N/A
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Galectin inhibitors in cardiovascular disease

Gal-3 and accompanying inhibitors are notably 
well-studied in atherosclerotic disease, heart 
failure, and other cardiac pathologies. Apoli- 
poprotein E (ApoE), a major lipoprotein involved 
in triglyceride and cholesterol transport, was 
shown to be correlated with Gal-3 levels in  
aortic tissue when suppressed [98, 99]. 
Knockdown of ApoE in mice fed on high-fat 
diets demonstrated a significant upregulation 
of Gal-3 mRNA and protein levels [99]. Gal-3 
mRNA and protein levels were also shown to be 
upregulated in unstable carotid endarterecto-
my (CEA) specimens when compared to stable 
CEA specimens. In addition to atherosclerosis, 
Gal-3 suppression has been correlated with 
clinical outcome in heart failure patients ac- 
ross numerous studies [78, 100-104]. Galectin 
inhibitor therapy was studied in aldosterone-
salt treated rats with cardiac and renal hyper-
trophy [79]. Gal-3 inhibitor, modified citrus pec-
tin (MCP), showed similar efficacy to spironolac-
tone in reducing cardiac/renal hypertrophy and 
molecular markers of fibrosis. In a similar study, 
mice with hyperaldosteronism and isoprotere-
nol-induced left-ventricular dysfunction, were 
studied to observe the outcome on aldosterone 
antagonist or Gal-3 inhibition on cardiac hyper-
trophy and fibrosis, as well as pro-fibrotic genes 
[105]. Isoproterenol-induced heart failure mice 
models showed a significant reduction in left 
ventricular fractional shortening, which was 
suppressed by both the aldosterone antagonist 
and MCP. Autopsy of the isoproterenol-treated 
mice also illustrated less cardiac hypertrophy 
with the use of the aldosterone antagonist or 
MCP. Notably, application of the aldosterone 
antagonist augmented with MCP provided a 
more significant reduction in cardiac hypertro-
phy and fibrosis. Of application, Gal-3 levels 
were notably increased in the heart failure mice 
models and subsequently reduced after use  
of the aldosterone antagonist, MCP, or both 
agents. 

Galectin inhibitors in pulmonary fibrosis and 
Covid-19 respiratory infection

Gal-3 and its inhibitors have also demonstrated 
clinical utility across the study of fibrotic dis-
ease processes, specifically pulmonary fibro-
sis. Hypoxia-induced pulmonary hypertension 
rats were observed to have upregulation of 
Gal-3 that was sensitive to regulation by galec-

tin inhibitors [106]. Inhibition of Gal-3 by 
N-Acetyl-D-Lactosamine (N-Lac), a Gal-3 inhibi-
tor, noted reduced synthesis of collagen con-
tributing to fibrosis, as well as reduction of pul-
monary vascular remodeling and pulmonary 
artery pressure. Progression of pulmonary 
fibrosis was further reduced by the develop-
ment of multi-targeting anti-galectin com-
pounds, 3,3’-Bis-(4-aryltriazol-1-yl) thiodigalac-
tosides. In bleomycin-induced pulmonary fibro-
sis mice, one intratracheal dose of the com-
pound reduced anti-fibrotic activity. Intere- 
stingly, when comparing the compound to a 
gold standard anti-fibrotic medication, Pir- 
fenidone, the compound demonstrated similar 
reduction in pulmonary collagen accumulation 
and fibrosis. A remarkable phase I/IIa study 
looked at the safety and pharmacodynamics of 
a gal-3 inhibitor, TD139, in treating a small 
sample of idiopathic pulmonary fibrosis (IPF) 
patients [107]. In this sample, 36 healthy and 
24 IPF patients were randomized and given 
varying doses of inhaled TD139 or a negative 
control. The inhibitor displayed a half-life of 
approximately 8 hours and was overall well tol-
erated by participants. Notably, some adverse 
effects related to the drug were reported by  
the experimental group, with the majority expe-
riencing mild taste distortion (dysgeusia). 11% 
of the group further reported acute onset 
cough; neither of these side effects appeared 
to have a dose-response relationship. Gal-3, as 
well as other pro-fibrotic biomarkers in the 
study, were noted to decrease in bronchoalveo-
lar lavage samples, as expected post-inhibitor 
administration.

SARS-CoV-2 infection, known to induce pulmo-
nary inflammation and damage, has also dem-
onstrated clinical benefit from the use of galec-
tin inhibitors [108]. SARS-CoV-2 spike proteins 
have been elucidated to share structural simi-
larity to Gal-3 and facilitate entry of the virus 
into host cells [73]. This review proposed the 
idea of using Gal-3 antagonists given the struc-
tural similarity, which is remarkably studied  
to have benefits to clinical prognostication. 
Prolectin-M, a gal-3 antagonist, was studied for 
the treatment of SARS-CoV-2 infection (Galectin 
Antagonist Use in Mild Cases of SARS-CoV-2; 
pilot feasibility randomized, open label, con-
trolled trial [109]). The study defines Covid-19 
infectivity based upon the cycle threshold (CT), 
or the number of cycles needed to express fluo-
rescence on RT-PCR, when looking at specific 
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viral genes. Administration of a chewable tablet 
of Prolectin-M increased cycle threshold of 
virally expressed genes significantly. Further 
testing by Sigmani and colleagues in a random-
ized, double-blinded, placebo controlled clinical 
trial in patients with mild-moderate Covid-19 
infection correspondingly noted an increased in 
CT of viral genes in patients treated with 
Prolectin-M. Phase I and II clinical trials have 
also been conducted to explore pharmacody-
namics and safety profile of the gal-3 inhibi- 
tor as an augmenting agent to gold standard 
Covid-19 pharmacotherapy. In a phase I/IIa 
randomized control trial termed, “Define”, forty-
one patients with Covid-19 pneumonitis were 
assessed upon adverse effects as well as 
galectin concentrations when given the gal-3 
inhibitor, GB0139, when compared to standard 
treatment [86]. Across this sample, there was 
found to be no significant difference between 
the reported number of adverse effects experi-
enced in both cohorts and decreased serum 
galectin levels were found in the experimental 
group. Notably, five patients did report adverse 
effects that were not experienced in the control 
group and thought to be possibly related to 
GB0139, including: QT interval prolongation 
with spontaneous resolution, nausea, sore 
throat, oral thrush, and hair loss. Patients who 
received GB0139 also had lower measured bio-
markers significant for pulmonary fibrosis, con-
sistent with prior literature. Regarding mortality 
rates, the study recorded seven deaths total 
with four deaths occurring amongst the ex- 
perimental group; median duration of hospital 
stay was also 3 days longer. Despite this data, 
patients on the Gal-3 inhibitor had a significant-
ly lower requirement for oxygen. 

Galectin inhibitors in non-alcoholic steatohepa-
titis (NASH)

Gal-3 inhibitor therapy has shown some prom-
ise in the realm of treating non-alcoholic steato-
hepatitis with cirrhosis, given the fibrotic pro-
gression of the disease. The use of two galectin 
inhibitors, GM-CT-01 and GR-MD-02 (belapec-
tin), were associated with improved histological 
analysis of liver specimens in mice with strepto-
zotocin-induced non-alcoholic steatohepatitis 
and subsequent fibrosis [110]. Compared to 
control mice, the GM-CT-01 group was obser- 
ved to have decreased fat deposition and 
inflammation, while the GR-MD-02 noted simi-

lar findings in addition decreased hepatocellu-
lar ballooning, and a subsequent significantly 
decreased non-alcoholic steatohepatitis score. 
Experimental groups of mice also demonstrat-
ed reduced collagen levels, correlating to fibrot-
ic activity, in both inhibitor groups, with a 
marked decrease in the GR-MD-02 treated 
mice. A follow-up randomized phase I/IIa clini-
cal study conducted by Harrison and colleagues 
further examined the safety and pharmacody-
namic profile of the GR-MD-02 when applied  
to human participants [111]. Common adverse 
effects reported from the use of inhibitor in- 
cluded headache, dizziness, nausea, and QTc 
interval prolongation; a dose-response relation-
ship with adverse effects was not appreciated. 
A reduction in fibrosis amongst the treatment 
group with the highest dose of the inhibitor, 
also provided significant reduction in fibrosis 
based upon blood tests looking at specific syn-
thetized liver proteins such as haptoglobin and 
α-2 macroglobulin. A corresponding ultrasound 
used to assess liver stiffness, a correlator with 
fibrosis, also noted reduced liver stiffness in 
the GR-MD-02 treated patients. In opposition 
to this compelling data, a follow-up phase IIb 
study assessing the efficacy of GR-MD-02 on 
portal vein pressure and fibrosis did not find  
a significant effect on either measure; notably, 
a reduction in portal venous pressure and 
reduced incidence of varices were noted in  
a subgroup of non-alcoholic steatohepatitis 
patients without esophageal varices [112]. 
Galectin inhibitor GB1211 is further undergo-
ing a clinical trial to determine the safety of  
the therapy in fifty-four participants with he- 
patic impairment [clinicaltrials.gov, indentifier: 
NCT05009680]. The study of the inhibitor in a 
separate phase I clinical study in healthy par-
ticipants failed to identify serious or severe 
adverse effects across patients offered esca-
lating dosages of the inhibitor [89]. Notably, 
treatment emergent adverse effects were 
found in both the single-ascending dose phase 
group and multiple-ascending dose phase 
group. In the single-ascending dose phase 
group, 14/56 patients were noted to have 
adverse effects, with eight of the patients being 
in the treatment group. Gastrointestinal side 
effects appeared to dominate the side effects 
in this group, including diarrhea, constipation, 
and dyspepsia. Integumentary disorders such 
as dry skin and rash were also elicited by th- 
ree individuals. In the multiple-ascending dose 
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phase group, 8/22 patients elicited adverse 
effects, with seven of the patients being in the 
treatment group. Interestingly, similar gastroin-
testinal effects were found to predominate 
complaints amongst the patients, also includ-
ing epigastric pain and abdominal distension. 
Adverse effects also pulled from other organ 
systems, including symptoms such as head-
ache, dysuria, and polyuria. Of significance, 
across both groups, dose-response relation-
ships were not appreciated with any of the elic-
ited symptoms.

Galectin inhibitors in malignant processes

Discussion of galectin inhibitor therapeutic effi-
cacy and safety in relation to diseases such as 
heart failure, Covid 19 infection, and steato-
hepatitis is important to note; however, applica-
tion of these inhibitors in treatment of malig-
nancies provides an additional connection to- 
ward understanding how these molecules may 
benefit glioblastoma patients. In the field of 
blood cancer research, studies have found the 
levels of galectin to be more significantly ele-
vated in patients with treatment failure status 
post chemotherapy regimens [113, 114]. In a 
phase II clinical trial addressing both the safety 
profile and efficacy of GCS-100 for augmenta-
tion of treatment in chronic lymphocytic leuke-
mia (CLL), GCS-100 was shown to have a rela-
tively safe adverse effect profile and increase 
peripheral leukocyte apoptotic activity [115]. A 
quarter of the participants achieved primary 
remission with their appropriate chemotherapy 
regimen and adjunct GCS-100. Acute lympho-
blastic leukemia (ALL) has also been shown to 
have increased expression of Gal-1 and benefit 
on the molecular level from anti-galectin thera-
py [116]. Acute lymphoblastic leukemia cells, 
when subject to the PTX008 Gal-1 inhibitor, 
have been found to agglutinate, a characteris-
tic that is not typically present by the cell-line 
used; results were confirmed with flow cytome-
try. Exposure of ALL cells to PTX008 was also 
confirmed to interfere with adhesion and migra-
tion of cells, critical characteristics of tumor 
formation and metastasis. 

Outside of leukemias, success with anti-galec-
tin therapy has been appreciated in prostate 
adenocarcinoma. Modified citrus pectin treat-
ment in animal models with metastatic lung 
lesions secondary to prostate cancer has been 
shown to significantly reduce lung lesions com-

pared to control groups [83]. Use of both GCS-
100 and MCP as an adjunct to cisplatin therapy 
in in vitro cells was shown to possibly enhance 
chemotherapy sensitivity through increasing 
apoptotic activity in a mechanistic fashion to 
cisplatin [117]. A phase II clinical trial assess-
ing the therapeutic effect of MCP treatment  
on fifty-nine relapsed non-metastatic prostate 
cancer participants noted an overwhelming 
majority of the sample to have decreased or 
stable PSA over six months and absence of 
radiological disease progression [88]; the pa- 
tients within the study were notably not on any 
radiological, surgical, or other medical therapy 
during the experimental protocol. Transitioning 
to hepatocellular carcinoma (HCC), Gal-1 inhibi-
tors such as OTX008 have demonstrated effi-
cacy in cancer treatment in murine models 
[118]. HCC is associated with elevated Gal-1 
levels, which corresponds to poor prognosis 
and more aggressive tumor features [119]. In 
vitro HCC cells treated with OTX008 had de- 
creased Gal-1 levels, which corresponded with 
reduced cell migration and invasion. In the set-
ting of head and neck squamous cell carcino-
ma, OTX008 demonstrates similar results of 
tumor growth inhibition in addition to norma- 
lizing tumor growth vasculature [120]. Anti-
galectin pharmacotherapeutic effects remain 
applicable across many other malignancies, 
including neuroblastoma, lung adenocarcino-
ma, melanoma, head and neck squamous cell 
carcinoma, pancreatic adenocarcinoma and 
ovarian cancer [84, 85, 121-124]. Despite the 
significant process of anti-galectin therapy in 
various malignant processes, galectin-inhibi-
tors have yet to showcase in GBM animal mod-
els and humans. 

siRNA anti-galectin therapy and nanoparticles 
in glioblastoma

Although anti-galectin agents have been poorly 
studied for treatment efficacy, anti-galectin 
siRNA therapy and galectin gene knockdown 
therapy has been moderately studied for po- 
tential therapeutic success. Part of the reluc-
tance to these therapeutic options are likely 
related to the predicament of blood brain bar-
rier penetrance that has limited glioblastoma 
treatment [96, 125]. Notably, there has been 
therapeutic advances in developing variations 
of nanoparticles containing chemotherapy ag- 
ents, siRNA, and other anti-GBM agents that 
not only demonstrate adequate BBB pene-
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trance [77, 126, 127] but also further reduce 
glioblastoma tumor burden in animal models 
[128]; use of these nanoparticles in combina-
tion with galectin inhibitors or siRNA will likely 
be more advantageous regarding treatment 
efficacy.

Chitosan-lipid nano capsules

Danhier and colleagues utilizes both ideas of 
anti-galectin therapy and nanoparticles by 
developing anti-Gal-1 and anti-EGFR siRNA-
loaded chitosan-lipid nanocapsules [77]. The 
study demonstrates that intracranial adminis-
tration of Gal-1 siRNA, EGFR siRNA, and TMZ 
through chitosan-lipid nanocapsules significan- 
tly improves survivability in mice from 34 to 39 
days, suggesting a possible adjunctive therapy 
in patients with this brain tumor. These results 
show consistency with Messaoudi and col-
league’s in vitro analysis that demonstrates a 
significant increase in living GBM cells treated 
with anti-EGFR, anti-Gal-1, and TMZ combined 
therapy [129], suggesting that these agents 
may show promise as adjunctive treatments for 
reducing TMZ resistance. Provided that intra-
cranial administration of pharmacotherapeu-
tics are both invasive and non-efficient meth-
ods of delivery, an intranasal formulation of 
Gal-1 siRNA-loaded chitosan nanoparticles we- 
re developed [76]. In an in vitro assessment, 
the nanoparticles were subject to both murine 
and human GBM cell lines and were found to 
attach to both groups of cells. Additionally, cells 
exposed to the galectin siRNA nanoparticles 
demonstrated attenuation of galectin mRNA 
expression. Upon assessing BBB penetrance 
within mice, fluorescently labeled galectin 
siRNA was found to be present within nasal 
mucosa, olfactory bulb, and hindbrain. In vivo 
intranasal administration of the formulation 
also significantly decreased Gal-1 levels, repre-
senting both the efficacy of the nanoparticles 
to carry active siRNA and blood brain barrier 
penetration. 

Combining previously studied galectin inhibi-
tors with nanoparticles capable of effective 
BBB permeability may prove to be not only an 
effective treatment modality but also cost-
effective when compared to siRNA treatments. 
A variety of nanoparticles exist in literature 
demonstrating adequate blood brain barrier 
penetrance and negligible elicited adverse 
effects in animal models. A summary of clini-
cally relevant nanoparticles, method of admin-
istration, and exposure with TMZ is provided in 
Table 2 for reference. Messaoudi and col-
leagues have multiple studies that support the 
safe use of chitosan-coated lipid nanoparticles 
with anti-GBM siRNA for glioblastoma pharma-
cotherapy [77, 127, 129, 130]. Titrating the 
concentration of chitosan has been shown to 
reduce the cytotoxic effect toward glioblastoma 
cells and likely other healthy glial cell types. 
Chitosan concentrations at 150 micrograms 
per milliliter were found to increase cell death 
of GBM cells, while concentrations with 100 
micrograms were safe and non-confounding to 
experimental effect.

Exosome nanoparticles

Application of galectin suppression with corre-
sponding tumor attenuation is demonstrated 
by the use of Gal-9 siRNA exosome-based 
nanoparticles in GBM infiltrated mice [128]. 
Mice infected with GBM and corresponding 
high tumor Gal-9 levels who were treated with 
Gal-9 siRNA loaded exosomes noted significant 
tumor volume decrease compared to the con-
trol. Analogous results can be noted in a sepa-
rate study that appreciates increased surviv-
ability in mice with minipump infusion of both 
TMZ and galectin siRNA, when compared to 
either agent being used separately; increased 
survivability was correlated with decreased 
galectin levels [67]. Mice subject to the galec- 
tin siRNA were also notably found to have 
decreased levels of angiogenesis compared to 
their counterparts.  

Table 2. Lists the nanoparticle of interest, method of administration in animal models, and whether 
the nanoparticle has been tested with TMZ
Nanoparticle Method of Delivery Tested in Animals Tested with Temozolomide (Y/N)
Chitosan lipid nano capsules Intracranial & Intranasal Y
Exosomes Intravenous Y
Angiopep-2 nanoparticles Intravenous Y
Iron oxide nanoparticles Intracranial, Intravenous Y
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Regarding exosome-based drug carries, blood 
exosomes incorporated with metformin and 
phospholipase 2 (PLA2) have achieved BBB 
penetrance in mice and have been shown  
to modulate mitochondrial activity in glioblas-
toma cells, as well as increase survivability 
[131]. Metformin and PLA2-packed blood exo-
somes were observed to impair mitochondrial 
energy metabolism in GBM cells, associated 
with cell death. Intravenous administration of 
the packed blood exosomes in mice also 
achieved effective BBB penetrance and had an 
inhibitory effect of GBM progression. The effi-
cacy of exosomes as drug carriers is further 
apparent through an observed induction of 
apoptosis and cell death in GBM mice injected 
intravenously with exosome-nanoparticles car-
rying doxorubicin [132].

Angiopep-2 nanoparticles

In addition to chitosan-lipid nanoparticles and 
exosome vectors, ligands such as angiopep-2 
have been expressed on nanoparticles to 
increase permeability [126]. Angiopep-2 has a 
high affinity for receptor-related protein 1 
(LRP1), which is a highly expressed receptor  
in the BBB. Conjugating angiopep-2 to lipid 
nanoparticles was found to have a 2.2-fold 
higher transport ratio than non-conjugated  
lipid nanoparticles and superior GBM cell 
uptake in comparison to non-conjugated parti-
cles. Angiopep-2 conjugated lipid nanoparticles 
carrying CRISPR-Cas9 also observes superior 
BBB penetrance and tumor penetrance with 
intravenous administration [133]. Employing 
angiopep-2-conjugated dendrimer nanoparti-
cles for TMZ delivery has demonstrated consid-
erable efficacy [134]. Dendrimers are hyper-
branched nanosized macromolecules that are 
used for conjugating drugs and other ligands 
for delivery optimization. Utilizing dendrimers 
as a nanoparticle delivery system for TMZ and 
conjugating them with angiopep-2 for enhanc- 
ed BBB permeability resulted in more than  
90% inhibition of U87MG GBM cells compared 
to the 40% inhibition captured by TMZ use 
alone. Angiopep-2 nanoparticles have a dynam-
ic use in GBM pharmacotherapy, as these 
nanoparticles can further be treatment modali-
ties through photothermal therapy (PTT) and 
photodynamic therapy (PDT) [135]. PTT works 
to treat malignancies through utilizing strong 
light absorption by a photosensitizer to gener-
ate heat or reactive oxygen species (i.e. PDT). 

Lathanide-doped upconversion nanoparticles 
(UCNPs), which are capable of emitting near-
infrared light for enhanced tumor penetration, 
can be conjugated with angiopep-2 to augment 
BBB permeability and deliver photothermal and 
photodynamic agents that effectively ablate 
GBM cells in mice and prolong survival. In con-
trast to infrared-light PDT, evidence of X-ray-
induced PDT has also been shown to be effica-
cious in angiopep-2 bound nanoparticles carry-
ing other chemotherapeutic agents (i.e. pacli-
taxel) [136]. X-ray-induced PDT with angiopep-2 
bound nanoparticles carrying paclitaxel corre-
sponded with significant growth reduction of 
GBM and prolonged survival time in mice. 

Iron oxide nanoparticles

Iron Oxide Nanoparticles (IONPs) are a well-
studied agent in biotechnology, with the ability 
to assist in various imaging processes and 
drug-delivery [137]. IONPs are a member of 
magnetic nanoparticles, consisting of an iron-
oxide core and a chemically modified surface 
that may express dextran, lipids, or other small 
molecules that facilitate transportation [138]. 
There are three types of IONPs that vary in their 
chemical composition of iron, oxygen, and other 
metals; these formulations include magnetite 
(Fe3O4), maghemite (y-Fe2O3), and mixed fer-
rites (MFe2O4), where M can be substituted for 
nickel, zinc, cobalt, or manganese (30639256). 
Prior to delivery into a host, an internal mag-
netic field incorporated into the nanoparticle, 
or an external magnetic field can be utilized to 
assist in the physiologic localization of the par-
ticle. Chen and colleagues demonstrate the 
ability of an external magnetic field to assist in 
magnetic nanoparticles transport across the 
blood-brain barrier (BBB) [139]. The magnetic 
field alters BBB permeability through temporar-
ily disrupting endothelial adherens junctions 
with nanoparticle assistance, thereby mediat-
ing the passage of the particle and circulating 
substances [140]. Evidence of this is depicted 
using iron oxide nanoparticles coated by gold 
and conjugated with polyethylene glycol that 
are subsequently administered through an 
intraperitoneal injection in mice [139]. The 
application of an external static magnetic field 
yielded an increase in the brain bioavailability 
of the particle compared to groups that did not 
utilize the magnetic field. The ability of IONPs to 
penetrate the BBB is further supported with 
the use of particles of different compositions 
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and delivery methods in drosophila and murine 
models [141-144]. 

In addition to displaying BBB penetrance, 
IONPs are biodegradable and sterilizable carri-
er molecules, giving them pharmacodynamic 
properties to carry out chemotherapeutic deliv-
ery [145]. The utilization of these nanoparticles 
to assist in chemotherapeutic delivery allows 
for nervous system-based malignancies to be 
treated with chemotherapeutics that may not 
possess inherent BBB permeability (i.e. TMZ). 
In the context of GBM, IONP carrier particles 
with anti-cancer agents have proved effica-
cious in in vitro BBB models. Polyethylene gly-
col conjugated-IONPs were utilized as carrier 
molecules for Salinomycin, an antibiotic dis-
playing potential as an anti-cancer drug [146]. 
When the particles were cultured with the in 
vitro BBB GBM model, the particles had limited 
penetration and approximately 60% GBM cell 
viability. Subjecting the model to hyperosmotic 
disruption and assisting nanoparticle translo-
cation with an external magnetic field signifi-
cantly enhanced nanoparticle translocation 
across the BBB and reduced GBM cell viability 
to 38%. IONPs may further be used to deliver 
chemotherapeutics to GBM cells across the 
BBB in the absence of a magnetic field, through 
the use of BBB-permeable surface modifica-
tions [145]. Chemotherapeutic Gemcitabine 
was able to effectively penetrate the BBB in 
murine models with the assistance of IONPs 
conjugated with chlorotoxin, a BBB-permeable 
peptide. The nanoparticle-chemotherapeutic 
therapy also displayed similar in vitro GBM cell 
death comparable to Gemcitabine as a positive 
control. Similar results have been captured 
with using more standard chemotherapies for 
glioblastoma treatment (i.e. TMZ) in IONP for-
mulations, displaying a significant increase in 
mice survivability when TMZ is given through an 
IONP formulation compared to TMZ alone [147]. 
Noting the possibility that the IONP nanoparti-
cles could possess inherent cytotoxicity, cur-
rent literature suggests that these nanoparti-
cles do not alter cell viability [146, 148]. Similar 
to angiopep-2 conjugated nanoparticles, IONPs 
are also assisting in glioblastoma therapy 
through the use of PTT and PDT [148]. This 
method of therapy utilizes the generated heat 
after laser irradiation of photothermal agents 
to ablate tumor cells. The combination of PTT 
and PDT with iron oxide nanoparticles was 

capable of effectively killing in vitro glioma cells 
in the presence of laser irradiation. 

Galectin inhibitors in clinical trials

As of date, two completed Phase 0 pre-clinical 
trials have been conducted on both primates 
and dogs with nervous system tumors to 
assess the safety and delivery of nanoparticles 
as possible therapeutic vectors [149, 150]. 
Intravenous administration of siRNA nanoparti-
cles in primates has been demonstrated to be 
relatively safe [149]. Animals tolerated the ther-
apy with zero mortality and the absence of 
grade 4 or 5 clinically related adverse events. 
Dermatologic manifestations of blue/purple 
discoloration of various body surfaces were 
appreciated notably in higher dosing groups; 
discoloration was also present on the surface 
of various organs throughout the body. Acu- 
tely, post-administration, animals were noted to 
have significantly decreased systolic and dia-
stolic blood pressures which appears to resolve 
over a short period of time. Only two severe/
grade 3 adverse effects of hypophosphatemia 
and lymphopenia were appreciated in subjects; 
both effects were found to decrease over the 
observed toxicology period. Importantly, the 
nanoparticles demonstrated BBB penetrance 
and tumor uptake, with unequal distribution 
throughout the brain tissue. The second pre-
clinical trial involves utilizing polymeric magnet-
ic nanoparticles (PMNPs) loaded with TMZ for 
possible therapy in dogs with MRI evidenced 
supratentorial tumors [150]. In seven out of  
the ten dogs who received with PMNPs, the 
nanoparticles effectively localized to the sup- 
ratentorial mass; it is unclear by the authors if 
the three cases of failure to localize are the 
result of surgical error or therapeutic accuracy. 
The outcomes of these preclinical studies 
showcase the potential of nanoparticles to de- 
liver agents relatively safely and efficaciously 
through intravenous or intracranial delivery. 
Additional phase 0 studies assessing the multi-
tude of nanoparticles is necessary to further 
elucidate both safety and efficacy, as well as 
identifying superior nanoparticle delivery sys- 
tems.

Challenges implementing galectin-inhibitors in 
the clinical environment

Despite the plethora of benefits that galectin-
inhibitors offer for the treatment of disease and 
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malignancy, galectin-inhibitors possess some 
notable challenges to their implementation as 
pharmacotherapy. In therapeutic models, ga- 
lectin inhibitors are limited in their ability to 
localize to a specific physiologic environment, 
their specificity and affinity for a particular 
galectin isoform, and through a lack of knowl-
edge underlying the specific mechanisms by 
which these inhibitors attenuate disease state 
[151]. To date, there are no Gal-3 inhibitors that 
can penetrate the blood-brain barrier [152, 
153]. Due to these molecule’s polarization, 
they are dependent on pharmacotherapeutic 
vectors to localize to central nervous system. 
Gal-3 inhibitors also lack specificity and affinity 
toward Gal-3 [154]. Although Gal-3 is unique in 
its possession of a large N-terminal domain 
compared to other galectins, this lack of speci-
ficity and affinity toward Gal-3 can likely be 
explained by the similarities in the carbohy-
drate recognition domain. Gal-3 inhibitors have 
been discovered to interact with other galectin 
isoforms, potentially disrupting the normal 
physiologic functions of other lectins and con-
founding data collection [155]. The develop-
ment of high affinity and high selectivity galec-
tin inhibitors, such as aminopyrimidine-galac-
tose hybrids, are necessary as they can yield a 
significantly higher selectivity for Gal-3 com-
pared to Gal-1. Unfortunately, aminopyridines 
and other galectin inhibitors such as PTX008, 
Bruceine A, GB1490, and others are poorly 
studied in their mechanism of inhibition and 
clinical application [151, 155-157]. Regarding 
mechanism of inhibition, although galectin-
inhibitors have been noted to attenuate inflam-
matory processes and tumor-promoting effects 
through interacting with the carbohydrate rec-
ognition domain and N-terminal domain, the 
specific mechanism of attenuation is unclear 
[73]. This deficit is largely attributed to a lack of 
knowledge regarding the specific physiologic 
pathways that are altered by galectins and their 
role in regulating these pathways [158]. 
Although more research into the physiologic 
mechanisms of galectins, galectin-inhibitor 
pharmacodynamics, and clinical application 
are needed before considering these proteins 
as therapeutic modalities, a great deal of 
potential exists for the drugs to be applied to 
clinical environments in various pathological 
processes.

Conclusion

Considering the available literature, galectin 
inhibitor therapy through nanoparticle delivery 
systems appears to be a viable pharmacother-
apy for glioblastoma. Galectin inhibitors show 
safety and positive prognostication across vari-
ous non-glioma malignancies. Evidence of glio-
ma tumor regression and safety with analog- 
ous galectin inhibitors, anti-galectin siRNA, and 
development of nanoparticle delivery systems 
supports the consideration of well-studied 
inhibitors such as belapectin, modified citrus 
pectin, and others to be experimentally tested. 
Notably, there are challenges toward the clini-
cal implementation of galectin-inhibitors, in- 
cluding considerations such as isoform affinity 
and specificity, inhibitor localization to a specif-
ic tissue, and a deficiency in the knowledge of 
galectins and molecular inhibitors. An addition-
al consideration of therapeutic efficacy includes 
the variety of nanoparticle formulations includ-
ing lipid nanoparticles, exosomes, and metal-
based nanoparticles and discovering a superior 
nanoparticle delivery system to compliment  
a galectin inhibitor [159, 160]. Initiation of 
these tests can address the in vitro effects of 
nanoparticle-based galectin inhibitors on glio-
blastoma cells and progress to analysis in 
murine and other animal models, with the goal 
of initiating Phase I and II clinical trials in hu- 
man subjects using a galectin inhibitor-based 
nanoparticle for treatment of GBM.
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