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Abstract: Melanoma is a common and fatal cutaneous malignancy with strong invasiveness and high mortality 
rate. Clinically, elderly melanoma patients tend to exhibit stronger invasion ability and poorer prognosis. Given the 
heterogeneity of tumors, we analyzed the prognosis and risk assessment of melanoma through aging-related genes 
rather than age stratification. FOXM1 and CCL4 were identified to be closely associated with melanoma prognosis. 
Single-cell transcriptome analysis showed that FOXM1 was significantly up-regulated in tumor cells, while CCL4 was 
markedly elevated in immune cells. A melanoma prognostic model was constructed based on the two independent 
prognostic factors. This model showed a high accuracy in predicting the mortality of melanoma patients over several 
years. The patients in low-risk group appeared to have more immune cell infiltration and better immune therapy 
efficacy. Cellular experiments showed that CCL4 could promote apoptosis of melanoma cells through immune cells, 
and apoptosis could regulate the expression of FOXM1. In addition, the results of the spatial transcriptome and 
immunohistochemistry suggested that CCL4 was highly expressed in macrophages and the expression of FOXM1 
in melanoma cell was negatively correlated with immune cell infiltration, especially macrophages. Here, we estab-
lished a novel prognostic model for melanoma, which showed promising predictive performance and may serve as a 
biomarker for the efficacy of immune checkpoint inhibition therapy in melanoma patients. In addition, we explored 
the function of two genes in the model in melanoma.
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Introduction

Melanoma is a highly lethal tumor that occurs 
in 5% of total skin malignancies, yet melanoma 
patients account for more than 75% of deaths 
from skin malignancies [1]. The incidence of 
melanoma has increased rapidly over the past 
30 years. According to U.S. cancer statistics, 
approximately 76,000 people were diagnosed 
with melanoma in 2017 in the United States 
[2]. The global annual death toll from melano-
ma is as high as 55,500 [3]. In addition, 
20%~30% of melanoma originates in mucous 
membranes, such as vulvar melanoma, oral 
melanoma, and choroid melanoma [4-7]. The- 
refore, melanoma is a multidisciplinary con-
cerned disease because of the hidden symp-
toms at the initial stage, which make its diag-

nostic prickly for gynecologist, ophthalmolo-
gists, etc. Although many advances have been 
made in new adjuvant immunotherapy, chemo-
therapy, and targeted therapy for melanoma in 
recent years, the treatment of advanced malig-
nant melanoma remains a daunting challenge 
for clinicians.

The risk prediction models used to define high-
risk populations of disease have been widely 
applied in clinical practice. Early diagnosis, 
accurate assessment, and timely intervention 
are crucial for reducing the mortality rate of 
melanoma patients and improving their progno-
sis [8]. Traditional prognostic models are mostly 
based on patient age, gender, clinical features, 
histopathological changes, etc. However, the 
individual heterogeneity, complex pathological 
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classification, and unclear pathogenesis of ma- 
lignant melanoma lead to a difficult prognostic 
assessment of melanoma. With the booming 
development of sequencing and bioinformatics 
analysis technologies in recent years, models 
based on gene expression features for risk 
evaluation of melanoma patients have gradu-
ally attracted attention.

The middle-aged and elderly population is eas-
ily affected by melanoma. Epidemiological 
studies have shown that the prognosis of elder-
ly patients is far worse than that of young 
patients. Age, or aging, is considered the big-
gest risk factor for cancer development. Aging 
provides time for precancerous cells to accu-
mulate mutations, and the increase of age-
related senescence-associated secretory phe-
notype (SASP) can promote the development of 
melanoma. A recent study showed that the 
arrangement of extracellular matrix in the skin 
of older patients can make melanoma cells 
more invasive [9, 10]. Although there is clearly 
a correlation between aging and lifespan, age 
is not an ideal indicator for prognostic risk 
assessment of melanoma given the complex 
heterogeneity of individual tissue aging. 
Therefore, in this study, we attempted to evalu-
ate the prognosis and risk of melanoma from 
the perspective of aging-related genes, with 
the aim of providing new ideas for the construc-
tion of a prognostic assessment model for 
melanoma.

In this study, we downloaded a dataset of mela-
noma patients from the TCGA database and an 
aging-related gene set from the AgingAtlas 
database. By the COX analysis and LASSO anal-
ysis, we identified FOXM1 and CCL4 as two 
aging-related genes highly correlated with mel-
anoma prognosis. Then we successfully estab-
lished a melanoma aging-related prognostic 
model that could better reflect mortality and 
treatment response rates. Finally, we confirmed 
the relationship between these two gene 
expressions and melanoma development at 
the single-cell level, spatial transcriptome, and 
immunohistochemical level.

Methods

Genes and patients

We downloaded 499 aging-related genes from 
AgingAtlas (https://ngdc.cncb.ac.cn/aging/in- 
dex) [11]. The melanoma-related sequencing 

data from TCGA came from the Xena database 
(https://xena.ucsc.edu/) and were filtered bas- 
ed on the availability of survival data [12]. Other 
melanoma datasets are from the GEO data-
base, details can be found in the Patient char-
acteristics (Table 1).

Survival analysis

Based on the expression levels of aging-related 
genes and patient survival information, we 
used univariate Cox analysis to identify genes 
associated with melanoma prognosis. We fur-
ther focused on key genes through Lasso anal-
ysis and multivariate Cox analysis.

Single cell sequencing and spatial transcrip-
tome sequencing analysis

The melanoma single-cell transcriptome data-
set GSE115978 was downloaded from the GEO 
database (CreateSeuratObject: min.cells = 5, 
min.genes = 2000), the dataset was normal-
ized with principal component analysis (PCA) 
[13]. The dim was set to 20 according to the 
ElbowPlot results, and the data was analyzed 
by dimensionality reduction using UMAP, and 
finally, each cluster was annotated. The mela-
noma spatial transcriptome dataset was down-
loaded using the BayesSpace package, and the 
dataset was clustered through the spatialClus-
ter (q=4, d=10, nrep = 1000, burn.in = 10, init.
method = ‘mclust’, model = ‘t’) and spatialEn-
hance (q=4, d=5, nrep = 1000, burn.in = 10, 
model = ‘t’) functions, and each cell cluster was 
annotated according to biomarkers [14].

Establish a melanoma prognostic model

A melanoma prognostic model was established 
based on multivariate Cox analysis, and the 
risk score of each patient was calculated 
according to the model. Time-dependent ROC 
was used to evaluate the predictive ability of 
the model for patient survival. The prognostic 
effect of the model was validated in the 
GSE19234 and GSE65904 datasets [15, 16]. 
In addition, the predictive effect of the model 
on the efficacy of immunotherapy in melanoma 
patients was explored.

Multi-omics analysis

Data related to mutations, mRNA, methylation 
and miRNA were downloaded from Xena and 
patients were classified into high-risk and low-
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risk groups based on the prognostic model. The 
“maftool” package was used to analyze and 
visualize gene mutation data [17]. The mRNA 
(|logFC| > 0.7, P < 0.05) and miRNA (|logFC| > 
0.7, P < 0.05) data were differentially expressed 
using the “limma” and “edgeR” package, and 
targeting relationships between mRNA-miRNAs 

Multi-immunohistochemistry staining

Firstly, high-pressure acidic antigen retrieval 
was performed (place the paraffin section of 
melanoma patients into a container containing 
1× citric acid antigen repair solution (PH6.0), 
then put this container into the special pres-

Table 1. Patient characteristics
Datasets Characteristic N Median Standard deviation
TCGA-SKCM Age 455 57.75 15.45

Sex, n
    Female 171
    Male 284
Status, n
    Alive 235
    Dead 219
    Not reported 1
Stage, n
    0 6
    I 77
    II 134
    I/II nos 10
    III 170
    IV 23
    Not reported 35

GSE115978 Age 33 67.58 12.3
Sex, n
    Female 10
    Male 23

GSE19234 Age 44 63.32 18.24
Sex, n
    Female 16
    Male 28
Status, n
    Alive 20
    Dead 24
Stage, n
    III 39
    IV 5

GSE65904 Age 214 62.35 14.4
Sex, n
    Female 89
    Male 124
    Unknown 1
Status, n
    Alive 108
    Dead 102
    Unknown 4

were constructed based on the ceRNA 
hypothesis and the miRWalk database 
[18-20]. Methylation data were ana-
lyzed using a “ChAMP” package [21]. 
Enrichment analysis of related genes 
was performed using the “clusterPro-
filer” package [22].

Immune infiltration analysis

ESTIMATE is a tool for the assessment 
of tumor immune infiltration, its full 
name is Estimation of STromal and 
Immune cells in MAlignant Tumor tis-
sues using Expression data [23]. It is a 
computational tool based on gene 
expression data, which estimates the 
relative proportions of tumor cells, 
immune cells, and stromal compo-
nents in tumor tissue by analyzing 
gene expression data in tumor tissue. 
CIBERSORT is a bioinformatics method 
for analyzing transcriptome sequenc-
ing data [24]. It is capable of separat-
ing the expression profiles of different 
immune cell types from transcriptome 
data and thus inferring the relative 
abundance of each cell type. TIDE 
(Tumor Immune Dysfunction and 
Exclusion) is a bioinformatics method 
used to analyze tumor immunotherapy 
responses [25]. Its main function is to 
predict the response of tumor patients 
to immunotherapy by calculating the 
interaction pattern between tumor 
cells and immune cells. Molecular 
Functional Portrait (MFP) was used to 
analyze the malignancy of tumors and 
identify different tumor microenviron-
ments, which can classify the tumor 
microenvironment into four different 
subtypes [26]. Here, we used 
ESTIMATE, CIBERSORT, TIDE, and MFP 
to analyze the immune invasion, as 
well as the effects on treatment and 
prognosis of patients in high- and low-
risk groups.



A prognostic model based on aging-related genes in melanoma

1055 Am J Cancer Res 2024;14(3):1052-1070

sure cooker for experimental immunohisto-
chemistry, adjust the power to 1000 W, and 
time it for 7 min). Subsequently, the slides were 
treated with 5% BSA and stained immunohisto-
chemically with: CD8 (clone MX117, MXB), 
FCGR1A (R24290, ZEN-BIOSCIENCE), CCL4 
(710391, Abcam), FOXM1 (ab207298, Abcam). 
The tyramide amplification kits (PerkinElmer) 
were used for multi-immunohistochemistry 
staining. The staining residues were captured 
by the PerkinElmer Vectra multispectral imag-
ing system (PerkinElmer), and analyzed by 
inForm 2.3.1 (PerkinElmer).

Cell culture

Human melanoma cell A2058 (Abiowell) was 
cultured in high-glucose DMEM (gibco) contain-
ing 10% fetal bovine serum (EXcell) and 1% 
penicillin-streptomycin (Servicebio) and main-
tained in a 5% CO2, 37°C incubator. There are 
four groups in the CCL4 (PeproTech) stimulation 
experiment: A2058, PBMC+A2058, CCL4+A20- 
58, PBMC+CCL4+A2058, and each group has 
6 samples. The UVB irradiation experiment was 
divided into two groups: blank control, and UVB 
irradiation, and each group has 12 samples.

UVB irradiation

According to the literature, the apoptosis model 
of melanoma cell was constructed by UVB irra-
diation. The specific method was to irradiate 
A2058 with UVB (1.5 uW/cm2, 100 s) and 
observe the state of its cells after 24 hours.

Apoptosis assay

CCL4 stimulation: Peripheral blood mononucle-
ar cells (PBMCs) were obtained from healthy 
volunteers and separated by lymphocyte sepa-
ration medium Ficoll and density gradient cen-
trifugation. According to the subgroups, PBMC 
(1.5 * 106 cells/well) and A2058 cells were 
inoculated into 24-well plates and left for 24 h. 
DPBS (Servicebio) was washed twice, and cells 
were harvested after digestion with EDTA-free 
trypsin (gibco) to prepare cell suspensions.

UVB irradiation: According to the grouping, 
A2058 was inoculated into a 12-well plate and 
adhered to the wall. UVB irradiation was carried 
out at 1.5 μW/cm2 for 100 s. After 24 hours, 

cells were collected and prepared into a cell 
suspension.

Apoptosis cells were stained using the 
AnnexinV-FITC/PI Apoptosis Detection Kit 
(YEASEN), detected by multicolor flow cytome-
try (BD), and then analyzed by Flowjo software 
(10.7.1).

RT-qpcr

Total RNA was isolated from the cells using 
Trizol and reverse transcribed into cDNA us- 
ing the Evo M-MLV Reverse Transcription Kit 
(AG Accurate Biology), and RT-qPCR was per-
formed by the SYBR Green qPCR Kit (AG 
Accurate Biology) and designed primers (For- 
ward sequence: ATACGTGGATTGAGGACCACT; 
Reverse sequence: TCCAATGTCAAGTAGCGG- 
TTG) using a fluorescent quantitative PCR 
instrument (Bio-Rad). The 2-ΔΔCT method was 
utilized to measure the relative mRNA expres-
sion of FOXM1.

Cell proliferation assay

Cell proliferation was valued by the Cell 
Counting Kit-8 (CCK-8) Assay Kit (Servicebio). 
10 μl of CCK-8 reagent was added to each well 
and incubated in a cell culture incubator at 5% 
CO2, 37°C for 100 min. Absorbance at 450 nm 
was measured using an enzyme meter.

Wound healing

Cells were scraped using a 20 μl sterile plastic 
pipette tip and washed 3 times with DPBS to 
remove cell debris. 1000 μl of serum-free medi-
um was added and incubated in a cell culture 
incubator at 5% CO2, 37°C. The scratched area 
was imaged at 0 h, 24 h, 48 h and 72 h and 
measured using Imagej software (1.4.3).

Bioinformatics and statistical analysis

The bioinformatics analyses conducted within 
this study were all performed using R (4.2.2). To 
compare the mean between two conditions, a 
Student’s t-test was used. P < 0.05 was consid-
ered statistically significant. The statistical sig-
nificance is shown as *P < 0.05; **P < 0.01; 
***P < 0.001 vs. control. The codes for screen-
ing key genes are shown in Supplementary 
Table 2.
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Results

The key prognostic genes for melanoma: CCL4 
and FOXM1

To identify the relationship between prognosis 
of melanoma and aging, we analyzed the phe-
notype data of melanoma patients in TCGA and 
found that, consistent with previous studies, 
the likelihood of death increased with age 
(Supplementary Figure 1).

However, the age of onset showed significant 
heterogeneity and was not an ideal indicator for 
evaluating prognosis. To address this issue, 
this study analyzed and evaluated the progno-
sis of melanoma from the perspective of aging-
related genes. Through univariate COX analy-
sis, we obtained 127 genes associated with 
prognosis in melanoma patients (The top 40 
can be found in Supplementary Table 1), of 
which 97 genes were associated with good 
prognosis and 30 genes were associated with 
poor prognosis. By LASSO regression analysis, 
the number of key genes were further nar- 
rowed down to 5 (Supplementary Figure 2), 
namely CCL4, CREBBP, FOXM1, PARP1, and 
TNF. Finally, FOXM1 and CCL4 were identified 
as independent prognostic factors for melano-
ma patients by using multivariate Cox analysis 
(Figure 1A). Our results showed that melanoma 
patients with a better prognosis exhibited sig-
nificantly higher CCL4 expression and a lower 
FOXM1 level than those with a worse prognosis 
(Figure 1B, 1C).

The heterogeneity among different cell sub-
types in melanoma can be well revealed by the 
single-cell transcriptome analysis. Therefore, 
we explored the expression differences of 
FOXM1 and CCL4 at single-cell levels in mela-
noma. Through PCA and UMAP dimensionality 
reduction analysis, the dataset containing 
2977 cells from GSE115978 was classified 
into 13 clusters and further annotated as 8 cell 
subtypes (Figure 1D, 1E). FOXM1 was signifi-
cantly upregulated in tumor cells (Malignant) 
and cancer-associated fibroblast (CAF), while 
CCL4 was significantly upregulated in tumor 
immune infiltrating cells like T cells, NK cells 
and macrophages (Figure 1F). These results 
corroborated with the previous results of tran-
scriptome sequencing analysis, indicating that 
FOXM1 was highly expressed in melanoma 

cells and played a pro-cancer role, while CCL4 
was highly expressed in immune cells and 
played an anti-cancer role.

Construction of melanoma prognostic model 
by the CCL4 and FOXM1

An ideal prognostic model of a tumor is one 
that can give hints on the patient’s risk of future 
death and response to treatment. Combined 
the two key prognostic genes for melanoma 
(CCL4 and FOXM1), we established a melano-
ma prognostic model by multifactorial COX 
analysis: risk score of melanoma = (-0.25484 * 
CCL4) + (0.26607 * FOXM1). Based on this mo- 
del, the risk score of each patient was calcu-
lated and ranked from smallest to largest, and 
it was found that as the risk score increased, 
the likelihood of patient death also increases 
(Figure 2A-C). In addition, we analyzed the 
effectiveness of this model by the time-depen-
dent ROC analysis. At 12, 24, 36, 48, and 60 
months, the area under the curve was 0.7, 0.7, 
0.67, 0.65, and 0.65, respectively (Figure 3A), 
supporting the high accuracy of this prognostic 
model in predicting the mortality of melanoma 
patients over several years.

Furthermore, we validated the model using the 
GSE19234 and GSE65904 datasets, and as 
expected, the prognosis of patients in the low-
risk group was better (Figure 3B, 3C). To verify 
the validity of the model for immunotherapy 
prediction, we analyzed the GSE35640 datas-
et. Patients with effective or ineffective immune 
checkpoint inhibition therapy were grouped 
according to their risk scores, and significant 
improvements in the efficacy of immunothera-
py were found in the low-risk group through chi-
square analysis (Figure 3D).

The analysis of multi-omics in high-risk and 
low-risk groups of melanoma

To further confirm the classification signifi-
cance of this melanoma prognostic model, 
more differences between high-risk and low-
risk populations were analyzed by the analysis 
of multi-omics. Based on the risk score, mela-
noma patients were divided into high-risk and 
low-risk groups, and differences in the muta-
tions of genes, the expression of mRNA, meth-
ylation and miRNA between the two groups 
were analyzed in detail.
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Figure 1. The expression of CCL4 and FOXM1 is closely related to the prognosis of melanoma patients and has cell heterogeneity in tumor tissues. (A) As the Ran-
dom forest plot shown, CCL4 and FOXM1 were independent factors for the prognosis of melanoma patients. (B) The survival analysis of melanoma patients based 
on the expression of CCL4. (C) The survival analysis of melanoma patients based on the expression of FOXM1. (D) 2977 cells from GSE115978 were classified into 
13 clusters by the UMAP analysis. (E) 8 subtypes obtained from the cell clusters in (D) by the cell annotation. (F) Expression levels of FOXM1 and CCL4 in 8 subtypes 
of cells.



A prognostic model based on aging-related genes in melanoma

1058 Am J Cancer Res 2024;14(3):1052-1070

The higher the Variant Allele Frequency (VAF), 
the higher the tumor heterogeneity and the 
tumor purity are. In the high-risk group, it was 
obviously seen that the VAF of the most mutat-
ed genes was significantly higher than that of 
the low-risk group (Figure 4A, 4B). Kataegis is 
defined as a genomic fragment comprising six 
or more consecutive mutations with an average 

mutation spacing of less than or equal to 100 
bp. TCGA-FW-A3R5 is an example of a sample 
in the high-risk group, while TCGA-EE-A2MR is 
an example of a sample in the low-risk group. It 
is evident that TCGA-FW-A3R5 has more C > T 
mutations and more Kataegis as compared to 
TCGA-EE-A2MR (Figure 4C, 4D). In the compari-
son of gene mutations between the high- and 

Figure 2. Construction of melanoma prognostic model by the CCL4 and FOXM1. A. The melanoma patients were 
scored based on our melanoma prognostic model and sorted in ascending order. The horizontal axis represents 
each patient, and the vertical axis represents the corresponding risk score. B. Patients were also arranged accord-
ing to their risk scores and labeled with their follow-up duration. The horizontal axis represents each patient, and the 
vertical axis represents the duration of follow-up. Red represents patients in a survival state, and blue represents 
patients who have died. It can be observed that high-risk patients have more blue dots and shorter follow-up dura-
tion. C. Heatmap of CCL4 and FOXM1 expression in melanoma patients. Red represents high expression, and black 
represents low expression. It can be found that CCL4 is highly expressed in low-risk patients, while FOXM1 is highly 
expressed in high-risk patients.
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low-risk groups, we found more specific mutat-
ed genes in the high risk group, including 
BCL2L12, OGDH, etc. (Figure 5A).

Compared with low-risk group patients, high-
risk group patients showed higher expression 
of mRNA and lower methylation of genes relat-

ed to “AMPK signaling pathway”, whereas lower 
expression of mRNA and higher methylation 
levels of genes related to the “MAPK signaling 
pathway”, “PD-L1 expression and PD-1 check-
point pathway in cancer”, “Natural killer cell 
mediated cytotoxicity”, “Chemokine signaling 
pathway” and “Cytokine-cytokine receptor in- 

Figure 3. Validate the ability of the model to predict prognosis and immunotherapy response in melanoma patients. 
A. ROC analysis showd the effectiveness of our model in predicting prognosis in melanoma patients at 12, 24, 36, 
48, and 60 months. B. The effectiveness of the model was validated in the GSE19234 dataset, where red repre-
sents the high-risk group and blue represents the low-risk group. It is obvious that patients in the high-risk group 
have a worse prognosis. C. The validity of the model was verified in the GSE65904, and patients in the high-risk 
group had worse prognosis. D. Patients in the GSE35640 were divided into high- and low-risk groups according to 
the model, and chi-square test revealed that patients in the low-risk group had a higher effective rate of immune 
checkpoint inhibition therapy.
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teraction” (Figure 5B). These pathways have 
been reported to play important roles in the 
pathogenesis of melanoma in previous stu- 
dies.

According to the ceRNA hypothesis, a targeting 
relationship between these differentially ex- 
pressed mRNAs and miRNAs was found in our 
results (Figure 5C). All of the mRNAs in the 
Figure 5C were poorly expressed in the high-
risk group of patients, and all miRNAs associ-
ated with these mRNAs were highly expressed. 
We conducted enrichment analysis on these 
mRNAs and found that they were mainly 
enriched in signaling pathways such as “humor-
al immune response” and “positive regulation 
of T cell activation” (Figure 5D), indicating that 
the differential gene between high-risk and low-
risk group patients are epigenetically regulated 
and closely related to the immune response.

In addition, our analysis of GSE115978 also 
revealed that risk scores were higher in 

Malignant and CAF cell subpopulations and 
lower in immune cells (Figure 5E). Interestingly, 
risk scores also declined to some extent in 
patients with melanoma after treatment as 
compared to before treatment (Figure 5F). This 
result demonstrated that our model not only 
had a certain effect at the tissue level, but also 
at the cellular level.

Correlation analysis between melanoma risk 
score and tumor immunity

The above multi-omics analyses have suggest-
ed that risk scores are closely related to tumor 
immunity. So we explored this further by using 
ESTIMATE, TIDE and CIBERSORT. In the ESTI- 
MATE analysis, patients in the high-risk group 
were found to have lower StromalScore, Im- 
muneScore and ESTIMATEScore scores and 
higher TumorPurity than patients in the low-risk 
group, which was consistent with the results 
obtained in the analysis of VAF (Figure 6A-D). 
The ESTIMATE analysis results showed that in 

Figure 4. Differences in gene mutation levels between high- and low-risk groups. (A, B) As the VAF increases, tumor 
heterogeneity and purity also increase. It can be clearly seen that the VAF in the high-risk group represented by the 
(A) is significantly higher than that in the low-risk group represented by the (B). (C, D) Each arrow represents a Ka-
taegis. It can be clearly seen that the samples representing the high-risk group in the (C) have more C > T mutations 
and more Kataegis than the samples representing the low-risk group in the (D).
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the low-risk group of patients, there were more 
immune cells and stromal cells, and the malig-
nancy of the tumor was relatively lower. Com- 
pared to the high-risk group, patients in the 
low-risk group often have a better prognosis. In 
the TIDE analysis, we found that the CTL scores 
and CD274 scores were higher in the low-risk 
group than in the high-risk group, suggesting 
that there was more cytotoxic T lymphocyte 
(CTL) infiltration in the low-risk group and that 
the efficacy of immunotherapy checkpoint sup-
pression therapy might be better (Figure 6E, 
6F). In the CIBERSORT analysis, we found that 
the proportions of Plasma cells, CD8 T cells, 
activated CD4 memory T cells, Tregs, activated 
NK cells, Monocytes, and Macrophages M1 
were higher in the low-risk group patients than 
in the high-risk group, while the proportions of 
resting CD4 memory T cells, Macrophages M0, 
Macrophages M2, and resting Mast cells were 
higher in the high-risk group than in the low-risk 
group (Figure 6G). This is mutually corroborat-
ed with the previous results, and the risk score 
is closely related to immune cell infiltration. The 
lower the score, the more immune cell infiltra-
tion in the tumor microenvironment, and the 
better the prognosis may be.

We used MFP analysis to classify melanoma 
into four subtypes: immune-enriched, non-
fibrotic (IE); immune-enriched, fibrotic (IE/F); 
fibrotic (F); and immune-depleted (D). It is wide-
ly known that the tumor microenvironment can 
affect patients’ response to clinical outcomes 
and treatment. Typically, the subtypes of IE and 
IF/F have more antitumor immunity and may 
benefit more from immune checkpoint inhibi-
tion therapy. In the TCGA melanoma dataset, 
the D group had the highest risk score of mela-
noma, followed by the F group, and the IE and 
IE/F groups had the lowest scores, with no sig-
nificant difference between the two groups 
(Figure 6H). Similar results can be seen in the 
GSE22153 dataset (Figure 6I). These results 
demonstrate that our melanoma prognostic 

model can reflect the tumor microenvironment 
and predict the efficacy of immune checkpoint 
inhibition therapy.

Immune infiltration is closely related to tumor 
development, and in this study, we analyzed 
the relationship between the risk model and 
immune infiltration as well as melanoma from 
multiple perspectives using a variety of im- 
mune infiltration analysis methods. The results 
showed that patients in the low-risk group had 
better immune infiltration than patients in the 
high-risk group. Therefore, consistent with the 
previous analysis, the treatment response and 
prognosis of low-risk group patients are better 
than those of high-risk group patients.

CCL4 and FOXM1 are associated with apopto-
sis in melanoma

Flow cytometry results indicated that the co-
culture of CCL4 and PBMC (P+C) with melano-
ma cells significantly increased the apoptosis 
rate of melanoma cells compared to the NC 
group (melanoma cells), C group (melanoma 
cells + CCL4), and P group (melanoma cells + 
PBMC) (6 samples per group) (Figure 7A). 
Meanwhile, the results of CCK-8 also suggest-
ed that the cell proliferation ability of melano-
ma cells in the P+C group was significantly 
lower than the other three groups (Figure 7B). 
Therefore, we speculated that CCL4 could 
induce apoptosis of melanoma cells by stimu-
lating immune cells and reducing the malignan-
cy of melanoma. According to the literature, we 
established an apoptosis model of melanoma 
cells using UVB irradiation demonstrated the 
validity of the model by detecting the percent-
age of melanoma cell apoptosis using flow 
cytometry (12 samples per group) (Figure 7C-E) 
[27]. RT-qPCR results showed a significant 
decrease in the expression of FOXM1 in the 
apoptosis group, suggesting that FOXM1 may 
be associated with apoptosis (Figure 7F). In 
addition, the results of CCK-8 and wound heal-

Figure 5. The analysis of multi-omics in high-risk and low-risk groups of melanoma. (A) As the forestplot shown, 
there are more specific mutated genes in the high-risk group of patients. (B) Highly expressed genes and hypo-
methylated genes in the high-risk group are enriched in the “AMPK signaling pathway”, while low-expressed genes 
and hypermethylated genes are enriched in the “MAPK signaling pathway”, etc. (C) Targeting relationships between 
low-expressed mRNA and high-expressed miRNA were found in the high-risk group according to the ceRNA hypoth-
esis. (D) Enrichment analysis of miRNA-regulated mRNA in the (C) revealed that they are mainly related to immune 
pathways. (E) The total cells from GSE115978 were scored based on our melanoma prognostic model. It was found 
that high-risk cells are mainly malignant and CAF cells. (F) After treatment in patients with melanoma, the risk score 
also significantly decreased.
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ing suggested that the proliferation and migra-
tion capacity of melanoma cells in the apoptot-
ic group is reduced (Figure 7G-I). These results 

suggested that CCL4 might regulate the prolif-
eration of melanoma cells by stimulating 
immune cells, and apoptosis could reduce the 

Figure 6. Correlation between prognosis model and immune infiltration of melanoma. (A-D) The comparison of Im-
muneScore (A); StromalScore (B); ESTIMATEScore (C); TumorPurity (D) between high- and low-risk group patients 
by ESTIMATE analysis. (E, F) The comparison of CTL Score (E); CD274 Score (F) between high- and low-risk group 
patients by TIDE analysis. (G) CIBERSORT analysis of high- and low-risk group patients revealed significant increases 
in Plasma cells, CD8 T cells, activated CD4 memory T cells, Tregs, activated NK cells, Monocytes, and Macrophages 
M1 in the low-risk group. (H) By MFP analysis, melanoma patients from TCGA were divided into four subtypes: 
immune-enriched, non-fibrotic (IE); immune-enriched, fibrotic (IE/F); fibrotic (F); and immune-depleted (D). Then we 
compared the risk score of these four subtypes. (I) The comparison of the risk scores of four subtypes classified by 
MFP analysis in the GSE22153 dataset. ****denotes P value < 0.0001.
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Figure 7. CCL4 and FOXM1 are associated with apoptosis in melanoma. A. Apoptosis ratio of melanoma cells in the NC, C, P and P+C groups (n=6). B. The OD value 
of melanoma cells in the NC, C, P, and P+C groups. The lower the OD value, the weaker the proliferation ability of melanoma cells. C. Apoptosis ratio of melanoma 
cells in the NC and Apoptosis groups (n=12). D. Flow cytometric dot plot of apoptosis in NC group. E. Flow cytometric dot plot of apoptosis in Apoptosis group. F. The 
mRNA expression levels of FOXM1 between NC and Apoptosis groups. G. The OD value of melanoma cells in the NC and Apoptosis groups. H. The scratched area of 
melanoma cells at 0 h, 24 h, 48 h and 72 h. I. Proportion of scratched area of melanoma cells at 0 h, 24 h, 48 h and 72 h. *denotes P value < 0.05; **denotes P 
value < 0.01; ***denotes P value < 0.001; ****denotes P value < 0.0001.
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expression of FOXM1 and decrease the prolif-
eration and migration of melanoma cells.

We analyzed a previous melanoma spatial tran-
scriptomics dataset to study the spatial infor-
mation of CCL4 and FOXM1 in the tumor micro-
environment [28]. The BayesSpace algorithm 
was used to improve the resolution of the data-
set, and all spatial clusters were annotated into 
melanoma cells, fibroblasts, macrophages, and 
T/B cells based on biomarkers: PMEL, COL1A1, 

CD14, FCGR1A, CD19, and CD3D (Figure 8A, 
Supplementary Figure 3). FOXM1 appeared 
highly expressed in melanoma cells, while 
CCL4 showed a significant increase in macro-
phages surrounding the melanoma cells (Figure 
8B, 8C). The results of spatial transcriptome 
sequencing analysis also indicated that FOXM1 
was closely associated with melanoma cells, 
whereas CCL4 was closely associated with 
macrophages, which would instruct us to follow 
up the study of the function of the two genes.

Figure 8. Expression of CCL4 and FOXM1 in spatial position information of melanoma samples. (A) In the spatial 
transcriptome analysis of melanoma sample, four kinds of cells (macrophages, fibroblasts, melanoma cells, and 
B/T cells) were annotated. (B) The signals of FOXM1was centered in the area of melanoma cells. (C) The CCL4 ex-
pression was centered on the macrophages. (D) Multi-immunohistochemistry staining in the skin paraffin sections 
from melanoma patients, Staining: CD8 (Green), FOXM1 (Red), FCGR1A (White); The melanoma sample with high 
FOXM1 expression (see right-hand of D) appeared much less tumor-infiltrating immune cells than the sample with 
low level of FOXM1 (see left-hand of D). (E) The correlation analysis between the counts of FOXM1 and the number 
of FCGR1A+ macrophages in the same unit area. (F) Dual positive analysis results of multi-immunohistochemistry 
staining by inform analysis software. FCGR1A-CCL4- cells were shown in Blue color; FCGR1A-CCL4+ cells were shown 
in Green color; FCGR1A+CCL4- cells were shown in Red color; FCGR1A+CCL4+ cells were shown in Yellow color. The 
melanoma sample with high FOXM1 expression (see right-hand of F) appeared much less FCG1A+CCL4+ cells than 
the sample with low level of FOXM1 (see left-hand of F). (G) Based on the expression of FXOM1, melanoma samples 
were divided into FOXM1-high and FOXM1-low group. This figure showed that the percentage of FCGR1A+CCL4+ cells 
in the FOXM1-high group was significantly lower than that in the FOXM1-low group. P values were calculated with 
Student’s t-test; ***denotes P value < 0.001.
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Meanwhile, we collected tissue sections of 
patients with melanoma for multiple immuno-
histochemistry staining. We found that samples 
with high FOXM1 expression had significantly 
reduced numbers of CD8+ T cells and FCGR1A+ 
macrophages (Figure 8D). The correlation bet- 
ween the FOXM1 intensity and the number of 
FCGRA1+ cells in the same field of vision was 
analyzed, which showing a negative correlation 
between the FOXM1 and FCGR1A (Figure 8E). 
CCL4 was highly expressed in FCGR1A+ macro-
phages. The melanoma samples with low 
FOXM1 intensity show significantly increased 
CCL4+FCGR1A+ cells than those with high 
FOXM1 intensity (Figure 8F, 8G). These results 
suggested that CCL4 was highly expressed in 
macrophages surrounding melanoma cells and 
might influence the expression of FOXM1 in 
melanoma cells.

Discussion

Melanoma, known as the ‘king of cancers’, is a 
malignant tumor with high mortality, and 
metastasis rate, as well as great difficulty in 
treatment. There are nearly 20,000 new cases 
of melanoma in China each year, and the inci-
dence rate is increasing year by year. With up to 
3800 deaths per year, the mortality of melano-
ma in China accounts for 1/3 of all Asian 
patients and is ranked first in Asia [29]. 
Epidemiological data showed that the survival 
and treatment response rate of melanoma 
patients decreased as age increased [30]. 
Lung metastasis is the most common metasta-
sis site for melanoma. 70% of patients with 
metastatic melanoma die for lung metastasis. 
Recent studies have shown that the lung micro-
environment of aging individuals promotes dor-
mant melanoma cells to transform into a prolif-
erative active state, resulting in the formation 
of lung metastases [31]. Given the close rela-
tionship between melanoma and aging, we 
constructed a melanoma prognostic model 
based on aging-related genes CCL4 and 
FOXM1, in order to provide new ideas for mela-
noma risk prediction and prognosis evaluation.

When selecting variables that affect patient 
prognosis, we usually start by conducting uni-
variate Cox analysis to screen for associated 
variables, and then build a multivariate model 
to further confirm whether the variables are 
independently associated with survival. How- 

ever, when the number of variables is greater 
than the sample size, the traditional analysis 
methods of Cox regression are no longer appli-
cable. Therefore, when the number of variables 
exceeds the sample size, one must first employ 
Lasso regression for variable selection, fol-
lowed by the construction of a Cox regression 
model to analyze prognostic impact, which is 
the Lasso-Cox survival analysis model.

In this study, we found that FOXM1 and CCL4 
are independent factors in the prognosis of 
melanoma patients using Lasso-Cox survival 
analysis model. Immune cell migration is well 
known to be necessary to initiate an effective 
anti-tumor immune response. CD103+ DCs are 
thought to play a key role in helping effector T 
cells to migrate to tumor tissue areas and thus 
kill tumors [32]. The secretion of CCL4 has 
been confirmed to be essential in the recruit-
ment of melanoma dermal CD103+ DCs. The 
deficiency of CCL4 secretion function may 
result in reduced recruitment of CD103+ DCs in 
the dermis, thus preventing the initiation of 
anti-tumor cell immune responses [33, 34]. 
Moreover, it has been shown that the CCL4-
CCR5 axis-mediated migration of CD8+ T cells 
is a determining factor in distinguishing im- 
mune-infiltrating tumors from immunosuppres-
sive tumors [35].

As one key gene controlling cell proliferation, 
the abnormal activation of FOXM1 is closely 
associated with cancer cell proliferation and 
division. In normal keratinocytes, the expres-
sion of FOXM1 helps maintain keratinocytes 
high proliferative potential [36]. However, the 
abnormally high expression of FOXM1 has been 
demonstrated to be associated with poor clini-
cal prognosis in multiple tumors. FOXM1 is criti-
cal to the genetic aberration and mutation 
required for the carcinogenesis of epidermal 
cells [37].

In this study, single-cell transcriptome analysis 
showed that FOXM1 was highly expressed in 
melanoma tumor cells, whereas CCL4 was sig-
nificantly upregulated in tumor-infiltrating im- 
mune cells like T cells and macrophages. 
Further multiple immunohistochemical staining 
results revealed that the intensity of FOXM1 
expression in the tumor region of melanoma 
was negatively correlated with the number of 
tumor-infiltrating immune cells. CCL4 was high-
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ly expressed in macrophages surrounding 
tumor cells, consistent with the results from 
the spatial transcriptome. In addition, when 
FOXM1 expression was low in melanoma cells, 
CCL4 expression was increased in macro-
phages surrounding tumor cells, and there was 
a negative correlation between the two genes. 
Therefore, high expression of FOXM1 in tumor 
cells may indicate increased proliferation and 
division ability of cancer cells as well as stron-
ger immune suppression, while there is a pos-
sible association between the higher CCL4 
expression and more active tumor killing.

In the melanoma prognostic model constructed 
by the combination of FOXM1 and CCL4, the 
low-risk group appears more active immune 
response and weaker tumor proliferation abili-
ty, while the high-risk group may represent a 
stronger mitosis of cancer cells and less recruit-
ment of anti-tumor immune cells. Hence, this 
model can well predict the 5-year survival rate 
of patients and the response rate to immune 
checkpoint therapy. The decrease in risk score 
for those melanoma patients after treatment 
further supports this speculation.

To further confirm the classification signifi-
cance of this melanoma prognostic model, we 
used this model to divide melanoma patients 
into high-risk and low-risk groups, and com-
pared the differences of gene mutation and 
transcription regulation between the two 
groups in detail. At the genetic level, cancer is 
essentially an abnormal and uncontrolled cell 
growth caused by genetic mutations. The driv-
ing of the oncogenic splicing switch in BCL2L12 
can produce full-length BCL2L12, which gives 
cancer cells resistance to apoptosis and pro-
motes tumor proliferation [38]. OGDH, as one 
of the glycolysis genes, can enhance mitochon-
drial function and activate the Wnt/β-catenin 
signaling pathway, thereby promoting tumor 
development [39]. When comparing gene muta-
tions between high- and low-risk groups, we 
found that specific mutated genes such as 
BCL2L12 and OGDH were more common in the 
high-risk group. This suggests that our melano-
ma prognostic model can effectively screen 
patients who carry more driver oncogene 
mutations.

The dysregulation of DNA methylation is consid-
ered to play a major role in the inactivation of 
tumor suppressor genes or the abnormal acti-

vation of oncogenes in tumors. AMP-activated 
protein kinase (AMPK) is an important mediator 
for maintaining cellular energy homeostasis. It 
has been found that advanced cancer can trig-
ger cellular recirculation signals of AMPK to 
phagocytose cellular debris and provide large 
tumors with the nutrients needed for growth 
[40]. MITF (Microphthalmia transcription factor) 
is a transcription factor that plays a key role in 
the occurrence and metastasis of malignant 
melanoma, and is also the most important 
direct oncogene in melanoma. High expression 
of MITF is often associated with highly malig-
nant melanoma [41]. Previous studies have 
suggested that AMPK is an important regulator 
of MITF, and chemical inhibition of AMPK leads 
to a decrease in MITF protein levels [42]. In our 
melanoma prognostic model, the high-risk 
group showed high mRNA expression of AMPK 
signaling pathway-related genes as well as DNA 
hypomethylation, suggesting that aberrant acti-
vation of AMPK signaling pathway may play a 
key role in melanoma invasion progression as 
well as poor prognosis.

The miRNA, a class of small non-coding RNA 
molecules with regulatory functions, mainly 
regulate gene expression by inhibiting or break-
ing down target mRNAs at the translation level. 
As mentioned above, CCR5, as the receptor for 
CCL4, is expressed by various tumor-infiltrating 
immune cells. In our high-risk group of melano-
ma patients, CCR5 was lowly expressed, while 
the associated miRNA (miR211) was upregu-
lated. Studies have shown that the expression 
of MIR211 in melanoma cell lines can lead to 
resistance to targeted therapy, which is consis-
tent with the lower treatment response rate in 
our high-risk group [43].

The results of the multi-omics analysis showed 
that the molecular alterations in melanoma 
patients are complex, involving mutations, 
mRNA, methylation, and miRNA. Our analysis 
has revealed that that patients in the low-risk 
group perform better than those in the high-
risk group in terms of mutations, mRNA, meth-
ylation, and miRNA, which may be the reason 
why patients in the low-risk group have better 
treatment outcomes and prognosis.

Conclusion

Our study establishes a melanoma prognostic 
model based on the aging-related genes, which 
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can be used to detect high-risk melanoma pop-
ulations with poor prognosis and to predict 
immunotherapy response. In addition, popula-
tion stratification based on this model can be 
used in tumor physiology studies of melanoma 
to investigate common characteristics of those 
melanoma patients with poor treatment prog-
nosis, and thus provide ideas for subsequent 
clinical interventions and therapeutic targeting 
studies. Finally, we found that CCL4 was highly 
expressed in macrophages and might influence 
the expression of FOXM1 in melanoma cells 
through apoptosis.
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Supplementary Table 1. Prognostic related genes in patients with melanoma
Gene coef se z p
BIRC3 0.661 0.145 4.558 0
C1QA 0.539 0.144 3.749 0
CCL4 0.614 0.143 4.295 0
DDX58 0.557 0.142 3.925 0
DLL3 -0.5 0.143 -3.488 0
FBP1 0.564 0.143 3.952 0
FGF7 0.62 0.144 4.316 0
FOXM1 -0.537 0.143 -3.752 0
IL15 0.566 0.144 3.921 0
IL7R 0.557 0.144 3.858 0
JAK2 0.569 0.147 3.88 0
RELB 0.527 0.143 3.694 0
SOD2 0.643 0.143 4.49 0
SSTR3 0.5 0.142 3.523 0
STAT3 0.515 0.142 3.632 0
TLR4 0.523 0.144 3.629 0
TNFRSF11B 0.544 0.143 3.814 0
TNFSF13B 0.529 0.146 3.615 0
TRAF1 0.579 0.142 4.072 0
VCAM1 0.599 0.147 4.071 0
AXL 0.497 0.144 3.458 0.001
CBX7 0.445 0.14 3.178 0.001
CCL13 0.466 0.141 3.311 0.001
CCL7 0.459 0.141 3.263 0.001
CSF2RB 0.477 0.142 3.354 0.001
ESR1 0.482 0.141 3.417 0.001
HK3 0.473 0.142 3.328 0.001
HRAS -0.473 0.144 -3.283 0.001
IL2RB 0.464 0.142 3.262 0.001
KCNA3 0.496 0.144 3.437 0.001
PTK2B 0.478 0.141 3.386 0.001
TIMP1 0.464 0.142 3.268 0.001
TNF 0.495 0.143 3.455 0.001
IL2RG 0.444 0.143 3.096 0.002
IL7 0.443 0.141 3.131 0.002
MAP3K5 0.44 0.144 3.062 0.002
MYD88 0.445 0.141 3.149 0.002
PIK3R2 -0.429 0.141 -3.044 0.002
PRKACB 0.44 0.145 3.034 0.002

TGFB1 0.427 0.141 3.036 0.002
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Supplementary Table 2. The codes for screening key genes
rm(list=ls())
options(stringsAsFactors = F)
load(file = “step1output.Rdata”)
mm=read.csv(file = ‘genes.txt’,sep = ‘\t’,header = T)
gene=mm$Symbol
exprSet=exprSet[gene,]
exprSet=na.omit(exprSet)
table(rowSums(exprSet==0)==ncol(exprSet))
exprSet=exprSet[which(apply(exprSet,1,function(x){return(sum(x>0.00001))})>ncol(exprSet)*0.5),]
exprSet <- exprSet[apply(exprSet,1,sum)!=0,]
gene=rownames(exprSet)
a=read.csv(file = ‘fsam.txt’,sep = ‘\t’)
sam=a$sam
b=exprSet[,sam]
group_list=ifelse(as.numeric(substr(colnames(b),14,15)) < 10,‘tumor’,‘normal’)
table(group_list)
meta=read.csv(file = ‘mete.txt’,sep = ‘\t’)
library(survival)
library(survminer)
dim(expr)
dim(meta)
exprSet=na.omit(b)
head(meta)
colnames(meta)
meta[,3][is.na(meta[,3])]=0
meta[,4][is.na(meta[,4])]=0
meta$days=as.numeric(meta[,3])+as.numeric(meta[,4])
meta=meta[,c(1:2,5:8,12)]
colnames(meta)=c(‘ID’,‘event’,‘race’,‘age’,‘gender’,‘stage’,“days”)
meta$event=ifelse(meta$event==‘Alive’,0,1)
meta$age=as.numeric(meta$age)
library(stringr) 
meta$stage=str_split(meta$stage,‘ ’,simplify = T)[,2]
table(   meta$stage)
boxplot(meta$age)
meta$age_group=ifelse(meta$age>median(meta$age),‘older’,‘younger’)
table(meta$race)
meta$time=meta$days/30
phe=meta
phe$ID=toupper(phe$ID) 
phe=phe[match(substr(colnames(exprSet),1,12),phe$ID),]
colnames(phe)
phe=na.omit(phe)
exprSet=exprSet[,substr(colnames(exprSet),1,12) %in% phe$ID]
z=colnames(exprSet)
phe$ID=z
mySurv=with(phe,Surv(time, event))
cox_results <-apply(exprSet , 1 , function(gene){
    group=ifelse(gene>median(gene),‘high’,‘low’) 
    survival_dat <- data.frame(group=group,stage=phe$stage,age=phe$age,
                                                           stringsAsFactors = F)
m=coxph(mySurv ~ age + stage+ group, data =  survival_dat)
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beta <- coef(m)
se <- sqrt(diag(vcov(m)))
HR <- exp(beta)
HRse <- HR * se
tmp <- round(cbind(coef = beta, se = se, z = beta/se, p = 1 - pchisq((beta/se)^2, 1),
                                            HR = HR, HRse = HRse,
                                            HRz = (HR - 1) / HRse, HRp = 1 - pchisq(((HR - 1)/HRse)^2, 1),
                                            HRCILL = exp(beta - qnorm(.975, 0, 1) * se),
                                            HRCIUL = exp(beta + qnorm(.975, 0, 1) * se)), 3)
    return(tmp[‘grouplow’,])

})
cox_results=t(cox_results)
table(cox_results[,4]<0.05)
cox_results[cox_results[,4]<0.05,]
cox=cox_results[cox_results[,4]<0.05,]

gene=rownames(cox)
e=t(exprSet[gene,])
dat=cbind(phe,e)
dat$gender=factor(dat$gender)
dat$stage=factor(dat$stage)
colnames(dat)

library(lars) 
library(glmnet) 
exprSet=exprSet[gene,]
x=t(exprSet)
y=phe$event

model_lasso <- glmnet(x, y, family=“binomial”, nlambda=50, alpha=1)
print(model_lasso)
head(coef(model_lasso, s=c(model_lasso$lambda[29],0.009)))
plot(model_lasso, xvar = “norm”, label = TRUE)
plot(model_lasso, xvar=“lambda”, label=TRUE)
cv_fit <- cv.glmnet(x=x, y=y, alpha = 1, nlambda = 1000)
plot(cv_fit)
c(cv_fit$lambda.min,cv_fit$lambda.1se) 
model_lasso <- glmnet(x=x, y=y, alpha = 1, lambda=cv_fit$lambda.1se)
lasso.prob <- predict(cv_fit, newx=x , s=c(cv_fit$lambda.min,cv_fit$lambda.1se) )
re=cbind(y ,lasso.prob)
dat=as.data.frame(re[,1:2])
colnames(dat)=c(‘event’,‘prob’)
dat$event=as.factor(dat$event)
library(ggpubr) 
p <- ggboxplot(dat, x = “event”, y = “prob”,
                              color = “event”, palette = “jco”,
                              add = “jitter”)
p + stat_compare_means()
library(ROCR)
library(glmnet)
library(caret)
pred <- prediction(re[,2], re[,1])
perf <- performance(pred,“tpr”,“fpr”)
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performance(pred,“auc”)
plot(perf,colorize=FALSE, col=“black”) 
lines(c(0,1),c(0,1),col = “gray”, lty = 4 )
fit <- glmnet(x=x, y=y, alpha = 1, lambda=cv_fit$lambda.1se)
head(fit$beta)
choose_gene=rownames(fit$beta)[as.numeric(fit$beta)!=0]
length(choose_gene)
myexpr=x[,choose_gene]
mysurv=phe[,c(“days”,“event”)]
mysurv$days[mysurv$days< 1] = 1 
fit <- glmnet( myexpr, Surv(mysurv$days,mysurv$event), 
                              family = “cox”) 
plot(fit, xvar=“lambda”, label = TRUE)
plot(fit, label = TRUE)

e=t(exprSet[c(‘CCL4’,‘FOXM1’),])
dat=cbind(phe,e)
dat$gender=factor(dat$gender)
dat$stage=factor(dat$stage)

colnames(dat)
s=Surv(time, event) ~ CCL4+FOXM1
model <- coxph(s, data = dat )
summary(model,data=dat)
options(scipen=1)
ggforest(model, data =dat, 
                  main = “Hazard ratio”, 
                  cpositions = c(0.10, 0.22, 0.4), 
                  fontsize = 1.0, 
                  refLabel = “1”, noDigits = 4)

fp <- predict(model)
summary(model,data=dat)
library(Hmisc)
options(scipen=200)
with(dat,rcorr.cens(fp,Surv(time, event)  ))

phe=dat[,c(1:2,4,9,10,11)]

gs=c(‘FOXM1’) 
splots <- lapply(gs, function(g){
    phe$gene=ifelse(phe[,g]>quantile(phe[,g],probs = 0.5),‘high’,‘low’)
    sfit1=survfit(Surv(time, event)~gene, data=phe)
    ggsurvplot(sfit1,pval =TRUE, data = phe)
}) 
p=arrange_ggsurvplots(splots, print = TRUE,ncol = 1, nrow = 1, risk.table.height = 0.4)
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Supplementary Figure 1. Melanoma patients were grouped by age and survival analysis revealed that older pa-
tients had worse prognosis.

Supplementary Figure 2. Lasso analysis of senescence genes associated with prognosis obtained from cox analysis 
was performed to further narrow the scope of key genes.
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Supplementary Figure 3. Expression levels of PMEL, COL1A1, CD14, FCGR1A, CD19, and CD3D in the transcrip-
tome of melanoma.


