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Abstract: Hepatocellular carcinoma (HCC) is a prevalent and deadly form of cancer globally with typically unfavor-
able outcomes. Increasing research suggests that lactate serves as an important carbon contributor to cellular 
metabolism and holds a crucial part in the progression, sustenance, and treatment response of tumors. However, 
the contribution of lactate-related genes (LRGs) in HCC is still unclear. In this study, we analyzed TCGA datasets 
and screened 21 differentially expressed LRGs related to long-term survivals in HCC patients. Pan-cancer assays 
revealed that 21 LRGs expression exhibited a dysregulated level in man types of tumors and associated with clinical 
prognosis of tumor patients. The analysis of 21 LRGs successfully classified HCC samples into two molecular sub-
types, and these two subtypes showed significant differences in clinical information, gene expression, and immune 
characteristics. Subsequently, based on the aforementioned 21 LRGs, a novel prognostic signature (DTYMK, IRAK1, 
POLRMT, MPV17, UQCRH, PDSS1, SLC16A3, SPP1 and LDHD) was generated by LASSO-Cox regression analysis. 
Survival assays demonstrated that the signature performed well in predicting the overall survival of patients with 
HCC. The results of Gene Set Variation Analysis indicated that the high GSVA scores were associated with poor prog-
nosis. Moreover, we also investigated the correlation between GSVA scores and various signaling pathways in HCC. 
Among the nine prognostic genes, our attention focused on POLRMT which was highly expressed in HCC specimens 
based on TCGA datasets and several HCC cell lines. In addition, functional assays indicated that POLRMT distinctly 
promoted the proliferation, migration and energy metabolism of HCC cells via regulating Wnt/β-Catenin signaling. 
Overall, through the establishment of a novel prognostic signature, we have provided potential clinical value for as-
sessing the prognosis of HCC patients. Furthermore, our study has identified the high expression of POLRMT in HCC 
and demonstrated its crucial role in HCC cell proliferation. These findings hold great importance in advancing our 
understanding of the pathophysiology of HCC, identifying new therapeutic targets, and improving patient survival 
rates.
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Introduction

Hepatocellular carcinoma (HCC) represents a 
type of malignant tumor that ranks sixth in 
global cancer diagnoses and is the fourth pri-
mary reason for cancer-associated fatalities 
worldwide [1]. HCC has a significantly varying 
incidence rate across different regions glo- 
bally. Asian countries, particularly East Asia 
and Southeast Asia, are high-incidence areas 
for HCC. China, Japan, South Korea, Vietnam, 
and Taiwan are some of the regions where the 

reported liver cancer rates are higher [2]. 
Additionally, sub-Saharan Africa is also consid-
ered a high-risk region for liver cancer. Chronic 
hepatitis B virus and hepatitis C virus infec-
tions, alcoholism, diabetes, and the metabolic 
syndrome are all known to increase the likeli-
hood of developing HCC [3]. Despite numerous 
improvements in HCC detection because of 
advances in treatment, pateints with HCC still 
have a dismal chance of survival due to the dis-
ease’s high metastatic rate [4, 5]. In addition, 
the prognosis of HCC patients is significantly 
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impacted by the fact that over 70% of patients 
who have surgical resection or ablation experi-
ence tumor recurrence within 5 years [6, 7]. 
Given the significant burden of HCC on a global 
scale, there is an urgent need to explore novel 
prognostic markers that can aid in early detec-
tion, accurate prognosis, and personalized 
treatment strategies. Identifying reliable prog-
nostic markers for HCC could revolutionize clini-
cal practice, allowing healthcare professionals 
to offer timely and targeted interventions, 
thereby improving patient outcomes and sur-
vival rates.

High-throughput sequencing, also known as 
second-generation or deep sequencing, is a 
rapid and efficient DNA or RNA sequencing 
technology [8]. It is a method used for large-
scale, high-throughput determination of se- 
quences in genomes, transcriptomes, or other 
biological molecules. The development of high-
throughput sequencing technology allows 
researchers to obtain a vast amount of DNA or 
RNA sequence information in a relatively short 
time and at lower costs [9, 10]. High-throughput 
sequencing technology can help scientists gain 
a deep understanding of genetic variations and 
mutations in tumor cells, including single nucle-
otide variants (SNVs), insertions and deletions 
(InDels), chromosomal structural variations, 
and more. This information is crucial for under-
standing the mechanisms underlying tumor 
development, identifying key genes driving  
cancer progression, and identifying potential 
therapeutic targets [11]. By performing RNA 
sequencing on tumor samples, researchers 
can reveal which genes in tumor cells are 
actively expressed, which genes’ expression is 
regulated, and the functional state of the cells. 
This is highly beneficial for discovering novel 
gene expression patterns related to cancer, 
understanding the heterogeneity of tumor cells, 
and predicting patient prognosis. Epigenetics 
refers to the regulation of gene expression 
through non-sequence changes, such as DNA 
methylation and histone modifications [12, 13]. 
High-throughput sequencing technology can 
assist researchers in understanding these epi-
genetic alterations in tumor cells, thereby gain-
ing insight into the regulatory mechanisms and 
identifying epigenetic markers associated with 
cancer. Overall, high-throughput sequencing 
technology provides comprehensive and effi-
cient information in cancer research, including 

genomics, transcriptomics, epigenetics, and 
more. It offers robust support for unraveling the 
mechanisms of tumorigenesis, cancer classifi-
cation, the development of treatment strate-
gies, and personalized medicine.

Lactate was long regarded as an end product of 
cellular glycolysis. In living organisms, lactic 
acid is an essential metabolite. It can be pro-
duced and metabolized through two pathways: 
lactic acid fermentation (lactic acid production) 
or lactic dehydrogenase (LDH)-mediated lactic 
acid dehydrogenation (lactic acid consumption) 
[14]. Lactic acid metabolism refers to the pro-
duction and consumption of lactic acid in the 
body. In lactic acid fermentation, when there is 
a lack of oxygen or inadequate oxygen supply, 
cells cannot produce enough energy through 
normal oxidative phosphorylation (aerobic 
metabolism) [15]. As a result, they switch to 
producing lactate as a metabolic byproduct. 
Lactic dehydrogenase is an enzyme that, under 
sufficient oxygen conditions, converts lactic 
acid back into pyruvic acid to continue aerobic 
metabolism [16, 17]. Lactic acid metabolism is 
closely related to the occurrence and develop-
ment of tumors. In tumor tissues, rapidly prolif-
erating cancer cells require a large amount of 
energy and nutrients to support their growth 
and division. Often, the oxygen supply in tu- 
mors is insufficient, leading to local hypoxia. 
This prompts tumor cells to produce lactic acid 
through lactic acid fermentation to sustain their 
survival and proliferation [18, 19]. This phe-
nomenon is known as “acidosis”, wherein lactic 
acid accumulation in tumor tissues lowers the 
pH value. Lactate also plays other significant 
roles in tumor development. It can function as a 
signaling molecule, regulating the migration 
and invasion capabilities of tumor cells and pro-
moting tumor metastasis and spread. Addi- 
tionally, lactic acid can influence the tumor 
microenvironment, suppressing the function of 
immune cells, thereby aiding tumors in evading 
immune attacks and creating immune escape. 
The important roles of lactate metabolism high-
lighted the potential of lactate-related genes 
used as novel prognostic biomarkers and ther-
apeutic targets for HCC patients.

In this study, we systematically analyzed the 
identified LRGs in HCC patients using TCGA and 
ICGC datasets. Then, the prognosis of HCC 
patients was evaluated using a lactate-related 
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prognostic signature (LRPS) comprised of nine 
genes. We also investigated how the LRPS 
relates to other aspects of the immunological 
microenvironment. Finally, our attention fo- 
cused on POLRMT and performed a series of 
experiments to further explore the function of 
POLRMT in HCC. Our study has provided a com-
prehensive understanding of the relationship 
between lactic acid metabolism and HCC,  
offering valuable insights for patient prognosis 
assessment and guidance in immunotherapy. 
Additionally, we have revealed the potential 
functions and mechanisms of POLRMT in HCC, 
which is of significant importance for a deeper 
comprehension of HCC pathogenesis and the 
exploration of novel therapeutic approaches. 
Our research findings open up new avenues 
and possibilities for future clinical treatments 
and personalized medicine in HCC.

Materials and methods

Cell lines and cell transfection

Human liver cancer cell lines HepG2, Hep3B, 
SNU-423, SNU-387 cells, were obtained from 
the China Center for Type Culture Collection 
(Wuhan, Hubei, China), and other liver cancer 
cell lines including JHH-2, Huh-7, SMMC-7721, 
SNU-449 cells, and normal liver cell line LO2, 
were purchased from Wuhan Procell company 
(Wuhan, Hubei, China). JHH-2 and SNU-449 
cells were purchased from Cobioer company 
(Nanjing, Jingsu, China). The cells were cultured 
in RPMI-1640 media supplemented with 10% 
heat-inactivated FBS (Excell, Taicang, Jiangsu, 
China), and grown in the presence of penicil- 
lin/streptomycin (Qianye Biotechnology, Chang- 
sha, Hunan, China) in a 37°C incubator with a 
humidified, 5% CO2 atmosphere.

Cell transfection

The POLRMT siRNA sequence (siRNA-POLR-
MT-1: GGAGCUGGUAUAUGUGUUA, siRNA-POL-
RMT-2: GAGAUGCUGGUGCAGGCUA), and nega-
tive control siRNA sequence (CGUACGCGGAA- 
UACUUCGAUU) obtained from GenePharma 
(Pudong, Shanghai, China). The POLRMT over-
expressing plasmids were constructed by Ge- 
neray Technologies (Pudong, Shanghai, China). 
The transfection of POLRMT siRNAs or overex-
pressing plasmids were performed using Li- 
pofectamine 3000 reagent kits (ThermoFisher, 
Pudong, Shanghai, China). According to the 

manufacturer’s instructions, siRNAs being 
diluted in the 100 μl Opti-MEM (Invitrogen, 
Carlsbad, CA, United States) at 5 nmol/L or 5 
μg plasmids were mixed with 5 μL Lipofecta- 
mine 3000 reagents. After incubation at room 
temperature for 20 min, the mixtures were 
added to the cell culture media, and the cells 
were collected or used for experiments after 
48-72 h.

CCK-8 assays

CCK-8 assays were utilized for the determina-
tion of HCC cells growth abilities, and per-
formed by using CCK-8 kits from Beyotime 
company (Nantong, Jiangsu, China). Briefly, 
HCC cells including Huh7 and Hep3B in log 
phase growth were trypsinized with a 0.05% 
trypsin solution, washed, and planted in 96- 
well plates at a concentration of 2.5 × 103 
cells/well. After the HCC cells attachment, 10 
µL of the CCK-8 solution was added into each 
well and continue to culture for another 3 hours 
at 37°C. Thereafter, the optical density value at 
450 nm was recorded at the indicated time 
point (24, 48 and 72 h).

The 5-ethynyl-2’-deoxyuridine (EDU) incorpora-
tion assays

For the EDU incorporation assays, HCC cells 
transfected with siRNA-POLRMT-1, siRNA-POL-
RMT-2 or pcDNA3.1-POLRMT, were cultured in 
24-well plates, and then the Click-iT EDU Alexa 
Fluor 488 Imaging Kits (ThermoFisher, Pudong, 
Shanghai, China) were used to carry out the 
experiments. Briefly, the HCC cells were incu-
bated with EdU (10 μM) and fixed with 4% para-
formaldehyde (PFA; Sigma, Pudong, Shanghai, 
China), followed by treatment with Triton X-100 
solution. Thereafter, the cells were stained with 
the 1 × Apollo reaction cocktail and the nuclei 
were stained by DAPI reagents. After washing 
with PBS for three times, the fluorescence of 
the cells was visualized by using an Olympus 
fluorescence microscope (Tokyo, Japan).

Transwell migration detection

The migration capabilities of Huh7 and Hep3B 
cells after being transfected with siRNA-POLR-
MT-1, siRNA-POLRMT-2 or pcDNA3.1-POLRMT, 
were evaluated by using transwell chambers 
(Corning, NY, USA). In brief, a total of 2 × 103 
cells with treatment in 200 μl serum-free media 
were placed in the upper chamber of 24-well 
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plates with 8.0 μm pore size chamber inserts. 
Afterwards, 700 μl RPMI-1640 media con-
tained 10% FBS were added to the lower cham-
bers. Cells were fixed with 4% paraformalde-
hyde and stained with 0.1% crystal violet solu-
tion after being incubated at 37°C for 24 hours. 
The red-stained cells were seen under an 
inverted microscope after being washed twice 
with PBS.

Real-time PCR detection

The mRNA levels of POLRMT in HCC cell lines, 
and Huh7 and Hep3B cells after being trans-
fected with siRNA-POLRMT-1, siRNA-POLRMT-2 
or pcDNA3.1-POLRMT, were determined by 
qRT-PCR assays using the PerfectStart Green 
qRT-PCR SuperMix Kits (TransGen Biotech, 
Beijing, China). The total RNAs were extracted 
by Trizol reagents (ThermoFisher, Pudong, 
Shanghai, China) and the cDNAs were synthe-
sized using the PrimeScript® RT Reagent Kit 
(Takara, Dalian, Liaoning, China). Thereafter, 
the real-time PCR were then carried out using 
the above mentioned supermix kits, and the 
reaction conditions were as following: 95°C for 
10 s and 60°C for 60 s, repeating for 40 cycl- 
es. The relative expression of POLRMT was cal-
culated by 2-∆∆Ct methods. GAPDH was mea-
sured as an internal control. The primers were 
obtained from Generay Technologies (Pudong, 
Shanghai, China), and the primer sequences 
were as following: 5’-CCACATCGCTCAGACACC- 
AT-3’ (sense) and 5’-ACCAGGCGCCCAATACG-3’ 
(antisense) for GAPDH, and 5’-GGACTCCCCG- 
GCAAAGAAG-3’ (sense) and 5’-CGCCACATCC- 
ACCCTGTTC-3’ (antisense) for POLRMT.

Western blot determination

Briefly, Huh7 and Hep3B cells after being trans-
fected with siRNA-POLRMT-1, siRNA-POLRMT-2 
or pcDNA3.1-POLRMT, were collected and they 
were lysed using RIPA buffer reagent kits 
(ThermoFisher, Pudong, Shanghai, China) at 
4°C for 15-20 min, followed by centrifugation  
at 10000 rpm for 10 min at 4°C. The superna-
tants were collected and mixed with 4 × sam- 
ple loading buffer (Life Technologies, Pudong, 
Shanghai, China). Then, the lysates were sub-
jected to 8-12% SDS-PAGE gels. After the pro-
teins were transfered onto the PVDF mem-
branes (Millipore, Darmstadt, Germany), the 
blots were blocked in TBST and 5% BSA for 1 h 
at room temperature. Afterwards, the blots 

were separately incubated with primary anti-
bodies against β-Catenin (1:1000; Abcam, 
Pudong, Shanghai, China), cyclin D1 (1:1500; 
Abcam, Pudong, Shanghai, China), c-Myc 
(1:1200; ProteinTech, Wuhan, Hubei, China), 
and β-actin (1:12000; ProteinTech, Wuhan, 
Hubei, China), for 12 h at 4°C. Blots were then 
washed thrice with TBST and incubated with 
corresponding secondary antibodies for 1 h. 
Then, the blots were incubated with ECL kits 
(Madison, WI, USA) and exposed in ChemiDox 
XRS (Bio-Rad, Hercules, CA, USA).

ATP contents detection

The ATP contents was measured using Beyo- 
time Biotechnology’s ATP content detection kits 
(Nantong, Jiangsu, China). Briefly, the Huh7 and 
Hep3B cells after being transfected with siRNA-
POLRMT-1, siRNA-POLRMT-2, were respectively 
placed in six-well plates, followed by being  
lysed with lysate buffer solution (Beyotime 
Biotechnology, Nantong, Jiangsu, China). The 
lysates were collected and centrifuged at 
12,000 g for 5 min at 4°C. Then, the total pro-
tein concentration of each sample was quanti-
fied using BCA assay kits (Beyotime Biote- 
chnology, Nantong, Jiangsu, China). After that, 
the samples of each groups were added into 
ATP measurement solution, and the ATP con-
tents were determined by using a fluorescence 
microplate reader. The relative ATP contents 
were standardized by the total protein 
contents.

Data collection and the screening of differen-
tially expressed genes (DEGs)

The gene expression data and clinical informa-
tion from tumor and normal tissues of liver 
hepatocellular carcinoma (LIHC) were down-
loaded from TCGA datasets. The 335 lactate 
related genes (LRG) were selected from  
MSigDB database (https://www.gsea-msigdb.
org/gsea/index.jsp). The genes which were sig-
nificantly correlated with overall survivals in 
HCC based on TCGA data (UALCAN-OS) were 
collected from UALCAN database (https://ual-
can.path.uab.edu/index.html). The deferential-
ly expressed genes (DEGs) in HCC based on 
TCGA data were analyzed by using R software 
“limma” package, and P-value < 0.05 and 
|log2(FC)| > 1 were defined as the threshold of 
DEGs. The overlap DEGs among TCGA-DEGs, 
LRG and UALCAN-OS were obtained by using 
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Venny2.1 (https://bioinfogp.cnb.csic.es/tools/
venny/). The heatmap and volcano map in the 
presented study were generated by using R 
package “ggplot”.

Gene functional enrichment and gene correla-
tion analysis

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis were car-
ried out using R software package “clusterPro-
filer”. For multi-gene correlation analysis, the 
gene expression data in HCC were downloaded 
from TCGA database (different HCC grades, 
TCGA-LIHC) and International Cancer Genome 
Consortium (ICGC) database (https://icgc.
org/). The multi-gene correlation heatmap  
was displayed by the R software package 
“ggstatsplot”.

The immune infiltration analysis

Two algorithms, including CIBERSORT and 
XCELL, were applied for the analysis of immune 
infiltration in HCC through R software based  
on TCGA data. To assess the immune score, we 
used R software package “immuneeconv”, and 
the immune checkpoint genes expression in 
different groups were visualized by R software 
package “ggplot2”. The immune networks of 
common DEGs or POLRMT with kinds of 
immune cells were analyzed by R software 
package “immuneeconv” and constructed by 
using R software package “ggClusterNet”. The 
tumor mutation burden (TMB) and microsatel-
lite instability (MSI) analysis of POLRMT in pan-
cancers were also carried out by using R 
software.

Online websites for bioinformatics analyses

The DEGs or POLRMT expression, various sur-
vivals, genetic changes (SNV and CNV) across 
pan-cancers or in HCC, were analyzed by using 
the Gene Set Cancer Analysis (GSCA) database 
(http://bioinfo.life.hust.edu.cn/GSCA/#/) or TI- 
MER 2.0 database (http://timer.cistrome.org/). 
The Human protein atlas (HPA, https://www.
proteinatlas.org/) was utilized for analyzing the 
POLRMT protein expression in pan-cancers 
and its immunohistochemistry in HCC tumor 
tissues. GeneMania (https://GeneMANIA) data-
base to analyze genes or proteins which were 
able to interact or co-express with POLRMT. 
The CCLE database (https://portals.broadinsti-

tute.org/ccle) was queried for transcriptome 
information from HCC cell lines. GEPIA data-
base (http://gepia.cancer-pku.cn/) was utilized 
for analyzing gene expression and survivals.

Statistical analysis

Statistical analysis was performed using 
SPSS16.0 statistical software (SPSS, Chicago) 
and R version 3.5.2. Values were expressed as 
mean ± SEM. Multiple group comparisons were 
made using one-way analysis of variance. To 
determine statistical significance, we applied a 
cutoff of P < 0.05.

Results

Verifying overlap DEGs in HCC and functional 
enrichment analysis

To discover the potential therapeutic target of 
HCC based on 335 lactate-related genes 
(LRGs), we first employed R software to obtain 
the aberrantly differentially expressed genes 
(DEGs) in HCC tumor tissues compared with 
HCC adjacent normal tissue samples. The 
DEGs were consisted with 2451 up-regulated 
genes and 446 down-regulated genes. Then, 
the genes with significant overall survival (OS) 
in TCGA-LIHC were obtained by using UALCAN 
database (https://ualcan.path.uab.edu/index.
html), and there were 5759 genes. Conse- 
quently, we certified 20 overlap genes of TCGA-
up-DEGs, LRGs and UALCAN-OS, and only 2 
overlap genes of TCGA-down-DEGs, LRGs and 
UALCAN-OS (Figure 1A). Afterwards, we per-
formed a univariate Cox regression (uniCox) 
analysis of these 22 DEGs, and the 21 survival-
related DEGs (except AARS2) were retained for 
further analysis (Figure 1B). The 21 DEGs were 
then subjected to gene functional enrichment 
analyses including GO analysis and KEGG anal-
ysis. The results from GO analyses demonstrat-
ed that the 21 DEGs were related with tRNA 
modification, mitochondrial RNA metabolic pro-
cess, tRNA metabolic process, D-lactate dehy-
drogenase (cytochrome) activity, catalytic activ-
ity, acting on a tRNA, tRNA binding catalytic 
activity, acting on RNA, mitochondrial respira-
tory chain complex III, mitochondrial protein-
containing complex, mitochondrial matrix 
(Figure 1C-E). The KEGG analysis revealed that 
the 21 DEGs were correlated with Terpenoid 
backbone biosynthesis (Figure 1F).
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The DEGs’ expression, genetic variants, and 
methylation analyses in pan-cancer

Next, we sought to explore the mRNA ex- 
pression, genetic changes, and methylation  
status of the above-selected 21 DEGs across 
TCGA cancers. By employing GSCA database  
(http://bioinfo.life.hust.edu.cn/GSCA/#/), the 

21 DEGs’ mRNA expression was investigated 
and the bubble plots presented that the most 
of the 21 DEGs were significant up-regulated in 
many cancer types including LUSC, LIHC, LUAD, 
STAD, BRCA, BLCA and COAD (Supplementary 
Figure 1A). The DEGs’ expression in various 
cancers’ stages including clinical stages and 
pathological stages was also evaluated, and 

Figure 1. Screening overlap DEGs and functional enrichment analysis. A. Venn diagram of the DEGs, prognostic 
genes and LRGs. B. Univariate Cox regression (uniCox) analysis. C-E. GO analysis. F. KEGG analysis.
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the data suggested that there were expression 
differences of these DEGs in clinical stages  
and pathological stages of many TCGA cancers 
such as UVM, UCS, UCEC, OV, LIHC, COAD 
(Supplementary Figure 1B). Subsequently, the 
single nucleotide variant (SNV) mutation fre-
quency of DEGs was analyzed, and the data 
revealed that the variant classification of these 
DEGs was mainly missense mutation, and the 
top 10 mutated genes were POLRMT, CDAN1, 
CHEK2, KIF23, HMGCS2, DNM1L, DARS2, 
IRAK1, GTPBP3, and POLG2 (Supplementary 
Figure 1C). Moreover, the copy number varia-
tion (CNV) mutation frequencies of these DEGs 
were also explored, and the data from the pie 
plots displayed that the 21 DEGs had CNV 
especially heterozygous amplification in most 
cancers (Supplementary Figure 1D). Besides, 
the methylation of these DEGs were studied, 
and we found that most of the DEGs were low 
methylation in kinds of cancers particularly in 
KIRC, LUSC, KIRP, BLCA, HNSC and BRCA 
(Supplementary Figure 1E).

The correlation analyses of DEGs based on 
TCGA and ICGC databases

The DEGs might exist correlations between 
each other in HCC tumor tissues. We thereby 
next attempted to discover the correlation dif-
ference of the DEGs in different grades of HCC 
based on TCGA and ICGC databases. The four 
grades (grade 1, grade 2, grade 3 and grade 4) 
of HCC samples from TCGA database respec-
tively had 55, 177, 122 and 12 samples. We 
then analyzed the correlations of the 21 DEGs 
in these four grades of HCC, and we found that 
the down-DEGs (HMGCS2 and LDHD) were neg-
ative correlation with other DEGs in all these 
four HCC grades’ samples, while other up-DEGs 
were all positive correlation with each other 
(Figure 2A-D). Similar results were observed  
in ICGC-liver cancer-RIKEN sub-database (161 
HCC samples) that the up-DEGs were positive 
related with each other, and the two down-
DEGs (HMGCS2 and LDHD) were negative relat-
ed with other DEGs (Figure 2E). However, the 
results from ICGC-liver cancer-France sub- 
database (240 HCC samples) were some differ-
ent. The data displayed that HMGCS2 and 
LDHD were positively correlated with most up-
DEGs, which might imply that the HCC tumor 
samples had very complex heterogeneity 
(Figure 2F).

Identification of the molecular subtypes of 
HCC using DEGs

We next wonder whether the 21 DEGs were 
capable to distinguish the TCGA-LIHC smaples 
into different molecular subtypes. To achieve 
that, the R software “ConsensusClusterPlus” 
package was applied to identify molecular sub-
types of 371 HCC samples. After analysis, the 
consensus cumulative distribution function 
(CDF) plot, the delta area, the consensus mat- 
rix were obtained, and the data suggested that 
the 371 HCC samples was able to be divided 
into two molecular subtypes including C1 group 
(103 HCC samples) and C2 group (268 HCC 
samples) using the 21 DEGs (Figure 3A-C). The 
heatmap of these two molecular subtypes was 
presented in Figure 3D. In addition, the overall 
survival difference of these two molecular sub-
types was also investigated, and the results 
proved that C1 group had poor survivals than 
that of C2 group (Figure 3E).

Clarification of the deferentially expressed 
genes in the two HCC molecular subtypes

Since our above data had revealed that the 21 
DEGs could divided 371 TCGA-LIHC samples 
into two subgroups (C1 group included 103 
HCC samples and C2 included 268 HCC sam-
ples), we next sought to verify the DEGs of 
these two molecular subtypes which might be 
able to help finding potential therapeutic target 
genes in HCC. Using R software, we obtained 
1156 up-DEGs and 322 down-DEGs (group 1 
vs. group 2), and the heatmap and volcano map 
of these DEGs were presented in Figure 4A, 
4B, respectively. The gene ontology (GO) analy-
ses including biological processes (BP), molec-
ular functions (MF), and cellular compartments 
(CC) were then carried out, and the results sug-
gested that these DEGs were correlated with 
metabolism, DNA replication activity and chro-
mosome (Figure 4C-E). The KEGG enrichment 
analysis indicated that these DEGs were relat-
ed with DNA replication, ECM-receptor interac-
tion, Cell cycle, Bile secretion, PPAR signaling 
pathway and Steroid hormone biosynthesis 
(Figure 4F).

The analyses of clinical information’ difference 
and DEGs’ expression in the two molecular 
subtypes

In addition, we investigated the available clini-
cal data in search of a connection between this 
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Figure 2. DEGs correlation analysis in HCC. A-D. The heatmaps of DEGs correlation in four grades (grade 1, grade 2, 
grade 3 and grade 4) of HCC samples based on TCGA database. E. The heatmap of DEGs correlation in ICGC-liver 
cancer-RIKEN sub-database. F. The heatmap of DEGs correlation in ICGC-liver cancer-France sub-database.
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data and the genetic subtypes of HCC. 
According to our results, there were significant-
ly different between the two HCC molecular 
subtypes in pT stage, pTNM stage and grade, 
while other clinical characters had no notable 
difference between the two HCC molecular 
subtypes (Supplementary Figure 2A-K). Addi- 
tionally, we also evaluated the expression of 
the above 21 overlap DEGs in the two HCC 
molecular subtypes, trying to examine whether 
the 21 overlap DEGs’ expression was similar in 
the two HCC molecular subtypes when com-
pared with that in TCGA-LIHC samples and cor-
responding adjacent normal tissues. Intere- 
stingly, we found that the expression of the 19 
overlap up-DEGs was higher in group 1 (G1, 
103 HCC samples), while the 2 overlap down-

DEGs’ expression was lower in group 1 when 
compared with that in group 2 (G2, 268 HCC 
samples) (Supplementary Figure 3A). Moreover, 
the genetic alteration of the two HCC molecular 
subtypes were assessed, and the waterfall 
plots suggested that 81.63% samples had 
genetic changes in group 1, and 74.23%  
samples had genetic alterations in group 2 
(Supplementary Figure 3B and 3C).

Immune analysis of the two HCC molecular 
subtypes

Next, we sought to investigate the immune dif-
ferent of the two HCC molecular subtypes. 
Therefore, we first employed CIBERSORT score 
to evaluate the difference of multiple types of 

Figure 3. The molecular subtypes of HCC identification based on DEGs. A. The cumulative distribution function 
(CDF) curves in consensus cluster analysis. B. Area under the cumulative distribution function versus k = 2-6. C. 
The consensus score matrix of all samples when k = 2. D. The heatmap related to the consensus matrix for k = 2. 
E. The overall survival (OS) analysis of the two groups. C1 group: 103 HCC samples; C2 group: 268 HCC samples.
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immune cells between the two HCC molecular 
subtypes samples. According to our data, B cell 
naive, B cell memory, T cell follicular helper, T 
cell regulatory (Tregs), Monocyte and Macro- 
phage M0 were significantly different in the  
two HCC molecular subtypes (Supplementary 
Figure 4A). Subsequently, the expression of the 
immune checkpoints was also assessed, and 
the results showed that the expression of 
CTLA4, HAVCR2, LAG3, PDCD1 and TIGIT was 
obviously higher in group 1 than that in group  
2 (Supplementary Figure 4B). Afterwards, the 
immune networks of the above 21 DEGs were 

also constructed respectively in the two HCC 
molecular subtypes (Supplementary Figure 4C 
and 4D).

Construction of the lactate-related genes prog-
nostic model

Considering the above analysis had suggested 
that the 21 overlap DEGs were closely related 
with HCC survivals, we thereby performed the 
LASSO regression to develop the prognostic 
signature based on the 21 overlap DEGs in 
HCC. The coefficient of 21 overlap DEGs was 

Figure 4. Screening DEGs in the two HCC molecular subtypes and functional enrichment analysis. A. Heatmap of 
the DEGs in the two HCC molecular subtypes. B. Volcano map. C-E. Gene ontology (GO) analysis. F. KEGG analysis.
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presented in Supplementary Figure 5A. The 
model can achieve the best fit when 9 of 21 
DEGs were included (Supplementary Figure 
5B). The formula used for risk score compu- 
tation was as follows: Riskscore = (0.1526)* 
DTYMK + (0.0313)*IRAK1 + (0.1487)*POLRMT 
+ (0.0422)*MPV17 + (0.1525)*UQCRH + 
(0.1712)*PDSS1 + (0.0389)*SLC16A3 + 
(0.0506)*SPP1 + (-0.0163)*LDHD. Based on 
the risk score model’s median threshold, 371 
HCC patients were divided into low- and high-
risk subgroups, and the 9 genes’ heatmap  
in HCC was also generated (Supplementary 
Figure 5C). In addition, patients classified as 
low risk had considerably longer OS than those 
classified as high risk, as shown by Kaplan-
Meier analysis (Supplementary Figure 5D). 
Besides, using a receiver operating character-
istic (ROC) study that took into account the  
passage of time, we determined how well the 
prognostic model performed. The area under 
the ROC curve (AUC) for 1-, 3-, and 5-year OS 
was 0.784, 0.706, and 0.728, respectively 
(Supplementary Figure 5E).

Gene Set Variation Analysis (GSVA) of the 9 
prognostic lactate-related genes

Since the above analyses established 9 genes 
prognostic model in HCC, we next sought to use 
the 9 genes (DTYMK, IRAK1, POLRMT, MPV17, 
UQCRH, PDSS1, SLC16A3, SPP1, LDHD) as a 
gene set to investigate their expression and 
functions in pan-cancers and HCC. The GSVA 
score was calculated through the R software 
package “GSVA” based on GSCA database. The 
GSVA score is positively correlated with the 
expression of the gene set, and we found that 
the 9 gene set had high GSVA score in tumor 
samples than that of the normal tissues across 
pan-cancers (Supplementary Figure 6A). In 
addition, the GSVA score in stages (including 
the pathologic stage, the clinical stage, igcccg 
stage and masaoka stage) of pan-cancers was 
also investigated (Supplementary Figure 6B). 
Furthermore, the correlation of the GSVA score 
and pathway activity was also studied, and the 
data suggested that the 9 gene set was posi-
tively correlated with apoptosis, cell cycle and 
EMT in most TCGA cancer types (Supple- 
mentary Figure 6C). Besides, the survivals 
(including OS, PFS, DSS and DFI) between high 
and low GSVA score in pan-cancers were fur-
ther evaluated, and the results demonstrated 
that higher GSVA score had lower OS, PFS, DSS 
and DFI in many cancer types especially in 

CHOL, HNSC, KIRC, LGG, LIHC, LUAD and MESO 
(Supplementary Figure 6D). The detailed OS, 
PFS, DSS and DFI analyses of the high and low 
GSVA score in TCGA-LIHC were presented in 
Supplementary Figure 7A-D, respectively. Fin- 
ally, the correlation between GSVA score and 
many kinds of signalings were studied, and we 
found that GSVA score was positively relevant 
with Cell Cycle, Apoptosis and EMT pathways, 
while negatively correlated with Hormone AR, 
DNA Damage Response, Hormone ER, PI3K/
AKT, TSC/mTOR, RAS/MAPK and RTK signal-
ings in HCC (Supplementary Figure 7E).

The mRNA expression, protein levels, methyla-
tion, SNV and CNV of POLRMT in pan-cancers

Given that the above analyses revealed that 
the lactate-related genes, especially the 9 
prognostic model genes, were closely related  
to HCC cells functions or tumor-related signal-
ings, we further selected POLRMT, a mitochon-
drial DNA-directed RNA polymerase which is 
closely relevant with cancer cell proliferation, 
invasion and metabolism, to further investigate 
whether it is a potential target in HCC and its 
functions were remained unclear in HCC [20]. 
The mRNA levels and protein expression across 
cancer types were respectively explored by 
using TIMER 2.0 database and HPA database 
(Supplementary Figure 8A and 8B). In addition, 
the methylation landscape of POLRMT across 
cancers were investigated by using GSCA  
database and the data suggested that POL- 
RMT was low mehylation in kinds of cancers 
including BLCA, BRCA, COAD, DLBC, LUAD, 
LUSC, PRAD, STAD and TGCT (Supplementary 
Figure 8C). Furthermore, data from the SNV 
study using GSCA database showed that the 
mutation frequency of POLRMT was notably 
high in UCEC, COAD, SKCM, STAD and CESC 
(Supplementary Figure 8D). The CNV of POL- 
RMT across cancers was also evaluated using 
GSCA database, and the pie plots demonstrat-
ed that POLRMT had heterogeneous amplifica-
tion in ACC, GBM, TGCT, COAD and LGG, while 
heterogeneous deletion in OV, UCS, LUAD, 
BRCA, STAD, SKCM and ESCA (Supplementary 
Figure 8E).

Immune infiltration analyses of POLRMT in 
pan-cancers

We next attempted to investigate the correla-
tion of POLRMT with immune infiltration in 
TCGA cancers using CIBERSORT algorithm and 
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XCELL algorithm. Data from the CIBERSORT 
algorithm suggested that POLRMT was posi- 
tive correlation with γδ T cells, CD4+ T cells, 
Neutrophil, Monocyte, Macrophage (Supple- 
mentary Figure 9A). Another algorithm XCELL 
also revealed that POLRMT was positively rele-
vant with the majority of immune cells including 
immune score, Tregs, CD8+ T cells, Neutrophil, 
Monocyte, Macrophage, CD4+ T cells in pan-
cancers, which was corresponding with the 
results of CIBERSORT algorithm (Supplement- 
ary Figure 9B). Next, we aimed to determine if 
POLRMT was related to tumor mutation burden 
(TMB) and microsatellite instability (MSI) in 
pan-cancers, as TMB has become a predictive 
indicator for tumor immunotherapy and MSI is 
a genetic change that has been shown to be 
closely associated with tumor prognosis. The 
data suggested that POLRMT high expression 
was obviously correlated with TMB and MSI in 
most TCGA cancer types (Supplementary Figure 
9C and 9D).

The mRNA expression, protein levels, meth-
ylation, SNV, CNV and immune networks of 
POLRMT in HCC

The results from the GEPIA database displayed 
that POLRMT mRNA levels were higher in HCC 
tumor tissues than that of the adjacent normal 
tissues (Supplementary Figure 10A). Similar 
results were also observed using the ICGC-liver 
cancer-RIKEN sub-database (Supplementary 
Figure 10B). The protein levels of POLRMT were 
also higher in HCC tumor tissues when ana-
lyzed by UALCAN database (Supplementary 
Figure 10C). Besides, the immunohistochemis-
try based on HPA database of POLRMT in  
HCC tumor samples also demonstrated that 
POLRMT expressed in HCC tumor tissues 
(Supplementary Figure 10D). The overall sur-
vival (OS) analysis from UALCAN database and 
disease free survival (DFS) from GEPIA data-
base proved that high expression of POLRMT 
had poor OS and PFS in HCC (Supplementary 
Figure 10E and 10F). Although the somatic 
mutation rate of POLRMT in HCC was low 
(0.55%), about one-third of the HCC samples 
had CNV of POLRMT (Supplementary Figure 
10G and 10H). Besides, the immune networks 
of POLRMT in HCC were further assessed by 
using CIBERSORT and XCELL algorithms, and 
the data suggested that POLRMT was closely 
relevant with multiple types of immune cells in 
HCC (Supplementary Figure 11).

Interacting network of POLRMT and prognostic 
model construction based on POLRMT inter-
acting genes

We utilized the GeneMania database to look for 
genes or proteins that potentially interact or co-
express with POLRMT in order to learn more 
about the complex network of interactions 
between POLRMT and other genes. The inter-
acting network was presented in Supplement- 
ary Figure 12A, and the interacting genes were: 
TFB2M, TFAM, MTERF1, TFB1M, MTRES1, 
TEFM, MRPL58, COX10, HECW2, TARDBP, 
MRPL12, HIF1A, SIRT7, RUVBL2, ATP5F1D, 
MLH1, PNPLA6, POLR2E, PKN1, TRIM28. 
Afterwards, we employed the LASSO regres-
sion to develop a prognostic signature based 
on the 20 POLRMT interacting genes. The coef-
ficient of 20 POLRMT interacting genes was 
presented in Supplementary Figure 12B. The 
model can achieve the best fit when 10 of 20 
genes were included (Supplementary Figure 
12C). The formula used for risk score com- 
putation was as follows: riskscore = (0.007)* 
TFB2M + (0.1538)*MTRES1 + (0.0049)* 
MRPL58 + (-0.2458)*HECW2 + (0.3682)* 
TARDBP + (0.1447)*HIF1A + (0.0693)*SIRT7 + 
(0.0522)*RUVBL2 + (0.2796)*POLR2E + 
(0.0402)*TRIM28. Subsequently, the TCGA-
LIHC samples were divided into low- and high-
risk subgroups according to the above risks-
core. The heatmap of the 10 genes, and 
patients’ alive and dead status were presented 
in Supplementary Figure 12D. Then, the overall 
survival of the low- and high-risk subgroups 
was analyzed and the patients with high-risk 
had poor OS than that of the patients with low-
risk (Supplementary Figure 12E). Additionally, 
the area under the ROC curve (AUC) for 1-, 3-, 
and 5-year OS was also calculated, and the 
value was respectively 0.738, 0.682 and 0.704 
(Supplementary Figure 12F).

Real-time PCR assays detecting the POLRMT 
expression in HCC cells under various condi-
tions

Since the above studies had uncovered the 
potential important roles of POLRMT in HCC, 
we next attempted to carry out experiments to 
verify whether POLRMT had critical effects on 
HCC tumor cells functions. To that purpose, we 
first employed CCLE database to explore the 
POLRMT expression in kinds of HCC cell lines. 
As shown in Figure 5A, nearly all the 25 HCC 
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cell lines highly expressed POLRMT. Next, we 
performed qRT-PCR assays to assess the 
POLRMT expression in LO2, JHH-2, HepG2, 
Hep3B, Huh-7, SMMC-7721, SNU-423, SNU-
387 and SNU-449 cells. The results proved 
that POLRMT expression was much higher in 
Hep3B and Huh-7 cells when compared with 
other HCC cell lines or normal liver cell line LO2 
(Figure 5B). Hence, we next selected Huh-7 and 
Hep3B cells for the following experiments. 
Subsequently, the siRNAs targeting POLRMT 
(siRNA-POLRMT-1 and siRNA-POLRMT-2) were 
obtained and plasmids over-expressing POL- 
RMT (pcDNA3.1-POLRMT) were constructed. 
These siRNAs and plasmids were transfected 
into Huh-7 and Hep3B cells, respectively. The 

data from the qRT-PCR assays and western blot 
indicated that siRNA-POLRMT-1 and siRNA-
POLRMT-2 were able to significantly reduce the 
POLRMT expression (Figure 5C and 5E) and 
pcDNA3.1-POLRMT could obviously promote 
the expression of POLRMT (Figure 5D and 5F).

The silence of POLRMT affects HCC cells func-
tions and energy metabolism

Next, CCK-8 assays were carried out to assess 
the affections of POLRMT on HCC cellular via-
bility when the cells were transfected with siR-
NA-POLRMT-1, siRNA-POLRMT-2 or pcDNA3.1-
POLRMT. The results demonstrated that the 
POLRMT depletion dramatically reduced the 
proliferation of Huh-7 and Hep3B cells, while 

Figure 5. The POLRMT expression in HCC cells. (A) POLRMT expression in HCC cell lines based on CCLE database. 
(B) qRT-PCR assays. (C and D) qRT-PCR assays and (E and F) Western blot assays evaluating the POLRMT expression 
in cells treated with POLRMT siRNAs and overexpressing plasmids.
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the POLRMT overexpression notably increased 
the cellular proliferation (Figure 6A and 6B). 
Then, the EdU examination was also performed 
to assess the cellular proliferation of HCC cells 
under various treatment. The data indicated 
that elevated expression of POLRMT signifi-
cantly increased the proliferative HCC cells, 
while silencing POLRMT expression obviously 
reduced the number of HCC cells (Figure 6C 
and 6D). Afterwards, the transwell chambers 
were utilized for the determination of the migra-
tion abilities of HCC cells after POLRMT was 
knocked down or accelerated expression. As 
the results displayed in Figure 6E and 6F, 
impeding the POLRMT expression significantly 
attenuated the migration of both Huh-7 and 
Hep3B cells, while restoring the POLRMT ex- 

pression was able to enhance the HCC cells 
migration. Since previous reports had indicated 
that POLRMT depletion was able to disrupt 
mitochondrial functions, we thereby next mea-
sured the ATP contents in HCC cells after 
POLRMT was knocked down. The data demon-
strated that silencing POLRMT expression 
remarkably decrease the ATP contents in Huh7 
and Hep3B cells, while enhancing POLRMT 
expression obviously increased the ATP con-
tents (Figure 6G and 6H).

Identification of the differentially expressed 
genes in POLRMT high and low expression 
HCC samples

Next, the 371 HCC samples based on TCGA 
database was separated into POLRMT high 

Figure 6. The affection of POLRMT on HCC cell growth and migration. A and B. CCK-8 assays. C and D. EdU staining. 
E and F. Transwell migration assays. G and H. Silencing POLRMT expression remarkably decreased the ATP contents 
in Huh7 and Hep3B cells, while promoting POLRMT expression increased the ATP contents.
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(G1: 186 HCC samples) and low (G2: 185 HCC 
samples) expression group, and the DEGs (221 
up-regulated genes and 88 low-regulated 
genes when G1 compared with G2) were veri-
fied. The heatmap and volcano plot were 

respectively shown in Figure 7A and 7B. 
Subsequently, the functional analyses were 
conducted including GO and KEGG analyses. 
The GO analysis revealed that the DEGs were 
associated with the regulation of Wnt signaling 

Figure 7. The DEGs identification in POLRMT high and low expression HCC samples. A. Heatmap. B. Volcano plot. C. 
GO analysis. D. KEGG analysis.
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pathway, ribonucleoprotein complex biogene-
sis, ribosome biogenesis, translational initia-
tion, viral gene expression, viral transcription, 
response to zinc ion, small molecule catabolic 
process, stress response to copper ion, stress 
response to metal ion, transition metal ion 
homeostasis and zinc ion homeostasis (Figure 
7C). The KEGG analysis revealed that these 
DEGs were correlated with Wnt signaling path-
way, TGF-beta signaling pathway, Spliceosome, 
Signaling pathways regulating pluripotency of 
stem cells, Ribosome, and kinds of metabolism 
(Figure 7D).

POLRMT modulated Wnt/β-Catenin signaling 
in HCC cells

To further uncover the potential molecular 
mechanism by which POLRMT regulated the 
HCC tumor cells functions, we next conducted 
the correlation analysis between 150 genes 
relevant with Wnt signaling, because numerous 
reports had demonstrated that Wnt signaling 
played essential roles in modulation tumor 
development and progression. The heatmaps 
of the correlation between POLRMT and 150 
genes relevant with Wnt signaling were gener-
ated by the R software package “ggstatsplot”, 
and the data proved that POLRMT was posi- 
tively correlated with most of the Wnt signaling-
related genes (Figure 8A). In addition, the de- 
tail analyses using GSCA database further cer-
tified that POLRMT was notably positively cor-
related with three critical Wnt/β-Catenin signal-
ing related genes including CTNNB1, CCND1 
and c-MYC (Figure 8B-D). Finally, we carried out 
western blot assays to determine the expres-
sion of Wnt/β-Catenin signaling related critical 
factors in HCC cells when POLRMT was deplet-
ed or overexpressed. The results suggested 
that impeding the POLRMT expression signifi-
cantly attenuated the protein levels of 
β-Catenin, Cyclin D1 and c-Myc in both Huh-7 
and Hep3B cells, while restoring the POLRMT 
expression was able to remarkably enhance 
these three protein expression in HCC cells 
(Figure 8E and 8F).

IC50 scores analysis of drugs targeting HCC in 
POLRMT high and low expression groups

Considering our above studies had indicated 
that POLRMT might be a potential target in 
HCC, we next sought to investigate the IC50 
scores of kinds of drugs used in liver cancer 

treatment based on POLRMT high and low 
expression. According to the data from  
GDSC database (https://www.cancerrxgene.
org/), the IC50 scores of Talazoparib, Gefitinib, 
Cisplatin, Trametinib and Dasatinib in POLRMT 
high expression group (G1) were higher than 
that in POLRMT low expression group (G2), 
while Crizotinib, Gemcitabine, Sorafenib, Tamo- 
xifen, 5-Fluorouracil, and Ruxolitinib in POLRMT 
high expression group were lower than that in 
POLRMT low expression group, and there were 
no significant difference of other drugs between 
POLRMT high and low expression groups 
(Supplementary Figure 13).

Discussion

The prognosis of HCC varies depending on indi-
vidual factors such as the patient’s health sta-
tus, the type of cancer, the stage of the dis-
ease, and the treatment methods used. 
Generally, the prognosis for HCC is relatively 
poor, especially for patients diagnosed at an 
advanced stage [21]. HCC often presents with 
no noticeable symptoms in its early stages, 
leading to late diagnosis in many cases. Early 
diagnosis and timely treatment can improve 
the prognosis [22, 23]. For early-stage HCC 
patients, if the tumor is confined to the liver 
and has not spread to other parts of the body, 
surgical resection may be the preferred treat-
ment option, which generally offers a better 
prognosis [24, 25]. However, for patients with 
advanced HCC, where the disease has already 
spread to other organs, the treatment becomes 
more challenging, resulting in a poorer progno-
sis. In recent years, there have been some  
positive advancements in HCC treatment, 
including the use of immunotherapy and tar-
geted therapy. These novel treatment approach-
es are still under research and application, pro-
viding more treatment options for patients [26, 
27]. However, for advanced HCC cases, the 
cure rate remains relatively low. Identification 
of novel biomarker for HCC patients is very 
important. In this study, our attention focused 
on lactate-related genes.

Lactate metabolism and HCC are closely relat-
ed. Lactic acid metabolism is an essential bio-
chemical process within cells, closely associat-
ed with energy production and cell survival 
[28]. When cells need energy, they metabolize 
glucose (glycolysis) to produce lactic acid, a 
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process known as anaerobic metabolism. 
Under normal conditions, the produced lactic 
acid is transported to the liver through the 
body’s lactate clearance system, where it is fur-
ther converted into energy or re-synthesized 
into glucose (gluconeogenesis) [29, 30]. How- 
ever, in certain circumstances, the cell’s meta-
bolic processes may become abnormal, lead-
ing to excessive production of lactic acid, sur-

passing the liver’s metabolic capacity, resulting 
in lactic acid accumulation (lactic acidosis). 
This phenomenon is particularly common in 
tumor cells. Tumor cells often proliferate at an 
unusually rapid rate, and to meet their energy 
demands, they frequently rely on anaerobic 
pathways (i.e., lactic acid production pathway) 
to generate large amounts of energy [15, 31]. In 
this study, we analyzed TCGA datasets and 

Figure 8. POLRMT affects Wnt/β-Catenin signaling in HCC. A. The correlation analysis between POLRMT and 150 
genes relevant with Wnt signaling. B-D. The correlation analysis between POLRMT and CTNNB1, CCND1 or c-MYC, 
respectively. E, F. Western blot assays detect the protein levels of β-Catenin, Cyclin D1 and c-Myc in Huh-7 and 
Hep3B cells after treatment, respectively.
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identified 21 differentially expressed LRGs  
that were significantly associated with overall 
survival in HCC patients. These genes are 
involved in various important biological pro-
cesses related to tRNA modification, mitochon-
drial RNA metabolism, and catalytic activities. 
Furthermore, they are associated with mito-
chondrial respiratory chain complexes and ter-
penoid backbone biosynthesis. These findings 
suggest that these genes may play crucial rol- 
es in HCC development and progression and 
could potentially serve as therapeutic targets 
for the treatment of HCC. Then, we sought to 
explore the mRNA expression, genetic changes, 
and methylation status of the above-selected 
21 DEGs across TCGA cancers. Our findings 
indicate that the 21 DEGs identified in this 
study have widespread dysregulation across 
multiple cancer types, with potential implica-
tions in cancer progression and development. 
These genes may serve as important targets 
for further investigation and potential thera-
peutic intervention in pan-cancer studies. In 
addition, the analysis of the 21 DEGs in HCC 
across TCGA and ICGC databases revealed 
consistent positive correlations among up-reg-
ulated DEGs in various HCC grades, indicating 
potential co-regulation during HCC progression. 
In contrast, down-regulated DEGs (HMGCS2 
and LDHD) consistently exhibited negative cor-
relations with other DEGs across different HCC 
grades and databases, implying a distinct regu-
latory role. However, the correlation patterns 
showed some variations in the ICGC-liver can-
cer-France sub-database, suggesting complex 
heterogeneity within HCC tumor samples.

The immune microenvironment refers to the 
interaction between immune cells, inflammato-
ry factors, cytokines, and other immune-relat-
ed components with tumor cells in the tumor 
microenvironment [32]. In HCC, the immune 
microenvironment plays a crucial role, influenc-
ing tumor development and treatment out-
comes. The immune microenvironment in HCC 
typically includes two states: immune suppres-
sion and immune activation. Immune suppres-
sion indicates the presence of numerous 
immune inhibitory cells, such as regulatory T 
cells (Tregs), tumor-associated macrophages 
(TAMs), and immune-suppressive cytokines 
(e.g., TGF-β and IL-10) [33, 34]. These immune 
inhibitory factors contribute to suppressing  
the immune system’s attack on tumor cells, 

enabling tumors to evade immune clearance 
and promoting tumor proliferation and metas-
tasis [35, 36]. On the other hand, immune acti-
vation state signifies the presence of active 
immune cells, such as cytotoxic T lymphocytes 
(CTLs) and natural killer (NK) cells, surrounding 
the tumor. These immune cells recognize and 
attack tumor cells, exerting an anti-tumor 
effect. Immune activation helps to limit tumor 
growth and dissemination, facilitating tumor 
regression. The immune microenvironment in 
HCC significantly impacts tumor treatment and 
prognosis. Some immunotherapies, such as 
immune checkpoint inhibitors, have shown 
promising results in HCC treatment. However, 
due to the complexity of the immune microenvi-
ronment in HCC, current treatment outcomes 
are still limited. In this study, we found that the 
21 DEGs were able to distinguish the TCGA-
LIHC samples into two molecular subtypes, C1 
and C2, and there was a significant difference 
in overall survival between these subtypes. 
These findings suggest that these DEGs might 
play a crucial role in determining the molecular 
heterogeneity of HCC and have potential impli-
cations for prognostic stratification and target-
ed therapies in HCC patients. Besides, we 
observed that the two HCC molecular subtypes 
exhibit differences in immune cell composition 
and immune checkpoint expression, indicating 
potential variations in the tumor immune micro-
environment and immune response between 
the subtypes. These results could have im- 
portant implications for understanding the 
immune characteristics of different HCC sub-
types and may help guide the development of 
targeted immunotherapies for HCC patients.

Then, we performed the LASSO regression to 
develop the prognostic signature based on the 
21 overlap DEGs in HCC. Finally, we developed 
a novel prognostic model using nine genes, 
including DTYMK, IRAK1, POLRMT, MPV17, 
UQCRH, PDSS1, SLC16A3, SPP1 and LDHD. 
Based on these analysis results, the study 
found that among 371 HCC patients, they were 
classified into low-risk and high-risk subgroups 
using a risk score model. Patients in the low-
risk group exhibited significantly better overall 
survival (OS) compared to those in the high-risk 
group. Further time-dependent receiver operat-
ing characteristic (ROC) analysis evaluated the 
predictive model’s efficacy, with AUC values of 
0.784, 0.706, and 0.728 for 1-year, 3-year, and 
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5-year OS, respectively. These findings indicat-
ed that the prognostic model effectively pre-
dicts the survival of HCC patients and provides 
valuable information for risk stratification. 
GSVA is a method used for gene expression 
data analysis. It is a common technique in bio-
informatics, utilized to explore the expression 
variation of gene sets across different sampl- 
es. Traditional gene expression analysis typi-
cally focuses on individual genes for statistical 
analysis, whereas GSVA aims to analyze pre-
defined gene sets (e.g., pathways, biological 
processes, or functional modules). In this  
study, in pan-cancers, the expression levels of 
this set of nine genes (represented by GSVA 
scores) were generally higher in tumor sampl- 
es compared to normal tissues. This suggests 
that these genes may play important roles in 
various types of cancer. In different stages of 
cancer, the GSVA scores of the set of nine 
genes also show some variations. This may be 
associated with the different stages of tumor 
development and the diverse biological charac-
teristics of the tumors. In HCC, the GSVA scores 
of the set of nine genes were positively corre-
lated with signaling pathways such as the cell 
cycle, apoptosis, and epithelial-mesenchymal 
transition (EMT). However, they were negatively 
correlated with signaling pathways like hor-
mone AR (androgen receptor), DNA damage 
response, hormone ER (estrogen receptor), 
PI3K/AKT, TSC/mTOR, RAS/MAPK, and RTK 
(receptor tyrosine kinase). These findings may 
provide crucial clues for studying the underlying 
mechanisms of HCC development. These anal-
ysis results emphasized the significance of 
these nine genes in various types of cancer, 
particularly in HCC.

Out of the nine prognostic LRGs, we zeroed in 
on POLRMT because it is a nuclear-encoded 
RNA polymerase that is essential for the pro-
duction of mitochondrial genes that code for 
components of oxidative phosphorylation com-
plexes. POLRMT encodes RNA polymerase, 
which synthesizes various mitochondrial RNAs 
in the mitochondria, including mRNA that cod- 
es for mitochondrial proteins. These mitochon-
drial proteins are essential for cellular lactate 
metabolism and energy production processes. 
In certain cases, mutations or abnormalities in 
the POLRMT gene can lead to mitochondrial 
dysfunction, affecting cellular energy metabo-
lism and lactate production [37]. Mitochondrial 
dysfunction can result in the accumulation of 
lactate, a condition known as lactic acidosis 

[38]. Lactic acidosis is a rare but severe genetic 
mitochondrial disorder, and its symptoms may 
include muscle weakness, fatigue, rapid breath-
ing, and neurological issues. Growing studies 
indicated that the expressions of POLRMT was 
related to various cancers, including breast 
cancer, acute myeloid leukemia, osteosarcoma 
and skin squamous cell carcinoma [39-42]. 
However, the expression and function of 
POLRMT in HCC were rarely reported. In this 
study, we found that the expression of POLRMT 
was distinctly increased in HCC specimens 
compared with non-tumor specimens. We 
explored the mRNA and protein expression lev-
els, DNA methylation status, SNV frequency, 
and CNV of POLRMT across various types of 
cancer, using various bioinformatics databas-
es. POLRMT may play a significant role in vari-
ous types of cancer, especially in HCC. The 
methylation level, mutation frequency, and 
copy number variation of POLRMT vary among 
different cancers, which might reflect its com-
plex role in cancer development and progres-
sion. Analysis of OS and DFS in HCC patients 
revealed that high expression of POLRMT was 
associated with poor survival and disease 
recurrence. While the somatic mutation rate of 
POLRMT in HCC was low (0.55%), approximate-
ly one third of the HCC samples showed CNV of 
POLRMT. Furthermore, using CIBERSORT and 
XCELL algorithms, we assessed the immune 
networks of POLRMT in HCC and found that 
POLRMT was closely associated with multiple 
types of immune cells in HCC. Overall, these 
data suggest that POLRMT may play a crucial 
role in HCC, correlating with disease progres-
sion and patient survival, and may interact with 
the tumor’s immune environment. These find-
ings supported the potential of POLRMT as a 
possible therapeutic target in HCC. Finally, we 
performed functional assays and confirmed 
that knockdown of POLRMT distinctly sup-
pressed the proliferation and migration of HCC 
cells, suggesting it as a tumor promotor in HCC.

The Wnt signaling pathway is a crucial intercel-
lular signal transduction system involved in 
many biological processes, such as cell prolif-
eration, differentiation, polarity maintenance, 
and embryonic development [43]. The Wnt sig-
naling pathway is closely associated with HCC. 
Under normal physiological conditions, the Wnt 
signaling pathway plays a crucial role in main-
taining the normal function and regeneration of 
liver tissue [44, 45]. However, when this path-
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way undergoes abnormal activation or dysregu-
lation, it can become a key driving factor in the 
occurrence and development of HCC. Enhanc- 
ed activity of the Wnt signaling pathway not 
only promotes tumor formation but may also 
render existing tumors more invasive and prone 
to metastasis [46, 47]. Some studies suggest 
that the Wnt signaling pathway may be associ-
ated with the maintenance of cancer stem 
cells, a small subset of cells capable of self-
renewal and driving tumor growth [48]. To fur-
ther investigate its potential molecular mecha-
nism, we conducted a correlation analysis 
between 150 genes associated with the Wnt 
signaling pathway. We discovered a positive 
correlation between POLRMT and these Wnt 
signaling-related genes. This finding suggests 
that POLRMT might play a significant role in 
regulating the functions of the Wnt signaling 
pathway, thereby influencing the development 
and progression of HCC tumor cells. The influ-
ence of POLRMT on Wnt/β-Catenin signaling 
was further affirmed by our western blot as- 
says, which demonstrated that depletion of 
POLRMT led to a significant reduction in the 
protein levels of β-Catenin, Cyclin D1, and 
c-Myc in Huh-7 and Hep3B HCC cell lines. 
Conversely, overexpression of POLRMT led to a 
marked increase in the expression of these 
three proteins, further strengthening the propo-
sition that POLRMT may act as a regulator of 
the Wnt/β-Catenin signaling pathway in HCC.

Several caveats should be noted about the 
present investigation. First, Due to the nature 
of a retrospective study, gaps in data and bias-
es in sample selection were unavoidable. 
Second, the potential of POLRMT in HCC pro-
gression was not studied in vivo experiments. 
Thus, findings in this study are waiting for fur-
ther validation by well-designed, prospective, 
multicenter studies.

Conclusion

Overall, our study developed a signature for 
predicting the prognosis of HCC patients based 
on 9 lactate-related genes; this signature has 
the potential to open up new avenues of inquiry 
into the mechanisms of lactic acid metabolism 
and personalized prognostic predictions as well 
as provide a new therapeutic target for people 
with CC. In addition, we confirmed that POLRMT 
was highly expressed in HCC and its knock-
down suppressed the proliferation, migration 

and energy metabolism of HCC cells via Wnt 
signaling pathway. Based on the expression of 
POLRMT in HCC and its role in cell proliferation 
and migration, further research on the function 
and regulatory network of POLRMT is warrant-
ed to develop more precise treatment meth-
ods, particularly focusing on the modulation of 
the Wnt signaling pathway.
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Supplementary Figure 1. The expression, genetic variants, and methylation analyses of DEGs across cancer types. 
A. DEGs mRNA expression across cancers. The relevance of the FDR increases with increasing dot size. The bubble’s 
color indicates the fold change between tumor and normal tissue. B. The clinical stages and pathological stages of 
DEGs in cancers. C. SNV analysis including variant classification and the top 10 mutated genes in pan-cancers. D. 
CNV percentage of DEGs in pan-cancers. E. Methylation difference of DEGs in pan-cancers.
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Supplementary Figure 2. The analysis of clinical information’ difference in the two HCC molecular subtypes based 
on TCGA data. A. Gender. B. Race. C. pT stage. D. pN stage. E. pM stage. F. pTNM stage. G. Grade. H. Primary & 
Recurrence. I. Neoadjuvant therapy. J. Radiotherapy. K. Other therapy. C1 group: 103 HCC samples; C2 group: 268 
HCC samples.
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Supplementary Figure 3. The expression and genetic changes of the 21 overlap DEGs in the two HCC molecular 
subtypes. A. The expression of the 21 overlap DEGs in the two HCC molecular subtypes. The plots were generated 
by using R software. G1 group: 103 HCC samples; G2 group: 268 HCC samples. B. The waterfall plot displayed the 
genetic changes in group 1 subgroup (103 HCC samples). C. The waterfall plot displayed the genetic changes in 
group 1 subgroup (268 HCC samples).
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Supplementary Figure 4. Immune analysis and networks construction of the DEGs in the two HCC molecular sub-
types. A. CIBERSORT score evaluated the difference of various immune cells between the two subgroups. B. The 
expression of the immune checkpoints in the two subgroups. C, D. The immune networks of the 21 overlap DEGs in 
group 1 and group 2, respectively. G1 group: 103 HCC samples; G2 group: 268 HCC samples.
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Supplementary Figure 5. Identification of 9 LRG prognostic signatures in HCC. A. LASSO coefficients profiles of 21 
overlap DEGs. B. Using a ten-fold cross-validation LASSO regression, we found 9 prognostic genes with a minimal 
log (λ) value. C. Expression patterns of the 9 prognostic signature genes in high-risk and low-risk subgroups in HCC, 
together with a heatmap illustrating the relationship between risk score and survival status. D. The overall survival 
analysis of the high- and low-risk subgroups. E. The ROC analysis of the 9-genes prognostic signature for predicting 
the 1-, 3-, 5-year overall survival in HCC.
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Supplementary Figure 6. GSVA analysis of the 9 prognostic signature genes in pan-cancers. A. GSVA score between 
tumor samples and normal tissues across cancers. The plot was generated by using GSCA database. B. GSVA score 
among different stages in pan-cancers. C. The correlation of the GSVA score and various pathway activities. D. The 
survival difference between high and low GSVA score in pan-cancers.
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Supplementary Figure 7. GSVA analysis of the 9 prognostic signature genes in HCC. A-D. The survival difference 
between high and low GSVA score in HCC. E. The correlation between GSVA score and various signalings in HCC.
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Supplementary Figure 8. The expression, genetic changes and methylation analysis of POLRMT in pan-cancers. A. 
The mRNA expression of POLRMT in pan-cancers. B. POLRMT protein expression in various cancer types. C. POLRMT 
methylation between tumor and normal tissues across cancers. D. SNV analysis. E. CNV analysis.

Supplementary Figure 9. Immune infiltration, TMB and MSI analyses of POLRMT in cancers. A. The immune in-
filtration was analyzed by CIBERSORT algorithm. B. The immune infiltration was analyzed by XCELL algorithm. C. 
Spearman correlation analysis of TMB and POLRMT gene expression. D. Spearman correlation analysis of MSI and 
POLRMT gene expression.
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Supplementary Figure 10. The analysis of expression, survival and genetic changes of POLRMT in HCC. A. Rela-
tive POLRMT mRNA expression in tumor and normal samples using GEPIA database. B. POLRMT mRNA expression 
based on ICGC-liver cancer-RIKEN sub-database. C. POLRMT protein expression between normal and tumor tissues 
based on UALCAN database. D. The immunohistochemistry analysis of POLRMT expression based on HPA database. 
E. Overall survival analysis using UALCAN database. F. Disease free survival analysis using GEPIA database. G. Mu-
tation analysis of POLRMT using GSCA database. H. CNV analysis of POLRMT using GSCA database.
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Supplementary Figure 11. The construction of the immune networks of POLRMT in HCC using XCELL and CIBER-
SORT algorithms. The red bubble represents positive correlation, blue bubble represents negative correlation. How-
ever, the red line represents positive correlation, blue line represents negative correlation. The more red or blue 
color means the greater correlation, also the larger circle means the stronger correlation.
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Supplementary Figure 12. POLRMT interacting network and prognostic signature construction based on its in-
teracting genes. A. The interacting network of POLRMT was generated by using GeneMania database. B. LASSO 
coefficients profiles of 20 POLRMT interacting genes. C. LASSO regression with tenfold cross-validation obtained 
10 prognostic genes using minimum log (λ) value. D. Expression patterns of the 10 prognostic signature genes in 
high-risk and low-risk subgroups in HCC, together with a heatmap depicting the relationship between risk score and 
survival status. E. The overall survival analysis of the high- and low-risk subgroups. F. Predicting 1-, 3-, and 5-year 
overall survival in HCC using a signature of 10 genes: ROC analysis.
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Supplementary Figure 13. IC50 scores analysis of drugs targeting HCC in POLRMT high and low expression 
groups.


