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Abstract: Melanoma is the most aggressive type of skin cancer and has a high mortality rate once metastasis 
occurs. Hypoxia is a universal characteristic of the microenvironment of cancer and a driver of melanoma progres-
sion. In recent years, long noncoding RNAs (lncRNAs) have attracted widespread attention in oncology research. 
In this study, screening was performed and revealed seven hypoxia-related lncRNAs AC008687.3, AC009495.1, 
AC245128.3, AL512363.1, LINC00518, LINC02416 and MCCC1-AS1 as predictive biomarkers. A predictive risk 
model was constructed via univariate Cox regression analysis, least absolute shrinkage and selection operator 
(LASSO), and multivariate Cox regression analyses. Patients were grouped according to the model risk score, and 
Kaplan-Meier analysis was performed to compare survival between groups. Functional and pathway enrichment 
analyses were performed to compare gene set enrichment between groups. Moreover, a nomogram was construct-
ed with the risk score as a variable. In both the training and validation sets, patients in the low-risk group had better 
overall survival than did those in the high-risk group (P<0.001). The 3-, 5- and 10-year area under the curve (AUC) 
values for the nomogram model were 0.821, 0.795 and 0.820, respectively. Analyses of immune checkpoints, im-
munotherapy response, drug sensitivity, and mutation landscape were also performed. The results suggested that 
the low-risk group had a better response to immunotherapeutic. In addition, the nomogram can effectively predict 
the prognosis and immunotherapy response of melanoma patients. The signature of seven hypoxia-related lncRNAs 
showed great potential value as an immunotherapy response biomarker, and these lncRNAs might be treatment 
targets for melanoma patients.
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Introduction

Melanoma, an extremely aggressive skin can-
cer with a high metastasis rate, is a significant 
threat to human health. Patients with metasta-
sis generally have a poor prognosis [1, 2]. In 
2020, there were 32385 and 24658 melano-
ma-related deaths in males and females, res- 
pectively; the age-standardized incidence rates 
were 0.7 and 0.4, and the cumulative risks of 
developing melanoma were 0.07%, and 0.05%, 
respectively [3]. Moreover, the incidence, mor-
tality, and disability-adjusted life years (DALYs) 
of melanoma have increased dramatically [4]. 
In the past decade, the survival rate of patients 

with metastatic melanoma has significantly 
improved due to the development of a combina-
tion of targeted therapies and immune check-
point inhibitors [5]. However, in the later stage 
of treatment, many patients present with dis-
ease recurrence, drug resistance, and acceler-
ated melanoma progression. According to previ-
ous reports, approximately 40-65% and 70% of 
patients acquire resistance to immune check-
point inhibitors targeting programmed cell 
death protein 1 (PD-1) and cytotoxic T lympho-
cyte antigen-4 (CTL-4), respectively [6]. There- 
fore, exploring more effective biomarkers for 
future therapeutic interventions for melanoma 
patients is imperative.
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Long noncoding RNAs (lncRNAs), as significant 
modulators of tumorigenesis, have received 
extensive attention in recent years [7, 8]. 
LncRNAs, a class of RNA transcripts with a 
length greater than 200 nucleotides, can affect 
various biological behaviors, such as cell prolif-
eration, invasion, and metastasis in skin can-
cers. Xu et al. reported that lncRNAs related to 
“evading immune destruction” can predict the 
response to anti-PD-1 immunotherapy [9]. The 
lncRNA KCNQ1OT1 can promote immune eva-
sion of melanoma cells via the miR-34a/STAT3/
PD-L1 axis [10]. LINC00632 can cause cerebel-
lar degeneration-related 1 antisense depletion 
through epigenetic silencing, promoting the 
invasion and metastasis of melanoma [11]. 
Furthermore, lncRNAs play a critical role in mel-
anoma diagnosis and prognosis evaluation 
[12]. The expression of the lncRNA BASP1-AS1 
can promote the malignancy of melanoma [13]. 
Overexpression of the long noncoding RNA 
NORAD promotes the migration and invasion of 
malignant melanoma cells [14].

The tumor microenvironment (TME) is usually  
in a hypoxia state. Numerous studies have 
revealed that the hypoxic microenvironment is 
essential for melanoma progression. Hypoxia 
can promote melanoma progression and resis-
tance to therapy [15]. For example, hypoxia-
inducible factor-1 (HIF-1) is a critical transcrip-
tional regulator in the hypoxic tumor microenvi-
ronment; it induces the expression of immuno-
suppressive factors and immune checkpoint 
molecules. HIF-1 is involved in multiple signal-
ing pathways and has been implicated in angio-
genesis, metabolism, cell proliferation, and 
metastasis in melanoma [16, 17]. According to 
previous hypoxia-related predictive models for 
melanoma, the analysis of the predictive power 
of these models was mainly focused on the 
time points of 1, 3, and 5 years, and the predic-
tive power of the nomogram was limited [18, 
19]. Therefore, an in-depth analysis of hypoxia-
related lncRNAs is a viable method for identify-
ing potential melanoma interventions. In this 
study, we obtained expression data from the 
University of California Santa Cruz (UCSC)  
Xena database to comprehensively explore  
the critical prognostic role of hypoxia-related 
lncRNAs in melanoma. A prognostic model of 
seven hypoxia-related lncRNAs was estab-
lished. The prognostic value of the model was 

then assessed in the training and validation 
cohorts. Moreover, we explored the underlying 
biological functions of these hypoxia-related 
lncRNAs. Ours model can aid in melanoma 
prognosis prediction and provides new bio-
markers that might be treatment targets for 
melanoma in the future.

Materials and methods

Data collection and preprocessing

The RNA-sequencing data and corresponding 
clinical information on patients with melanoma 
were obtained from The Cancer Genome Atlas 
(TCGA) database via the University of California 
Santa Cruz (UCSC) Xena browser (http://xena.
ucsc.edu/). The TCGA database contained 
information on 471 melanoma tumor samples 
and one adjacent normal sample. The gene 
expression profiles of 812 normal skin samples 
were downloaded from the Genotype-Tissue 
Expression (GTEx) database to increase the 
sample size for the normal sample group. The 
mutation profiles of all tumor samples were 
obtained from the TCGA database.

Identification of hypoxia-related lncRNAs for 
prognosis prediction

Hypoxia-related genes in the HALLMARK_
HYPOXIA (M5891) gene set were downloaded 
from the Molecular Signatures Database v7.5 
(MSigDB) (https://www.gsea-msigdb.org). The 
gene annotation files were downloaded from 
the Ensembl database (http://www.ensembl.
org) for separating the genes into messenger 
RNAs (mRNAs) and lncRNAs for subsequent 
analyses. A |correlation coefficients| >0.5 and 
a p-value <0.001 were considered to indicate 
hypoxia-related lncRNAs. LncRNAs and hypox-
ia-related genes with average expression levels 
less than 0.1 and 0.5, respectively, were 
excluded. The Wilcoxon test was used to ana-
lyze the differential expression of hypoxia-relat-
ed lncRNAs between tumor and normal tissue 
samples in the TCGA and Genotype-Tissue 
Expression (GTEx) datasets. LncRNAs with an 
FDR<0.05 and an absolute log-fold change >1 
were defined as differentially expressed 
lncRNAs. Moreover, we used the R package 
“caret” to randomize melanoma patients into 
training and testing cohorts at a 7:3 ratio.
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Development and identification of a hypoxia-
related lncRNA prognostic signature

Univariate Cox proportional hazard regression, 
LASSO regression, and stepwise multivariate 
Cox regression analyses were performed to 
identify the best prognostic hypoxia-related 
lncRNAs in the training set; these analyses 
were performed by using the “glmnet” and “sur-
vival” packages in R. The risk score was calcu-
lated using the following formula: risk score = 
coeflncRNAi explncRNAii
n

)/  (coeflncRNAi: the 
coefficient of hypoxia-lncRNAi, explncRNAi: the 
expression levels of hypoxia-related lncRNAi).

The training, testing and entire cohorts were 
divided into high and low-risk groups according 
to the median risk score in the training set. 
Kaplan-Meier survival curves were drawn using 
the “survival” and “survminer” R packages. 
Moreover, we used the “survivalROC” R pack-
age to verify the accuracy of the prognostic 
model according to the time-dependent receiv-
er operating characteristic (ROC) curves for 3-, 
5- and 10-year survival. Univariate and multi-
variate Cox regression analyses were used to 
evaluate the independent prognostic value of 
the signature.

Nomogram construction and validation

Based on the univariate and multivariate analy-
sis results, independent prognostic factors 
affecting overall survival (OS) were included in 
the constructed nomogram using the “rms” R 
package. Calibration and decision curve analy-
ses were applied to evaluate the calibration 
and discrimination ability of the nomogram.

Functional and pathway enrichment analysis

Consistent with the previous analysis, an 
FDR<0.05 and a log-fold change >1 were used 
to define the differentially expressed lncRNAs 
between the two risk groups. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses of the differentially 
expressed lncRNAs between the two risk 
groups were performed with the “org.Hs.eg.db”, 
“clusterProfiler”, “ggplot2” and “enrichplot” R 
packages. The enrichment of differentially 
expressed genes between the two risk sub-
groups in the HALLMARK gene sets was ana-
lyzed via gene set enrichment analysis (GSEA) 
software (version 4.2.3). NOM p-value <0.05, 

|NES|>1.0, and FDR<0.25 indicated statistical 
significance.

Immune cell infiltration and tumor microenvi-
ronment analysis

Information for estimating immune cell infiltra-
tion for TCGA tumors was downloaded from the 
TIMER website (http://timer.cistrome.org/). 
Single-sample gene set enrichment analysis 
(ssGSEA) and the CIBERSORT algorithm were 
used to assess the status of immune cell infil-
tration in melanoma. The CIBERSORT algorithm 
was used to assess the level of infiltration of 22 
immune cell subtypes [20]. The annotated 
gene signatures of 22 immune cell subtypes 
were obtained from the CIBERSORT website 
(https://cibersort.stanford.edu/). The immune 
cell gene sets used in the ssGSEA were down-
loaded from the TISIDB website and included 
28 tumor-infiltrating lymphocyte (TIL) gene sig-
natures. The stromal score, immune score, 
ESTIMATE score, and tumor purity were 
assessed using the “estimate” R package [21].

Association of immune checkpoint expression, 
immunotherapy response, and immunophe-
noscore (IPS) with the prognostic signature

The advent of immune checkpoint inhibitors 
has significantly improved survival rates in 
patients with metastatic melanoma [22]. We 
analyzed the expression of immune checkpoint 
genes reported by Hu et al. [23]. In addition,  
the five common immune checkpoint genes 
(CD274, PDCD1, CTLA4, LAG3, and HAVCR2) 
were found to be clearly correlated with the  
risk score. The five immune checkpoint genes 
were also chosen based on previous reports 
[24]. The immunotherapy response data were 
obtained from an online website (http://bioinfo.
life.hust.edu.cn/ImmuCellAI#!/). The IPS data 
of The Cancer Genome Atlas-Skin Cutaneous 
Melanoma (TCGA-SKCM) cohort were down-
loaded from The Cancer Immunome Atlas 
(TCIA) (https://tcia.at/home).

Chemotherapeutic drug sensitivity and gene 
mutation analysis

The “oncoPredict” package of R was used to 
predict the clinical drug response for many can-
cer drugs [25]. The 50% maximum inhibitory 
concentration (IC50) was used as the outcome 
variable. The drug IC50s of the two risk sub-
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groups were compared by the Wilcoxon signed 
rank test. The frequency and type of gene 
mutations in risk subgroups from the cBioPor-
tal database were assessed using the 
“Maftools” R package. The differences in tumor 
mutation burden (TMB) scores between the 
high- and low-risk groups were also assessed 
via the Wilcoxon signed-rank test.

Statistical analysis

All the statistical data were analyzed with R 
software (version 4.2.3). A chi-square test was 
used to analyze the differences in clinicopatho-
logical characteristics between the training and 
testing sets. The Mann-Whitney U test was 
used to analyze the survival time of patients in 
the different cohorts. The Kaplan-Meier meth-
od was used to evaluate the survival curves, 
and the log-rank test was used to assess the 
significance of any differences in survival [26]. 
The correlation between the expression of the 
seven hypoxia-related lncRNAs and immune 
cells was assessed via Spearman correlation 
analysis. The Delong test was used to compare 
the AUCs between the training and testing 
cohort. For all the statistical analyses, P<0.05 
was considered to indicate statistical signifi-
cance (*P<0.05, **P<0.01, ***P<0.001).

Results

Data preprocessing and identification of hy-
poxia-related lncRNAs in melanoma

The workflow of the study is shown in Figure 1. 
In the TCGA dataset, patients with insufficient 
clinical data for variables such as age; sex; 
pathologic stage; tumor (T), node (N), and meta- 
stasis (M) stage; survival time; and outcome or 
those with OS less than 90 days were excluded 
from the study. Finally, 408 patients were 
enrolled. There were no differences (P>0.05) in 
clinical characteristics between the training 
and testing cohorts (Table 1). To explore hypox-
ia-related lncRNAs in melanoma, we analyzed 
the correlation between hypoxia-related genes 
and lncRNAs using P<0.001 and |Cor|>0.5  
as the cutoff. A total of 421 hypoxia-related 
lncRNAs were identified. A total of 249 hypoxia-
related lncRNAs were screened as differentially 
expressed hypoxia-related lncRNAs by the 
Wilcoxon test (Figure 2A).

Construction and internal validation of the 
hypoxia-related lncRNA prognostic signature

Before constructing the hypoxia-related lncRNA 
predictive model, we integrated the lncRNA 
expression data and clinical information. Pa- 
tients without complete lncRNA expression 
data were excluded. According to the univariate 
Cox regression analyses, 125 lncRNAs were 
significantly related to OS. Subsequently, we 
performed a LASSO regression analysis and 
identified 13 prognostic lncRNAs (Figure 2B, 
2C). Finally, using multivariate stepwise Cox 
regression (Figure 2D), seven hypoxia-related 
lncRNAs with better prognostic value were 
identified to establish a prediction model. The 
expression of seven hypoxia-related lncRNAs in 
the normal and tumor samples in TCGA and 
GTEx databases are shown in Supplementary 
Figure 1. The interaction network and Sankey 
diagram showed the associations of the hypox-
ia-related genes with the seven hypoxia-related 
lncRNAs (Figure 2E, 2F). The correlation coeffi-
cients and expression level of seven hypoxia-
related lncRNAs were used to calculate the  
risk score. The formula was as follows: 

Riskscore = AC008687.3 × (4.604700878) + 
AC009495.1 × (0.197320671) + AC245128.3 × 
(-0.33477854) + AL512363.1 × (0.577976475) 
+ LINC00518 × (0.086438824) + LINC02416 × 
(-0.64361001) + MCCC1-AS1 × (-0.80139977).

Based on the median risk score of the training 
set, all patients in the training, testing, and 
entire cohorts were classified into high and low-
risk groups. Risk scores and survival status of 
patients and expression of the seven hypoxia-
related lncRNAs in different risk groups were 
shown in Figure 3A-C. Kaplan-Meier curves 
demonstrated that patients in the high-risk 
group had worse OS than did patients in the 
low-risk group in the training cohort (Figure 3D). 
Similar results were also verified in the testing 
cohort (Figure 3E) and entire cohort (Figure 
3F). The time-dependent ROC curves indicated 
that the risk model had excellent prognostic 
accuracy and stability. The AUC values in the 
training cohort at 3-, 5- and 10-year were 
0.734, 0.738, and 0.741, respectively (Figure 
3G). The AUC values for 3-, 5-, and 10-year were 
0.640, 0.672, and 0.769, respectively, in the 
testing cohort (Figure 3H) and 0.708, 0.723, 
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Figure 1. Flow chart of this study.

Table 1. Clinical characteristics of the training cohort and the testing cohort

Variables Group Entire cohort  
(n=408)

Training cohort 
(n=286)

Testing cohort 
(n=122) p-value

Age ≥65 147 (36.0%) 98 (34.3%) 49 (40.2%) 0.306
<65 261 (64.0%) 188 (65.7%) 73 (59.8%)

Gender Female 151 (37.0%) 111 (38.8%) 40 (32.8%) 0.297
Male 257 (63.0%) 175 (61.2%) 82 (67.2%)

Vital status Alive 207 (50.7%) 148 (51.7%) 59 (48.4%) 0.604
Dead 201 (49.3%) 138 (48.3%) 63 (51.6%)

Stage I/II nos 10 (2.5%) 7 (2.4%) 3 (2.5%) 0.847
Stage 0 6 (1.5%) 4 (1.4%) 2 (1.6%)
Stage I 77 (18.9%) 56 (19.6%) 21 (17.2%)
Stage II 128 (31.4%) 91 (31.8%) 37 (30.3%)
Stage III 167 (40.9%) 112 (39.2%) 55 (45.1%)
Stage IV 20 (4.9%) 16 (5.6%) 4 (3.3%)

Survival time (days) 1116.5 (518.25, 2366.5) 1146 (552, 2375.75) 919 (484.25, 2375) -0.621

and 0.753 in the entire cohort (Figure 3I). 
Furthermore, we used the Delong test to com-
pare the AUC of the training and testing cohorts. 
There is no significant difference between the 
training set and validation set in terms of pre-
dictive ability at 3, 5 and 10 years (Delong test, 

P>0.05). The results of the Kaplan-Meier curve 
analysis also showed that OS was significantly 
longer in the low-risk group. The seven hypoxia-
related lncRNAs exhibited the same expression 
trends in the training and two validation 
cohorts. The expression levels of AL512373.1, 
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Figure 2. Hypoxia-related lncRNAs were identified by screening via LASSO and multivariate Cox regression analy-
ses. A. Volcano map of differentially expressed hypoxia-related lncRNAs based on the TCGA and GTEx databases. 
B. LASSO coefficient profiles of the 126 candidate lncRNAs. C. Tuning parameter λ in the LASSO model. D. Seven 
hypoxia-related lncRNAs were ultimately identified by multivariate Cox regression analyses. E. The interaction net-
work of hypoxia-related genes and the seven hypoxia-related lncRNAs was visualized using Cytoscape. F. Sankey 
diagrams of hypoxia-related genes and seven hypoxia-related lncRNAs.

AC008687.3, LINC00518, and AC009495.1 in 
the high-risk group were greater than those in 
the low-risk group, and the AC245128.3, 
LINC02416, and MCCCA-AS1 expression levels 
were lower in the high-risk group than in the 
low-risk group.

Relationships between the risk score based on 
the prognostic signature and clinical features

To further explore the correlation between 
hypoxia-related lncRNAs and the clinical char-
acteristics of melanoma patients in the total 
TCGA dataset, patients were divided into  
two groups according to age (<65/≥65), sex 
(female/male), and stage (I+II/III+IV). The strat-
ified analysis results showed that the signature 
performed well in distinguishing subgroups 
(Figure 4A-F). Moreover, in the subgroup analy-
sis according to clinical features, OS was sig-
nificantly longer in the low-risk group than in 
the high-risk group. The detailed distribution of  
the clinical characteristics of the two risk 
groups is shown in the heatmap (Figure 4G). 
The risk classification of melanoma samples in 
the TCGA cohort was also visualized clearly by 
principal component analysis (Figure 4H). In 
addition, the Kaplan-Meier curves of each of 

the seven hypoxia-related lncRNAs are shown 
in Supplementary Figure 2. The median expres-
sion value of each lncRNA was used as a cutoff 
value for classifying patients into high- and low-
risk groups. AL512363.1 and AC008687.3 
expression was not detected in some samples, 
so positive expression of these factors was 
used to differentiate between high- and low-
risk patients.

Construction of the nomogram and evaluation 
of its performance

To verify whether the risk score can be used as 
an independent prognostic biomarker, the risk 
score and clinicopathological factors, such as 
age, sex, stage, pathological T stage, pathologi-
cal M stage, and pathological N stage, were 
included as covariates. Univariate and multi-
variate Cox regression analyses were applied 
for training, testing, and entire cohort analyses, 
respectively (Figure 5A-F). The results indicat-
ed that the risk score served as an indepen-
dent prognostic factor. Finally, a nomogram 
was established with age, pathological T stage, 
pathological N stage, and the risk score as 
covariates (Figure 5G). The AUC values for 3-, 
5-, and 10-year OS predictions were greater 
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Figure 3. The prognostic value of the risk model consisting of seven hypoxia-related lncRNAs was assessed in the 
training cohort, testing cohort, and entire cohort. Distribution of the risk score, survival time and survival status 
and heatmaps of the expression of the seven hypoxia-related signature lncRNAs in the training cohort (A), testing 
cohort (B), and entire cohort (C). Kaplan-Meier OS curves for melanoma patients in the two risk subgroups in the 
training cohort (D), testing cohort (E), and entire cohort (F). The ROC curve was used to verify the prognostic value of 
the hypoxia-related lncRNAs at 3-, 5- and 10-year in the training cohort (G), testing cohort (H), and entire cohort (I).

than 0.79 (Figure 5H). In addition, according to 
result of the decision curve analysis for 3-, 
5-year survival, if the threshold probability of 
patients is between 10 and 75%, the nomo-
gram based on the risk score performed better 
in net benefit than tumor stage and TNM stage 
respectively (Figure 5I). The calibration curves 
also showed that the nomogram was able to 
predict 3-, 5-, and 10-year OS accurately 
(Figure 5J). These results indicate that the 
nomogram has high accuracy for predicting 3-, 
5- and 10-year OS in melanoma patients.

Enrichment analysis of hypoxia-related ln-
cRNAs in the prognostic signature

The above results indicated that melanoma 
patients in different groups have differences in 
OS. GO enrichment (Figure 6A, 6B) and KEGG 
enrichment (Figure 6C, 6D) analyses of the dif-
ferentially expressed genes (DEGs) between 
two risk subgroups in the training cohort were 
performed. The circular diagrams depict the 
DEGs between the two risk subgroups and the 
GO terms and KEGG pathways in which they 
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were significantly enriched (Supplementary 
Figure 3). GSEA was used to identify potential 
enriched pathways in the high-risk and low-risk 
groups. A NOM p-value <0.05, |NES|>1.0, and 
FDR<0.25 were used as the cutoff values. The 
enrichment results revealed that genes upregu-
lated in the high-risk group were enriched in the 
following pathways: estrogen response early 
and late, glycolysis, KRAS signaling, MYC tar-
gets v2, and oxidative phosphorylation (Figure 
6E). Genes upregulated in the low-risk group 
were enriched in immune response-related 
pathways, such as allograft rejection, IL6-JAK-
STAT3 signaling, inflammatory response, inter-
feron alpha and gamma response, and TNFA 
signaling via NFKB (Figure 6F).

Correlation analysis of the prognostic signa-
ture and tumor immune microenvironment

Correlation analysis of immune cells infiltration 
levels and the risk score revealed that the risk 
score was positively correlated with the levels 
of M0 and M2 macrophages and negatively  
correlated with the levels of CD8 T cells and 
mDCs (Figure 7A). We subsequently used the 
CIBERSORT algorithm to assess immune infil-
tration in melanoma tissues in the high-risk 
and low-risk groups. The results revealed that 
M0 and M2 macrophages and resting mast 
cells were more abundant in the high-risk 
group. The low-risk group was more enriched in 
plasma cells, CD8 T cells, activated memory 

Figure 4. The clinicopathological characteristics of melanoma patients in different risk subgroups. A-F. The Kaplan-
Meier curves of OS for patients in the two subgroups in the entire cohort stratified by age, sex, and stage. G. The 
heatmap showed the expression of seven hypoxia-related lncRNAs in patients with different clinicopathological 
features. H. The distribution of melanoma samples in different risk groups, as determined by principal component 
analysis (PCA), was visualized via a 3D scatterplot.
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Figure 5. Nomogram construction and analysis of the prognostic value of seven hypoxia-related lncRNAs. Univariate 
Cox regression analysis of OS in the training cohort (A), testing cohort (B), and entire cohort (C). Multivariate Cox 
regression analyses of the training cohort (D), testing cohort (E), and entire cohort (F). (G) The nomogram for pre-
dicting the 3-, 5- and 10-year OS of patients with melanoma. (H) ROC curve analysis of the ability of the nomogram 
to predict 3-, 5- and 10-year OS. (I) Decision curve analysis of the nomogram for predicting 3-, 5- and 10-year OS in 
patients stratified by the risk score, TNM stage, and tumor stage. (J) Calibration curves of the nomogram.

CD4 T cells, regulatory T cells (Tregs), activated 
NK cells, monocytes, and M1 Macrophages 
(Figure 7B). In addition, according to the ssG-
SEA results, in addition to CD56dim natural 
killer (NK) cells, 27 other types of immune  
cells were significantly differentially enriched 
between the two risk subgroups (Figure 7C, 
Supplementary Figure 4). We applied the 
ESTIMATE algorithm to assess immune scores 
in the two groups. The Stromal score, immune 
score, and ESTIMATE score were significantly 
different between the low-risk group and the 
high-risk group (Figure 7D). Moreover, the 

tumor purity was greater in the high-risk group 
than in the low-risk group (Figure 7E). These 
results indicated that a decrease in the propor-
tion of infiltrating immune cells was correlated 
with tumor growth and progression.

Association of immune checkpoint expression, 
the immunotherapy response, and the IPS 
with the risk score based on the prognostic 
signature

Given that immunotherapy is currently the pri-
mary treatment for melanoma, we analyzed the 
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Figure 6. Functional and significant pathways enrichment analysis. Enrichment analyses of differentially expressed 
genes between two subgroups by GO (A, B) and KEGG (C, D). Gene Set Enrichment Analysis results of the HALLMARK 
pathways in the high-risk group (E) and low-risk group (F).

expression of immune checkpoint genes in the 
two risk groups and the correlations between 
the risk score and the expression levels of five 
immune checkpoint genes (CD274, PDCD1, 
CTLA4, LAG3, and HAVCR2). The results 
showed that the expression of most immune 
checkpoint genes was significantly greater in 
the low-risk group (Figure 8A, 8B). In addition, 
the risk score was negatively related to the 
expression levels of all five immune checkpoint 

molecules (Figure 8C-G). The IPS, an excellent 
predictor of prognosis, was correlated with the 
response to anti-CTLA-4 and anti-PD-1 antibod-
ies [27]. A high IPS was correlated with greater 
immune reactivity. The low-risk group had bet-
ter immunotherapeutic efficacy, especially for 
patients receiving anti-PD-1 therapy (Figure 
8H). The new ImmuCellAI algorithm could pre-
dict immunotherapy response with high accu-
racy [28]. The response to immunotherapy in 
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Figure 7. Seven hypoxia-related lncRNAs associated with the immune microenvironment. A. Analyses results of cor-
relation coefficients between immune cell proportions and risk score in various software. B. Comparison of immune 
cell proportions by CIBERSORT. C. Correlation between the risk score and 28 immune cell types in the ssGSEA ap-
proach. D. Stromal score, Immune score, and ESTIMATE score between two risk subgroups. E. Tumor purity between 
two risk subgroups.

the two risk subgroups is shown in Figure 8I. As 
expected, the immunotherapy response rate 
was higher in the low-risk group.

Association of the mutation landscape and 
TMB with the risk score based on the prognos-
tic signature

To further evaluate the differences in mutation 
profiles between the high and low-risk groups, 
the tumor mutation burden, a biomarker that 
can help predict a patient’s response to immu-
notherapy, was compared between the two risk 

groups. Regrettably, we did not observe a sig-
nificant difference between groups (Figure 9A). 
However, according to the survival curves of the 
high- and low-TMB groups, the survival rate was 
higher in the high-TMB subgroup (Figure 9B). 
Furthermore, when TMB and risk score were 
both considered, the prognosis of patients in 
the high-TMB/low-risk group was significantly 
greater than that of patients in the other three 
groups (Figure 9C). Next, we identified the top 
20 genes in terms of alteration frequency in the 
risk subgroups (Figure 9D-G). Missense and 
nonsense mutations were the two most com-
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Figure 8. Analysis of the benefits of immunotherapy in two risk subgroups. The expression of immune checkpoint 
genes in different risk groups (A, B). The correlation of common immune checkpoints and risk score in the entire 
cohort. (C) CD274. (D) PDCD1. (E) CTLA4. (F) LAG3. (G) HAVCR2. (H) Results of IPS scores for predicting patient re-
sponse to immune checkpoint inhibitors. (I) The counts of responder and non-responder to immunotherapy in two 
risk subgroups.

mon mutation types. Notably, TTN, MUC16, 
DNAH5, BRAF, and PCLO were among the five 
genes most frequently mutated in both the 
high-risk group and the low-risk group.

Prediction of chemotherapeutic drug sensitiv-
ity

To evaluate the value of the risk score in pre-
dicting the treatment response of melanoma 
patients, we analyzed the relationship between 
the risk score and the efficacy of chemothera-
peutic drugs. Our study showed that the risk 
score was significantly associated with the 
IC50 of chemotherapeutic agents. The low-risk 
group was more sensitive to treatment with 
Axitinib, Leflunomide, Navitoclax, Niraparib, 

Oxaliplatin, Palbociclib, Ribociclib, Ruxolitinib, 
Temozolomide, and Venetoclax than the high-
risk group (Figure 10A-J). However, the high-
risk group was more sensitive to Selumetinib 
and Lapatinib than the low-risk group (Figure 
10K, 10L).

Discussion

Melanoma has attracted the attention of many 
medical researchers due to its high metastasis 
rate and poor prognosis. The immuno-oncology 
agents and targeted therapies has facilitated 
an increase in the survival rate of melanoma 
patients [29]. Nevertheless, side effects and 
immune resistance can occur [6, 30]. Hypoxia 
is a common cancer microenvironment feature 
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Figure 9. Mutation landscape and TMB in risk subgroups. (A) TMB difference in the high- and low-risk patients. (B) 
Kaplan-Meier curves between high and low TMB groups. (C) Kaplan-Meier curves with different risk and TMB. Muta-
tion landscape in the high-risk group (D, E) and low-risk group (F, G).

and a potential limiting factor in cancer treat-
ment. According to the latest article, reducing 
the degree of hypoxia through physical exercise 
can attenuate cancer stemness and suppress 
hepatocellular carcinoma progression [31]. 
However, there are few prognostic signatures 
related to hypoxia-related lncRNAs in melano-
ma. In-depth screening of lncRNAs that can act 
as reliable predictive biomarkers is a key strat-
egy for improving the prognosis and treatment 
of melanoma.

In the present study, AC245128.3, LINC02416, 
AL512363.1, AC008687.3, MCCC1-AS1, LINC- 

00518, and AC009495.1 were identified as 
prognostic lncRNAs and incorporated into a 
model for predicting in melanoma prognosis. 
Multiple analyses indicated that the risk model 
has excellent accuracy and stability. The ROC 
curve and univariate and multivariate Cox 
regression results showed that the risk model 
has excellent accuracy and stability and that 
the risk score could be used as an independent 
risk factor for estimating the prognosis of 
patients with melanoma. Among the seven 
hypoxia-related lncRNAs, AC245128.3, LINC- 
02416, and MCCC1-AS1 were upregulated  
and were found to be beneficial factors in mela-
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Figure 10. Prediction of chemotherapeutic drug sensitivity in different risk subgroups. A. Axitinib. B. Leflunomide. C. 
Navitoclax. D. Niraparib. E. Oxaliplatin. F. Palbociclib. G. Ribociclib. H. Ruxolitinib. I. Temozolomide. J. Venetoclax. K. 
Selumetinib. L. Lapatinib.

noma patients. Upregulation of LINC00518, 
AC008687.3, AC009495.1, and AL512363.1 
expression was correlated with a high risk 
score. Notably, LINC00518, the most highly 
expressed lncRNA among the seven identified 
lncRNAs, has been implicated in a variety of 
cancers, including lung adenocarcinoma [32], 
colorectal cancer [33], and head and neck 
squamous cell carcinoma [34]. In uveal mela-
noma, LINC00518 acts as an oncogene,  
and transient silencing of LINC00518 in vitro 
affects cell proliferation and migration [35]. 
LINC00518 promotes malignant behaviors by 
influencing EIF4A3-mediated MITF mRNA sta-
bility [36], and the miR-204-5p/AP1S2 axis pro-
motes the metastasis of malignant melanoma 
[37]. Knockdown of LINC00518 in cutaneous 
malignant melanoma cells significantly inhibit-
ed cell invasion, migration, proliferation, and 
clonogenicity [38]. Moreover, researchers have 
used LINC00518 as a potential gene for evalu-
ating suspicious pigmented lesions (specifical-
ly, for distinguishing between melanoma and 
nonmelanoma samples) [39] and for 3-GEP pig-
mented lesion assays to guide the assessment 

and treatment of pigmented dermatoses [40]. 
Interestingly, in our study, GSEA revealed 
enrichment of the glycolytic pathway in the 
high-risk group. It has been reported that the 
overexpression of glycolysis-related molecules 
may decrease the cytotoxicity of T cells against 
melanoma cells [41]. Other enriched pathways 
in the high-risk group were the estrogen res- 
ponse and oxidative phosphorylation pathways. 
Previous studies have indicated that estrogen 
stimulates melanoma growth by disrupting 
macrophage polarization, which confers an 
immunosuppressive state and promotes CD8+ 
T cell resistance to immune checkpoint block-
ade [42]. Promotion of intracellular oxidative 
phosphorylation and glycolysis is associated 
with immune checkpoint inhibitor resistance 
[43].

Coincidentally, AC008687.3 was shown to be  
a differentially expressed glycolysis-related 
lncRNA in pancreatic ductal adenocarcinoma 
[44]. We speculate that AC008687.3 may 
impair the killing power of T cells through the 
glycolytic pathway in melanoma patients. In 
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addition, AC245128.3 may influence cell pyrop-
tosis and necroptosis in cancer. It has been 
reported that AC245128.3 influences the prog-
nosis of cutaneous melanoma [45] and acts as 
a necroptosis-related prognostic lncRNA signa-
ture in ovarian cancer [46]. Furthermore, 
AL512363.1 was identified by screening as a 
differentially expressed lncRNAs in metastatic 
melanoma [47]. AC009495.1 was identified as 
a prognostic lncRNA related to epithelial-mes-
enchymal transition in the melanoma microen-
vironment [48], but the underlying mechanisms 
of AL512363.1 and AC009495.1 are unclear. 
LINC02416 and MCCC1-AS1 were first discov-
ered in melanoma. It has been reported that 
MCCC1-AS1 may be related to the prognosis of 
endometrial carcinoma of the uterine corpus 
[49]. LINC02416 is highly expressed in hepato-
cellular carcinoma [50]. The underlying mecha-
nisms by which these lncRNAs exert their 
effects deserve further study.

Immunotherapy represents a significant break-
through in the treatment of metastatic mela-
noma. The emergence of tumor immunothera-
py has transformed healthcare for cancer 
patients [51]. In recent years, the main immu-
notherapy strategies have shifted from cyto-
kine-based therapies to antibody-mediated 
blockade of CTLA-4 and PD-1 [52]. Among 
these, antibody-based immune checkpoint 
agents, anti-CTLA4 and anti-PD-1 antibodies 
can alter the course of advanced melanoma by 
targeting and modulating the dysfunctional 
immune system [53]. Our study explored the 
relationship between these prognostic bio-
markers and the response to immunotherapy. 
First, we analyzed the enrichment of pathways 
between the two risk subgroups via GSEA. 
According to the GSEA results, inflammation, 
the immune response, and interferon were the 
main enriched factors in the low-risk group. 
According to previous articles, T cells, CD8+ T 
cells, tertiary lymphoid structures (TLS), and 
mDCs/pDCs are associated with a favorable 
prognosis; M2 macrophages and neutrophils 
are associated with an unfavorable prognosis; 
and Tregs, B cells and mast cells had varied 
effects on melanoma prognosis [54]. According 
to the present analysis, the risk scores were 
positively correlated with M2 macrophages and 
negatively correlated with CD8+ mDCs. In line 
with the immune response results, the expres-
sion of most immune checkpoint genes was 

also greater in the low-risk group. These results 
demonstrated that immune cell status differ-
ences between the high- and low-risk groups 
may cause differential survival outcomes. 
Additionally, we calculated the response rate 
and IPS for the two risk groups. The response 
rate was greater in the low-risk group than in 
the high-risk group, suggesting that our signa-
ture has potential predictive value for the 
response to immunotherapy. According to the 
IPS results, particularly for patients receiving 
anti-PD-1 therapy, ICIs might be more beneficial 
in patients in the low-risk group.

The TMB and inflammatory gene expression 
profile are related to the clinical response to 
immunotherapy for advanced melanoma [55]. 
In cutaneous melanoma, the TMB was positive-
ly correlated with prognosis [56]. Unfortunately, 
there was no significant difference in TMB 
between the high-risk and low-risk groups; how-
ever, the low-risk group had slightly greater 
TMB than did the high-risk group. When both 
factors were considered, the high-TMB/low-risk 
groups was found to have a much better prog-
nosis than the other groups. Finally, we used 
the “oncoPredict” R package to assess drug 
sensitivity. Our results confirm the potential 
value of the signature in predicting the sen- 
sitivity to several chemotherapeutic agents: 
Patients in the low-risk group were more sensi-
tive to the majority of chemotherapy drugs than 
patients in the high-risk group.

In summary, we identified seven hypoxia-relat-
ed lncRNAs and established a prognostic risk 
model. Patient stratification based on the risk 
score effectively predicted prognosis. In addi-
tion, the signature of seven prognostic lncRNAs 
may predict the response to immunotherapy. 
Inevitably, our study has several limitations, 
such as the limited availability of drugs for 
assessing drug sensitivity and insufficient 
external data for verifying the results. Continued 
research on immune-related therapies may 
lead to a cure for melanoma.

Conclusions

Our study identified a signature of seven hypox-
ia-related lncRNAs with excellent prognostic 
value in melanoma; this signature can be 
applied to evaluate melanoma prognosis and 
the response to immunotherapy.
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Supplementary Figure 1. Expression of seven hypoxia-related lncRNAs in the normal and tumor samples in TCGA 
and GTEx databases.
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Supplementary Figure 2. Survival curves for each of seven hypoxia-associated lncRNA. A. AC245128.3. B. MCCC1-
AS1. C. LINC00518. D. AL512363.1. E. AC008687.3. F. AC009495.1. G. LINC02416.
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Supplementary Figure 3. The circular diagrams of the differentially expressed genes in two risk subgroups associ-
ated with the significant Go term (A) and KEGG pathway (B).

Supplementary Figure 4. Differences in immune cell infiltration between two risk groups by ssGSEA.


