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Abstract: Lung cancer stands as the predominant cause of cancer-related mortality globally. Lung adenocarcinoma 
(LUAD), being the most prevalent subtype, garners extensive attention due to its notable heterogeneity, which signifi-
cantly influences tumor development and treatment approaches. This research leverages single-cell RNA sequenc-
ing (scRNA-seq) datasets to delve into the impact of KRAS/TP53 co-mutation status on LUAD. Moreover, utilizing 
the TCGA-LUAD dataset, we formulated a novel predictive risk model, comprising seven prognostic genes, through 
LASSO regression, and subjected it to both internal and external validation sets. The study underscores the pro-
found impact of KRAS/TP53 co-mutational status on the tumor microenvironment (TME) of LUAD. Crucially, KRAS/
TP53 co-mutation markedly influences the extent of B cell infiltration and various immune-related pathways within 
the TME. The newly developed predictive risk model exhibited robust performance across both internal and external 
validation sets, establishing itself as a viable independent prognostic factor. Additionally, in vitro experiments indi-
cate that MELTF and PLEK2 can modulate the invasion and proliferation of human non-small cell lung cancer cells. 
In conclusion, we elucidated that KRAS/TP53 co-mutations may modulate TME and patient prognosis by orchestrat-
ing B cells and affiliated pathways. Furthermore, we spotlight that MELTF and PLEK2 not only function as prognostic 
indicators for LUAD, but also lay the foundation for the exploration of innovative therapeutic approaches.
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Introduction

Lung cancer, among the most frequently occur-
ring malignancies, stands as the foremost con-
tributor to cancer-associated mortality on a 
global scale [1]. Lung adenocarcinoma (LUAD), 
the subtype predominantly encountered in lung 
cancer research, which has garnered signifi-
cant attention [2]. For early-stage LUAD, surgi-
cal resection remains the preferred therapeutic 
approach, while the emergence of targeted 
therapy and immunotherapy has exhibited 
notable advancements in the prognosis of 
advanced LUAD [3]. Although numerous 
patients have reaped substantial benefits from 
these novel treatment methods, a significant 
portion still faces unimproved prognoses due 
to factors like drug resistance or adverse 
events [3]. This underscores the pivotal role 

that LUAD heterogeneity plays in disease pro-
gression and treatment, necessitating a deeper 
understanding to facilitate the deployment of 
personalized treatments.

Significant heterogeneity is observed in both 
the tumor microenvironment (TME) and the 
genetics of LUAD. The TME, where cancers 
develop and proliferate, is a complex milieu 
comprising blood vessels, immune cells, stro-
mal cells, extracellular matrix, and various sig-
naling molecules [4]. Numerous studies have 
underscored the TME’s critical role in tumor 
onset, progression, metastasis, and treatment 
response [4]. Regarding genetic heterogeneity, 
the Kirsten rat sarcoma viral oncogene homo-
log (KRAS) is the most frequently mutated gene 
in LUAD, with approximately 30% of LUAD cases 
induced by activating KRAS mutations [5, 6]. 
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Oncogenic mutations in KRAS perpetually stim-
ulate downstream pathways (such as PI3K and 
MAPK) to promote tumorigenesis [7]. Current 
research indicates that controlling patients har-
boring activating KRAS mutations can be effec-
tively achieved by inhibiting its membrane 
association/subcellular localization, identifying 
synthetic lethal partners, and inhibiting down-
stream effectors [6]. With the approval of G12C 
inhibitor projects, KRAS cancer research is rap-
idly advancing [8]. Furthermore, KRAS muta-
tions often coexist with additional gene muta-
tions, such as those in TP53 or LKB1 [9]. The 
frequency of TP53 mutations is at least as  
common as KRAS mutations, and both are pos-
itively correlated with somatic mutation load 
[10-12]. In LUAD, the frequency range of KRAS/
TP53 co-mutation is around 40% [12]. Co- 
mutation enables KRAS mutant LUAD to 
acquire distinct biological and immunological 
characteristics [10]. Studies have demonstrat-
ed that tumor cell proliferative activity and 
immune infiltration degree in the KRAS/TP53 
co-mutated LUAD mouse model are significant-
ly higher than those in the KRAS-mutated LUAD 
mouse model [13-15]. Moreover, tumors with 
KRAS/TP53 co-mutations are susceptible to 
immune checkpoint blockade and other innova-
tive immunotherapy approaches [16]. Thus, a 
thorough exploration of the impact of KRAS and 
TP53 double mutations on LUAD will assist in 
developing new treatment strategies.

An escalating number of studies are presently 
utilizing single-cell RNA sequencing (scRNA-
seq) to explore tumor heterogeneity. Conse- 
quently, the primary objective of this study is to 
investigate the influence of KRAS/TP53 co-
mutation status on the immune microenviron-
ment of LUAD through the analysis of single- 
cell RNA sequencing (scRNA-seq) data utilizing 
the “hdWGCNA” package. On one hand, our 
research indicates that KRAS/TP53 dual muta-
tions may influence patient prognosis by modu-
lating related immune pathways, such as B 
cells. On the other hand, the predictive risk 
model constructed in this study provides poten-
tial genes that may emerge as LUAD treatment 
targets.

Materials and methods

Data collection

The Gene Expression Omnibus (GEO) database 
(GSE136246) is where the scRNA-seq dataset 

for this work was obtained (https://www.ncbi.
nlm.nih.gov/geo/). The bulk RNA-seq data for 
this study was obtained from the GEO data- 
base and TCGA-LUAD of the Cancer Genome 
Atlas (TCGA) database (https://portal.gdc.can-
cer.gov/). The internal validation set for this 
study was GSE68465, GSE3141, GSE31210, 
GSE37745 and GSE50081. The external  
validation set for this study was IMvigor210 
(http://research-pub.gene.com/IMvigor210Co- 
reBiologies) and GSE78220 datasets. Data 
from TCGA, GEO, and IMvigor210 are all freely 
accessible.

Analysis of scRNA-seq data

We used the Seurat package (version 3.0) to 
integrate the scRNA-seq data and set the filter 
conditions: nCount_RNA ≥ 1000, nFeature_
RNA ≥ 200 & af$nFeature_RNA ≤ 10000, per-
cent.mt (mitochondria number) ≤ 20, percent.
Ribo (number of ribosomes) ≤ 20. To normalize 
the data, we employed the LogNormalize tech-
nique. After filtering out, we identified 2,000 
hypervariable genes for subsequent analysis. 
With principal component analysis (PCA) dim = 
20 and resolution = 1.2, dimensionality reduc-
tion and clustering analysis were carried out, 
where the data exhibited clear and meaningful 
cluster structures that enabled the effective 
differentiation of distinct cell subtypes without 
overfitting. We identified marker genes and 
hypervariable genes for each cluster through 
the FindAllMarkers function and the Find- 
VariableFeatures function respectively. We 
annotated various cell types via classical mark-
er genes. We further used the t-SNE and UMAP 
algorithms to display the data.

Intercellular communication

Conventional single-cell annotation analysis 
can only provide information on the distribution 
and ratios of different cell populations within 
the tumor microenvironment. Intercellular com-
munication analysis allows for the quantifica-
tion of the strength of signals sent and receiv- 
ed by specific cell populations throughout the 
entire tumor microenvironment and can visual-
ly illustrate the differences in signaling between 
various cell populations. Variations in signaling 
patterns may suggest the presence of different 
cell types, assisting in the identification of  
novel cell types under different mutation sta-
tus, such as wild type and KRAS/TP53 co-
mutation. CellChat (version 1.1.3) can be used 
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to infer the number of receptor-ligand pairs  
and communication strengths between differ-
ent cell populations. We set the parameters to 
their default values. Not only can we observe 
the communication network between different 
cell groups and the signals sent or received 
between each cell cluster.

High dimensional WGCNA (hdWGCNA)

High-dimensional weighted gene co-expression 
network analysis (hdWGCNA) optimizes the 
capacity to process single-cell RNA sequencing 
(scRNA-seq) data, particularly suited for analyz-
ing such high-dimensional datasets. Compared 
to traditional weighted gene co-expression net-
work analysis (WGCNA), hdWGCNA has made 
significant improvements in several aspects. It 
more effectively manages the vast amounts of 
gene expression data and allows for an in-
depth analysis of the cellular heterogeneity 
revealed within single-cell data. Furthermore, 
hdWGCNA enhances the understanding of 
gene expression patterns by constructing gene 
expression networks and identifying clusters  
of co-expressed genes, demonstrating higher 
sensitivity and precision in detecting subtle 
expression variations within single-cell data. 
Additionally, hdWGCNA is capable of integrating 
data from different single-cell technologies, 
offering a more comprehensive analytical tool 
for studying complex biological systems. There- 
fore, we studied the intrinsic properties of B 
cells through the R package of hdWGCNA, 
which helped screen out B cell subtype-related 
genes.

Single-cell trajectory analysis

We have analyzed the signaling patterns of  
different B cell subpopulations through inter-
cellular communication analysis. To further elu-
cidate the potential emergence of novel B cell 
subtypes driven by KRAS/TP53 co-mutations, 
we aimed to clarify the developmental trajecto-
ry of B cells and their dynamic gene expression 
profiles through single-cell trajectory analysis. 
Additionally, LUAD originated from the epithelial 
cells. By reconstructing the developmental tra-
jectory of epithelial cells within the tumor micro-
environment of LUAD patients harboring KRAS/
TP53 co-mutations and elucidating dynamic 
gene expression patterns, we can facilitate the 
identification of actionable targets for interven-
tion during the early onset of LUAD. Therfore, 
we used the “Monocle” package to analyze the 

evolutionary trajectories of B cells and epitheli-
al cells in LUAD patients in the KRAS/TP53 co-
mutation group.

Consensus cluster analysis

Based on the 66 candidate genes obtained by 
univariate regression analysis, we performed 
consensus clustering analysis on patients in 
the TCGA-LUAD dataset through the “Consen- 
susClusterPlus” package. The letter “k” repre-
sented the number of clusters. The cumulative 
distribution function (CDF) when k took differ-
ent values, was used to determine the optimal 
value of k. According to the CDF, LUAD patients 
were grouped into two distinct clusters, desig-
nated as Cluster1 (C1, n = 289) and Cluster2 
(C2, n = 211).

Immune landscape analysis

Based on the TCGA-LUAD dataset, we analyzed 
the infiltration of immune cells between clus-
ters by GSVA algorithm. The ESTIMATE algo-
rithm can be employed for estimating the pro-
portion of stromal and immune cells within 
tumor samples. We analyzed the stromal 
immune component scores of clusters and 
prognostic genes via the ESTIMATE algorithm. 
We used Spearmen’s correlation test to ana-
lyze the expression of immune cell inhibitory 
receptors and ligands among clusters. We 
applied the Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm to evaluate the 
potential for tumor immune escape in clusters. 
Based on the TCGA-LUAD dataset, we used the 
MCPcounter algorithm to analyze the correla-
tion between seven prognostic genes and 
immune cells.

Functional enrichment analysis

We performed differential analysis on the two 
clusters through the “limma” package and 
obtained 494 differentially expressed genes 
(DEGs). Next, we used the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) and Gene 
Ontology (GO) to do enrichment analysis on 
DEGs and visualized through the “ggplot2” 
package. In addition, we performed KEGG en- 
richment analysis on the prognostic geneset.

Construction and validation of prognostic sig-
nature

Utilizing the TCGA-LUAD dataset, an initial anal-
ysis of the 494 Differentially Expressed Genes 
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(DEGs) was conducted through univariate Cox 
regression analysis, resulting in the identifica-
tion of 143 genes. Subsequently, a predictive 
risk model consisting of seven prognostic 
genes, namely MELTF, PLEK2, CPS1, FAM83A, 
DKK1, ERO1B, and CORO1A, was constructed 
using the least absolute shrinkage and selec-
tion operator (LASSO) regression technique. 
Patients were divided into high-risk group and 
low-risk group according to the median risk 
score. Subsequently, Kaplan-Meier analysis 
was conducted using the “survminer” package 
to compare the overall survival (OS) between 
the high and low-risk groups. Furthermore, 
time-dependent receiver operating characteris-
tic (ROC) analysis was performed using the 
“timeROC” package to assess the predictive 
ability of the model, with the area under the 
ROC curve (AUC) used as the evaluation metric. 
Moreover, to ensure the stability of the predic-
tive risk model, GSE68465, GSE3141, GSE31- 
210, GSE37745, and GSE50081 were utilized 
as internal validation sets. External validation 
sets, namely IMvigor210 and GSE78220, were 
employed to verify the efficacy prediction of the 
proposed risk model in the context of immuno-
therapy. The response categories used for eval-
uation included CR/PR (complete response/
partial response), PD/SD (progressive disease/
stable disease).

Clinical correlation analysis

We developed risk score for each clinical char-
acteristic (gender, TNM stage, tumor grade and 
age). Additionally, the factors related to patient 
prognosis were screened through univariate 
and multivariate Cox regression analysis. 
Furthermore, a prognostic nomogram was 
developed through the “rms” package to evalu-
ate the performance of the predictive risk 
model.

Drug response prediction

Based on the Cancer Genome Project (CGP) 
database, we analyzed the clinical responses 
of high- and low-risk patients to various com-
pounds. With the “pRRophetic” package, we 
assessed drug sensitivity to compounds in 
patients in high and low risk groups.

Geneset activity assessment

On the basis of the TCGA-LUAD dataset. We 
used multiple scoring algorithms, namely 

AUCell, Ucell, singscore, ssgsea, and Add- 
ModuleScore (Add), to score the prognostic 
geneset. Then we used the scale function to 
standardize each rating data so that the mean 
of the data was zero and the standard deviation 
was one to reduce the impact of the scale dif-
ference of the data on the analysis. We then 
performed normalize from zero to one. We cal-
culate the sum of corresponding scores and 
name these sums scoring. We divided epithelial 
cells into two subtypes based on the median 
score: HighRisk and LowRisk. We analyzed the 
cell communication of HighRisk and LowRisk in 
tissues through the “Cellchat” package.

Cell source and culture

Two human non-small cell lung cancer cell 
lines, A549 and H1299, were purchased from 
Procell (Wuhan, China). Both cell lines were cul-
tured in RPMI 1640 medium (Procell, Wuhan, 
China) containing 10% fetal calf serum and 1% 
antibiotic solution.

Small interfering RNA (siRNA) transfection

Cells were transfected with small interfering 
RNA (siRNA) and employed in subsequent 
experimental procedures. The siRNA sequenc-
es were provided in Supplementary Materials. 
Cells were transfected using Lipofectamine 
3000 (L3000015, Invitrogen) according to the 
instructions of Thermo Fisher Scientific.

Western blot analysis

Cells were lysed in lysis buffer (Beyotime 
Institute of Biotechnology, China) containing 
protease and phosphatase inhibitors. Protein 
concentration was determined utilizing the BCA 
method, specifically focusing on the superna-
tant protein. The extracted protein samples 
were subjected to denaturing 10% SDS-
polyacrylamide gel electrophoresis, followed by 
transfer onto polyvinylidene fluoride mem-
branes. Subsequently, the membranes were 
blocked with 5% bovine serum albumin (BSA)  
at room temperature for 120 minutes and  
subsequently incubated with Abcam’s primary 
antibodies (MELTF (ab52968; 1:200), PLEK2 
(ab121131; 1:200) and GAPDH (ab8245; 
1:8000)) overnight at 4°C. After taking it out,  
it was washed three times and then further 
incubated with goat anti-rabbit IRDye 800CW 
pre-adsorbed secondary antibody (Abcam, 
ab216773; 1:10000). Images were detected 
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using an Odyssey infrared imaging scanner 
(LI-COR, USA).

Transwell assay

Transwell chamber (Corning, USA) was coated 
with Matrigel (Corning, USA). The upper cham-
bers were seeded with PC-3 cells in an FBS-
free medium. Media consisting of 10% serum 
were added to the lower chamber. Cells were 
cultured at 37°C for 24 h, and the remaining 
cells were swept using a cotton swab. The cells 
that had infiltrated the chamber’s bottom were 
then fixed with 4% methanol at 37°C for 10 
min, followed by 15 min of staining with a 0.1% 
crystal violet solution in the same environment. 
A microscope (× 200) was used to count the 
invading cells in three randomly selected fields.

Cell counting kit-8 (CCK-8) assays

Cell samples were initially seeded in a 396- 
well plate with 100 μl of culture medium con-
taining 5 × 10 cells/well. Cell proliferation rates 
were subsequently measured at 0, 1, 2, 3, 4, 
and 5 days post-transfection. To assess prolif-
eration, each well of the 96-well plate was sup-
plemented with 10 μl of CCK-8 (reporter) and 
incubated for an additional 2 hours at 37°C. 
Finally, the absorbance was measured at 96 
nm in a 450-well plate and determined using a 
test strip reader (SpectraMax Plus 384).

Wound healing assay

Using the lung cancer cell lines A549 and 
H1299, cells were cultured in 6-well plates  
until they reached approximately 100% conflu-
ence. Upon reaching the desired confluence,  
a straight-line scratch was made in the cell 
monolayer using a 200 μl pipette tip. The wells 
were then gently washed with serum-free medi-
um to remove any loose cells and debris, fol-
lowed by the addition of fresh medium. Photo- 
graphic documentation of the scratched area 
was carried out using an inverted microscope 
(× 100) at time points 0, 12, and 24 hours. 
Finally, the images from these time points were 
compared to quantify the migration of cells into 
the scratch area over time.

Statistical analysis

All experiments were conducted in triplicate or 
more. Statistical analysis of in vitro experimen-
tal data was performed using SPSS software 

(version 19.0) and GraphPad Prism (version 
7.0). Bioinformatic data were analyzed using R 
4.0.3. Cox regression analysis was employed to 
compare survival curves, while the Wilcoxon 
rank sum test was utilized to assess differenc-
es in expression levels between groups. Corre- 
lation analysis was performed using Pearson 
correlation coefficient. |r| > 0.1 was consid-
ered relevant and P < 0.05 was considered sta-
tistically significant. Throughout the study, * 
indicates P < 0.05, ** indicates P < 0.01, *** 
indicates P < 0.001, and **** indicates P < 
0.0001.

Results

Analysis of TME of KRAS/TP53 co-mutation 
status LUAD based on single-cell RNA se-
quencing

In human lung cancer, a subset of tumor- 
specific KRAS/TP53 mutations is relatively 
conserved. Initially, we integrated the scRNA-
seq data (GSE136246) and standardized it uti-
lizing stringent filtering criteria. Subsequently, 
we identified 26 cell clusters through t-SNE 
dimensionality reduction analysis (Figure 1A). 
These 26 cell clusters were further classified 
into ten cell types using traditional marker 
genes (Figure 1B, 1C). Moreover, the cell per-
centage chart revealed that the KRAS/TP53 
MUT group had a substantially higher number 
of B cells and neutrophils compared to the WT 
group, while the proportion of epithelial cells 
was significantly lower (Figure 1D).

To delve deeper into the impact of B cells in the 
KRAS/TP53 MUT group, we employed the Find- 
VariableFeatures function to identify hypervari-
able genes in B cells, followed by scale normal-
ization. Through PCA dimensionality reduction 
cluster analysis, we ultimately discerned ten B 
cell subtypes (Figure 2A). In comparison with 
the WT group, B cells of subtypes 0, 2, and 4 
constituted a larger proportion in the KRAS/
TP53 MUT group (Figure 2B). Consequently, we 
designated B cells of subtypes 0, 2, and 4 as  
IS MUT, and those of the remaining subtypes  
as WT. Subsequently, we utilized CellChat to 
investigate the number and weights/strength 
of interactions between cell populations. We 
observed that during lung cancer progression, 
the communication capability among T cells, 
macrophages, monocytes, neutrophils, and 
epithelial cells were notably robust (Figure 2C, 
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Figure 1. Cell type analysis and classification in KRAS/TP53 mutation. A. The t-SNE diagram shows the results of the dimensionality reduction analysis. B. Dot dia-
gram displays the average expression of marker genes in 26 cell clusters. C. The t-SNE diagram shows ten cell types, namely T cells, epithelial cells, macrophage, 
monocytes, DC, neutrophils, B cells, endothelial cells, NK cells and Tissue stem cells. D. Cell proportions of ten cell types in KRAS/TP53 MUT group and WT group.
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2D). Upon examining the signals dispatched by 
the cell group, we discovered that the incoming 
interaction strength of IS MUT surpassed that 
of WT, as evidenced by MIF and BAFF signaling 
(Figure 2E).

hdWGCNA analysis for characterizing potential 
functions of B cells

To further pinpoint candidate genes for specific 
B cell subsets, we executed hdWGCNA on B 

Figure 2. B cell subtypes and interactions in KRAS/TP53 mutant context. A. The UMAP diagram shows the situation 
of ten B cell subtypes in the KRAS/TP53 MUT group and WT group. B. The proportion of ten B cell subtypes in the 
KRAS/TP53 MUT group and WT group. C and D. Number of interactions and interaction weights/strength for each 
cell type. E. The heat map shows the outgoing and incoming signal pattern of each cell type recognition cell in the 
KRAS/TP53 MUT group.
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cells within the KRAS/TP53 MUT group. 
Excluding the gray module, we crafted an hdW-
GCNA lineage dendrogram utilizing three mod-
ules (Figure 3A). The co-expression network 
was constructed based on an optimal soft 
threshold of 6 (Figure 3B). The heatmap dis-
played the correlation among the three gene 
modules (Figure 3C). Additionally, we identified 
the hub genes corresponding to the three gene 
modules (Figure 3D). We also analyzed the dis-
tribution of these gene modules across each B 
cell subtype in the KRAS/TP53 MUT group 
(Figure 3E). However, since the brown module 
represented fewer genes and was broadly dis-
tributed in B cells within the KRAS/TP53 MUT 

group, we concentrated on the blue and tur-
quoise modules.

Subsequently, we analyzed the IS MUT in the 
KRAS/TP53 MUT group through pseudo-time 
analysis, discovering that as pseudo-time 
alters, IS MUT was segregated into three states 
(Supplementary Figure 1A). Moreover, we 
selected the top 25 genes in the blue and tur-
quoise modules for further pseudo-time analy-
sis. The heatmap vividly illustrated the expres-
sion evolution of each gene based on pseudo-
temporal alterations (Supplementary Figure 
1B). Based on the univariate regression analy-
sis of the top 1000 genes in the blue and tur-

Figure 3. Gene module analysis and correlation in B cells with KRAS/TP53 mutations. A. hdWGCNA lineage den-
drogram of B cells. B. Optimal soft thresholds were selected and maximum, median and average connectivity are 
shown. C. Heat map showing correlation analysis between three gene modules. D. Three gene modules were ob-
tained according to the standard process and the top 10 huh genes were presented accordingly. E. Distribution of 
the three gene modules in B cells in the KRAS/TP53 MUT group.
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quoise modules, we identified 66 candidate 
genes (Figure 4A). The relationship between 
these candidate genes and LUAD patients was 
subsequently explored by performing consen-
sus cluster analysis on the TCGA-LUAD dataset. 
We partitioned LUAD patients into two clusters 
based on CDF (Figure 4B-D). Following this, 
through survival analysis, we discerned that 
patients in Cluster2 (C2) exhibited longer sur-
vival than those in Cluster1 (C1) (Figure 4E), 
suggesting that the candidate genes possess 
prognostic value for LUAD patients.

Tumor classification based on B cell-related 
candidate genes

We proceeded to analyze the disparities be- 
tween the clusters by examining the immune 
microenvironment of the two clusters. We 
observed that, compared to cluster 2, cluster 1 
exhibited a higher degree of immune cell infil-
tration, including activated B cells, activated  
T cells, NK cells, macrophages, and myeloid-
derived suppressor cells (MDSC) (Figure 5A). 
Through the ESTIMATE algorithm, we found 
that, in addition to the immune score, the stro-
mal score of cluster 1 was also significantly 
higher than that of cluster 2 (Figure 5B). 
Furthermore, compared to cluster 2, the expres-
sion of immune suppression-related genes  
and immune activation-related genes in cluster 
1 was markedly increased (Figure 5C). Simul- 
taneously, we analyzed the tumor immune 
escape of clusters through the TIDE score. 
Interestingly, we found no significant differenc-
es in TIDE scores between clusters (Figure  
5D). However, compared to cluster 2, cluster 1 
exhibited higher IFNG, dysfunction score, 
tumor-associated macrophage M2 subtype 
(TAM M2) proportion, and MDSC proportion, 
while the exclusion score was lower (Figure 
5E-I). These results suggested that there is sig-
nificant potential for patients in cluster 2 to 
benefit from immunotherapy.

To explore potential differences between clus-
ters, we performed a differential analysis on 
the clusters and obtained 494 DEGs (Supple- 
mentary Figure 2A). Subsequently, we delved 
deeply into potential biological functions and 
pathways through KEGG and GO enrichment 
analysis. According to the enrichment analysis 
results, we found that DEGs were significantly 
enriched in related pathways such as regulat-

ing immune cells and cell adhesion (Supple- 
mentary Figure 2B). Additionally, DEGs were 
mainly associated with cell membrane compo-
nents, such as the endoplasmic reticulum and 
MHC complex proteins (Supplementary Figure 
2C). DEGs were also involved in molecular func-
tions such as chemokine activation and imm- 
une receptor ligand binding (Supplementary 
Figure 2C). This indicated that the primary  
functions of these DEGs are immunological 
response and invasion or metastasis of tumor 
cells.

Construction and validation of predictive risk 
model

Based on the TCGA-LUAD dataset, we first 
screened 494 DEGs through univariate Cox 
regression. We obtained 55 protective-related 
genes and 88 risk-related genes (Figure 6A). 
Finally, we constructed a predictive risk model 
consisting of seven prognostic genes through 
LASSO regression (Figure 6B-D). MELTF, PLE- 
K2, CPS1, FAM83A and DKK1 were genes re- 
lated to poor prognosis (cox coefficient > 1), 
while ERO1B and CORO1A were genes related 
to good prognosis (cox coefficient < 1) (Figure 
6D). We then calculated each tumor sample 
based on the following risk score formula: 
(-0.202 × ERO1B) + (-0.223 × CORO1A) + 
(0.213 × MELTF) + (0.14 × PLEK2) + (0.084 × 
CPS1) + (0.075 × DKK1) + (0.081 × FAM83A). 
According to this formula, we can divide the 
prognostic risk level of each patient and clas-
sify the patient into high-risk group or low-risk 
group. Subsequently, through survival analysis, 
we found that the prognosis of patients in the 
high-risk group was significantly worse than 
that of patients in the low-risk group (P < 
0.0001, Figure 6E). Moreover, ROC analysis 
showed that the AUC at 1, 3 and 5 years were 
0.76, 0.72 and 0.68, respectively (Figure 6F).  
In addition, we examined the stability of the 
predictive risk model through five datasets as 
internal validation sets, namely GSE68465, 
GSE3141, GSE31210, GSE37745 and GSE- 
50081. The internal validation set all showed 
poor prognosis in the high-risk group (P < 
0.0001, P = 0.0095, P = 0.0082, P = 0.014, 
and P = 0.011, Supplementary Figure 3A-E). 
And the ROC analysis based on the internal vali-
dation set showed the robustness of the pre-
dictive risk model (Supplementary Figure 3A-E).
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We then performed risk scores for multiple clin-
ical features. We found that men, patients with 
T3, N2 stage and stage III had higher risk 
scores (Supplementary Figure 4A-C, 4E). How- 
ever, there were no significant differences in 
risk scores between different M stages and  
age groups (Supplementary Figure 4D, 4F). We 
further analyzed factors related to patient prog-
nosis through univariate and multivariate Cox 
regression. In univariate Cox regression analy-
sis, TNM stage, tumor stage and risk score 
were all potential risk factors (Figure 7A). In 
multivariate analysis, it was shown that risk 
score can serve as an independent prognostic 
factor (P < 0.001, HR = 2.518, 95% CI: 1.944-
3.261, Figure 7B). In order to better utilize the 
predictive risk model, we combined the risk 
score with each clinical feature to construct a 
prognostic nomogram to predict patient surviv-
al (Figure 7C). The calibration curve showed 
that the predictive value of the nomogram for 
patient 1-year, 3-year, and 5-year overall sur-
vival had good correlation with the actual 
observed value (Figure 7D). Furthermore, the 
decision curve showed that the nomogram had 
a higher standardized net benefit as the thresh-
old probability changes (Figure 7E). ROC analy-
sis also showed that the nomogram and risk 
score had the highest predictive power and 
accuracy (Figure 7F).

Geneset enrichment analysis and immune 
activity

To explore the biological functions of the prog-
nostic gene set, we conducted KEGG enrich-
ment analysis. The results revealed that the 
prognostic gene set was strongly correlated 
with immune response pathways. Notably, 
CORO1A and MELTF were significantly enriched 
and positively correlated with immune-related 
pathways, while ERO1B and CPS1 exhibited  
the opposite trend (Supplementary Figure 5A). 
Additionally, through the heatmap, we dis-
cerned each tumor sample’s functional enrich-
ment and predictive gene expression (Supple- 
mentary Figure 5B).

Subsequently, we evaluated the seven prog-
nostic genes using the ESTIMATE algorithm and 

discovered that the expression levels of COR- 
O1A and MELTF escalated as ImmuneScore 
increased, whereas ERO1B and CPS1 demon-
strated a decline (Figure 8A). Furthermore, we 
found that CORO1A exhibited positive correla-
tions with StromalScore and ESTIMATEScore, 
while ERO1B and CPS1 were negatively corre-
lated (Figure 8B). We delved deeper into the 
correlation between prognostic genes and 
immune cells utilizing the “CIBERSORT” and 
“MCPcounter” algorithms. The prognostic gen- 
es were found to be significantly correlated  
with B cells, T cells, and macrophages (Figure 
8C). It was noteworthy that CORO1A was sig- 
nificantly positively correlated with T cells, B 
cells, NK cells, and myeloid dendritic cells 
(Figure 8D).

Predicting tumor treatment response

We subsequently utilized external validation 
sets (IMvigor210 and GSE78220) to ascertain 
whether the predictive risk model could predict 
patient responses to tumor treatment. Utilizing 
the risk score formula, we categorized patients 
from the IMvigor210 and GSE78220 datasets 
into high- and low-risk groups, respectively.  
We found that the survival analysis results of 
the external validation set were consistent  
with those of the test set and the internal vali-
dation set. The Overall Survival (OS) in the high-
risk group was inferior to that in the low- 
risk group (IMvigor210: P < 0.012; GSE78220: 
P = 0.0091; Figure 9A, 9F). Based on the 
IMvigor210 dataset, we observed that the risk 
score of the group that responded to tumor 
treatment (CR/PR) was lower than that of the 
group that did not respond to tumor treatment 
(PD/SD) (Figure 9B). Moreover, the high-risk 
percentage in the PD/SD group was higher  
than that in the CR/PR group (82% and 72%, 
respectively, Figure 9C). Additionally, we per-
formed separate risk scores for patients with 
clinical stages I and II and for patients with clini-
cal stages III and IV. Subsequently, through sur-
vival analysis, we discovered that the predictive 
risk model was more sensitive for predicting 
patients with early-stage tumors than those 
with advanced-stage tumors (Figure 9D, 9E). 

Figure 4. Univariate regression analysis and survival outcomes in LUAD patient clusters. A. Volcano plot shows the 
results of univariate regression analysis. Red represents up-regulated genes, blue represents down-regulated genes 
and gray represents genes with no significant difference. B. Matrix heatmap shows LUAD patients divided into two 
clusters (k = 2). C and D. CDF is displayed in delta plot and cumulative distribution curve plot. E. Kaplan-Meier curve 
show OS for two LUAD clusters.
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Figure 5. Comparative analysis of immune infiltration and functionality between clusters. A. Degree of immune cell infiltration between clusters. B. ImmuneScore, 
StromalScore, and ESTIMATEScore between clusters. C. Expression of immune-related genes between clusters. D-I. Differences in TIDE, IFNG, dysfunction score, 
exclusion score, TAM M2 and MDSC proportions between clusters (*P < 0.05, **P < 0.01 and ***P < 0.001).
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Figure 6. Prognostic gene identification and risk assessment in LUAD via regression and LASSO model. A. Volcano 
plot showing the results of univariate Cox regression analysis. B and C. Coefficient distribution diagram of each gene 
and optimal lambda for constructing LASSO model. D. Cox coefficient of seven prognostic genes. E. The Kaplan-
Meier analysis results of high- and low-risk groups based on TCGA-LUAD dataset. F. The ROC analysis based on 
TCGA-LUAD dataset.

Figure 7. Comprehensive evaluation and validation of prognostic nomogram. A and B. Univariate and multivariate 
Cox analyzes assessed the independence of the predictive risk models. C. Construct the prognostic nomogram com-
bining risk scores and clinical characteristics. D. Calibration curves show the correlation between the nomogram’s 
1-, 3-, and 5-year predictions and actual observations. E. Standardized net benefit decision curve graph. F. ROC 
analyzes the AUC of the nomogram, the risk score and each clinical feature.
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Based on the GSE78220 dataset, we found no 
significant difference in risk scores between 
the tumor treatment-refractory group (PD) and 
the tumor treatment-responsive group (PR/CR) 
(Figure 9F, 9G). However, the high-risk percent-
age in the PD group was significantly higher 
than that in the PR/CR group (62% and 27%, 
respectively, Figure 9H). These results indicat-
ed that predictive risk models can effectively 
predict patient responses to cancer treatment, 
especially for patients with early-stage tumors.

We conducted pharmacological response pre-
dictions for high- and low-risk patients using 
the CGP database. Ultimately, based on  
the standards, we screened out six compo- 
unds, namely AS601245, Axitinib, AZD8055, 
AP.24534, Nilotinib, and Temsirolimus (Supple- 
mentary Figure 6A). Patients in the low-risk 

group exhibited greater sensitivity to these six 
compounds compared to those in the high-risk 
group (Supplementary Figure 6B-G).

Prognostic geneset activity assessment

To delve deeper into the prognostic gene set, 
we scored the prognostic gene set of each cell 
in the KRAS/TP53 MUT group and WT group 
using AUCell, Ucell, singscore, ssgsea, and Add 
algorithms (Figure 10A). The scoring results 
were integrated and standardized to obtain the 
total score (Scoring) (Figure 10B). The results 
indicated that, between the KRAS/TP53 MUT 
group and the WT group, there were significant 
differences in the prognostic gene set scores in 
nine cell groups, with the exception of tissue 
stem cells (Figure 10C). Notably, the score of 
epithelial cells in the KRAS/TP53 MUT group 

Figure 8. Correlation of prognostic genes with immune and stromal components. A. Correlation between prognostic 
gene expression levels and ImmuneScore. B. The heatmap shows correlation of prognostic genes with Immune-
Score, StromalScore and ESTIMATEScore. C. The heatmap shows the correlation of prognostic genes with 22 types 
of immune-related cells (*P < 0.05, **P < 0.01, ***P < 0.001). D. The heatmap shows the correlation of prognostic 
genes with 10 types of immune-related cells.
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Figure 9. Evaluating a risk model’s predictive accuracy for treatment response and survival. A. Kaplan-Meier analysis based on IMvigor210 dataset. B. Differences 
in risk scores for different clinical response groups based on the IMvigor210 dataset. C. Proportions of high- and low-risk in different clinical response groups based 
on the IMvigor210 dataset. D. Based on the IMvigor210 dataset, Kaplan-Meier analysis was performed on the risk scores of clinical stages I and stages II patients. 
E. Based on the IMvigor210 dataset, Kaplan-Meier analysis was performed on the risk scores of clinical stages III and stages IV patients. F. Kaplan-Meier analysis 
based on GSE78220 dataset. G. Differences in risk scores for different clinical response groups based on the GSE78220 dataset. H. Proportions of high- and low-
risk in different clinical response groups based on the GSE78220 dataset.
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Figure 10. Cell type scoring, interaction, and trajectory analysis in KRAS/TP53 MUT and WT groups. A. The Violin plot shows the prognostic genesets scored for ten 
cell types in the KRAS/TP53 MUT group and WT group based on different algorithms. B. The Bubble chart shows the scoring cluster markers of ten types of cells by 
different algorithms. C. The Violin plot shows the scoring of ten cell types on the prognostic geneset between the KRAS/TP53 MUT group and the WT group (*P < 
0.05, **P < 0.001, ***P < 0.0001 and ****P < 0.00001). D and E. The number of interactions between cells and the proportion of interactions. F. The heatmap 
shows the signal flow pattern of mutual recognition cells between cells in the KRAS/TP53 MUT group. G and H. Trajectories showing pseudo-time-dependent cellular 
states of epithelial cells in the IKRAS/TP53 MUT group. I. The heatmap shows the expression of seven prognostic genes over pseudo-time.
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was higher than that in the WT group. Since 
lung adenocarcinoma originates from the bron-
chial mucosal epithelium, we further explored 
based on epithelial cells. Dividing epithelial 
cells into HighRisk and LowRisk based on the 
median score, we identified communication dif-
ferences between the two subtypes (Figure 
10D, 10E). We observed that LowRisk epitheli-
al cells exhibited stronger outward interaction 
ability on complement signaling pathways than 
HighRisk epithelial cells (Figure 10F). Epithelial 
cells underwent multiple subtypes before and 
after the node (Figure 10G, 10H). Furthermore, 
as the trajectory progressed, ERO1B, FAM83A, 
and CPS1 were gradually up-regulated with the 
transition, while MELTF and PLEK2 were gradu-
ally down-regulated with the transition (Figure 
10I).

In vitro experimental verification

The elevated expression of MELTF and PLEK2 
genes in epithelial cells during early pseudo-
time prompted us to further investigate MELTF 
and PLEK2 in lung cancer cells. Initially, we uti-
lized siRNA to interfere with MELTF and PLEK2 
in A549 and H1299 cells. Western blot analysis 
revealed that both siMELTF and siPLEK2 dimin-
ished the protein levels of MELTF and PLEK2  
in A549 and H1299 cells (Figure 11A). Through 
the CCK8 assay, we also discovered that inter-
ference with MELTF and PLEK2 expression 
resulted in a decline in the proliferation rate  
of A549 and H1299 cells (Figure 11B). Sub- 
sequently, we employed the wound-healing 
assay to evaluate the invasive capability of the 
tumor cells. Our findings demonstrated that 
disrupting MELTF and PLEK2 expression sig- 
nificantly curtailed the invasive ability of A549 
and H1299 cells (Figure 11C, 11D), indicating 
their pivotal role in the invasiveness of lung 
cancer cells. Furthermore, we conducted tran-
swell assay to observe the cell migration capa-
bility during wound closure. Results indicated 
that interfering with MELTF and PLEK2 expres-
sion markedly impaired the migratory capacity 
of A549 and H1299 cells (Figure 11E, 11F), 
reinforcing their potential value as biomarkers 
or therapeutic targets for LUAD patients. These 
findings provided critical insights for further 
research into the functions of MELTF and PLE- 
K2, as well as their potential roles in the treat-
ment of patients with lung adenocarcinoma.

Discussion

Tumor heterogeneity is a pivotal factor influenc-
ing tumor development and clinical treatment 
strategies. Specifically, the impact of genetic 
heterogeneity on tumors has consistently been 
a focal point of research. Penetrating tumor 
heterogeneity is a formidable task. In recent 
years, scRNA-seq has emerged as a novel aid 
in studying tumor heterogeneity. With the 
advent of continuously innovative algorithms, 
further mining of scRNA-seq data facilitates our 
in-depth analysis of intercellular differences.

In this study, we systematically compared the 
disparities in LUAD between the KRAS/TP53 
MUT group and the WT group. We discovered 
that, compared to the WT group, the proportion 
of B cells in the KRAS/TP53 MUT group signifi-
cantly increased. B cells are the primary effec-
tor cells of the humoral immune response. 
Although T cells have become the principal  
target cells in current clinical treatments with 
the clinical application of immune checkpoint 
inhibitors, some patients remain unresponsive 
to these treatments. Thus, exploring B cells in 
the TME can assist in developing new cancer 
treatment strategies. We found that certain B 
cell subtypes constituted a higher proportion  
in the KRAS/TP53 MUT group and observed 
that such B cells possess a robust ability to 
interact. This implied that such B cell heteroge-
neity revealed by intercellular communication 
analysis may result from different KRAS/TP53 
mutation status. We then utilized hdWGCNA 
and univariate Cox regression to identify 66 
candidate genes. LUAD patients were subse-
quently divided into two clusters through con-
sensus cluster analysis. We identified signifi-
cant differences in survival rates between the 
two clusters, as well as substantial disparities 
in the degree of immune infiltration between 
clusters. Previous studies reported that LUAD 
patients with flamed tumor microenvironment 
composed of plasmacytoid dendritic cells or 
myeloid-derived suppressor cells (MDSCs) ren-
dered prognostically poor [17, 18]. Besides, 
inflammatory signals (IFN-γ, for instance) se- 
creted as cytokines furtehr flamed the tumor 
microenvironment by redirecting the cellular 
cascades of immune cells, whereby downregu-
lating programmed death ligand-1 (PD-L1) ex- 
pression in cancer and host cells and enhanc-
ing tumor immune escape [19-21]. Additionally, 
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through TIDE scoring, the T cell dysfunction  
and exclusion scores of cluster 1 were both  
significantly higher than those of cluster 2. 
Accordingly, observations from our study sug-
gested that LUAD patients in cluster 1 harbored 
activated immune mincroenvironment, more 
abundant infiltration levels of plasmacytoid 
dendritic cells and MDSCs, higher scoring of 
IFN-γ, T cell dysfunction and exclusion. All these 
cellular and molecular characteristics evi-
denced the unfavourable clinical outcomes and 
enhanced tumor immune escape of cluster 1. 
Therefore, we discerned that the potential for 
patients in cluster 2 to benefit from immuno-
therapy is substantial, while patients in cluster 
1 may better gain survival improvement via 
anti-MDSCs therapies, such as P53 vaccine 
and all-trans retinoic acid (ATRA) [22], bevaci-
zumab and tyrosine kinase inhibitor (TKI) tar-
geting epidermal growth factor receptor (EGFR) 
[23], resveratrol [24], and curcumin [25], etc.

Subsequently, we conducted univariate Cox 
regression and LASSO regression based on the 
DEGs obtained from inter-cluster difference 
analysis to construct a novel predictive risk 
model, comprising seven prognostic genes: 
MELTF, PLEK2, CPS1, FAM83A, DKK1, ERO1B, 
and CORO1A. The predictive risk model exhib-
ited robust performance across both internal 
and external validation sets. Furthermore, sig-
nificant differences in risk scores were ob- 
served among different genders, TN stages, 
and clinical stage features. Univariate and mul-
tivariate Cox regression analyses demonstrat-
ed that the risk score can independently serve 
as a prognostic factor. To enhance the predic-
tive capability of the risk model, we integrated 
the risk score with each clinical feature to con-
struct a prognostic nomogram for predicting 
overall survival in LUAD patients. Additionally, 
we utilized an external validation set to verify 
that the predictive risk model can effectively 
predict patients’ responses to tumor treatment, 
especially for patients with early-stage tumors.

In the seven prognostic genes of the prognostic 
risk model. There are few MELTF-related stud-

ies on LUAD, but studies on MELTF Antisense 
RNA 1 (MFI2-AS1) have shown that MELTF-AS1 
is associated with shortened survival time [26, 
27]. MELTF-AS1 is significantly up-regulated in 
non-small cell lung cancer (NSCLC), and inter-
fering with MELTF-AS1 expression can inhibit 
the proliferation, metastasis, and invasion 
capabilities of tumor cells [28, 29]. PLEK2 has 
the ability to arrange muscular protein distribu-
tion in the cell, which can induce cell diffusion 
[30]. In addition, PLEK2 is also involved in many 
important processes in tumor development, 
including tumors, drug resistance, and immune 
evasion [31-34]. Research on PLEK2 in lung 
cancer has already been carried out. Wu et al. 
found that PLEK2 can promote epithelial-mes-
enchymal transition (EMT), migration and inva-
sion of NSCLC cells, and destroy the vascular 
endothelial barrier [33]. CPS1, as one of the 
carbamoyl phosphate synthases, plays an 
important role in removing excess ammonia 
from cells [35]. Çeliktas et al. discovered the 
functional relevance of CPS1 in liver kinase B1 
(LKB1)-inactivated LUAD and its association 
with adverse LUAD outcomes [35]. In the same 
year, Kim et al. found that CPS1 has the ability 
to maintain the pyrimidine pool and DNA syn-
thesis in lung cancer cells with KRAS/LKB1 
mutation [36]. Interfering with CPS1 expression 
can reduce the growth of LUAD cells, reduce 
metabolite levels, and produce additive effects 
when combined with other chemotherapy drugs 
[35]. FAM83A exhibits oncogenic properties in 
a variety of cancers [37]. Specifically, overex-
pression of FAM83A in primary cells induces 
metabolic activation and cell proliferation of 
primary cells and immortalized cells [38]. In 
addition, studies have found that FAM38A  
antisense RNA 1 (FAM83A-AS1) can regulate 
the expression of its homologous FAM38A, 
thereby affecting the phosphorylation of 
ERK2/83 and the HIF-1α/glycolysis axis, thus 
promoting the proliferation and stemness of 
LUAD cells [39, 40]. DKK1 is a classic Wnt/β-
catenin pathway antagonist [41]. DKK1 has 
been used as a serological marker for diagno-
sis and prognostic evaluation and a new target 

Figure 11. Impact of MELTF and PLEK2 knockdown on protein levels, proliferation, invasion, and migration in A549 
and H1299 cells. A. Protein levels of MELTF and PLEK2 in A549 and H1299 cells after siRNA interference respec-
tively. B. Proliferation rate of A549 and H1299 cells post MELTF and PLEK2 interference using the CCK8 assay. C. 
Invasive capability of A549 and H1299 cells after MELTF knockdown via wound-healing assay. D. Invasive capability 
of A549 and H1299 cells after PLEK2 knockdown via wound-healing assay. E. Migration ability of A549 and H1299 
cells post MELTF interference in the transwell assay. F. Statistical analysis of the migration ability of A549 and 
H1299 cells post PLEK2 interference in the transwell assay.



KRAS/TP53 mutation-driven heterogeneity in LUAD

675	 Am J Cancer Res 2024;14(2):655-678

for tumor treatment in several cancers. For 
example, interfering with the expression of 
DKK1 inhibits the growth of hepatocellular  
carcinoma (HCC) cells [42]. Furthermore, the 
interaction between DKK1 and cytoskeleton-
associated protein 4 (CKAP4) present on mac-
rophage membranes can trigger downstream 
PI3K-AKT signaling, leading to the development 
of an immunosuppressive microenvironment 
[43]. In addition to inducing tumor cell prolifera-
tion, growth and immunosuppression. Tumor-
secreted DKK1 promotes tumor cell bone 
metastasis by regulating canonical WNT sig- 
naling in osteoblasts [44]. ERO1B, as an endo-
plasmic reticulum disulfide oxidase, partici-
pates in protein folding in the endoplasmic 
reticulum [45]. ERO1B has been found to have 
potential value in predicting the prognosis of 
various cancers, including lung cancer [46-48]. 
CORO1A has the function of regulating the 
secretion of extracellular vesicles, and also 
regulates the recruitment of protein kinase C-θ 
(PKCθ) and the downstream functions of T cell 
receptors [49, 50]. Previous studies have also 
found that CORO1A is positively correlated  
with the TNM stage of NSCLC, but there is no 
further in-depth description [51]. In this study, 
we observed a significant association between 
this prognostic risk model and pathways asso-
ciated with the immune system. In particular, 
CORO1A is positively correlated with a variety 
of immune cells, including T cells, B cells, and 
NK cells. The specific relevant signaling path-
ways require further in-depth study.

The prognostic genesets in epithelial cells were 
subsequently found to be different between 
the KRAS/TP53 MUT group and the WT group. 
As the origin of lung adenocarcinoma cells, epi-
thelial cells still have many unresolved ques-
tions regarding their evolution into lung adeno-
carcinoma cells. Through pseudotime analysis, 
we found that MELTF and PLEK2 genes in epi-
thelial cells are highly expressed in the early 
pseudo time. As pseudo time progressed, the 
expression levels of these two genes will gradu-
ally decrease. Current studies on MELTF-AS1 
and PLEK2 related to tumor have shown that 
MELTF and PLEK2 are related to tumor inva-
sion and cell proliferation. Therefore, we con-
ducted in vitro experiments to verify the func-
tions of these two genes. Finally, we found that 
interfering with the expression of MELTF and 
PLEK2 can affect the invasion and proliferation 
capabilities of A549 and H1299 cells. These 
findings also support the potential of MELTF 

and PLEK2 as biomarkers and therapeutic tar-
gets for LUAD patients.

Conclusions

This study underscores the pivotal role of 
KRAS/TP53 co-mutations in influencing the 
heterogeneity of LUAD. These co-mutations 
may impact the prognosis of LUAD patients by 
modulating immune-related pathways, particu-
larly those involving B cells. The innovative pre-
dictive risk model developed herein offers a 
valuable tool for formulating clinical treatment 
strategies and predicting efficacy for LUAD 
patients. Notably, the prognostic genes identi-
fied in this study, especially MELTF and PLEK2, 
hold promise as potential biomarkers or thera-
peutic targets for LUAD patients.
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The siRNA1 sequence of MELTF is as follows: CAGUGAGCGAGUUCUUCAAUG (SS Sequence); UUGA- 
AGAACUCGCUCACUGUG (AS Sequence). The siRNA2 sequence of MELTF is as follows: AGAAG- 
GAUCUACUCUUCAAAG (SS Sequence); UUGAAGAGUAGAUCCUUCUGG (AS Sequence).

The siRNA1 sequence of PLEK2 against is as follows: GGUGCGUCGCUUUGUUCUAAG (SS Sequence); 
UAGAACAAAGCGACGCACCUU (AS Sequence). The siRNA2 sequence of PLEK2 against is as follows: 
GGUGCGUCGCUUUGUUCUAAG (SS Sequence); UAGAACAAAGCGACGCACCUU (AS Sequence).

The sequence of si-NC is as follows: UUCUCCGAACG UGUCACGUTT.

Supplementary Figure 1. Pseudo-time analysis of gene evolution in IS MUT cells within the KRAS/TP53 MUT group. 
A. Trajectories showing pseudo-time-dependent cellular states of IS MUT in the IKRAS/TP53 MUT group. B. The Heat 
map shows the evolution of 50 genes over pseudo-time.
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Supplementary Figure 2. Differential gene expression and functional enrichment analysis. A. The Volcano plot shows the results of the difference analysis. Blue 
represents down-regulated DEGs, red represents up-regulated DEGs, and gray represents genes with no significant difference. B. KEGG enrichment analysis results. 
C. GO enrichment analysis results.

Supplementary Figure 3. Validation of prognostic analysis across 
multiple external datasets. A-E. The Kaplan-Meier analysis and cor-
responding ROC analysis results based on GSE68465, GSE3141, 
GSE31210, GSE37745 and GSE50081 data sets.
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Supplementary Figure 4. Risk score distribution across various clinical subgroups. A-F. Box plots display the risk 
scores for various age groups, TNM stages, tumor stages and genders.
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Supplementary Figure 5. Correlation of prognostic genes with pathways and functional enrichment in LUAD. A. The heatmap shows correlations between prognostic 
genes and signature pathways based on the TCGA-LUAD dataset (*P < 0.05, **P < 0.01, ***P < 0.001). B. The heatmap shows the prognostic gene expression 
and functional enrichment of each tumor sample based on the TCGA-LUAD dataset.
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Supplementary Figure 6. Comparative drug sensitivity analysis between risk groups. A. The histogram shows ratio 
of median estimated IC50 for high and low risk groups for each compound. B-G. The IC50 curves shows differences 
between high- and low-risk groups for six compounds.


