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Abstract: Hepatocellular carcinoma (HCC) is a prevalent and deadly form of cancer globally with typically unfavor-
able outcomes. Increasing research suggests that lactate serves as an important carbon contributor to cellular
metabolism and holds a crucial part in the progression, sustenance, and treatment response of tumors. However,
the contribution of lactate-related genes (LRGs) in HCC is still unclear. In this study, we analyzed TCGA datasets
and screened 21 differentially expressed LRGs related to long-term survivals in HCC patients. Pan-cancer assays
revealed that 21 LRGs expression exhibited a dysregulated level in man types of tumors and associated with clinical
prognosis of tumor patients. The analysis of 21 LRGs successfully classified HCC samples into two molecular sub-
types, and these two subtypes showed significant differences in clinical information, gene expression, and immune
characteristics. Subsequently, based on the aforementioned 21 LRGs, a novel prognostic signature (DTYMK, IRAKZ,
POLRMT, MPV17, UQCRH, PDSS1, SLC16A3, SPP1 and LDHD) was generated by LASSO-Cox regression analysis.
Survival assays demonstrated that the signature performed well in predicting the overall survival of patients with
HCC. The results of Gene Set Variation Analysis indicated that the high GSVA scores were associated with poor prog-
nosis. Moreover, we also investigated the correlation between GSVA scores and various signaling pathways in HCC.
Among the nine prognostic genes, our attention focused on POLRMT which was highly expressed in HCC specimens
based on TCGA datasets and several HCC cell lines. In addition, functional assays indicated that POLRMT distinctly
promoted the proliferation, migration and energy metabolism of HCC cells via regulating Wnt/B-Catenin signaling.
Overall, through the establishment of a novel prognostic signature, we have provided potential clinical value for as-
sessing the prognosis of HCC patients. Furthermore, our study has identified the high expression of POLRMT in HCC
and demonstrated its crucial role in HCC cell proliferation. These findings hold great importance in advancing our
understanding of the pathophysiology of HCC, identifying new therapeutic targets, and improving patient survival
rates.
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Introduction

Hepatocellular carcinoma (HCC) represents a
type of malignant tumor that ranks sixth in
global cancer diagnoses and is the fourth pri-
mary reason for cancer-associated fatalities
worldwide [1]. HCC has a significantly varying
incidence rate across different regions glo-
bally. Asian countries, particularly East Asia
and Southeast Asia, are high-incidence areas
for HCC. China, Japan, South Korea, Vietnam,
and Taiwan are some of the regions where the

reported liver cancer rates are higher [2].
Additionally, sub-Saharan Africa is also consid-
ered a high-risk region for liver cancer. Chronic
hepatitis B virus and hepatitis C virus infec-
tions, alcoholism, diabetes, and the metabolic
syndrome are all known to increase the likeli-
hood of developing HCC [3]. Despite numerous
improvements in HCC detection because of
advances in treatment, pateints with HCC still
have a dismal chance of survival due to the dis-
ease’s high metastatic rate [4, 5]. In addition,
the prognosis of HCC patients is significantly
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impacted by the fact that over 70% of patients
who have surgical resection or ablation experi-
ence tumor recurrence within 5 years [6, 7].
Given the significant burden of HCC on a global
scale, there is an urgent need to explore novel
prognostic markers that can aid in early detec-
tion, accurate prognosis, and personalized
treatment strategies. Identifying reliable prog-
nostic markers for HCC could revolutionize clini-
cal practice, allowing healthcare professionals
to offer timely and targeted interventions,
thereby improving patient outcomes and sur-
vival rates.

High-throughput sequencing, also known as
second-generation or deep sequencing, is a
rapid and efficient DNA or RNA sequencing
technology [8]. It is a method used for large-
scale, high-throughput determination of se-
quences in genomes, transcriptomes, or other
biological molecules. The development of high-
throughput sequencing technology allows
researchers to obtain a vast amount of DNA or
RNA sequence information in a relatively short
time and at lower costs [9, 10]. High-throughput
sequencing technology can help scientists gain
a deep understanding of genetic variations and
mutations in tumor cells, including single nucle-
otide variants (SNVs), insertions and deletions
(InDels), chromosomal structural variations,
and more. This information is crucial for under-
standing the mechanisms underlying tumor
development, identifying key genes driving
cancer progression, and identifying potential
therapeutic targets [11]. By performing RNA
sequencing on tumor samples, researchers
can reveal which genes in tumor cells are
actively expressed, which genes’ expression is
regulated, and the functional state of the cells.
This is highly beneficial for discovering novel
gene expression patterns related to cancer,
understanding the heterogeneity of tumor cells,
and predicting patient prognosis. Epigenetics
refers to the regulation of gene expression
through non-sequence changes, such as DNA
methylation and histone modifications [12, 13].
High-throughput sequencing technology can
assist researchers in understanding these epi-
genetic alterations in tumor cells, thereby gain-
ing insight into the regulatory mechanisms and
identifying epigenetic markers associated with
cancer. Overall, high-throughput sequencing
technology provides comprehensive and effi-
cient information in cancer research, including
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genomics, transcriptomics, epigenetics, and
more. It offers robust support for unraveling the
mechanisms of tumorigenesis, cancer classifi-
cation, the development of treatment strate-
gies, and personalized medicine.

Lactate was long regarded as an end product of
cellular glycolysis. In living organisms, lactic
acid is an essential metabolite. It can be pro-
duced and metabolized through two pathways:
lactic acid fermentation (lactic acid production)
or lactic dehydrogenase (LDH)-mediated lactic
acid dehydrogenation (lactic acid consumption)
[14]. Lactic acid metabolism refers to the pro-
duction and consumption of lactic acid in the
body. In lactic acid fermentation, when there is
a lack of oxygen or inadequate oxygen supply,
cells cannot produce enough energy through
normal oxidative phosphorylation (aerobic
metabolism) [15]. As a result, they switch to
producing lactate as a metabolic byproduct.
Lactic dehydrogenase is an enzyme that, under
sufficient oxygen conditions, converts lactic
acid back into pyruvic acid to continue aerobic
metabolism [16, 17]. Lactic acid metabolism is
closely related to the occurrence and develop-
ment of tumors. In tumor tissues, rapidly prolif-
erating cancer cells require a large amount of
energy and nutrients to support their growth
and division. Often, the oxygen supply in tu-
mors is insufficient, leading to local hypoxia.
This prompts tumor cells to produce lactic acid
through lactic acid fermentation to sustain their
survival and proliferation [18, 19]. This phe-
nomenon is known as “acidosis”, wherein lactic
acid accumulation in tumor tissues lowers the
pH value. Lactate also plays other significant
roles in tumor development. It can function as a
signaling molecule, regulating the migration
and invasion capabilities of tumor cells and pro-
moting tumor metastasis and spread. Addi-
tionally, lactic acid can influence the tumor
microenvironment, suppressing the function of
immune cells, thereby aiding tumors in evading
immune attacks and creating immune escape.
The important roles of lactate metabolism high-
lighted the potential of lactate-related genes
used as novel prognostic biomarkers and ther-
apeutic targets for HCC patients.

In this study, we systematically analyzed the
identified LRGs in HCC patients using TCGA and
ICGC datasets. Then, the prognosis of HCC
patients was evaluated using a lactate-related
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prognostic signature (LRPS) comprised of nine
genes. We also investigated how the LRPS
relates to other aspects of the immunological
microenvironment. Finally, our attention fo-
cused on POLRMT and performed a series of
experiments to further explore the function of
POLRMT in HCC. Our study has provided a com-
prehensive understanding of the relationship
between lactic acid metabolism and HCC,
offering valuable insights for patient prognosis
assessment and guidance in immunotherapy.
Additionally, we have revealed the potential
functions and mechanisms of POLRMT in HCC,
which is of significant importance for a deeper
comprehension of HCC pathogenesis and the
exploration of novel therapeutic approaches.
Our research findings open up new avenues
and possibilities for future clinical treatments
and personalized medicine in HCC.

Materials and methods
Cell lines and cell transfection

Human liver cancer cell lines HepG2, Hep3B,
SNU-423, SNU-387 cells, were obtained from
the China Center for Type Culture Collection
(Wuhan, Hubei, China), and other liver cancer
cell lines including JHH-2, Huh-7, SMMC-7721,
SNU-449 cells, and normal liver cell line LO2,
were purchased from Wuhan Procell company
(Wuhan, Hubei, China). JHH-2 and SNU-449
cells were purchased from Cobioer company
(Nanjing, Jingsu, China). The cells were cultured
in RPMI-1640 media supplemented with 10%
heat-inactivated FBS (Excell, Taicang, Jiangsu,
China), and grown in the presence of penicil-
lin/streptomycin (Qianye Biotechnology, Chang-
sha, Hunan, China) in a 37°C incubator with a
humidified, 5% CO2 atmosphere.

Cell transfection

The POLRMT siRNA sequence (siRNA-POLR-
MT-1: GGAGCUGGUAUAUGUGUUA, siRNA-POL-
RMT-2: GAGAUGCUGGUGCAGGCUA), and nega-
tive control siRNA sequence (CGUACGCGGAA-
UACUUCGAUU) obtained from GenePharma
(Pudong, Shanghai, China). The POLRMT over-
expressing plasmids were constructed by Ge-
neray Technologies (Pudong, Shanghai, China).
The transfection of POLRMT siRNAs or overex-
pressing plasmids were performed using Li-
pofectamine 3000 reagent kits (ThermoFisher,
Pudong, Shanghai, China). According to the
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manufacturer’s instructions, siRNAs being
diluted in the 100 pl Opti-MEM (Invitrogen,
Carlsbad, CA, United States) at 5 nmol/L or 5
pg plasmids were mixed with 5 pL Lipofecta-
mine 3000 reagents. After incubation at room
temperature for 20 min, the mixtures were
added to the cell culture media, and the cells
were collected or used for experiments after
48-72 h.

CCK-8 assays

CCK-8 assays were utilized for the determina-
tion of HCC cells growth abilities, and per-
formed by using CCK-8 kits from Beyotime
company (Nantong, Jiangsu, China). Briefly,
HCC cells including Huh7 and Hep3B in log
phase growth were trypsinized with a 0.05%
trypsin solution, washed, and planted in 96-
well plates at a concentration of 2.5 x 10°
cells/well. After the HCC cells attachment, 10
uL of the CCK-8 solution was added into each
well and continue to culture for another 3 hours
at 37°C. Thereafter, the optical density value at
450 nm was recorded at the indicated time
point (24, 48 and 72 h).

The 5-ethynyl-2’-deoxyuridine (EDU) incorpora-
tion assays

For the EDU incorporation assays, HCC cells
transfected with siRNA-POLRMT-1, siRNA-POL-
RMT-2 or pcDNA3.1-POLRMT, were cultured in
24-well plates, and then the Click-iT EDU Alexa
Fluor 488 Imaging Kits (ThermoFisher, Pudong,
Shanghai, China) were used to carry out the
experiments. Briefly, the HCC cells were incu-
bated with EAU (10 uM) and fixed with 4% para-
formaldehyde (PFA; Sigma, Pudong, Shanghai,
China), followed by treatment with Triton X-100
solution. Thereafter, the cells were stained with
the 1 x Apollo reaction cocktail and the nuclei
were stained by DAPI reagents. After washing
with PBS for three times, the fluorescence of
the cells was visualized by using an Olympus
fluorescence microscope (Tokyo, Japan).

Transwell migration detection

The migration capabilities of Huh7 and Hep3B
cells after being transfected with siRNA-POLR-
MT-1, siRNA-POLRMT-2 or pcDNA3.1-POLRMT,
were evaluated by using transwell chambers
(Corning, NY, USA). In brief, a total of 2 x 10°
cells with treatment in 200 pl serum-free media
were placed in the upper chamber of 24-well
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plates with 8.0 um pore size chamber inserts.
Afterwards, 700 uyl RPMI-1640 media con-
tained 10% FBS were added to the lower cham-
bers. Cells were fixed with 4% paraformalde-
hyde and stained with 0.1% crystal violet solu-
tion after being incubated at 37°C for 24 hours.
The red-stained cells were seen under an
inverted microscope after being washed twice
with PBS.

Real-time PCR detection

The mRNA levels of POLRMT in HCC cell lines,
and Huh7 and Hep3B cells after being trans-
fected with siRNA-POLRMT-1, siRNA-POLRMT-2
or pcDNA3.1-POLRMT, were determined by
gRT-PCR assays using the PerfectStart Green
gRT-PCR SuperMix Kits (TransGen Biotech,
Beijing, China). The total RNAs were extracted
by Trizol reagents (ThermoFisher, Pudong,
Shanghai, China) and the cDNAs were synthe-
sized using the PrimeScript® RT Reagent Kit
(Takara, Dalian, Liaoning, China). Thereafter,
the real-time PCR were then carried out using
the above mentioned supermix kits, and the
reaction conditions were as following: 95°C for
10 s and 60°C for 60 s, repeating for 40 cycl-
es. The relative expression of POLRMT was cal-
culated by 224t methods. GAPDH was mea-
sured as an internal control. The primers were
obtained from Generay Technologies (Pudong,
Shanghai, China), and the primer sequences
were as following: 5-CCACATCGCTCAGACACC-
AT-3’ (sense) and 5-ACCAGGCGCCCAATACG-3’
(antisense) for GAPDH, and 5-GGACTCCCCG-
GCAAAGAAG-3’ (sense) and 5-CGCCACATCC-
ACCCTGTTC-3’ (antisense) for POLRMT.

Western blot determination

Briefly, Huh7 and Hep3B cells after being trans-
fected with siRNA-POLRMT-1, siRNA-POLRMT-2
or pcDNA3.1-POLRMT, were collected and they
were lysed using RIPA buffer reagent Kkits
(ThermoFisher, Pudong, Shanghai, China) at
4°C for 15-20 min, followed by centrifugation
at 10000 rpm for 10 min at 4°C. The superna-
tants were collected and mixed with 4 x sam-
ple loading buffer (Life Technologies, Pudong,
Shanghai, China). Then, the lysates were sub-
jected to 8-12% SDS-PAGE gels. After the pro-
teins were transfered onto the PVDF mem-
branes (Millipore, Darmstadt, Germany), the
blots were blocked in TBST and 5% BSA for 1 h
at room temperature. Afterwards, the blots
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were separately incubated with primary anti-
bodies against B-Catenin (1:1000; Abcam,
Pudong, Shanghai, China), cyclin D1 (1:1500;
Abcam, Pudong, Shanghai, China), c-Myc
(1:1200; ProteinTech, Wuhan, Hubei, China),
and B-actin (1:12000; ProteinTech, Wuhan,
Hubei, China), for 12 h at 4°C. Blots were then
washed thrice with TBST and incubated with
corresponding secondary antibodies for 1 h.
Then, the blots were incubated with ECL kits
(Madison, WI, USA) and exposed in ChemiDox
XRS (Bio-Rad, Hercules, CA, USA).

ATP contents detection

The ATP contents was measured using Beyo-
time Biotechnology’s ATP content detection kits
(Nantong, Jiangsu, China). Briefly, the Huh7 and
Hep3B cells after being transfected with siRNA-
POLRMT-1, siRNA-POLRMT-2, were respectively
placed in six-well plates, followed by being
lysed with lysate buffer solution (Beyotime
Biotechnology, Nantong, Jiangsu, China). The
lysates were collected and centrifuged at
12,000 g for 5 min at 4°C. Then, the total pro-
tein concentration of each sample was quanti-
fied using BCA assay kits (Beyotime Biote-
chnology, Nantong, Jiangsu, China). After that,
the samples of each groups were added into
ATP measurement solution, and the ATP con-
tents were determined by using a fluorescence
microplate reader. The relative ATP contents
were standardized by the total protein
contents.

Data collection and the screening of differen-
tially expressed genes (DEGs)

The gene expression data and clinical informa-
tion from tumor and normal tissues of liver
hepatocellular carcinoma (LIHC) were down-
loaded from TCGA datasets. The 335 lactate
related genes (LRG) were selected from
MSigDB database (https://www.gsea-msigdb.
org/gsea/index.jsp). The genes which were sig-
nificantly correlated with overall survivals in
HCC based on TCGA data (UALCAN-OS) were
collected from UALCAN database (https://ual-
can.path.uab.edu/index.html). The deferential-
ly expressed genes (DEGs) in HCC based on
TCGA data were analyzed by using R software
“limma” package, and P-value < 0.05 and
|log2(FC)| > 1 were defined as the threshold of
DEGs. The overlap DEGs among TCGA-DEGs,
LRG and UALCAN-OS were obtained by using
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Venny2.1 (https://bioinfogp.cnb.csic.es/tools/
venny/). The heatmap and volcano map in the
presented study were generated by using R
package “ggplot”.

Gene functional enrichment and gene correla-
tion analysis

Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis were car-
ried out using R software package “clusterPro-
filer”. For multi-gene correlation analysis, the
gene expression data in HCC were downloaded
from TCGA database (different HCC grades,
TCGA-LIHC) and International Cancer Genome
Consortium (ICGC) database (https://icgc.
org/). The multi-gene correlation heatmap
was displayed by the R software package
“ggstatsplot”.

The immune infiltration analysis

Two algorithms, including CIBERSORT and
XCELL, were applied for the analysis of immune
infiltration in HCC through R software based
on TCGA data. To assess the immune score, we
used R software package “immuneeconv”, and
the immune checkpoint genes expression in
different groups were visualized by R software
package “ggplot2”. The immune networks of
common DEGs or POLRMT with kinds of
immune cells were analyzed by R software
package “immuneeconv” and constructed by
using R software package “ggClusterNet”. The
tumor mutation burden (TMB) and microsatel-
lite instability (MSI) analysis of POLRMT in pan-
cancers were also carried out by using R
software.

Online websites for bioinformatics analyses

The DEGs or POLRMT expression, various sur-
vivals, genetic changes (SNV and CNV) across
pan-cancers or in HCC, were analyzed by using
the Gene Set Cancer Analysis (GSCA) database
(http://bioinfo.life.hust.edu.cn/GSCA/#/) or TI-
MER 2.0 database (http://timer.cistrome.org/).
The Human protein atlas (HPA, https://www.
proteinatlas.org/) was utilized for analyzing the
POLRMT protein expression in pan-cancers
and its immunohistochemistry in HCC tumor
tissues. GeneMania (https://GeneMANIA) data-
base to analyze genes or proteins which were
able to interact or co-express with POLRMT.
The CCLE database (https://portals.broadinsti-
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tute.org/ccle) was queried for transcriptome
information from HCC cell lines. GEPIA data-
base (http://gepia.cancer-pku.cn/) was utilized
for analyzing gene expression and survivals.

Statistical analysis

Statistical analysis was performed using
SPSS16.0 statistical software (SPSS, Chicago)
and R version 3.5.2. Values were expressed as
mean + SEM. Multiple group comparisons were
made using one-way analysis of variance. To
determine statistical significance, we applied a
cutoff of P < 0.05.

Results

Verifying overlap DEGs in HCC and functional
enrichment analysis

To discover the potential therapeutic target of
HCC based on 335 lactate-related genes
(LRGs), we first employed R software to obtain
the aberrantly differentially expressed genes
(DEGs) in HCC tumor tissues compared with
HCC adjacent normal tissue samples. The
DEGs were consisted with 2451 up-regulated
genes and 446 down-regulated genes. Then,
the genes with significant overall survival (OS)
in TCGA-LIHC were obtained by using UALCAN
database (https://ualcan.path.uab.edu/index.
html), and there were 5759 genes. Conse-
quently, we certified 20 overlap genes of TCGA-
up-DEGs, LRGs and UALCAN-OS, and only 2
overlap genes of TCGA-down-DEGs, LRGs and
UALCAN-OS (Figure 1A). Afterwards, we per-
formed a univariate Cox regression (uniCox)
analysis of these 22 DEGs, and the 21 survival-
related DEGs (except AARS2) were retained for
further analysis (Figure 1B). The 21 DEGs were
then subjected to gene functional enrichment
analyses including GO analysis and KEGG anal-
ysis. The results from GO analyses demonstrat-
ed that the 21 DEGs were related with tRNA
modification, mitochondrial RNA metabolic pro-
cess, tRNA metabolic process, D-lactate dehy-
drogenase (cytochrome) activity, catalytic activ-
ity, acting on a tRNA, tRNA binding catalytic
activity, acting on RNA, mitochondrial respira-
tory chain complex lll, mitochondrial protein-
containing complex, mitochondrial matrix
(Figure 1C-E). The KEGG analysis revealed that
the 21 DEGs were correlated with Terpenoid
backbone biosynthesis (Figure 1F).
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Figure 1. Screening overlap DEGs and functional enrichment analysis. A. Venn diagram of the DEGs, prognostic
genes and LRGs. B. Univariate Cox regression (uniCox) analysis. C-E. GO analysis. F. KEGG analysis.

The DEGs’ expression, genetic variants, and
methylation analyses in pan-cancer

Next, we sought to explore the mRNA ex-
pression, genetic changes, and methylation
status of the above-selected 21 DEGs across
TCGA cancers. By employing GSCA database
(http://bioinfo.life.hust.edu.cn/GSCA/#/), the
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21 DEGs’ mRNA expression was investigated
and the bubble plots presented that the most
of the 21 DEGs were significant up-regulated in
many cancer types including LUSC, LIHC, LUAD,
STAD, BRCA, BLCA and COAD (Supplementary
Figure 1A). The DEGs’ expression in various
cancers’ stages including clinical stages and
pathological stages was also evaluated, and
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the data suggested that there were expression
differences of these DEGs in clinical stages
and pathological stages of many TCGA cancers
such as UVM, UCS, UCEC, OV, LIHC, COAD
(Supplementary Figure 1B). Subsequently, the
single nucleotide variant (SNV) mutation fre-
quency of DEGs was analyzed, and the data
revealed that the variant classification of these
DEGs was mainly missense mutation, and the
top 10 mutated genes were POLRMT, CDAN1,
CHEK2, KIF23, HMGCS2, DNM1L, DARS2,
IRAK1, GTPBP3, and POLG2 (Supplementary
Figure 1C). Moreover, the copy number varia-
tion (CNV) mutation frequencies of these DEGs
were also explored, and the data from the pie
plots displayed that the 21 DEGs had CNV
especially heterozygous amplification in most
cancers (Supplementary Figure 1D). Besides,
the methylation of these DEGs were studied,
and we found that most of the DEGs were low
methylation in kinds of cancers particularly in
KIRC, LUSC, KIRP, BLCA, HNSC and BRCA
(Supplementary Figure 1E).

The correlation analyses of DEGs based on
TCGA and ICGC databases

The DEGs might exist correlations between
each other in HCC tumor tissues. We thereby
next attempted to discover the correlation dif-
ference of the DEGs in different grades of HCC
based on TCGA and ICGC databases. The four
grades (grade 1, grade 2, grade 3 and grade 4)
of HCC samples from TCGA database respec-
tively had 55, 177, 122 and 12 samples. We
then analyzed the correlations of the 21 DEGs
in these four grades of HCC, and we found that
the down-DEGs (HMGCS2 and LDHD) were neg-
ative correlation with other DEGs in all these
four HCC grades’ samples, while other up-DEGs
were all positive correlation with each other
(Figure 2A-D). Similar results were observed
in ICGC-liver cancer-RIKEN sub-database (161
HCC samples) that the up-DEGs were positive
related with each other, and the two down-
DEGs (HMGCS2 and LDHD) were negative relat-
ed with other DEGs (Figure 2E). However, the
results from ICGC-liver cancer-France sub-
database (240 HCC samples) were some differ-
ent. The data displayed that HMGCS2 and
LDHD were positively correlated with most up-
DEGs, which might imply that the HCC tumor
samples had very complex heterogeneity
(Figure 2F).
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Identification of the molecular subtypes of
HCC using DEGs

We next wonder whether the 21 DEGs were
capable to distinguish the TCGA-LIHC smaples
into different molecular subtypes. To achieve
that, the R software “ConsensusClusterPlus”
package was applied to identify molecular sub-
types of 371 HCC samples. After analysis, the
consensus cumulative distribution function
(CDF) plot, the delta area, the consensus mat-
rix were obtained, and the data suggested that
the 371 HCC samples was able to be divided
into two molecular subtypes including C1 group
(103 HCC samples) and C2 group (268 HCC
samples) using the 21 DEGs (Figure 3A-C). The
heatmap of these two molecular subtypes was
presented in Figure 3D. In addition, the overall
survival difference of these two molecular sub-
types was also investigated, and the results
proved that C1 group had poor survivals than
that of C2 group (Figure 3E).

Clarification of the deferentially expressed
genes in the two HCC molecular subtypes

Since our above data had revealed that the 21
DEGs could divided 371 TCGA-LIHC samples
into two subgroups (C1 group included 103
HCC samples and C2 included 268 HCC sam-
ples), we next sought to verify the DEGs of
these two molecular subtypes which might be
able to help finding potential therapeutic target
genes in HCC. Using R software, we obtained
1156 up-DEGs and 322 down-DEGs (group 1
vs. group 2), and the heatmap and volcano map
of these DEGs were presented in Figure 4A,
4B, respectively. The gene ontology (GO) analy-
ses including biological processes (BP), molec-
ular functions (MF), and cellular compartments
(CC) were then carried out, and the results sug-
gested that these DEGs were correlated with
metabolism, DNA replication activity and chro-
mosome (Figure 4C-E). The KEGG enrichment
analysis indicated that these DEGs were relat-
ed with DNA replication, ECM-receptor interac-
tion, Cell cycle, Bile secretion, PPAR signaling
pathway and Steroid hormone biosynthesis
(Figure 4F).

The analyses of clinical information’ difference
and DEGs’ expression in the two molecular
subtypes

In addition, we investigated the available clini-
cal data in search of a connection between this
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Figure 2. DEGs correlation analysis in HCC. A-D. The heatmaps of DEGs correlation in four grades (grade 1, grade 2,
grade 3 and grade 4) of HCC samples based on TCGA database. E. The heatmap of DEGs correlation in ICGC-liver
cancer-RIKEN sub-database. F. The heatmap of DEGs correlation in ICGC-liver cancer-France sub-database.
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Figure 3. The molecular subtypes of HCC identification based on DEGs. A. The cumulative distribution function
(CDF) curves in consensus cluster analysis. B. Area under the cumulative distribution function versus k = 2-6. C.
The consensus score matrix of all samples when k = 2. D. The heatmap related to the consensus matrix for k = 2.
E. The overall survival (OS) analysis of the two groups. C1 group: 103 HCC samples; C2 group: 268 HCC samples.

data and the genetic subtypes of HCC.
According to our results, there were significant-
ly different between the two HCC molecular
subtypes in pT stage, pTNM stage and grade,
while other clinical characters had no notable
difference between the two HCC molecular
subtypes (Supplementary Figure 2A-K). Addi-
tionally, we also evaluated the expression of
the above 21 overlap DEGs in the two HCC
molecular subtypes, trying to examine whether
the 21 overlap DEGs’ expression was similar in
the two HCC molecular subtypes when com-
pared with that in TCGA-LIHC samples and cor-
responding adjacent normal tissues. Intere-
stingly, we found that the expression of the 19
overlap up-DEGs was higher in group 1 (G1,
103 HCC samples), while the 2 overlap down-
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DEGs’ expression was lower in group 1 when
compared with that in group 2 (G2, 268 HCC
samples) (Supplementary Figure 3A). Moreover,
the genetic alteration of the two HCC molecular
subtypes were assessed, and the waterfall
plots suggested that 81.63% samples had
genetic changes in group 1, and 74.23%
samples had genetic alterations in group 2

(Supplementary Figure 3B and 3C).

Immune analysis of the two HCC molecular
subtypes

Next, we sought to investigate the immune dif-
ferent of the two HCC molecular subtypes.
Therefore, we first employed CIBERSORT score
to evaluate the difference of multiple types of
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Figure 4. Screening DEGs in the two HCC molecular subtypes and functional enrichment analysis. A. Heatmap of
the DEGs in the two HCC molecular subtypes. B. Volcano map. C-E. Gene ontology (GO) analysis. F. KEGG analysis.

immune cells between the two HCC molecular
subtypes samples. According to our data, B cell
naive, B cell memory, T cell follicular helper, T
cell regulatory (Tregs), Monocyte and Macro-
phage MO were significantly different in the
two HCC molecular subtypes (Supplementary
Figure 4A). Subsequently, the expression of the
immune checkpoints was also assessed, and
the results showed that the expression of
CTLA4, HAVCR2, LAG3, PDCD1 and TIGIT was
obviously higher in group 1 than that in group

2 (Supplementary Figure 4B). Afterwards, the
immune networks of the above 21 DEGs were

1325

also constructed respectively in the two HCC

molecular subtypes (Supplementary Figure 4C
and 4D).

Construction of the lactate-related genes prog-
nostic model

Considering the above analysis had suggested
that the 21 overlap DEGs were closely related
with HCC survivals, we thereby performed the
LASSO regression to develop the prognostic
signature based on the 21 overlap DEGs in
HCC. The coefficient of 21 overlap DEGs was
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presented in Supplementary Figure 5A. The
model can achieve the best fit when 9 of 21

DEGs were included (Supplementary Figure
5B). The formula used for risk score compu-
tation was as follows: Riskscore = (0.1526)*
DTYMK + (0.0313)*IRAK1 + (0.1487)*POLRMT
+ (0.0422)*MPV17 + (0.1525)*UQCRH +
(0.4712)*PDSS1 + (0.0389)*SLC16A3 +
(0.0506)*SPP1 + (-0.0163)*LDHD. Based on
the risk score model’s median threshold, 371
HCC patients were divided into low- and high-
risk subgroups, and the 9 genes’ heatmap
in HCC was also generated (Supplementary
Figure 5C). In addition, patients classified as
low risk had considerably longer OS than those
classified as high risk, as shown by Kaplan-
Meier analysis (Supplementary Figure 5D).
Besides, using a receiver operating character-
istic (ROC) study that took into account the
passage of time, we determined how well the
prognostic model performed. The area under
the ROC curve (AUC) for 1-, 3-, and 5-year OS
was 0.784, 0.706, and 0.728, respectively

(Supplementary Figure 5E).

Gene Set Variation Analysis (GSVA) of the 9
prognostic lactate-related genes

Since the above analyses established 9 genes
prognostic model in HCC, we next sought to use
the 9 genes (DTYMK, IRAK1, POLRMT, MPV17,
UQCRH, PDSS1, SLC16A3, SPP1, LDHD) as a
gene set to investigate their expression and
functions in pan-cancers and HCC. The GSVA
score was calculated through the R software
package “GSVA” based on GSCA database. The
GSVA score is positively correlated with the
expression of the gene set, and we found that
the 9 gene set had high GSVA score in tumor
samples than that of the normal tissues across
pan-cancers (Supplementary Figure 6A). In
addition, the GSVA score in stages (including
the pathologic stage, the clinical stage, igcccg
stage and masaoka stage) of pan-cancers was
also investigated (Supplementary Figure 6B).
Furthermore, the correlation of the GSVA score
and pathway activity was also studied, and the
data suggested that the 9 gene set was posi-
tively correlated with apoptosis, cell cycle and
EMT in most TCGA cancer types (Supple-
mentary Figure 6C). Besides, the survivals
(including OS, PFS, DSS and DFI) between high
and low GSVA score in pan-cancers were fur-
ther evaluated, and the results demonstrated
that higher GSVA score had lower OS, PFS, DSS
and DFIl in many cancer types especially in
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CHOL, HNSC, KIRC, LGG, LIHC, LUAD and MESO
(Supplementary Figure 6D). The detailed OS,
PFS, DSS and DFI analyses of the high and low
GSVA score in TCGA-LIHC were presented in
Supplementary Figure 7A-D, respectively. Fin-
ally, the correlation between GSVA score and
many kinds of signalings were studied, and we
found that GSVA score was positively relevant
with Cell Cycle, Apoptosis and EMT pathways,
while negatively correlated with Hormone AR,
DNA Damage Response, Hormone ER, PI3K/
AKT, TSC/mTOR, RAS/MAPK and RTK signal-

ings in HCC (Supplementary Figure 7E).

The mRNA expression, protein levels, methyla-
tion, SNV and CNV of POLRMT in pan-cancers

Given that the above analyses revealed that
the lactate-related genes, especially the 9
prognostic model genes, were closely related
to HCC cells functions or tumor-related signal-
ings, we further selected POLRMT, a mitochon-
drial DNA-directed RNA polymerase which is
closely relevant with cancer cell proliferation,
invasion and metabolism, to further investigate
whether it is a potential target in HCC and its
functions were remained unclear in HCC [20].
The mRNA levels and protein expression across
cancer types were respectively explored by
using TIMER 2.0 database and HPA database
(Supplementary Figure 8A and 8B). In addition,
the methylation landscape of POLRMT across
cancers were investigated by using GSCA
database and the data suggested that POL-
RMT was low mehylation in kinds of cancers
including BLCA, BRCA, COAD, DLBC, LUAD,
LUSC, PRAD, STAD and TGCT (Supplementary
Figure 8C). Furthermore, data from the SNV
study using GSCA database showed that the
mutation frequency of POLRMT was notably
high in UCEC, COAD, SKCM, STAD and CESC
(Supplementary Figure 8D). The CNV of POL-
RMT across cancers was also evaluated using
GSCA database, and the pie plots demonstrat-
ed that POLRMT had heterogeneous amplifica-
tion in ACC, GBM, TGCT, COAD and LGG, while
heterogeneous deletion in OV, UCS, LUAD,
BRCA, STAD, SKCM and ESCA (Supplementary

Figure 8E).

Immune infiltration analyses of POLRMT in
pan-cancers

We next attempted to investigate the correla-
tion of POLRMT with immune infiltration in
TCGA cancers using CIBERSORT algorithm and

Am J Cancer Res 2024;14(3):1316-1337
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XCELL algorithm. Data from the CIBERSORT
algorithm suggested that POLRMT was posi-
tive correlation with y0 T cells, CD4+ T cells,
Neutrophil, Monocyte, Macrophage (Supple-
mentary Figure 9A). Another algorithm XCELL
also revealed that POLRMT was positively rele-
vant with the majority of immune cells including
immune score, Tregs, CD8+ T cells, Neutrophil,
Monocyte, Macrophage, CD4+ T cells in pan-
cancers, which was corresponding with the
results of CIBERSORT algorithm (Supplement-
ary Figure 9B). Next, we aimed to determine if
POLRMT was related to tumor mutation burden
(TMB) and microsatellite instability (MSI) in
pan-cancers, as TMB has become a predictive
indicator for tumor immunotherapy and MSI is
a genetic change that has been shown to be
closely associated with tumor prognosis. The
data suggested that POLRMT high expression
was obviously correlated with TMB and MSI in

most TCGA cancer types (Supplementary Figure
9C and 9D).

The mRNA expression, protein levels, meth-
ylation, SNV, CNV and immune networks of
POLRMT in HCC

The results from the GEPIA database displayed
that POLRMT mRNA levels were higher in HCC
tumor tissues than that of the adjacent normal
tissues (Supplementary Figure 10A). Similar
results were also observed using the ICGC-liver
cancer-RIKEN sub-database (Supplementary
Figure 10B). The protein levels of POLRMT were
also higher in HCC tumor tissues when ana-
lyzed by UALCAN database (Supplementary
Figure 10C). Besides, the immunohistochemis-
try based on HPA database of POLRMT in
HCC tumor samples also demonstrated that
POLRMT expressed in HCC tumor tissues
(Supplementary Figure 10D). The overall sur-
vival (OS) analysis from UALCAN database and
disease free survival (DFS) from GEPIA data-
base proved that high expression of POLRMT
had poor OS and PFS in HCC (Supplementary
Figure 10E and 10F). Although the somatic
mutation rate of POLRMT in HCC was low
(0.55%), about one-third of the HCC samples
had CNV of POLRMT (Supplementary Figure
10G and 10H). Besides, the immune networks
of POLRMT in HCC were further assessed by
using CIBERSORT and XCELL algorithms, and
the data suggested that POLRMT was closely
relevant with multiple types of immune cells in
HCC (Supplementary Figure 11).
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Interacting network of POLRMT and prognostic
model construction based on POLRMT inter-
acting genes

We utilized the GeneMania database to look for
genes or proteins that potentially interact or co-
express with POLRMT in order to learn more
about the complex network of interactions
between POLRMT and other genes. The inter-
acting network was presented in Supplement-
ary Figure 12A, and the interacting genes were:
TFB2M, TFAM, MTERF1, TFB1M, MTRES1,
TEFM, MRPL58, COX10, HECW2, TARDBP,
MRPL12, HIF1A, SIRT7, RUVBL2, ATP5F1D,
MLH1, PNPLA6, POLR2E, PKN1, TRIM2S8.
Afterwards, we employed the LASSO regres-
sion to develop a prognostic signature based
on the 20 POLRMT interacting genes. The coef-
ficient of 20 POLRMT interacting genes was

presented in Supplementary Figure 12B. The
model can achieve the best fit when 10 of 20

genes were included (Supplementary Figure
12C). The formula used for risk score com-
putation was as follows: riskscore = (0.007)*
TFB2M + (0.1538)*MTRES1 + (0.0049)*
MRPL58 + (-0.2458)*HECW2 + (0.3682)*
TARDBP + (0.1447)*HIF1A + (0.0693)*SIRT7 +
(0.0522)*RUVBL2 + (0.2796)*POLR2E +
(0.0402)*TRIM28. Subsequently, the TCGA-
LIHC samples were divided into low- and high-
risk subgroups according to the above risks-
core. The heatmap of the 10 genes, and
patients’ alive and dead status were presented
in Supplementary Figure 12D. Then, the overall
survival of the low- and high-risk subgroups
was analyzed and the patients with high-risk
had poor OS than that of the patients with low-
risk (Supplementary Figure 12E). Additionally,
the area under the ROC curve (AUC) for 1-, 3-,
and 5-year OS was also calculated, and the
value was respectively 0.738, 0.682 and 0.704

(Supplementary Figure 12F).

Real-time PCR assays detecting the POLRMT
expression in HCC cells under various condi-
tions

Since the above studies had uncovered the
potential important roles of POLRMT in HCC,
we next attempted to carry out experiments to
verify whether POLRMT had critical effects on
HCC tumor cells functions. To that purpose, we
first employed CCLE database to explore the
POLRMT expression in kinds of HCC cell lines.
As shown in Figure 5A, nearly all the 25 HCC
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cell lines highly expressed POLRMT. Next, we
performed qRT-PCR assays to assess the
POLRMT expression in LO2, JHH-2, HepG2,
Hep3B, Huh-7, SMMC-7721, SNU-423, SNU-
387 and SNU-449 cells. The results proved
that POLRMT expression was much higher in
Hep3B and Huh-7 cells when compared with
other HCC cell lines or normal liver cell line LO2
(Figure 5B). Hence, we next selected Huh-7 and
Hep3B cells for the following experiments.
Subsequently, the siRNAs targeting POLRMT
(siRNA-POLRMT-1 and siRNA-POLRMT-2) were
obtained and plasmids over-expressing POL-
RMT (pcDNA3.1-POLRMT) were constructed.
These siRNAs and plasmids were transfected
into Huh-7 and Hep3B cells, respectively. The
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data from the gRT-PCR assays and western blot
indicated that siRNA-POLRMT-1 and siRNA-
POLRMT-2 were able to significantly reduce the
POLRMT expression (Figure 5C and 5E) and
pcDNA3.1-POLRMT could obviously promote
the expression of POLRMT (Figure 5D and 5F).

The silence of POLRMT affects HCC cells func-
tions and energy metabolism

Next, CCK-8 assays were carried out to assess
the affections of POLRMT on HCC cellular via-
bility when the cells were transfected with siR-
NA-POLRMT-1, siRNA-POLRMT-2 or pcDNA3.1-
POLRMT. The results demonstrated that the
POLRMT depletion dramatically reduced the
proliferation of Huh-7 and Hep3B cells, while
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in Huh7 and Hep3B cells, while promoting POLRMT expression increased the ATP contents.

the POLRMT overexpression notably increased
the cellular proliferation (Figure 6A and 6B).
Then, the EdU examination was also performed
to assess the cellular proliferation of HCC cells
under various treatment. The data indicated
that elevated expression of POLRMT signifi-
cantly increased the proliferative HCC cells,
while silencing POLRMT expression obviously
reduced the number of HCC cells (Figure 6C
and 6D). Afterwards, the transwell chambers
were utilized for the determination of the migra-
tion abilities of HCC cells after POLRMT was
knocked down or accelerated expression. As
the results displayed in Figure 6E and 6F,
impeding the POLRMT expression significantly
attenuated the migration of both Huh-7 and
Hep3B cells, while restoring the POLRMT ex-
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pression was able to enhance the HCC cells
migration. Since previous reports had indicated
that POLRMT depletion was able to disrupt
mitochondrial functions, we thereby next mea-
sured the ATP contents in HCC cells after
POLRMT was knocked down. The data demon-
strated that silencing POLRMT expression
remarkably decrease the ATP contents in Huh7
and Hep3B cells, while enhancing POLRMT
expression obviously increased the ATP con-
tents (Figure 6G and 6H).

Identification of the differentially expressed
genes in POLRMT high and low expression
HCC samples

Next, the 371 HCC samples based on TCGA
database was separated into POLRMT high
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Figure 7. The DEGs identification in POLRMT high and low expression HCC samples. A. Heatmap. B. Volcano plot. C.

GO analysis. D. KEGG analysis.

(G1: 186 HCC samples) and low (G2: 185 HCC
samples) expression group, and the DEGs (221
up-regulated genes and 88 Ilow-regulated
genes when G1 compared with G2) were veri-
fied. The heatmap and volcano plot were
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respectively shown in Figure 7A and 7B.
Subsequently, the functional analyses were
conducted including GO and KEGG analyses.
The GO analysis revealed that the DEGs were
associated with the regulation of Wnt signaling
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pathway, ribonucleoprotein complex biogene-
sis, ribosome biogenesis, translational initia-
tion, viral gene expression, viral transcription,
response to zinc ion, small molecule catabolic
process, stress response to copper ion, stress
response to metal ion, transition metal ion
homeostasis and zinc ion homeostasis (Figure
7C). The KEGG analysis revealed that these
DEGs were correlated with Wnt signaling path-
way, TGF-beta signaling pathway, Spliceosome,
Signaling pathways regulating pluripotency of
stem cells, Ribosome, and kinds of metabolism
(Figure 7D).

POLRMT modulated Wnt/B-Catenin signaling
in HCC cells

To further uncover the potential molecular
mechanism by which POLRMT regulated the
HCC tumor cells functions, we next conducted
the correlation analysis between 150 genes
relevant with Wnt signaling, because numerous
reports had demonstrated that Wnt signaling
played essential roles in modulation tumor
development and progression. The heatmaps
of the correlation between POLRMT and 150
genes relevant with Wnt signaling were gener-
ated by the R software package “ggstatsplot”,
and the data proved that POLRMT was posi-
tively correlated with most of the Wnt signaling-
related genes (Figure 8A). In addition, the de-
tail analyses using GSCA database further cer-
tified that POLRMT was notably positively cor-
related with three critical Wnt/B3-Catenin signal-
ing related genes including CTNNB1, CCND1
and c-MYC (Figure 8B-D). Finally, we carried out
western blot assays to determine the expres-
sion of Wnt/B-Catenin signaling related critical
factors in HCC cells when POLRMT was deplet-
ed or overexpressed. The results suggested
that impeding the POLRMT expression signifi-
cantly attenuated the protein levels of
B-Catenin, Cyclin D1 and c¢-Myc in both Huh-7
and Hep3B cells, while restoring the POLRMT
expression was able to remarkably enhance
these three protein expression in HCC cells
(Figure 8E and 8F).

IC50 scores analysis of drugs targeting HCC in
POLRMT high and low expression groups

Considering our above studies had indicated
that POLRMT might be a potential target in
HCC, we next sought to investigate the IC50
scores of kinds of drugs used in liver cancer
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treatment based on POLRMT high and low
expression. According to the data from
GDSC database (https://www.cancerrxgene.
org/), the IC50 scores of Talazoparib, Gefitinib,
Cisplatin, Trametinib and Dasatinib in POLRMT
high expression group (G1) were higher than
that in POLRMT low expression group (G2),
while Crizotinib, Gemcitabine, Sorafenib, Tamo-
xifen, 5-Fluorouracil, and Ruxolitinib in POLRMT
high expression group were lower than that in
POLRMT low expression group, and there were
no significant difference of other drugs between
POLRMT high and low expression groups

(Supplementary Figure 13).

Discussion

The prognosis of HCC varies depending on indi-
vidual factors such as the patient’s health sta-
tus, the type of cancer, the stage of the dis-
ease, and the treatment methods used.
Generally, the prognosis for HCC is relatively
poor, especially for patients diagnosed at an
advanced stage [21]. HCC often presents with
no noticeable symptoms in its early stages,
leading to late diagnosis in many cases. Early
diagnosis and timely treatment can improve
the prognosis [22, 23]. For early-stage HCC
patients, if the tumor is confined to the liver
and has not spread to other parts of the body,
surgical resection may be the preferred treat-
ment option, which generally offers a better
prognosis [24, 25]. However, for patients with
advanced HCC, where the disease has already
spread to other organs, the treatment becomes
more challenging, resulting in a poorer progno-
sis. In recent years, there have been some
positive advancements in HCC treatment,
including the use of immunotherapy and tar-
geted therapy. These novel treatmentapproach-
es are still under research and application, pro-
viding more treatment options for patients [26,
27]. However, for advanced HCC cases, the
cure rate remains relatively low. Identification
of novel biomarker for HCC patients is very
important. In this study, our attention focused
on lactate-related genes.

Lactate metabolism and HCC are closely relat-
ed. Lactic acid metabolism is an essential bio-
chemical process within cells, closely associat-
ed with energy production and cell survival
[28]. When cells need energy, they metabolize
glucose (glycolysis) to produce lactic acid, a
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respectively. E, F. Western blot assays detect the protein levels of B-Catenin, Cyclin D1 and c-Myc in Huh-7 and

Hep3B cells after treatment, respectively.

process known as anaerobic metabolism.
Under normal conditions, the produced lactic
acid is transported to the liver through the
body’s lactate clearance system, where it is fur-
ther converted into energy or re-synthesized
into glucose (gluconeogenesis) [29, 30]. How-
ever, in certain circumstances, the cell’s meta-
bolic processes may become abnormal, lead-
ing to excessive production of lactic acid, sur-
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passing the liver's metabolic capacity, resulting
in lactic acid accumulation (lactic acidosis).
This phenomenon is particularly common in
tumor cells. Tumor cells often proliferate at an
unusually rapid rate, and to meet their energy
demands, they frequently rely on anaerobic
pathways (i.e., lactic acid production pathway)
to generate large amounts of energy [15, 31]. In
this study, we analyzed TCGA datasets and
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identified 21 differentially expressed LRGs
that were significantly associated with overall
survival in HCC patients. These genes are
involved in various important biological pro-
cesses related to tRNA modification, mitochon-
drial RNA metabolism, and catalytic activities.
Furthermore, they are associated with mito-
chondrial respiratory chain complexes and ter-
penoid backbone biosynthesis. These findings
suggest that these genes may play crucial rol-
es in HCC development and progression and
could potentially serve as therapeutic targets
for the treatment of HCC. Then, we sought to
explore the mRNA expression, genetic changes,
and methylation status of the above-selected
21 DEGs across TCGA cancers. Our findings
indicate that the 21 DEGs identified in this
study have widespread dysregulation across
multiple cancer types, with potential implica-
tions in cancer progression and development.
These genes may serve as important targets
for further investigation and potential thera-
peutic intervention in pan-cancer studies. In
addition, the analysis of the 21 DEGs in HCC
across TCGA and ICGC databases revealed
consistent positive correlations among up-reg-
ulated DEGs in various HCC grades, indicating
potential co-regulation during HCC progression.
In contrast, down-regulated DEGs (HMGCS2
and LDHD) consistently exhibited negative cor-
relations with other DEGs across different HCC
grades and databases, implying a distinct regu-
latory role. However, the correlation patterns
showed some variations in the ICGC-liver can-
cer-France sub-database, suggesting complex
heterogeneity within HCC tumor samples.

The immune microenvironment refers to the
interaction between immune cells, inflammato-
ry factors, cytokines, and other immune-relat-
ed components with tumor cells in the tumor
microenvironment [32]. In HCC, the immune
microenvironment plays a crucial role, influenc-
ing tumor development and treatment out-
comes. The immune microenvironment in HCC
typically includes two states: immune suppres-
sion and immune activation. Immune suppres-
sion indicates the presence of numerous
immune inhibitory cells, such as regulatory T
cells (Tregs), tumor-associated macrophages
(TAMs), and immune-suppressive cytokines
(e.g., TGF-B and IL-10) [33, 34]. These immune
inhibitory factors contribute to suppressing
the immune system’s attack on tumor cells,
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enabling tumors to evade immune clearance
and promoting tumor proliferation and metas-
tasis [35, 36]. On the other hand, immune acti-
vation state signifies the presence of active
immune cells, such as cytotoxic T lymphocytes
(CTLs) and natural killer (NK) cells, surrounding
the tumor. These immune cells recognize and
attack tumor cells, exerting an anti-tumor
effect. Immune activation helps to limit tumor
growth and dissemination, facilitating tumor
regression. The immune microenvironment in
HCC significantly impacts tumor treatment and
prognosis. Some immunotherapies, such as
immune checkpoint inhibitors, have shown
promising results in HCC treatment. However,
due to the complexity of the immune microenvi-
ronment in HCC, current treatment outcomes
are still limited. In this study, we found that the
21 DEGs were able to distinguish the TCGA-
LIHC samples into two molecular subtypes, C1
and C2, and there was a significant difference
in overall survival between these subtypes.
These findings suggest that these DEGs might
play a crucial role in determining the molecular
heterogeneity of HCC and have potential impli-
cations for prognostic stratification and target-
ed therapies in HCC patients. Besides, we
observed that the two HCC molecular subtypes
exhibit differences in immune cell composition
and immune checkpoint expression, indicating
potential variations in the tumor immune micro-
environment and immune response between
the subtypes. These results could have im-
portant implications for understanding the
immune characteristics of different HCC sub-
types and may help guide the development of
targeted immunotherapies for HCC patients.

Then, we performed the LASSO regression to
develop the prognostic signature based on the
21 overlap DEGs in HCC. Finally, we developed
a novel prognostic model using nine genes,
including DTYMK, IRAK1, POLRMT, MPV17,
UQCRH, PDSS1, SLC16A3, SPP1 and LDHD.
Based on these analysis results, the study
found that among 371 HCC patients, they were
classified into low-risk and high-risk subgroups
using a risk score model. Patients in the low-
risk group exhibited significantly better overall
survival (0OS) compared to those in the high-risk
group. Further time-dependent receiver operat-
ing characteristic (ROC) analysis evaluated the
predictive model’s efficacy, with AUC values of
0.784, 0.706, and 0.728 for 1-year, 3-year, and
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5-year 0S, respectively. These findings indicat-
ed that the prognostic model effectively pre-
dicts the survival of HCC patients and provides
valuable information for risk stratification.
GSVA is a method used for gene expression
data analysis. It is a common technique in bio-
informatics, utilized to explore the expression
variation of gene sets across different sampl-
es. Traditional gene expression analysis typi-
cally focuses on individual genes for statistical
analysis, whereas GSVA aims to analyze pre-
defined gene sets (e.g., pathways, biological
processes, or functional modules). In this
study, in pan-cancers, the expression levels of
this set of nine genes (represented by GSVA
scores) were generally higher in tumor sampl-
es compared to normal tissues. This suggests
that these genes may play important roles in
various types of cancer. In different stages of
cancer, the GSVA scores of the set of nine
genes also show some variations. This may be
associated with the different stages of tumor
development and the diverse biological charac-
teristics of the tumors. In HCC, the GSVA scores
of the set of nine genes were positively corre-
lated with signaling pathways such as the cell
cycle, apoptosis, and epithelial-mesenchymal
transition (EMT). However, they were negatively
correlated with signaling pathways like hor-
mone AR (androgen receptor), DNA damage
response, hormone ER (estrogen receptor),
PIBK/AKT, TSC/mTOR, RAS/MAPK, and RTK
(receptor tyrosine kinase). These findings may
provide crucial clues for studying the underlying
mechanisms of HCC development. These anal-
ysis results emphasized the significance of
these nine genes in various types of cancer,
particularly in HCC.

Out of the nine prognostic LRGs, we zeroed in
on POLRMT because it is a nuclear-encoded
RNA polymerase that is essential for the pro-
duction of mitochondrial genes that code for
components of oxidative phosphorylation com-
plexes. POLRMT encodes RNA polymerase,
which synthesizes various mitochondrial RNAs
in the mitochondria, including mRNA that cod-
es for mitochondrial proteins. These mitochon-
drial proteins are essential for cellular lactate
metabolism and energy production processes.
In certain cases, mutations or abnormalities in
the POLRMT gene can lead to mitochondrial
dysfunction, affecting cellular energy metabo-
lism and lactate production [37]. Mitochondrial
dysfunction can result in the accumulation of
lactate, a condition known as lactic acidosis
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[38]. Lactic acidosis is a rare but severe genetic
mitochondrial disorder, and its symptoms may
include muscle weakness, fatigue, rapid breath-
ing, and neurological issues. Growing studies
indicated that the expressions of POLRMT was
related to various cancers, including breast
cancer, acute myeloid leukemia, osteosarcoma
and skin squamous cell carcinoma [39-42].
However, the expression and function of
POLRMT in HCC were rarely reported. In this
study, we found that the expression of POLRMT
was distinctly increased in HCC specimens
compared with non-tumor specimens. We
explored the mRNA and protein expression lev-
els, DNA methylation status, SNV frequency,
and CNV of POLRMT across various types of
cancer, using various bioinformatics databas-
es. POLRMT may play a significant role in vari-
ous types of cancer, especially in HCC. The
methylation level, mutation frequency, and
copy number variation of POLRMT vary among
different cancers, which might reflect its com-
plex role in cancer development and progres-
sion. Analysis of OS and DFS in HCC patients
revealed that high expression of POLRMT was
associated with poor survival and disease
recurrence. While the somatic mutation rate of
POLRMT in HCC was low (0.55%), approximate-
ly one third of the HCC samples showed CNV of
POLRMT. Furthermore, using CIBERSORT and
XCELL algorithms, we assessed the immune
networks of POLRMT in HCC and found that
POLRMT was closely associated with multiple
types of immune cells in HCC. Overall, these
data suggest that POLRMT may play a crucial
role in HCC, correlating with disease progres-
sion and patient survival, and may interact with
the tumor’s immune environment. These find-
ings supported the potential of POLRMT as a
possible therapeutic target in HCC. Finally, we
performed functional assays and confirmed
that knockdown of POLRMT distinctly sup-
pressed the proliferation and migration of HCC
cells, suggesting it as a tumor promotor in HCC.

The Wnt signaling pathway is a crucial intercel-
lular signal transduction system involved in
many biological processes, such as cell prolif-
eration, differentiation, polarity maintenance,
and embryonic development [43]. The Wnt sig-
naling pathway is closely associated with HCC.
Under normal physiological conditions, the Wnt
signaling pathway plays a crucial role in main-
taining the normal function and regeneration of
liver tissue [44, 45]. However, when this path-
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way undergoes abnormal activation or dysregu-
lation, it can become a key driving factor in the
occurrence and development of HCC. Enhanc-
ed activity of the Wnt signaling pathway not
only promotes tumor formation but may also
render existing tumors more invasive and prone
to metastasis [46, 47]. Some studies suggest
that the Wnt signaling pathway may be associ-
ated with the maintenance of cancer stem
cells, a small subset of cells capable of self-
renewal and driving tumor growth [48]. To fur-
ther investigate its potential molecular mecha-
nism, we conducted a correlation analysis
between 150 genes associated with the Wnt
signaling pathway. We discovered a positive
correlation between POLRMT and these Wnt
signaling-related genes. This finding suggests
that POLRMT might play a significant role in
regulating the functions of the Wnt signaling
pathway, thereby influencing the development
and progression of HCC tumor cells. The influ-
ence of POLRMT on Wnt/B-Catenin signaling
was further affirmed by our western blot as-
says, which demonstrated that depletion of
POLRMT led to a significant reduction in the
protein levels of [(-Catenin, Cyclin D1, and
c-Myc in Huh-7 and Hep3B HCC cell lines.
Conversely, overexpression of POLRMT led to a
marked increase in the expression of these
three proteins, further strengthening the propo-
sition that POLRMT may act as a regulator of
the Wnt/B-Catenin signaling pathway in HCC.

Several caveats should be noted about the
present investigation. First, Due to the nature
of a retrospective study, gaps in data and bias-
es in sample selection were unavoidable.
Second, the potential of POLRMT in HCC pro-
gression was not studied in vivo experiments.
Thus, findings in this study are waiting for fur-
ther validation by well-designed, prospective,
multicenter studies.

Conclusion

Overall, our study developed a signature for
predicting the prognosis of HCC patients based
on 9 lactate-related genes; this signature has
the potential to open up new avenues of inquiry
into the mechanisms of lactic acid metabolism
and personalized prognostic predictions as well
as provide a new therapeutic target for people
with CC. In addition, we confirmed that POLRMT
was highly expressed in HCC and its knock-
down suppressed the proliferation, migration
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and energy metabolism of HCC cells via Wnt
signaling pathway. Based on the expression of
POLRMT in HCC and its role in cell proliferation
and migration, further research on the function
and regulatory network of POLRMT is warrant-
ed to develop more precise treatment meth-
ods, particularly focusing on the modulation of
the Wnt signaling pathway.
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Supplementary Figure 1. The expression, genetic variants, and methylation analyses of DEGs across cancer types.
A. DEGs mRNA expression across cancers. The relevance of the FDR increases with increasing dot size. The bubble’s
color indicates the fold change between tumor and normal tissue. B. The clinical stages and pathological stages of
DEGs in cancers. C. SNV analysis including variant classification and the top 10 mutated genes in pan-cancers. D.

CNV percentage of DEGs in pan-cancers. E. Methylation difference of DEGs in pan-cancers.
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Supplementary Figure 3. The expression and genetic changes of the 21 overlap DEGs in the two HCC molecular
subtypes. A. The expression of the 21 overlap DEGs in the two HCC molecular subtypes. The plots were generated
by using R software. G1 group: 103 HCC samples; G2 group: 268 HCC samples. B. The waterfall plot displayed the
genetic changes in group 1 subgroup (103 HCC samples). C. The waterfall plot displayed the genetic changes in

group 1 subgroup (268 HCC samples).
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Supplementary Figure 4. Immune analysis and networks construction of the DEGs in the two HCC molecular sub-
types. A. CIBERSORT score evaluated the difference of various immune cells between the two subgroups. B. The
expression of the immune checkpoints in the two subgroups. C, D. The immune networks of the 21 overlap DEGs in
group 1 and group 2, respectively. G1 group: 103 HCC samples; G2 group: 268 HCC samples.
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Supplementary Figure 5. Identification of 9 LRG prognostic signatures in HCC. A. LASSO coefficients profiles of 21
overlap DEGs. B. Using a ten-fold cross-validation LASSO regression, we found 9 prognostic genes with a minimal
log (M) value. C. Expression patterns of the 9 prognostic signature genes in high-risk and low-risk subgroups in HCC,
together with a heatmap illustrating the relationship between risk score and survival status. D. The overall survival
analysis of the high- and low-risk subgroups. E. The ROC analysis of the 9-genes prognostic signature for predicting
the 1-, 3-, 5-year overall survival in HCC.
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Supplementary Figure 6. GSVA analysis of the 9 prognostic signature genes in pan-cancers. A. GSVA score between
tumor samples and normal tissues across cancers. The plot was generated by using GSCA database. B. GSVA score
among different stages in pan-cancers. C. The correlation of the GSVA score and various pathway activities. D. The
survival difference between high and low GSVA score in pan-cancers.
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between high and low GSVA score in HCC. E. The correlation between GSVA score and various signalings in HCC.
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POLRMT in hepatocellular carcinoma

Supplementary Figure 8. The expression, genetic changes and methylation analysis of POLRMT in pan-cancers. A.
The mRNA expression of POLRMT in pan-cancers. B. POLRMT protein expression in various cancer types. C. POLRMT

methylation between tumor and normal tissues across cancers. D. SNV analysis. E. CNV analysis.
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Supplementary Figure 9. Immune infiltration, TMB and MSI analyses of POLRMT in cancers. A. The immune in-
filtration was analyzed by CIBERSORT algorithm. B. The immune infiltration was analyzed by XCELL algorithm. C.
Spearman correlation analysis of TMB and POLRMT gene expression. D. Spearman correlation analysis of MSI and
POLRMT gene expression.



POLRMT in hepatocellular carcinoma

A GEPIA-TCGA-LIHC B 1cGC-liver cancer-RIKEN c UALCAN-HCC
= —* wilcox.texts p=2e-28 Protein expression of POLRMT in
O o - . Hepatocellular carcinoma
g 6 1, 37 *k
L. = T
2 B ” . o §
[ ¥ H S 1 i
= 3 £ — H
o x =4 g i
3 .f : T3 —
o = N : H
e ] 2, 4
= 5 - i
& Sl . -2 S —
© - : Ea
['4 2 . d 3
LIHC e - Normal Primary tumor
(num(T)=369;num(N)=50) Normal (n=202) Tumor (n=240) (n=165) (n=165)
POLRMT expression in HCC E UALCAN-0S F
; EPIA-DF
from HPA database 1.00" E:T_ﬁ:,g’:ﬂ;ﬁ:‘:,ﬁ?,:“m fevel . g;isease Free Ssurviva'
7 Lol T
Logrank p=0.031
EDJS Low Medium-expression(n=273) e ] ::‘,ﬁ',‘,‘g‘o"og;
3 5 e
F e T et I R-E
g0.05. he 2 2
] High expression (n=9m g <
2 8°
£0.25
3°* p=0.011 s
Expression level
D 0.00° 1 i .
Low expression Medium expression 0 1000 2000 3000 o = 4 @ % 0
Time in days Hontne
G POLRMT:[Somatic Mutation Rate: 0.55%)] H
NM_005035 —— .
CNYV distribution of POLRMT in LIHC tumor samples
5 |
POLRMT
1 ..
[ R
0 200 400 600 800 1000 1200 CNV type W Homo.Amp. Ml Homo. Del. Ml Hete. Amp. Ml Hete. Del. Non

‘Missense_Mutation

Supplementary Figure 10. The analysis of expression, survival and genetic changes of POLRMT in HCC. A. Rela-
tive POLRMT mRNA expression in tumor and normal samples using GEPIA database. B. POLRMT mRNA expression
based on ICGC-liver cancer-RIKEN sub-database. C. POLRMT protein expression between normal and tumor tissues
based on UALCAN database. D. The immunohistochemistry analysis of POLRMT expression based on HPA database.
E. Overall survival analysis using UALCAN database. F. Disease free survival analysis using GEPIA database. G. Mu-
tation analysis of POLRMT using GSCA database. H. CNV analysis of POLRMT using GSCA database.
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Supplementary Figure 11. The construction of the immune networks of POLRMT in HCC using XCELL and CIBER-
SORT algorithms. The red bubble represents positive correlation, blue bubble represents negative correlation. How-
ever, the red line represents positive correlation, blue line represents negative correlation. The more red or blue
color means the greater correlation, also the larger circle means the stronger correlation.
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Supplementary Figure 12. POLRMT interacting network and prognostic signature construction based on its in-
teracting genes. A. The interacting network of POLRMT was generated by using GeneMania database. B. LASSO
coefficients profiles of 20 POLRMT interacting genes. C. LASSO regression with tenfold cross-validation obtained
10 prognostic genes using minimum log (A) value. D. Expression patterns of the 10 prognostic signature genes in
high-risk and low-risk subgroups in HCC, together with a heatmap depicting the relationship between risk score and
survival status. E. The overall survival analysis of the high- and low-risk subgroups. F. Predicting 1-, 3-, and 5-year
overall survival in HCC using a signature of 10 genes: ROC analysis.

12




POLRMT in hepatocellular carcinoma

The IC50 score based on GDSC database
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Supplementary Figure 13. IC50 scores analysis of drugs targeting HCC in POLRMT high and low expression
groups.
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