
Am J Cancer Res 2024;14(4):1466-1481
www.ajcr.us /ISSN:2156-6976/ajcr0153923

https://doi.org/10.62347/XJVE4569

Review Article
ACE2: the node connecting  
the lung cancer and COVID-19

Yan Liao1*, Ying Zhang2*, Houfeng Li2, Huixiu Hu2, Mi Li1, Chunhua Liao1

1School of Anesthesiology, Naval Medical University, Shanghai 200433, China; 2Graduate School, Hebei North 
University, Zhangjiakou 075000, Hebei, China. *Equal contributors.

Received October 15, 2023; Accepted January 4, 2024; Epub April 15, 2024; Published April 30, 2024

Abstract: Angiotensin-converting Enzyme 2 (ACE2) collaborates with Angiotensin (Ang) 1-7 and Mas receptors to 
establish the ACE2-Ang (1-7)-Mas receptor axis. ACE2 impacts lung function and can cause lung injury due to its 
inflammatory effects. Additionally, ACE2 contributes to pulmonary vasculature dysfunction, resulting in pulmonary 
hypertension. In addition, ACE2 is a receptor for coronavirus entry into host cells, leading to coronavirus infection. 
Lung cancer, one of the most common respiratory diseases worldwide, has a high rate of infection. Elevated levels 
of ACE2 in lung cancer patients, which increase the risk of SARS-CoV-2 infection and severe disease, have been 
demonstrated in clinical studies and by molecular mechanisms. The association between lung cancer and SARS-
CoV-2 is closely linked to ACE2. This review examines the basic pathophysiological role of ACE2 in the lung, the long-
term effects of SARS-CoV-2 infection on lung function, the development of pulmonary fibrosis, chronic inflammation 
in long-term COVID patients, and the clinical research and mechanisms underlying the increased susceptibility of 
lung cancer patients to the virus. Possible mechanisms of lung cancer in SARS-CoV-2-infected individuals and the 
potential role of ACE2 in this process are also explored in this review. The role of ACE2 as a therapeutic target in the 
novel coronavirus infection process is also summarized. This will help to inform prevention and treatment of long-
term pulmonary complications in patients.
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Introduction

The Coronavirus Disease 2019 (COVID-19) was 
initially identified in Wuhan in 2019 and rapidly 
spread worldwide, resulting in numerous fatali-
ties [1]. The infection mechanism of SARS-
CoV-2 was investigated and compared to SARS-
CoV. Angiotensin-Converting Enzyme 2 (ACE2) 
was discovered to play a crucial role in SARS-
CoV-2 infecting host cells. ACE2 is a key regula-
tor of the pathophysiology of several systems, 
including the cardiovascular, respiratory, renal 
and gastrointestinal systems. The widespread 
expression of ACE2 in multiple organs and tis-
sues explains why patients may develop com-
plications involving multiple organs after being 
infected with SARS-CoV-2 [2].

Of particular concern is the occurrence and 
progression of lung diseases, as they are part 
of the respiratory system that SARS-CoV-2 pri-
marily affects. Complications or pre-existing 

underlying diseases interact with pneumonia 
caused by the SARS-CoV-2 virus. Lung cancer, 
the second most common cancer worldwide 
after breast cancer, has a high mortality rate 
[3]. The routine screening, diagnosis, and treat-
ment of lung cancer have been significantly 
impacted by the COVID-19 pandemic [4]. Ne- 
vertheless, researchers have been still actively 
investigating the mutual pathophysiology of 
SARS-CoV-2 infection and various lung diseas-
es, including lung cancer.

ACE2 is a key component of the renin-angioten-
sin system (RAS) and has a wide distribution 
throughout the body. Its functions in the lungs 
are very important due to its pro-inflammatory 
and vasodilation effects [5]. Any disturbance in 
the quality or quantity of ACE2 can lead to vari-
ous diseases such as acute lung injury and pul-
monary arterial hypertension [6, 7]. ACE2 is 
highly expressed in lung cancer tissues, whi- 
ch increases the susceptibility to SARS-CoV-2 
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infection [8]. Infection with SARS-CoV-2 results 
in a decrease in ACE2 levels in host cells and 
an increase in serum levels of Ang II, leading  
to severe complications such as ARDS [9]. 
Studies are underway to determine whether 
SARS-CoV-2 infection causes other long-term 
pulmonary complications via ACE2.

This narrative review outlines the current knowl-
edge surrounding the physiological function of 
ACE2, its role as the receptor for SARS-CoV-2, 
and the importance of ACE2 in host cells in- 
fected with COVID-19. Additionally, we discuss 
the evidence demonstrating that high levels of 
ACE2 in lung cancer patients increase suscepti-
bility to SARS-CoV-2 infection. We investigat- 
ed whether SARS-CoV-2 infection has negative 
effects on pulmonary function, including lung 
cancer. Finally, the role of ACE2 targeting in the 
treatment of novel coronaviruses of recent 
years is discussed.

Pathophysiological function of ACE2 in the 
lung

Angiotensin-converting Enzyme 2 (ACE2), iden-
tified in the early 2000s in a library of genetic 
material from humans with heart failure [10], 
cleaves Ang I into Ang (1-9) and also converts 
Ang II into Ang (1-7) [11]. ACE2 is a type of inte-
gral membrane glycoprotein, which is divided 
into membrane-bound form and soluble form 
[12]. In recent times, there has been a proposal 
for the ACE2-Ang-(1-7) and Mas receptor axis  
to neutralize the impacts of the convention- 
al Renin-Angiotensin System. This novel axis 
works by expanding the blood vessels, inhibit-
ing cell growth, decreasing inflammation, and 
more [5]. As a crucial component of the RAS, 
ACE2 has been observed in various types of tis-
sues, such as the lung, heart, kidney, and intes-
tine, with its primary role being to regulate the 
volume of extracellular fluid and blood pressure 
[13]. ACE2 is most prominently expressed in 
the gastrointestinal tract, followed by the kid-
ney, testis and heart [14]. It has been reported 
that apelin signaling can increase the activity of 
ACE2 promoters, leading to increased levels of 
ACE2 mRNA and protein. However, ACE2 has 
been shown to cleave and deactivate apelin 
peptides through a negative feedback mecha-
nism. This feedback mechanism serves a pro-
tective role in cardiovascular disease [15]. 
ACE2 also functions as a chaperone protein for 

the transporter B0AT1 (SLC6A19) in the absorp-
tion of neutral amino acids in the intestine and 
kidney [16]. The balanced expression of ACE2 
and RAS has certain benefits in heart disease, 
vascular disease, diabetic vascular comorbidi-
ty, and lung disease [17]. Detailed relationships 
between the traditional RAS and the ACE2-Ang-
(1-7)-MAS axis show in Figure 1.

Although the expression of ACE2 in the lung is 
relatively low compared to other organs and tis-
sues, it plays a crucial role in acute lung injury 
and protects the lung from severe acute lung 
failure [18]. Within the lung, ACE2 has been 
identified in type II pneumocytes, ciliated epi-
thelial cells, as well as the motile cilia of epithe-
lial cells, but not in secretory goblet cells [19]. 
The expression of ACE2 is particularly low in  
the lung tissues of normal individuals, which is 
beneficial in limiting the spread of pathogenic 
microorganisms in the lung [20]. No difference 
in the expression of ACE2 has been found 
between healthy and diseased lungs. The ex- 
pression levels of ACE2 vary in different popu-
lations. In the lung, the ACE2 levels are lower in 
the elderly than in children, especially in the 
lower lung [21]. Several studies have confirm- 
ed the high expression of ACE2 in smokers, 
suggesting that long-term smoking may be a 
risk factor for COVID-19 [22, 23]. Exposure to 
enriched particles in the environment, use of 
ibuprofen, and atherosclerosis may increase 
the levels of ACE2 in the lungs [24-26].

ACE2 levels are regulated or modified by tran-
scriptional, post-transcriptional and post-trans-
lational effects. At the transcriptional level, it 
can be upregulated by transcription factors 
such as Ikaros, HNFs, GATA6, STAT3 or SIRT1, 
and downregulated by BRG1-FOXM1 complex 
or ERR α. At the post-transcriptional level, it can 
be regulated by histone modification or miRNA-
induced instability. At the level of post-transla-
tional regulation, ACE2 can be phosphorylated, 
ubiquitinated and methylated to regulate its 
activity [27]. Phosphorylated Stat3 is one of  
the major transcription factors. The expression 
of lung ACE2 is positively correlated with Stat3, 
which can increase the expression of ACE2 
stimulated by Il-6 in 16HBE cells. Additionally, 
6-O angeloylplenolin (6-OAP) is a relatively 
effective ACE2 inhibitor [28].

Evidence suggests that ACE2 plays a pivotal 
role in acute lung injury by influencing inflam-
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Figure 1. Angiotensinogen is produced in the liver and converted to ANG I by renin from the kidneys. ANG I is then 
converted to Ang II by ACE. This process promotes inflammation, fibrosis, oxidative stress, and the production of 
NO. ACE2 can convert Ang II to Ang-(1-7), which has an effect against the Ang II-AT1 axis. ACE indicates angiotensin-
converting enzyme; Ang I, angiotensin I; MasR, Mas receptor; ROS, reactive oxygen species [32] (By FigDraw).

mation and autophagy. Supplementation with 
rhACE2 may improve pulmonary hemodynam-
ics and reduce levels of oxidative stress and 
markers of inflammation [29]. By activating the 
AMPK/mTOR pathway, ACE2 is able to inhibit 
inflammation and autophagy, resulting in ame-
lioration of acute lung injury [30]. Further re- 
search has indicated that the signaling path-
ways p-ERK1/2 and p-STAT3 mediate PM2.5 
particle-induced acute lung injury. ACE2 knock-
out can increase pulmonary p-ERK1/2 and 
p-STAT3 levels in PM2.5 particle-induced acute 
lung injury. An increased abundance of secre-
tory cells expressing ACE2 may upregulate the 
response of ACE2 to inflammatory signals [31]. 
It is worth mentioning that ACE2 is also closely 
associated with pulmonary hypertension. Even 
though the expression of ACE2 decreases in 
patients with COVID-19, they still experience 
increased vasodilation. ACE2 has the potential 
to be involved in the treatment of pulmonary 
hypertension given its ability to dilate blood 
vessels [26]. In particular, ACE2 can be target-
ed by a biomimetic nanoparticle delivery sys-
tem that delivers ACE2 to the pulmonary vas- 
cular endothelium to inhibit pulmonary artery 

smooth muscle cell proliferation and reduce 
pulmonary vascular remodeling [32].

ACE2 in pulmonary host cells infected with 
COVID-19

In the winter of 2019, COVID-19 pandemic 
emerged and rapidly spread worldwide, result-
ing in numerous fatalities. Widespread trans-
mission of the SARS-CoV-2 virus was responsi-
ble for causing this epidemic [33]. As of August 
18, 2023, the World Health Organization (WHO) 
has reported a total of 769,774,646 confirmed 
cases and 6,955,141 confirmed deaths global-
ly. Many cases with mild or no symptoms may 
have gone undetected. Since the SARS pan-
demic in 2003, the ACE2 protein has been 
identified as a key factor in severe lung diseas-
es and has been extensively studied in animal 
models to understand its protective effects on 
lung tissue. ACE2 interacts with the down-
stream product Ang1-7 through the Mas recep-
tor, further confirming its role in lung protection 
[34, 35]. With the outbreak of COVID-19, ACE2 
regained prominence as it was ascertained to 
be the most potential biomarker and cell entry 
receptor [36]. On the outer shell of the SARS-
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CoV-2 virus, there are glycoproteins called  
spike (S) proteins that play a critical role in iden-
tifying and specifically binding to the ACE2 
receptor on host cells. This binding occurs 
through a conformational change in the S pro-
tein [37]. The S protein consists of two sub-
units, S1 and S2. The S1 subunit is responsible 
for binding and interacting with the ACE2  
receptor, while the S2 subunit facilitates fusion 
of the virus and cell membranes by separat- 
ing the two units [38]. Through bioinformatics 
analysis, researchers have discovered that  
the signal transducer and activator of transcrip-
tion 3 (Stat3) promotes the expression of ACE2 
and can regulate its function by stimulating 
interleukin 6 [28]. The membrane proteins 
TMPRSS2 and heparan sulphate, and the lyso-
somal membrane protein TMEM106B are 
extra-specific receptors of SARS-CoV-2 [39, 40] 
(Figure 2).

It has been observed that after ACE2 binds to 
the virus, it induces the up-regulation of Orai1, 
which is a key component of cellular calcium 
channels. This process also involves the forma-
tion of clusters of piezoelectric 1 and TRPC1, 
which promote the activation of piezoelectric 1 
and SOCC channels and the increase in [Ca2+]i. 
These changes ultimately lead to increased 
apoptosis and persistent damage to the pul- 
monary vascular endothelium. However, Kobo- 
phenol A can inhibit these effects by blocking 
the binding of ACE2 and S proteins [41]. It is 
also worth noting that ACE2 expression de- 
creases with the progression of acute lung in- 
flammation and rises in the lung epithelium of 
mice with interstitial pneumonia. In a model of 
pulmonary fibrosis, hypoxia is mediated by HIF 
1α and fibrosis-related cytokines reduce ACE2 
expression [42]. The mechanism of ACE2 re- 
duction after lung infection involves the forma-

Figure 2. Cell entry of SARS-CoV-2 (By FigDraw). A: TMEM106B has recently identifies a pro-viral host factor for cell 
entry of SARS-CoV-2 in cells with low expression of ACE2. Located at the membrane of the lysosome, TMEM106B 
functions independently of ACE2 [41]. B: ACE2 is a classic receptor for SARS-CoV-2 to infect host cells. After the S1 
subunit of the S protein binds with ACE2, TMPRSS2 facilitates the cleavage of the S protein, which is an important 
process of cell entry of SARS-CoV-2.
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tion of a complex between ACE2 and spike  
protein, which is then degraded by clathrin-
mediated endocytosis and PAK1-mediated cy- 
toskeletal rearrangement. This results in resto-
ration of ACE2 cell surface expression by the 
PAK inhibitor FRAX-486 after viral infection 
[43]. ACE2 contains 6 potential glycosylation 
sites (Asn53, Asn90, Asn103, Asn322, Asn432, 
Asn546), and mutations in these sites can reg-
ulate its binding to coronaviruses. N90A dele-
tions increase the affinity of ACE2 and S pro-
teins, N322A deletions slightly increase affi- 
nity, and the N53A deletions minimize affini- 
ty. N90A/N322A/N322A triple-gene deletions 
have the highest affinity [44, 45].

Patients with lung cancer are prone to infect 
SARS-CoV-2 and have severe events

Current clinical research

Since the outbreak of the pandemic, many 
studies have been conducted to validate that 
patients diagnosed with lung cancer have a 
higher risk of being infected with SARS-CoV-2 
and may be more prone to confront severe 
events. Especially at the acute stage of the 
SARS-CoV-2 infection, patients with lung can-
cer have higher mortality and they were found 
easily to get into intensive care unit and need 
mechanical ventilation [46, 47]. In a clinical 
study conducted in 2020, researchers discov-
ered that out of the 105 patients with cancer, 
22 of them had lung cancer. These patients 
had a higher risk of mortality from COVID infec-
tion (OR 2.34, 95% CI [1.15, 4.77]; P=0.03). 
Additionally, these cancer patients had a hig- 
her rate of occupancy in the intensive care unit 
(OR 2.84, 95% CI [1.59, 5.08]; P < 0.05) [48].  
In a retrospective study conducted in 2021, a 
total of 1200 individuals who were diagnosed 
with cancer were found to have a significantly 
higher likelihood of developing novel coronary 
pneumonia. Specifically, the study included 
100 patients with lung cancer (aOR, 7.66 [95% 
CI, 7.07-8.29]; P < 0.001). The adjusted odds 
ratio (aOR) used in the study takes into account 
only the specific risk factors being examined 
and excludes other potential contributing fac-
tors [49]. Later, 69 patients with lung cancer 
were included to investigate the impact of PD-1 
blocking therapy on SARS-CoV-2 infection. The 
results showed that PD-1 therapy did not have 
any significant influence on the severity of 

COVID-19 in lung cancer patients. Out of the 
participants in the study, 62% of the lung can-
cer patients required hospitalization due to 
SARS-CoV-2 infection, and 24% of them passed 
away as a result of the virus [50]. In another 
study, with a higher infection rate of in-hospi- 
tal patients than that reported in the overall 
Chinese population, patients with cancer (in- 
cluding lung cancer) were deemed easier to be 
infected with COVID-19, the figure for cancer 
patients and the overall population was 2.5% 
and 0.29%, respectively. The same defection is 
that the sample of this research is too small 
and the documentation on the patient’s data is 
not complete [46]. Similarly, a study also found 
that SARS-CoV-2 infection was very severe am- 
ong patients with lung cancer, with a mortality 
of 25% and hospitalized rate of 62%. What is 
interesting is that COVID-19 made up a small 
part of overall lung cancer deaths during the 
pandemic, only 11% [51].

In a more recent study, lung cancer was con- 
sidered the crucial predictor with the other 4 
predictors, and SARS-CoV-2 Omicron variants 
delayed to be cleared in patients with cancer 
and is asymptomatic COVID-19, with a P value 
of 0.018 [52]. ACE2 expression has also been 
investigated in various types of lung cancer. 
There was no variation in the expression of the 
ACE2 gene at each pathological stage of LUAD 
and LUSC. Similarly, data from the Human 
Protein Atlas (HPA) demonstrated that LUAD 
and LUSC exhibited higher levels of ACE2 pro-
tein compared to normal lung tissue, indicating 
no discrepancy in lung cancer sensitivity to the 
novel coronavirus at different pathology stages 
[53]. Ilikci Sagcan et al [54] conducted gene 
sequence analysis of 1097 lung cancer pa- 
tients, including ACE2, TMPRSS2, CD147/BSG, 
and FURIN/PCSK3, from the cBioPortal portal, 
which validated the aforementioned findings. 
Furthermore, they observed that 8.1% of the 
subjects had at least one mutation in one gene, 
with ACE2 being the most frequently mutated 
gene, including 8 missense mutations and 1 
splice site. They also identified missense muta-
tions at the H34 amino acid site of the virus-
bound S protein ACE2 in genomic analysis of 
LUAD patients as p.H34N. In a study of non-
small cell lung cancer, it was found that mACE2 
and sACE2 were more frequently expressed in 
patients with EGFR mutations and not in pa- 
tients with KRAS mutations [55]. The expres-
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sion of ACE2 transcripts in the normal lung tis-
sue of patients with non-small cell lung cancer 
is higher in patients with advanced disease, 
leading to increased inducible T cell costimula-
tory factors in immune and cytokine reactivity, 
potentially resulting in more severe lung injury 
from COVID-19 [56].

Potential molecular mechanism involved in 
ACE2

Besides the clinical studies performed to con-
firm the susceptibility of SARS-CoV-2 to infect 
individuals diagnosed with lung cancer, there 
have also been published scientific papers that 
aim to explain the mechanism involving ACE2 in 
this process. First of all, via molecular biology 
experiments and bioinformatics analysis, it was 
clear that ACE2 expressed a higher level in lung 
cancer compared with normal lung tissue and 
the level of ACE2 may represent the sensibility 
of lung cancer patients to be infected with 
SARS-CoV-2 [57]. Recent literature reported 
that through single-cell transcriptomic analysis, 
ACE2 was found to be highly expressed in the 
NSCLC cells and alveolar cells while low level in 
other types of cells, which is one of the reasons 
why lung cancer patients are more susceptible 
to SARS-CoV-2 than normal person. There was 
no disparity in the expression between cancer 
cells of lung squamous cell cancers (LUSC) and 
lung adenocarcinoma (LUAD) [58]. Based on 
the single-cell RNA sequencing analysis of 
bronchial tube samples from smokers with lung 
cancer, it was observed that goblet cells had a 
significant increase in the expression of ACE2. 

This finding suggests that smoking can result  
in a greater viral load [59]. Additionally, the 
upregulation of ACE2 has been discovered to 
be associated with immune suppression, par-
ticularly in the inhibition of immune cell activa-
tion: CD8+ T cells, CD4+ regulatory T cells, NK 
cells, and T cells. Various immune markers, 
including CD8A, KLRC1, GZMA, GZMB, NKG7, 
CCL4, and IFNG, decrease as the expression 
level of ACE2 increases. These mechanisms 
could potentially make patients with lung can-
cer more susceptible to SARS-CoV-2 [60]. To 
explore the reason for the upgrade of the ACE2, 
certain literature reported that DNA methyla-
tion may be the underlying mechanism [61]. 
Moreover, dysregulation of microRNAs may be 
one of the potential mechanisms for patients 
with lung cancer who are more vulnerable to 
SARS-CoV-2 infection. In detail, the downregu-
lation of MiR-143-3p, upregulation of MiR-149-
5p, MiR-653-5p and MiR-29-3b increases the 
level of expression level of ACE2 [62] (Figure 3).

SARS-CoV-2 leads to further pulmonary 
changes

Current clinical research

One review concluded that COVID-19 infection 
may worsen the pathogenetic condition of pa- 
tients with chronic respiratory disease, parti- 
cularly interstitial lung disease [63]. Pulmonary 
fibrosis and chronic lung inflammation have the 
potential to progress to lung cancer. Abnormal 
lung function, pulmonary fibrosis, chronic in- 
flammation and lung cancer are discussed 

Figure 3. Up-regulation of ACE2 in lung cancer leads to higher susceptibility to SARS-CoV-2 (By FigDraw).
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major risk factor for the development of IPF 
lung cancer [72].

Scientists have always been interested in the 
possibility of pulmonary fibrosis emerging as a 
long-term consequence of SARS-CoV-2, similar 
to what was observed with SARS and MERS 
[73]. Post-COVID-19 pulmonary fibrosis (PCPF) 
is a highly significant long-term complication 
that has been identified. It is characterized by  
a significant decrease in pulmonary function, 
which can be measured using various indica-
tors such as a reduced diffusing capacity for 
carbon monoxide (DLCO) [74]. A total of 114 
patients with SARS-CoV-2 infection were in- 
cluded in a 6-month prospective cohort study. 
These patients underwent CT scanning to 
assess their pulmonary function. The results 
revealed that approximately one-third of the 
patients had fibrosis-like changes in their CT 
images. Additionally, 26% of the patients sh- 
owed a decrease in DLCO, with a higher preva-
lence observed in those who exhibited abnor-
mal changes in their CT images [75]. Lack of 
newest long-term clinical evidence that SARS-
CoV-2 infection induces chronic pulmonary fib- 
rosis, however, in a prospective cohort study 
done on 71 patients and lasting for 15 years, it 
was reported that pulmonary function of SARS-
CoV infection patients with interstitial changes 
improved less than that without this lesions, 
which may provide suggestions for the long-
term pulmonary pathological change after 
SARS-CoV-2 infection [76].

Chronic inflammation: Inflammation has been 
found to have a causal relationship with the 
development of cancer, with processes involv-
ing genotoxicity, abnormal tissue repair, prolif-
erative responses, invasion, and metastasis 
[77]. Infections of the lung, such as Myco- 
bacterium tuberculosis and Chlamydia pneu-
moniae, can alter cytokine levels, promote 
angiogenesis and cell proliferation, and thus 
contribute to the occurrence and progression 
of lung cancer [78]. Additionally, inflammation 
can infiltrate the microenvironment of tumor 
cells. In non-small cell lung cancer patients, the 
immunity of the tumor microenvironment is 
related to different types of immune cell infil- 
tration [79]. Moreover, increased vitamin B6 
catabolism associated with inflammation and 
immune activation is linked to a high risk of 
lung cancer [80]. Evidence demonstrates that 

below as potential sequelae of SARS-CoV-2 
infection.

Decreased lung function: Much of the litera- 
ture has focused on changes in lung function 
following SARS-CoV-2 infection. A study was 
conducted on 110 individuals who tested posi-
tive for SARS-CoV-2 to investigate the extent  
to which their pulmonary function deteriorated 
after being discharged from the hospital. The 
results showed that the severity of pneumonia 
was directly related to the decline in pulmonary 
function. Specifically, the diffusion capacity 
was significantly impaired, while the measure-
ments of ventilatory function remained rela- 
tively stable [64]. In another separate study, 
González et al conducted a 3-month prospec-
tive cohort involving 62 critically ill patients. 
They utilized chest CT scanning, pulmonary 
function tests, and exercise tests. The results 
revealed that a significant majority of the 
patients, specifically over 82%, experienced a 
decrease of more than 20% in their pulmonary 
diffusion [65]. Later, an observational study 
that lasted for more than 12 months discov-
ered that patients with extremely severe con- 
ditions who required ECMO treatment still ex- 
perienced pulmonary impairment in their lung 
function [66].

Pulmonary fibrosis: Quantities of epidemiologi-
cal evidence highlight the potential link bet- 
ween idiopathic pulmonary fibrosis (IPF) and 
lung cancer. The relative risk of lung cancer in 
patients with IPF is about seven times higher 
than that of the general population, and it can 
increase the likelihood of being diagnosed with 
lung cancer by 7% to 20% [67, 68]. Recent stud-
ies have found that IPF is an increased inde-
pendent risk factor for lung cancer, even when 
smoking is considered [69, 70]. The causes of 
lung cancer caused by pulmonary fibrosis may 
include lymphatic obstruction, carcinogen agg- 
regation, and impaired monitoring mechanisms 
[67]. Additionally, studies have investigated the 
microscopic mechanisms of IPF and lung can-
cer, which may be attributed to the unbalanced 
expression of oncogenes and tumor suppres-
sor genes, the dysregulation of non-coding 
RNAs, and genetic and epigenetic alterations 
leading to aberrant activation of common trans-
duction pathways, such as Wnt/b-catenin and 
phosphoinositide 3-kinase/protein kinase [71]. 
Furthermore, guanine nitrification may be a 
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chronic inflammation leads to lung cancer: 
Chronic inflammation is one of the risk factors 
for lung cancer and can participate in the whole 
process of tumorigenesis and development, 
and studies have shown that macrophages can 
create the necessary microenvironment for 
tumor growth [81, 82].

Chronic inflammation is also involved in the 
long-term complications of SARS-CoV-2. Inflam- 
mation storm is severe in patients infected with 
SARS-CoV-2, especially in patients with cancer: 
Blood hypersensitivity C-reactive protein, eryth-
rocyte sedimentation rate, IL-2 receptor, and 
IL-6 were elevated in cancer patients with 
SARS-CoV-2 infection [83]. IFN-β and IFN-λ 1 
were found to be continuously increased in 
patients with long COVID-19 and continued to 
remain at high levels for 8 months [84]. In com-
prehensive research which compared features 
of patients with long COVID with uninfected 
individuals and patients under convalescence, 
patients with long COVID have an increase in 
nonclassical monocytes, activated B cells, dou-
ble-negative B cells, depleted T cells, and CD4+ 
T cells-secreting IL-4/IL-6 cells, as well as re- 
gular DC1 and central memory CD4+ T cells 
[85].

Lung cancer: As for lung cancer, although long-
term clinical evidence is lacking for the reason 
that less than five years have passed since  
the pandemic began, researchers have always 
been concerned about the changes in the con-
dition of patients with cancer and other chronic 
diseases. For example, in a research carried 
out in UK, researchers used multivariate Po- 
isson regressions to compare 2019 and 2020 
counts and calculate incidence rate ratios of 
NSCLC and the figure was 0.91 (95% CI: 0.90-
0.92, P < 0.001) for the potential reason that 
delayed access to lung cancer screening [86], 
while emergency presentation diagnosis of 
NSCLC was found to increase by 9.5% (Q2-
2020) and 16.3% (Q3-2020)-later stage diag-
nosis [87]. Later, the Canada Academy Center 
found that in the second year of the pandemic, 
the diagnosis rate saw an obvious increase 
from the figure during the first year of the pan-
demic, by 75% [88]. A South Korean scienti- 
fic study also showed that the proportion of 
patients with advanced-stage NSCLC added 
during the pandemic [89].

Potential molecular mechanism of ACE2 in 
lung cancer induced by SARS-CoV-2 infection

When infected with SARS-CoV-2, lung cancer 
tissues were validated to be at an immune-tol-
erant state because of the high level of CD8+ 
cytotoxic T cells and NK cells in high-ACE2 
expression, which indicates that potential co- 
morbidity risk between SARS-CoV-2 infection 
and NSCLC [56]. After the outbreak of the pan-
demic, acute respiratory distress syndrome 
(ARDS), as one of the most crucial complica-
tions of SARS-CoV-2, has been studied by many 
researchers on its mechanism. When the 
SARS-CoV-2 binds to ACE2 to infect the host 
cells, expression of ACE2 of host cells is down-
regulated, which increases Ang II level in the 
blood and induces lung injury [90]. In addition, 
a higher level of Ang II activates inflammatory 
mediators and leads to RAS dysfunction, which 
may be one of the mechanisms that SARS-
CoV-2 functions in severe cases [91]. In previ-
ous research, through making analogies with 
other types of coronavirus, like SARS-CoV, and 
MERS-CoV, researchers had proposed assump-
tions that many risk factors and pathophysio-
logical processes of COVID-19 can induce the 
occurrence, invasion and metastasis of lung 
cancer, they believe chronic airway inflamma-
tion, pulmonary fibrosis, immune suppression 
or certain molecular mechanism like the up-
expression of HIF-1 [92].

As for the role that ACE2 plays in the happen- 
ing or prognosis of lung cancer, the interaction 
between HIF-1α and ACE2 and Ang-(1-7) and 
ACE2 may explain the relationship between 
SARS-CoV-2 and lung cancer. The presence of 
low oxygen levels, known as hypoxia, triggers 
the activation of a protein called HIF-1α. HIF- 
1α is known to have a suppressive impact on 
ACE2. In a model of hypoxic pulmonary hyper-
tension, it has been demonstrated that HIF-1α 
directly hampers the activity of a specific mi- 
croRNA called let-7b, which is encoded by ACE2 
[93]. Both hypoxia and the HIF prolyl hydroxy-
lase inhibitor Roxadustat can decrease the 
level of ACE2 in lung epithelial cells. This, in 
turn, hinders the entry and reproduction of new 
coronaviruses by utilizing the HIF-1α-depen- 
dent pathway [94]. In human pulmonary artery 
smooth muscle cells, an accumulation of HIF-1 
in the later stages leads to a decrease in ACE2 
levels to near baseline levels [95]. Up-expre- 
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Figure 4. Potential mechanisms of lung cancer induced by ACE2 as a key node after SARS-CoV-2 infection (By Fig-
Draw).

ssion of HIF-1 leads to a low level of ACE2 and 
a subsequent reduction of Ang-(1-7). Early in 
2004, under the vitro condition, human adeno-
carcinoma cells were treated with serum con-
taining Ang-(1-7) and serum lacking Ang-(1-7), 
and tumour cells in the former group were 
inhibited from growing which indicated that 
Ang-(1-7) may provide new ideas for the treat-
ment of lung cancer. In this experiment, 
researchers also found Ang-(1-7) blocks the 
growth of lung cancer cells through inhibition  
of the (ERK)1 signal transduction pathway and 
was mediated by MAS receptor [96]. Later,  
the same laboratory further researched Ang-(1-
7) functioning as an inhibitor in the growth of 
lung cancer cells. Animal experiment was con-
ducted to build human lung tumor xenograft 
models which were treated by Ang-(1-7) and 
saline respectively. They found that using Ang-
(1-7) to treat lung tumor reduce the size of the 
tumor by 30% [97].

In further research, Ang-(1-7) was found to pro-
duce the antagonism of vessel formation and 
endothelial formation in the chick and it can 
reduce vascular endothelial growth factor-A 
protein and mRNA in lung tumors in mouse 
models, which reminders that Ang-(1-7) can 
work during the process of inhibiting tumor’s 
development [98]. At the genetic level, resear- 
ch has demonstrated that the LncRNA MIR- 
99AHG can compete with miR-136-5p for the 
degradation of USP4. As a result, the expres-
sion of ACE2 remains unaltered. This has the 
effect of reducing fibrosis in alveolar epithelial 
cells, preventing epithelial-mesenchymal tran-
sition, and inhibiting the advancement of pul-
monary fibrosis to LUAD [99] (Figure 4).

Treatment targeted ACE2

Given the importance of ACE2 in lung cancer 
and novel coronaviruses, drugs and therapies 

targeting ACE2 have been developed. Since 
enhancement of ACE activity and reduction of 
ACE2 activity lead to lung injury, and the use of 
Ang II blockers has potential side effects includ-
ing hypotension, ACE2 is seen as a more suit-
able target [100]. Potential treatments related 
to ACE2 are currently focused on immunothera-
pies targeting the binding of ACE2 and S pro-
teins, and on altering ACE2 expression levels.

Chloroquine and hydroxychloroquine are able 
to interfere with the glycosylation of the ACE-2 
receptor, thereby preventing novel coronavirus 
receptor binding and subsequent infection 
[101]. Antibody B38 and antibody H4 were able 
to block the binding between the viral S-protein 
RBD and the cellular receptor ACE2, whereas 
they became potential virus-targeting monoclo-
nal antibodies and it was demonstrated in a 
mouse model that these antibodies reduced 
the viral gradient in infected lungs [102]. NA- 
CE2i, a peptide inhibitor of ACE2, was able to 
inhibit viral replication two days after viral infec-
tion prevent inflammatory infiltration and limit 
macrophage invasion [103].

rhACE2, a recombinant human ACE2, was able 
to reduce Ang II levels while Ang-(1-7) and Ang-
(1-5) levels were elevated, alleviating lung inju-
ry. Khan et al [104] examined the safety and 
efficacy of GSK2586881, a recombinant hu- 
man ACE2 (rhACE2), which was well tolerated 
by metronomic increments in patients without 
significant haemodynamic changes. ACE2-1-
618-dDC-ABD, a soluble ACE2 protein, was 
able to attenuate severe lung injury and renal 
tubular injury seen in a mouse model of neo-
coronavirus infection [105]. In addition, the 
ACE2-like enzyme, B38-CAP, was protective 
against novel coronavirus-induced lung injury: 
in animal experiments, B38-CAP significantly 
ameliorated pulmonary oedema and lung inju-
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ry; however, it was unable to neutralise the cel-
lular entry of SARS-CoV-2 [106].

Conclusion

This review provides a brief overview of the 
basic research on ACE2 and its involvement  
in the association between lung cancer and 
SARS-CoV-2 infection. It suggests that individu-
als with lung cancer may be more susceptible 
to COVID-19 and are more likely to develop 
severe disease. Additionally, individuals who 
have infected with the novel coronavirus may 
be at increased risk of developing ARDS, lung 
fibrosis, chronic pneumonia and possibly lung 
cancer. However, more research and longer  
follow-up periods are needed to improve our 
understanding in this area. Lung cancer is the 
second most commonly occurring cancer glob-
ally, after breast cancer. It is the most common 
cause of death in male cancer patients and the 
second most common cause of death in female 
cancer patients [107]. According to the World 
Health Organization (WHO), approximately 2.21 
million individuals succumbed to lung cancer in 
2020. The COVID-19 pandemic has led to diffi-
culties in the diagnosis and the treatment of 
lung cancer. Additionally, treatment of lung can-
cer patients has been delayed due to the im- 
munosuppressive effects of radiotherapy and 
chemotherapy, which may make patients more 
vulnerable to infection with the new coronavi-
rus [108]. The exact number of lung cancer 
patients who have died specifically from COVID-
19 remains uncertain. It is known that lung  
cancer patients are more susceptible to con-
tracting SARS-CoV-2 due to the upregulation of 
ACE2 receptors. However, little clinical research 
has been done on the different stages of lung 
cancer. Additionally, the exact impact of COVID-
19 on lung cancer is still unknown due to the 
lack of reliable clinical evidence. As mentioned 
above, SARS-CoV-2 can significantly impair lung 
function and lead to the development of pulmo-
nary fibrosis. This condition has been identified 
as a long-term consequence of the virus and 
has been recognized as a risk factor for lung 
cancer in recent research. It is exciting to note 
that the establishment of the International 
COVID-19 Collaboration on Thoracic Cancer 
(TERAVOLT) took place at the beginning of the 
epidemic in March 2020. Its main objective is 
to study in detail the prognosis of people who 
have successfully recovered from the new coro-

navirus infection. In addition, TERAVOLT aims 
to analyse the epidemiological and clinical fea-
tures associated with this particular virus [109]. 
In any case, further basic and clinical studies 
are urgently needed to determine the interac-
tion between COVID and lung cancer and the 
role of ACE2 in this.
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