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Abstract: Glucocorticoid-induced tumor necrosis factor related protein (GITR) is a transmembrane protein expressed 
mostly on CD25+CD4+ regulatory T-cells (Tregs) and upregulated on all T-cells upon activation. It is a T-cell co-stim-
ulatory receptor and has demonstrated promising anti-tumor activity in pre-clinical studies. To date, however, the 
efficacy of GITR agonism has been discouraging in clinical trials. This study explores GITR and GITR ligand (GITR-L) 
ribonucleic acid (RNA) expression in solid tumors in an attempt to delineate causes for variable responses to GITR 
agonists. RNA expression levels of 514 patients with a variety of cancer types were normalized to internal house-
keeping gene profiles and ranked as percentiles. 99/514 patients (19.3%) had high GITR expression (defined as 
≥ 75th percentile). Breast and lung cancer had the highest proportion of patients with high GITR expression (39% 
and 35%, respectively). The expression of concomitant high GITR and low-moderate GITR-L expression (defined as 
<75th percentile) was present in 31% and 30% of patients with breast and lung cancer respectively. High GITR ex-
pression also showed a significant independent association with high RNA expression of other immune modulator 
proteins, namely, PD-L1 immunohistochemistry (IHC) ≥1 (odds ratio (OR) 2.15, P=0.008), CTLA4 (OR=2.17, P=0.05) 
and OX40 high RNA expression (OR=2.64, P=0.001). Overall, these results suggest that breast and lung cancer 
have a high proportion of patients with a GITR and GITR-L RNA expression profile that merits further investigation in 
GITR agonism studies. The association of high GITR expression with high CTLA4 and OX40 RNA expression, as well 
as positive PD-L1 IHC, provides a rationale for a combination approach targeting these specific immune modulator 
proteins in patients whose tumors show such co-expression.

Keywords: Immunotherapy, GITR, precision oncology, biomarkers, transcriptomics

Introduction

Glucocorticoid-induced tumor necrosis factor 
related protein (GITR), also known as tumor 
necrosis factor (TNF) receptor superfamily 
member 18 (TNFRSF18) or cluster of differen-
tiation (CD) 357 was initially defined as a gluco-
corticoid receptor belonging to the TNF super-
family as early as 1997 [1]. It is expressed at 
high levels on T-regulatory (Treg) cells, and its 
expression is also upregulated on activated 

natural killer (NK) and effector CD4+ and CD8+ 
T-cells (including tumor infiltrating lymphocytes 
(TILs)) relative to their naive counterparts [2, 3]. 
It is also expressed at low levels on B-cells [2]. 
GITR’s main ligand, glucocorticoid-induced tu- 
mor necrosis factor related protein ligand 
(GITR-L), or tumor necrosis factor superfamily 
member 18 (TNFSF18), is mainly expressed  
on antigen-presenting cells, namely, dendritic 
cells, B-cells and monocytes, but also on endo-
thelial cells [2]. The interaction of GITR with its 
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Figure 1. Simplified mechanistic depiction illustrating the effects of GITR and GITR-L interaction (once co-stimulated 
with the primary signal from TCR and MHCII) on the immune system and anti-tumor immunity. (A) The downstream 
co-activating effects of GITR triggering on effector T-cells leads to increased IL-2 and IFN-γ secretion and enhances 
proliferation/protects from apoptosis (via BCL-xL up-regulation) as well as augments cytotoxic function and promo-
tion of memory effector cells, leading to enhanced anti-tumor immunity. (B) The downstream effects of short-term 
GITR triggering on Treg cells are shown. These effects lead to dampened FoxP3 expression, ultimately resulting in 
a decrease in Treg suppression of effector T-cells and enhanced anti-tumor immunity. (C) Long-term or over-stimu-
lated GITR in Tregs, leads to an opposite effect of that illustrated in (B), namely, maturation and expansion of Tregs, 
which increases Treg suppression of effector T cells and attenuates anti-tumor immunity.

ligand leads to GITR activation and signal trans-
duction mainly through the nuclear factor 
kappa B (NF-κB) pathway. On activated effector 
T-cells, pre-clinical murine studies have shown 
that GITR agonism via GITR-L or antibodies 
leads to a decrease in T cell apoptosis (via 
B-cell lymphoma-extra large (BCL-xL) up-regula-
tion), as well as potentiation of T cell activation 
by upregulating CD25 expression via induction 
of interleukin 2 (IL-2) and interferon gamma 
(IFNγ) expression, all of which ultimately leads 
to enhanced cytotoxic function and potentia-
tion of memory T-cells [4-6] (Figure 1). On Tregs, 
GITR has a more complex role where short-term 
stimulation promotes loss of forkhead box P3 
(FoxP3) on Tregs leading to decreased activity 
of these cells [4, 7], but over stimulation leads 
to expansion and enhancement of their sup-
pressive activity [8, 9] (Figure 1). Thus, at the 

right level of stimulation, GITR could lead to 
enhanced effector T cell activity directly, and 
via inhibition of the suppressive function of 
Tregs.

This modulatory role of GITR on the immune 
system has made it an attractive target for can-
cer immune therapeutics. In murine models, 
agonistic monoclonal GITR antibodies demon-
strated in vivo anti-tumor activity and confirm- 
ed an associated enhanced proliferation of 
CD4+ and CD8+ TILs as well as depletion of 
Tregs [4, 10, 11]. Moreover, the addition of an 
anti-cytotoxic T-lymphocyte associated protein 
4 (CTLA4) monoclonal antibody led to a syner-
gistic anti-tumor effect in these models [10]. 
Unfortunately, despite strong preclinical ratio-
nale and data, multiple clinical trials have dem-
onstrated, at best, a modest clinical benefit of 
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Table 1. Examples of clinical trials assessing GITR as a therapeutic target

Drug Mechanism Combination Phase GITR  
expression Cancer type Results NCT number Ref

Active trials with reported outcomes

    MEDI1873 Hexamieric GITR agonist: IgG Fc 
domain, coronin 1A trimerization 
domain & GITR-L domain

Monotherapy 1 Not required 
for enrollment

Advanced or metastatic 
solid tumors

ORR=0/40 (0%)
No further development planned due to lack of tumor 
response

NCT02583165 [41]

    INCAGN01876 (Ragifilimab) GITR agonistic monoclonal 
antibody

Monotherapy 1/2a Not required 
for enrollment

Advanced or metastatic 
solid tumors

ORR=4/100 (4%); All responses at 0.3 mg/Kg dose 
(4/16 (25%))

NCT02697591 [12]

    INCAGN01876 GITR agonistic monoclonal 
antibody

Plus nivolumab, 
ipilimumab or both

1/2 Not required 
for enrollment

Advanced or metastatic 
solid tumors

Phase 1 ORR ranged from 20-25% when combined 
with nivolumab and 12.5-25% when combined with 
ipilimumab (1/4 or 1/5 patients in each cohort)
Phase 2 only had response in combination with 
nivolumab (no ipilimumab combinations were tested):
ORR=11/46 (23.9%) in head and neck squamous cell
ORR=3/18 (16.7%) in cervical 

NCT03126110 [38]

    TRX518 GITR agonistic monoclonal 
antibody

Monotherapy 1 Not required 
for enrollment

Stage III or IV melanoma 
+ other solid tumors

ORR=1/31 (3.2%) NCT01239134 [42]

    TRX518 GITR agonistic monoclonal 
antibody

Plus either gem-
citabine, pembro-
lizumab or nivolumab

1 Not required 
for enrollment

Advanced or metastatic 
solid tumors

Gemcitabine arm: ORR=1/26 (3.8%)
Pembrolizumab arm: ORR=1/25 (4.0%)
Nivolumab arm: ORR=1/8 (12.5%)

NCT02628574 [42]

    BMS-986156 GITR agonistic monoclonal 
antibody

± Nivolumab 1/2 Not required 
for enrollment

Advanced or metastatic 
solid tumors

Combination Therapy: ORR=21/252 (8.3%)
Most responses seen with 240 mg of BMS-986156 
plus 240 mg Nivo (ORR=18/200 (9%)) but highest 
ORR seen with 100 mg of BMS-986156 plus 240 mg 
Nivo (ORR=1/9 (11.1%))
Monotherapy: ORR=0/34 (0%)

NCT02598960 [43]

    MK-4166 GITR agonistic monoclonal 
antibody

± Pembrolizumab 1 Not required 
for enrollment

Advanced or metastatic 
solid tumors (had mela-
noma cohort)

Combination therapy: 
ORR=1/45 (2.2%) in dose escalation/confirmation 
cohort
ORR=8/13 (61.5%) in IO naïve melanoma patients in 
dose expansion cohort
ORR=8/20 (40%) in all melanoma patients in dose 
expansion cohort
Monotherapy: ORR=0/48 (0%)

NCT02132754 [13]

    GWN323 GITR agonistic monoclonal 
antibody

± Spartalizumab 1/1b Not required 
for enrollment

Advanced solid tumors 
and lymphomas

Combination arm: ORR=4/53 (7.5%); 1 patient (endo-
metrial Ca) had CR (1/53 (1.9%))
Monotherapy: ORR=0/39 (0%)

NCT02740270 [44]

Active trials without reported outcomes

    INCAGN01876 GITR agonistic monoclonal 
antibody

Plus anti-PD-1 & 
autophagosome vac-
cine (DVP-001)

1 Not required 
for enrollment

Recurrent or metastatic 
HNSCC

N=56 
Clinical outcomes not published

NCT04470024

    INCAGN01876 GITR agonistic monoclonal 
antibody

Plus anti-PD-1 and 
SRS vs. resection 

2 Not required 
for enrollment

Glioblastoma N=32 
Clinical outcomes not published

NCT04225039

    REGN6569 GITR agonistic monoclonal 
antibody

Plus Cemiplimab 1 Not required 
for enrollment

Unresectable or meta-
static HNSCC

N=85 
Clinical outcomes not published

NCT04465487

    BMS-986156 GITR agonistic monoclonal 
antibody

Plus ipilimumab and 
nivolumab ± SBRT

1/2 Not required 
for enrollment

Metastatic solid malig-
nancies

N=60 
Clinical outcomes not published

NCT04021043
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    ASP1951 GITR agonistic monoclonal 
antibody

± Pembrolizumab 1b Not required 
for enrollment

Advanced or metastatic 
solid tumors

N=120 
Clinical outcomes not published

NCT03799003

    INCAGN01876 GITR agonistic monoclonal 
antibody

Monotherapy 2 Not required 
for enrollment 

Recurrent or metastatic 
HNSCC

N=340 
Clinical outcomes not published

NCT03088059

Terminated Trials

    AMG 228 GITR agonistic monoclonal 
antibody

Monotherapy 1 Not required 
for enrollment

Advanced or metastatic 
solid tumors

ORR=0/27 (0%)
No evidence of T-cell activation or anti-tumor activity

NCT02437916 [45]

    INCAGN01876 GITR agonistic monoclonal 
antibody

Plus Epacadostat 
and Pembrolizumab

1/2 Not required 
for enrollment

Advanced or metastatic 
solid tumors

N=10 
No patients completed trial, 2 terminated by sponsor, 
4 subject withdrawal and 4 death

NCT03277352 [46]

    MK-1248 GITR agonistic monoclonal 
antibody

± Pembrolizumab 1 Not required 
for enrollment

Advanced or metastatic 
solid tumors

Combination therapy: ORR=3/17 (18%)
Monotherapy: ORR=0/20 (0%)
Enrollment prematurely discontinued due to “program 
prioritization”

NCT02553499 [47]

    MK-4166 GITR agonistic monoclonal 
antibody

Plus nivolumab 1 Not required 
for enrollment

Glioblastoma N=3 
Clinical outcomes not published

NCT03707457

    TRX518 GITR agonistic monoclonal 
antibody

Plus cyclophospha-
mide ± Avelumab

1b/2a Not required 
for enrollment

Advanced solid tumors 
(some cohorts ovarian, 
prostate and breast)

N=10  
Clinical outcomes not published

NCT03861403

    OMP-336B11 Fusion protein consisting of two 
trimeric human GITRLs and a hu-
man immunoglobulin Fc domain

Monotherapy 1a Not required 
for enrollment

Advanced or metastatic 
solid tumors

N=24 
Clinical outcomes not published

NCT03295942

    Dendritic cell vaccine Autologous dendritic cells 
transfected with RNAs encoding 
melanoma tumor antigens in 
conjunction with another popula-
tion encoding GITR-L

1 Not required 
for enrollment

Metastatic melanoma N=2 
Clinical outcomes not published

NCT01216436

Abbreviations: GITR, Glucocorticoid-induced tumor necrosis factor related protein; GITR-L, Glucocorticoid-induced tumor necrosis factor related protein ligand; HNSCC, head and neck squamous cell carcinoma; Nivo, nivolumab; ORR, overall response 
rate; RNA, ribonucleic acid.
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GITR agonism. Indeed, overall response rates 
(ORR) in these studies have ranged between 
0-4% when used as monotherapy, and 0-25% 
in the combination setting (Table 1) [12, 13, 
28, 31-37]. There were however notable excep- 
tions to these values; a phase 1/2 study of 
INCAGN01876 (NCT02697591) as monothera-
py in advanced solid tumors demonstrated an 
ORR of 25% (4/16 patients) at the 0.3 mg/Kg 
dosing, but failed to show any responses at 
other doses, including much higher doses (up 
to 10 mg/kg) [12]. Another trial studying 
MK-4166 (NCT02132754) demonstrated an 
ORR as high as 61.5% (8/13) in previously 
untreated melanoma patients; however, this 
was in combination with nivolumab, and it is 
well established that melanoma is very sensi-
tive to anti PD-1 treatment. Thus, the contribu-
tion of GITR agonism is probably limited in this 
setting, especially given the ORR of 0% when 
the GITR agonist was used as monotherapy in 
the same trial [13].

Multiple reasons could explain the limited 
responses observed in GITR agonist trials. 
First, GITR expression was not assessed in any 
of these trials. Second, these early trials mostly 
assessed the maximum tolerated dose, but 
given GITR’s complex interaction, this may not 
be the most efficacious dose as exemplified by 
the clinical trial studying INCAGN01876, which 
noted a higher ORR at a lower dose level than 
the maximum dose tested [12]. These complex-
ities are being addressed and dose selection 
by minimum anticipated biologic effect or bio-
logically active doses are being explored [14]. 
Finally, GITR agonism is thought to be limited by 
T cell exhaustion, notably through the known 
competitive interaction of CD226 and T-cell 
immunoreceptor with immunoglobulin and ITIM 
domain (TIGIT) with CD155; while the interac-
tion of CD226 with CD155 leads to effector cell 
activation, prolonged activation leads to up- 
regulation of TIGIT, which also interacts with 
CD155 and leads to effector cell inhibition and 
T cell exhaustion [15]. Interestingly, the addi-
tion of an anti-PD-L1 to GITR agonism restores 
balance between CD226 and TIGIT and leads 
to a survival benefit in mouse studies [16].

In this study, we sought to explore the differ-
ences in GITR ribonucleic acid (RNA) expres-
sion patterns between tumor types, as well as 
correlations with GITR-L and other known 
immune modulators’ RNA expression, in an 

attempt to explain the variable responses to 
GITR agonists noted in clinical trials.

Materials and methods

Patients

Overall, 514 patients from the University of 
California San Diego (UCSD) Moores Cancer 
Center with various solid tumor histologies 
were assessed. RNA expression levels from 
tumor samples were analyzed at OmniSeq 
(Labcorp) as previously reported [17]. Other  
relevant variables and patient demographics 
were collected directly from patient charts. If 
the same patient had multiple tumor samples 
evaluated, data from the first sample was used 
for this analysis. The study was conducted per 
the guidelines of the UCSD Institutional Review 
Board (Study of Personalized Cancer Therapy  
to Determine Response and Toxicity, UCSD_
PREDICT, NCT02478931) and investigational 
interventions for which the all patients con- 
sented.

Tissue processing and analysis of relevant 
markers

Tissue samples were collected and processed 
(formalin-fixed paraffin-embedded (FFPE)). RNA 
was extracted and purified from tissue using 
truXTRAC FFPE extraction kit (Covaris, Inc., 
Woburn, MA) per manufacturer’s instructions. 
RNA was reconstituted in 50 µL water, and the 
yield was measured via Quant-iT RNA HS assay 
(Thermo Fisher Scientific, Waltham, MA), per 
the manufacturer’s instructions. A titer of 10 ng 
of RNA was deemed acceptable for sequencing 
and RNA sequencing absolute read was gener-
ated with Torrent Suite’s plugin immuneRe-
sponseRNA (v5.2.0.0). Transcript abundance 
was normalized to an internal housekeeping 
gene profile dataset and ranked (0-100 percen-
tile) in a standardized manner; the reference 
dataset of 735 tumors spanning 35 tumor  
histologies. In the current investigation, RNA 
expression of GITR (TNFRSF18; CD357), 
GITR-L, PD-L1, CTLA4, lymphocyte activation 
gene 3 (LAG-3), T-cell immunoglobulin and 
mucin domain-containing protein 3 (TIM3), 
OX40, inducible T-cell co-stimulator (ICOS), 
CD137, TIGIT, CD226, and FoxP3 were as- 
sessed. To assess tumor mutational burden 
(TMB), known to be a predictive factor for immu-
notherapy response and also for prognosis [18, 
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19], DNA was extracted employing the truX-
TRAC FFPE extraction kit (Covaris). For this 
study, 10 ng of DNA was deemed adequate for 
preparing DNA libraries, which were created 
with Ion AmpliSeq targeted sequencing che- 
mistry (Comprehensive Cancer Panel). Samples 
were enriched/templated utilizing the Ion Chef 
system and sequenced on the Ion S5XL 540 
chip (Thermo Fisher Scientific). TMB is read as 
mutations/megabase; single nucleotide vari-
ants with <5% variant allele fraction, synony-
mous and germline variants, and indels are 
eliminated. PD-L1 immunohistochemistry (IHC) 
was assessed using either the SP142 (Ventana) 
or 22C3 (Dako) antibodies. Human epidermal 
growth factor 2 (HER2) status was assessed by 
IHC and FISH per established guidelines [20], 
and estrogen receptor (ER) and progesterone 
receptor (PR) was assessed by IHC per local 
institutional protocol.

Statistical analysis 

RNA expression levels were stratified by high, 
moderate and low expression. High expression 
was defined as 75th-100th percentile, moderate 
expression, defined as 25th-74th percentile, and 
low expression, defined as 0-24th percentile. 
The dataset has been previously described [21-
23]. Univariate and multivariate odds ratio and 
p-values were calculated using logistic regres-
sion with R version 4.2.1 (R statistical comput-
ing, Vienna, Austria). GraphPad Prism version 
9.5.1 for Windows (GraphPad Software, Boston, 
Massachusetts USA) was also used for figure 
creation.

Results

Patients

Overall, 514 patients with various tumor types 
were evaluated. Median age was 61 years, and 
ages ranged from 24-93 years. A total of 310 
(60.3%) patients were female and 204 (39.7%) 
were male. Most common tumor types were 
colorectal (n=140 (27.2%)), pancreatic (n=55 
(10.7%)), breast (n=49 (9.5%)), ovarian (n=43 
(8.37%)), gastric (n=25 (4.86%)), sarcoma 
(n=24 (64.7%)), uterine (n=24 (6.47%)) and lung 
(n=20 (3.89%)). The aforementioned tumor 
types all had more than 20 patients per tumor 
type; the remaining 134 patients (26.1%) had 
malignancies which constituted less than 20 
samples per tumor type.

Landscape of GITR and GITR-L RNA expression

RNA expression levels were stratified by high 
expression (75th-100th percentile), moderate 
expression (25th-74th percentile), and low ex- 
pression (0-24th percentile). Overall, 99/514 
(19.3%) patients had high GITR expression. 
Malignancies that had 20 or more representa-
tive samples were evaluated for expression 
and reported. Breast and lung had the largest 
proportion of patients with high GITR expres-
sion, with 38.8% (19/49) and 35% (7/20) of 
patients respectively. Of all breast cancer pa- 
tients with high GITR expression who had ER, 
PR and HER2 data available (n=18), 0% had 
HER2 expression as determined by IHC and 
FISH testing (0/18); 38.9% (7/18) were triple 
negative and 61.1% (11/18) were hormone 
receptor (HR) positive, HER2 negative. Of the 
remaining breast cancer patients that did not 
have high GITR expression, and had ER, PR and 
HER2 data available (n=28), 50.0% (14/28) 
were HR positive and HER2 negative, 14.3% 
(4/28) were HR positive and HER2 positive, 
28.6% (8/28) were triple negative and 7.1% 
(2/28) were HR negative and HER2 positive. All 
other malignancies evaluated had ≤20% of 
patients with high GITR expression; 20% (5/25) 
in gastric, 16.5% (7/43) in ovarian, 14.5% 
(8/55) in pancreatic, 13.6% (19/140) in co- 
lorectal, 12.5% (3/24) in uterine and 4.2% 
(1/24) in sarcoma (Figure 2).

GITR-L expression was also assessed in malig-
nancies that had 20 or more representative 
samples; highest expression was seen in pan-
creatic with 38.2% (21/55) of patients express-
ing high GITR-L. Uterine cancer had the lowest 
proportion of patients expressing high GITR-L 
at 12.5% (3/24). All other malignancies had 
similar proportion of patients with high GITR-L 
expression; 24% (6/25) in gastric, 20.8% (5/24) 
in sarcoma, 20.4% (10/59) in breast, 20% 
(28/140) in colorectal, 20% (4/20) in lung, and 
18.6% (8/43) in ovarian had high GITR-L expres-
sion (Figure 2).

The association between GITR and GITR-L RNA 
expression were assessed in malignancies th- 
at had 20 or more representative samples. 
Tumors with highest proportion of patients hav-
ing high GITR expression and low-moderate 
GITR-L expression were lung and breast, with 
30% (6/20) and 30.6% (15/49) respectively, 
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Figure 2. Proportion (%) of patients with GITR and GITR-L RNA expression. Malignancies with >20 representative 
samples were included. Levels of GITR and GITR-L expression were stratified by high (75th-100th percentile), moder-
ate (25th-74th percentile) and low (0-24th percentile) expression.

representing the only two malignancies tested 
with >20% of patients having this expression 
pattern (Figure 3A). Of all breast cancer pa- 
tients with high GITR plus low-moderate GITR-L 
expression who had ER, PR and HER2 data 
available (n=14), 0% had HER2 expression as 
determined by IHC and FISH testing (0/14); 
35.7% (5/14) were triple negative and 64.3% 
(9/14) were hormone receptor positive, HER2 
negative. The entire cohort of patients with 
breast cancer showed HER2 positivity in only 6 
of 49 tumors, limiting any implications of this 
observation. Otherwise, the proportion of pa- 
tients having high GITR along with low-moder-
ate GITR-L expression were 20% (5/25) in gas-
tric, 14% (6/43) in ovarian, 11.4% (16/140) in 
colorectal, 7.3% (4/55) in pancreatic, 4.2% 
(1/24) in sarcoma, and 4.2% (1/24) in uterine 
(Figure 3B).

High GITR RNA expression is associated with 
breast cancer as well as other clinically rel-
evant immune checkpoint markers

Breast cancer was associated with high GITR 
expression on both univariate (P<0.001, odds 
ratio (OR) 3.05, confidence interval (CI) 1.61-
5.65) and multivariate analysis (P<0.001, OR 
3.79, CI 1.74-8.17). Other malignancies with 
more than 20 representative samples did not 
show a statistically significant association with 
high GITR expression, though lung cancer 
trended towards significance on univariate an- 
alysis (P=0.08, OR 2.35, CI 0.86-5.91) (Table 
2). Colorectal cancer was found to be negative-
ly associated with high GITR expression on uni-
variate analysis (P=0.47, OR 0.58, CI 0.33-
0.97), but was did not show a significant 
association with high GITR expression on multi-
variate analysis.



Implications of GITR and GITR-L RNA expression levels

1641 Am J Cancer Res 2024;14(4):1634-1648

Figure 3. Proportion (%) of patients with different combinations of GITR and GITR-L RNA expression stratified by high 
and low-moderate expression. GITR RNA expression of 75th-100th percentile was considered high and GITR-L expres-
sion of 0-74th percentile was considered low-moderate. A. All malignancies, and malignancies with ≥30% of patients 
having high GITR RNA expression with low-moderate GITR-L RNA expression. B. All malignancies with >20 samples 
with <30% of patients having high GITR RNA expression with low-moderate GITR-L RNA expression.

On univariate analysis, high GITR RNA expres-
sion showed a statistically significant associa-
tion with PD-L1 IHC positivity of at least 1% 
(P<0.001, OR 2.53, CI 1.61-3.97), and high 
RNA expression of PD-L1 (P<0.001, OR 5.19, CI 
3.00-8.96), PD-1 (P<0.001, OR 4.63, CI 2.82-
7.60), CTLA4 (P<0.001, OR 6.47, CI 3.91-10.8), 
LAG-3 (P<0.001, OR 4.04, CI 2.52-6.47), OX40 
(P<0.001, OR 4.59, CI 2.88-7.35), ICOS (P< 
0.001, OR 4.74, CI 2.76-8.12), CD137 (P< 
0.001, OR 3.93, CI 2.32-6.62), TIGIT (P<0.001, 
OR 5.24, CI 3.22-8.55) and FoxP3 (P<0.001, 
OR 5.06, CI 3.17-8.12). Low expression (<25th 
percentile RNA expression rank) of CD226 was 
negatively associated with GITR high expres-
sion (P=0.005, OR 0.48, CI 0.29-0.79) on uni-
variate analysis. On multivariate analysis, only 
PD-L1 IHC≥1 (P=0.008, OR 2.15, CI 1.22-3.78), 
high RNA expression of CTLA4 (P=0.05, OR 
2.17, CI 1.00-4.71) and OX40 (P=0.001, OR 
2.64, CI 1.46-4.73) were significantly associat-
ed with high GITR expression (Table 2). 

Discussion

As a target for cancer therapeutics, GITR has 
yet to prove itself as multiple clinical trials have 
shown, at best, a modest response to GITR 
agonism (Table 1). While many variables could 
be responsible for the limited efficacy noted in 
GITR agonist trials, a possible contributor is 

failure to identify the population of patients 
whose tumors are most likely to respond. There 
is strong precedence for the ability of biomark-
ers to predict outcomes with certain treat-
ments. In the immunotherapy field, this is 
exemplified with universally good responses 
seen with anti-PD-1/PD-L1 therapy in patients 
with high TMB [18, 19, 24-27], and/or microsat-
ellite instability (MSI)/deficient mismatch repair 
(dMMR) [28, 29]. The gene-targeted therapy 
approach has also shown that selection of 
patients whose tumors have oncogenic drivers 
may be critical for efficacy when driver altera-
tions such as NTRK fusions [30, 31], RET 
fusions [32, 33], and BRAF mutations [34, 35] 
are targeted, leading to genomic-based tumor-
agnostic approvals by the Food and Drug 
Administration. Moreover, our experience with 
the I-PREDICT trial has demonstrated that 
using a personalized N-of-1 combination thera-
py approach guided by patient genomics leads 
to improved outcomes [36]. In the current 
study, we utilized transcriptomic data, which 
have previously been shown to have utility in 
treatment selection [37], to explore certain clin-
ical populations and relevant clinical variables 
that could be informative for GITR agonism in 
clinical trials.

As part of the current study, exploring trends in 
GITR RNA expression revealed that breast and 
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Table 2. Univariate and multivariate logistic regression analysis exploring the relationship of high GITR (>75% percentile rank) RNA expression 
with relevant clinical and molecular variables (N=514 patients)

Variable Proportion of  
High-GITR Expression

Univariate Odds 
Ratio (95% CI)

Univariate 
P-value

Multivariate Odds 
Ratio (95% CI)

Multivariate 
P-value Comments

Age ≥61 21% [55/256] 1.33 (0.86, 2.07) 0.20
<61# 17% [44/258]

Gender Male 16% [32/204] 0.67 (0.42, 1.07) 0.10
Female# 22% [67/310]

Breast cancer* Yes 39% [19/49] 3.05 (1.61, 5.65) <0.001 3.79 (1.74, 8.17) <0.001 High GITR RNA expression correlates with breast cancer 
vs. other cancersNo# 17% [80/465]

Colorectal cancer Yes 14% [19/140] 0.58 (0.33, 0.97) 0.047 0.76 (0.39, 1.43) 0.41 -
No# 21% [80/374]

Lung cancer Yes 35% [7/20] 2.35 (0.86, 5.91) 0.08
No# 19% [92/494]

Ovarian cancer Yes 16% [7/43] 0.80 (0.32, 1.75) 0.61
No# 20% [92/471]

Pancreatic cancer Yes 15% [8/55] 0.69 (0.29, 1.43) 0.35
No# 20% [91/459]

Sarcoma Yes 4% [1/24] 0.17 (0.01, 0.84) 0.09
No# 20% [98/490]

Stomach cancer Yes 20% [5/25] 1.05 (0.34, 2.67) 0.92
No# 19% [94/489]

Uterine cancer Yes 13% [3/24] 0.59 (0.14, 1.75) 0.40
No# 20% [96/490]

PD-L1 IHC** ≥1 30% [47/156] 2.53 (1.61, 3.97) <0.001 2.15 (1.22, 3.78) 0.008 High GITR RNA expression correlates with PD-L1 IHC≥1 
vs. negative PD-L1 IHC <1# 15% [52/357]

MSI_H*** High 7% [1/15] 0.29 (0.02, 1.49) 0.24
Not high# 20% [91/465]

TMB (muts/MB)**** ≥10 15% [5/33] 0.79 (0.26, 1.95) 0.64
<10# 18% [77/417]
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Transcriptomics
    PD-L1 ≥75 48% [32/67] 5.19 (3.00, 8.96) <0.001 1.61 (0.74, 3.43) 0.22 -

<75# 15% [67/447]
    PD-1 ≥75 43% [40/93] 4.63 (2.82, 7.60) <0.001 1.20 (0.53, 2.62) 0.65 -

<75# 14% [59/421]
    CTLA4 ≥75 49% [43/87] 6.47 (3.91, 10.8) <0.001 2.17 (1.00, 4.71) 0.05 High GITR RNA expression correlates with high CTLA4 

RNA expression vs. low-moderate CTLA4 RNA expression <75# 13% [56/427]
    LAG3 ≥75 39% [45/116] 4.04 (2.52, 6.47) <0.001 1.60 (0.83, 3.02) 0.15 -

<75# 14% [54/398]
    TIM3 ≥75 27% [24/90] 1.69 (0.98, 2.85) 0.052

<75# 18% [75/424]
    OX40 ≥75 40% [49/122] 4.59 (2.88, 7.35) <0.001 2.64 (1.46, 4.73) 0.001 High GITR RNA expression correlates with high OX40 

RNA expression vs. low-moderate OX40 RNA expression<75# 13% [50/392]
    ICOS ≥75 46% [32/70] 4.74 (2.76, 8.12) <0.001 0.89 (0.37, 2.09) 0.79 -

<75# 15% [67/444]
    CD137 ≥75 42% [32/77] 3.93 (2.32, 6.62) <0.001 1.10 (0.48, 2.39) 0.81 -

<75# 15% [67/437]
    TIGIT ≥75 44% [44/99] 5.24 (3.22, 8.55) <0.001 1.18 (0.48, 2.84) 0.71 -

<75# 13% [55/415]
    CD226 <25 13% [23/183] 0.48 (0.29, 0.79) 0.005 1.07 (0.58, 1.94) 0.84 -

≥25# 23% [76/331]
    FOXP3 ≥75 41% [51/123] 5.06 (3.17, 8.12) <0.001 1.58 (0.80, 3.08) 0.18 -

<75# 12% [48/391]
    TNFSF18 <25 18% [31/177] 0.84 (0.52, 1.33) 0.47

≥25# 20% [68/337]
Malignancies with >20 samples and relevant molecular variables (on all 514 samples) were analyzed. Multivariate analysis was done on variables that had a p-value <0.05 in univariate analysis. #Reference 
value for logistic regression odds ratio; *18/19 breast cancer patients with high GITR had ER, PR and HER2 status data available. 61.1% (11/18) were HR+/HER2- and 38.9% (7/18) were HR-/HER2-; **One 
sample was missing PD-L1 IHC data and was omitted from analysis; ***34 samples were missing MSI data and were omitted from analysis; ****64 samples were missing TMB data and were omitted from 
analysis. Abbreviations: CI, confidence interval; IHC, immunohistochemistry; MSI, microsatellite instability; TMB, tumor mutational burden; HR, hormone receptor; HER2, human epidermal growth factor recep-
tor 2.
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lung cancers have a disproportionally higher 
expression of GITR relative to other malignan-
cies (Figure 2). Moreover, in these two malig-
nancies, about 30% of patients had high GITR 
expression with concomitant low-moderate 
GITR-L expression (Figure 3); theoretically, this 
scenario - high expression of the receptor but 
low amounts of ligand - might be most amena-
ble to GITR agonism. Interestingly, none of the 
patients with breast cancer having high GITR 
expression had HER2 positivity and 64.3% 
(9/14) were hormone receptor positive, HER2 
negative; this observation that warrants further 
investigation as immunotherapy has yet to find 
a role in HR+ and HER2- disease. Moreover, it is 
worth mentioning that review of the clinical tri-
als in Table 1 revealed that patients with breast 
cancer were generally underrepresented (<10% 
of patients in most trials that reported malig-
nancy types).

High GITR expression has a statistically signifi-
cant association on univariate analysis with 
high RNA expression of multiple known immu-
nomodulatory markers, namely, PD-L1, CTLA4, 
LAG-3, OX40, ICOS, CD137 (4-1BB), TIGIT, as 
well PD-L1 IHC≥1. This is likely a representa-
tion of a “hot” immune repertoire as multivari-
ate analysis revealed a statistically significant 
association of high GITR expression with only 
high CTLA4 and OX40 RNA expression and 
PD-L1 IHC≥1. The correlation of high co-expres-
sion of these markers could imply that target-
ing these three markers in combination may 
yield better outcomes; indeed, many of the tri-
als assessing GITR agonists have added an 
anti PD-L1/PD-1 with better responses (Table 
1) and at least one trial [38] noted higher 
response rates with addition of an anti-CTLA4 
to GITR agonism. Using OX40 agonists in con-
junction with GITR agonists has also shown to 
have a synergistic effect in murine studies [39], 
though to our knowledge, no clinical trials have 
been undertaken to assess this combination.

While our study sheds light on potential immu-
nomic expression considerations that may aid 
in finding a niche for targeting GITR in cancer 
therapeutics, it has several important limita-
tions. Firstly, patients who were analyzed as 
part of the database did not have a pre-deter-
mined inclusion criterion, and sampling bias 
could have skewed these results. Secondly, a 
few malignancies in our database had <20 

patients, and some malignancies were not rep-
resented at all; thus, our results speak best to 
the malignancies with more than 20 samples in 
the queried database. Thirdly, while a minimum 
number of 20 patients per tumor type was 
required to proceed with analysis, this is still a 
fairly low number of samples which may have 
lacked power to obtain a statistical signal in 
populations that may be truly associated with 
higher GITR expression. Fourthly, this analysis 
explored only mRNA expression levels and does 
not assess protein levels, nor were we able  
to segregate expression by cell type. Lastly, 
though we hypothesized that the presence of 
high GITR with concomitant low-moderate 
GITR-L RNA expression may be more amenable 
to GITR agonism based on the known phenom-
enon that GITR overstimulation leads to immu-
nosuppression (Figure 1), there is no clinical/
preclinical data as of yet that implicates this 
profile in preferential clinical benefit. It is also 
important to note that the GITR low-moderate 
plus GITR-L low-moderate expression pattern 
made up the majority of patients across cancer 
types (Figure 3), a group that warrants further 
molecular characterization, especially if lack of 
meaningful clinical benefit with GITR agonism 
is observed in further studies. Ultimately, while 
we identified associations between high GITR 
expression and other targetable immune mark-
ers, as well as high GITR expression and cer- 
tain patient populations, confirming therapeu-
tic benefit with GITR agonism in patients with 
high GITR expression (and potentially concomi-
tant GITR-L low-moderate expression) requires 
further prospective trials.

In summary, multiple reasons likely account for 
the suboptimal outcomes from current trials 
exploring therapeutics targeting GITR expres-
sion in solid tumors. While some of these rea-
sons may be related to the complexities of drug 
design [40], dosing, and timing of administra-
tion relative to other immune agents, our cur-
rent study sheds light on other intrinsic vari-
ables such as the heterogeneity of expression 
of GITR and GITR ligand between and within 
cancer types. These variable expression pat-
terns merit further study as to whether they 
may influence responsiveness to GITR ago-
nism. The significant association of high GITR 
expression with breast cancer, as well as the 
observation that almost a third of breast can-
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cer patients in our cohort had high GITR expres-
sion with concomitant low-moderate GITR-L 
expression, and similar finding in lung cancer, 
may also be of interest for clinical trial target-
ing. The results herein also support a combina-
tion approach to GITR agonism, specifically with 
agonists of OX40 and antagonists of PD-L1 and 
CTLA4, given that PD-L1 IHC≥1 and high RNA 
expression of OX40 and CTLA4 were inde- 
pendently associated with high GITR RNA 
expression.
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