The transcriptomic expression pattern of immune checkpoints shows heterogeneity between and within cancer types

Hirotaka Miyashita1*, Nicholas J Bevins2*, Kartheeswaran Thangathurai3,4, Suzanna Lee5, Sarabjot Pabla6, Mary K Nesline6, Sean T Glenn6,7, Jeffrey M Conroy6,8, Paul DePietro6, Eitan Rubin3, Jason K Sicklick9, Shumei Kato5, Razelle Kurzrock10

1Department of Hematology and Oncology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA; 2Department of Pathology, University of California San Diego, La Jolla, CA, USA; 3The Shraga Segal Department for Microbiology, Immunology and Genetics, Ben-Gurion University of The Negev, Beer Sheva, Israel; 4Department of Physical Science, University of Vavuniya, Vavuniya, Sri Lanka; 5Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA; 6OmniSeq Inc., Buffalo, NY, USA; 7Roswell Park Comprehensive Cancer Center, Molecular Pathology, Buffalo, NY, USA; 8Roswell Park Comprehensive Cancer Center, Center for Personalized Medicine, Buffalo, NY, USA; 9Division of Surgical Oncology, Department of Surgery and Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla, CA, USA; 10Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Paris, France. *Equal contributors.

Abstract: Transcriptomic expression profiles of immune checkpoint markers are of interest in order to decipher the mechanisms of immunotherapy response and resistance. Overall, 514 patients with various solid tumors were retrospectively analyzed in this study. The RNA expression levels of tumor checkpoint markers (ADORA2A, BTLA, CD276, CTLA4, IDO1, IDO2, LAG3, NOS2, PD-1, PD-L1, PD-L2, PVR, TIGIT, TIM3, VISTA, and VTCN) were ranked from 0-100 percentile based on a reference population. The expression of each checkpoint was correlated with cancer type, microsatellite instability (MSI), tumor mutational burden (TMB), and programmed death-ligand 1 (PD-L1) by immunohistochemistry (IHC). The cohort included 30 different tumor types, with colorectal cancer being the most common (27%). When RNA percentile rank values were categorized as “Low” (0-24), “Intermediate” (25-74), and “High” (75-100), each patient had a distinctive portfolio of the categorical expression of 16 checkpoint markers. Association between some checkpoint markers and cancer types were observed; NOS2 showed significantly higher expression in colorectal and stomach cancer (P < 0.001). Principal component analysis demonstrated no clear association between combined RNA expression patterns of 16 checkpoint markers and cancer types, TMB, MSI or PD-L1 IHC. Immune checkpoint RNA expression varies from patient to patient, both within and between tumor types, though colorectal and stomach cancer showed the highest levels of NOS2, a mediator of inflammation and immunosuppression. There were no specific combined expression patterns correlated with MSI, TMB or PD-L1 IHC. Next generation immunotherapy trials may benefit from individual analysis of patient tumors as selection criteria for specific immunomodulatory approaches.

Keywords: Immune checkpoint, transcriptome, principal component analysis, microsatellite instability, tumor mutational burden, programmed death ligand 1

Introduction

Concerted efforts to activate the immune system against cancers, including with the use of cytokines, vaccines, cellular therapy, and checkpoint blockade, have led to regulatory approval of several immunotherapeutic medications. In particular, the discovery of the molecular mechanisms of immune suppression in the tumor microenvironment resulted in the utilization of more potent immunotherapy, which has revolutionized the field of medical oncology. The first immune checkpoint blockade (ICB) approved by Food and Drug Ad-
administration (FDA) was ipilimumab, a monoclonal antibody targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), for advanced melanoma [1]. As of 2022, FDA has approved one CTLA-4 inhibitor, four programmed death 1 (PD-1) inhibitors, three programmed death-ligand 1 (PD-L1) inhibitors [2-4], and a lymphocyte-activation gene 3 (LAG3) inhibitor [5].

Although ICBs have been improving cancer treatment outcomes, not all patients with cancer benefit from them. Overcoming the limitation of non-responders has been a challenge, which has led to the discovery of several response markers to ICBs, including but not limited to PD-L1 expression status [6, 7], microsatellite instability (MSI) [8], tumor mutational burden, and more recently PD-1 expression on tumor infiltrating lymphocytes [9-12]. In recent years, several genomic mutations (e.g., ARID1A mutation) have been shown to be associated with favorable responses to ICBs [13-16]. On the other hand, several markers that are potentially related to ICB resistance have been studied, including but not limited to EGFR mutation [17], MDM2 amplification [18], Wnt-beta catenin activation [19], and alterations of beta-2 microglobulin [20]. These markers can potentially help predict patients to whom ICBs should or should not be given. The study of the predictive markers is not limited to genomics or protein expression. We also previously reported that high ribonucleic acid (RNA) expression level of T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) and V-domain Ig suppressor of T cell activation (VISTA) checkpoints correlate with poor response to ICBs [21]. The latter suggests that there may be evasion pathways other than the PD-1/PD-L1 axis that protect tumors from immune eradication.

Selecting patients to receive specific ICBs based on genomic alterations (e.g., mismatch repair gene defect) or expression levels of a specific protein (e.g., PD-L1) has become a routine practice in several types of cancer [22]. Another step can be analyzing the immunomic profile to determine the precise mechanism an individual cancer is using to inactivate and elude the immune apparatus. However, our understanding of the immunome in various types of cancer is still limited. Therefore, we analyzed the transcriptomic expression of multiple immune checkpoints among diverse cancers. Our hypothesis was that immune checkpoint expression will demonstrate heterogeneity, which in turn may be informative when selecting treatments. Herein, we showed that RNA expression of immune checkpoints varies between patients, both within and between tumor types, suggesting the need to interrogate each tumor to properly select therapy in a precision immunotherapy paradigm.

Materials and methods

Patients

As a retrospective part of Study of Personalized Cancer Therapy to Determine Response and Toxicity (UCSD_PREDICT, NCT02478931), 514 patients with various types of solid tumors seen at the Center for Personalized Cancer Therapy within Moores Cancer Center at UC San Diego were included in this study. The RNA expression levels of immune checkpoint inhibitory markers in these patients’ samples were measured at a Clinical Laboratory Improvement Amendments (CLIA)-licensed and College of American Pathologist (CAP)-accredited clinical laboratory, OmniSeq (https://www.omniseq.com/). The patient characteristic data, including age, sex, the origin of cancer, MSI, TMB and the expression of PD-L1 by immunohistochemistry (IHC), were collected. When one patient had two or more samples from different collection dates, the sample collected earliest was used for the analysis. We followed the guidelines of the UCSD Institutional Review Board for data collection (UCSD_PREDICT, NCT02478931) and any investigational interventions for which patients consented.

Tissue sampling and the analysis of RNA expression

After collection, tissues were processed as formalin-fixed, paraffin-embedded (FFPE) samples and analyzed through RNA sequence at OmniSeq laboratory. RNA was extracted from FFPE using truXTRAC FFPE extraction kit (Covaris, Inc., Woburn, MA), with slight modification complying with the manufacturer’s instruction. After RNA was purified from the sample, it was dissolved in 50 µL water, and the yield was analyzed through Quant-iT RNA HS assay (Thermo Fisher Scientific, Waltham, MA). The pre-defined titer of 10 ng RNA was
set as acceptance criteria so that the library was prepared appropriately. Absolute reading of the RNA sequence was measured by Torrent Suite’s plugin immuneResponseRNA (v5.2.0.0). The RNA expression of a total of 397 different genes was measured. Among them, 16 genes related to the immune checkpoint, including ADORA2A, BTLA, CD276, CTLA4, IDO1, IDO2, LAG3, NOS2, PD-1, PD-L1, PD-L2, PVR, TIGIT, TIM3, VISTA, and VTCN were focused on this study (Supplementary Table 1). The expression level of RNA was normalized to internal housekeeping gene profiles and ranked (0-100 percentile) in a standardized manner to a reference population of 735 tumors with 35 different histologies. The RNA expression profiles were categorized by rank values into “Low” (0-24 percentile), “Intermediate” (25-74 percentile), and “High” (75-100 percentile).

Definition of TMB, MSI and PD-L1 status

As for TMB, genomic DNA was extracted from qualified FFPE tumor samples (> 30% neoplastic nuclei) using the truXTRAC FFPE extraction kit (Covaris) with 10 ng DNA input for the library preparation. Ion AmpliSeq targeted sequencing chemistry with Comprehensive Cancer Panel was used for DNA library preparation, followed by the enrichment and template preparation using the Ion Chef System and sequencing on the Ion S5XL 540 chip (Thermo Fisher Scientific). After removal of germline variants, synonymous variants, indels, and single nucleotide variants (SNVs) with < 5% variant allele fraction (VAF), TMB was reported as eligible mutations per qualified panel size (mutations/megabase). In this analysis, TMB ≥ 10 mutations per megabase was designated as TMB “High” and less than 10 mutations per megabase was defined as TMB “Low”.

To determine MSI, genomic DNA was extracted from qualified FFPE samples (> 20% neoplastic nuclei) by truXTRAC FFPE extraction kit (Covaris). The MSI - next-generation sequencing (NGS) assay analyzes 29 homopolymer loci, including BAT-25 and BAT-26, by running sequencing tumor DNA (20 ng) on an Illumina MiSeq Sequencer. The computational tool of the assay, MSI-NGS Caller, compares the sample’s homopolymer repeat profile to a normal allele distribution that was predefined at each locus.

PD-L1 expression was measured by three different IHC assays; VENTANA PD-L1 (SP 142) assay (Ventana Medical Systems, Inc., Tuscon, Arizona, USA, N = 33), Dako PD-L1 IHC 22C3 pharmDx assay, and Dako PD-L1 IHC 288 pharmDx assay (Dako North America, Inc., Carpinteria, California, USA, N = 474 and 6, respectively). In this analysis, positive PD-L1 in IHC was determined by PD-L1 ≥ 1%, and otherwise, the samples were classified as negative PD-L1.

Statistical analysis

The characteristics of the patients included in the study and the expression of immune checkpoint markers were summarized by the descriptive statistics. The correlation between each immune checkpoint expression and other variables, including cancer types, TMB, MSI, and PD-L1, were analyzed through the Kruskal-Wallis test.

The correlation between expression patterns of immune checkpoint markers and other variables was analyzed through principal component analysis and was quantified by silhouette scores.

All statistical analysis was conducted through R 3.6.1 (R Foundation for Statistics Computing, Vienna, Austria) and was confirmed by a statistician and bioinformatician. R packages “ggplot2”, “dplyr”, “tidyr”, “stringr”, “tidyverse”, “cluster”, “factoextra”, and “dendextend” were used in this analysis. Statistical significance was determined as P < 0.05 with the Bonferroni correction for multiple comparisons.

Results

Characteristics of the cohort

Altogether, 514 patients with advanced/metastatic disease were included, and the analysis was done between July 2017 and November 2020. 310 patients (60.3%) were women; the patients’ age ranged from 23 to 93 years (median = 60 years). The most common type of cancer was colorectal cancer (N = 140, 27.2%), followed by pancreatic cancer (N = 55, 10.7%) and breast cancer (N = 49, 9.5%). Overall, 450 and 440 patients had samples available for the analysis of TMB and MSI,
respectively. The distribution of baseline characteristics was similar in all cohorts (Table 1).

Transcriptomic expression of checkpoint markers demonstrates a distinct pattern of expression in each patient

In the original cohort, the RNA rank values of each immune checkpoint marker were widely distributed from 0-99 or 0-100. The median rank values of each checkpoint marker ranged from 13.5 (NOS2) to 68 (CD276 (B7-H3)) (Figure 1A).

CD276 (B7-H3) showed high RNA expression level (rank value of 75 or higher) most frequently among the 16 checkpoint markers (N = 214, 41.6%) and PD-L1 had the lowest proportion of high expression (N = 67, 13%). The proportion of low expression (rank value of 24 or lower) ranged from 11.9% (CD276 (B7-H3), N = 61) to 52.5% (NOS2, N = 270) (Figure 1B).

Among 514 patients in this study, each patient had distinctive patterns of expression levels of 16 checkpoint inhibitor markers (Figure 2).

RNA expression of checkpoint markers according to cancer types

Although the expression patterns of the checkpoint markers were extremely diverse (Figure 2), the expression of some checkpoint markers was significantly associated with cancer types. For instance, NOS2 showed the greatest difference in RNA expression depending on cancer type.
Heterogeneous immune checkpoint transcriptomic expression

Figure 1. RNA expression of immune checkpoint markers (N = 514 patients with diverse cancers). A. Box plot of immune checkpoint marker RNA expression. Each box represents the middle 50% of scores for the group. The bottom of the box represents the first quartile, and the top represents the third quartile. The thick line dividing the box into two parts represents the median. The upper and lower whiskers extend to the largest value but are no further than 1.5 times of the inter-quartile range from the third quartile. All markers demonstrated the range of rank value (transcript expression rank as compared to control (see Methods)) from 0 to 100 percentile. The median rank values of each checkpoint marker ranged from 13.5 percentile (NOS2) to 68 percentile (CD276 (B7-H3)). B. Bar chart of the immune checkpoint marker RNA expression category. The numbers in the bars represent the percentage of patients who had high (≥ 75), intermediate (25-74), and low (< 25) rank RNA percentile expression of each checkpoint marker. For example, 20.8% (N = 107) of patients in the entire cohort had high RNA expression of ADORA2A.
Heterogeneous immune checkpoint transcriptomic expression

Figure 2. Heatmap of RNA expression levels of immune checkpoint markers in the entire cohort. The RNA level of expression is classified by the color. Red means high RNA expression (≥ 75 rank percentile), Green demonstrates intermediate RNA expression (25-74 rank percentile), and low RNA expression (< 25 rank percentile) was marked by the blue. *P*-values were calculated by the Kruskal-Wallis test with Bonferroni correction for the multiple comparisons for the 16 genes.

Analyzing combined RNA expression patterns of 16 checkpoint markers shows no clear correlation with cancer types

The immune checkpoint markers of the 514 tumors were analyzed for the correspondence with cancer types. The 514 samples were plotted using principal component analysis for the selected 16 genes and were clustered based on their cancer types (**Figure 4**). Principal component analysis allows 2D representation of 16-dimensional data consisting of expression levels of 16 different genes [23]. Among the clusters, 16 small clusters (i.e., clusters size is smaller than the median cluster size, \(n = 4 \)) were omitted, resulting in removal of 36. The first dimension (“Dim1”) captured 38.4% of the variation in the data, and the second dimension (“Dim2”) captured 10.8% of variation in the data. The plot did not show a clear distinction between different tissues in the expression of the 16 checkpoint markers.

To quantify these differences, we compared the silhouette score with and without randomization. Silhouette score quantifies the average variation within clusters compared to the variation between clusters [24]. This measure can be used to compare actual and shuffled tumor types as clusters, and to calculate its average and standard deviation. The silhouette score of the non-randomized cancer types was -0.08 and the silhouette score of 100000 randomizations was 0.1 ± 0.015 (**Supplementary Table 2**), which suggests that cancer types are not significantly correlated with checkpoint RNA expression pattern.

Correlation between the expression of checkpoint markers and other molecular characteristics

Comparing the expression of each checkpoint marker based on TMB status, no significant difference was detected (**Figure 5A**). The expressions of several checkpoint markers, including IDO1, PD-L1, and TIGIT, were associated with...
MSI (Figure 5B). The expression of PD-L1 was significantly higher in the patients with MSI than in those with stable microsatellites (median rank value 68 and 37, respectively, \(P = 0.005 \)). Similarly, PD-L1 expression equal or greater than 1% on IHC showed associations with the higher RNA expression of CTLA4, IDO1, LAG3, PD-1, PD-L1, PD-L2, and TIGIT (Figure 5C). The RNA of PD-L1 was significantly more highly expressed in the tumors with PD-L1 positivity in IHC (≥ 1%) than those with negative PD-L1 in IHC (< 1%) (median rank value 53 and
Heterogeneous immune checkpoint transcriptomic expression

Despite the correlation between MSI or PD-L1 and several individual checkpoints, when analyzed together, the principal component analysis plots with the clustering based on MSI, TMB as well as PD-L1 IHC showed no apparent correlation with the patterns of checkpoint marker expression (Supplementary Figure 2).

Discussion

This analysis showed that the expression levels of checkpoint markers are extremely diverse among cancers. There was no single identical expression pattern of 16 checkpoint markers shared by multiple samples in this cohort of 514 patients with cancer. However, when focusing on the expression level of each checkpoint marker, a significant association between cancer types and the expression levels was observed.

Inducible nitric oxide synthase (NOS2) is known to play a role in immunosuppression in microenvironments of cancer, and its overexpression is related to poor outcomes in various types of cancer [25]. We revealed that NOS2 is highly expressed in colorectal and stomach cancer, while pancreatic and breast cancer demonstrated a low expression level of NOS2. It has been suggested that NOS2 contributes to the carcinogenesis and progression of gastrointestinal cancers, including colorectal, gastric, and esophageal cancer, which is compatible with...
Figure 5. Heatmaps of expression levels of checkpoint markers based on TMB, MSI, and PD-L1 IHC. The expression levels of checkpoint markers are summarized in the heatmaps based on TMB (A), MSI (B) and PD-L1 IHC (C). The level of expression is classified by the color. Red means high RNA expression (≥ 75 percentile rank). Green demonstrates intermediate expression (25-74), and low expression (< 25) was marked by the blue. P-values were calculated by the Kruskal-Wallis test with Bonferroni correction for the multiple comparisons for the 16 genes. These figures show that higher RNA level of CTLA4, LAG3, PD-1, PD-L1, PD-L2 and TIGIT are significantly associated with PD-L1 greater or equal to 1% on IHC. Abbreviations: IHC: immunohistochemistry, MSI: microsatellite instability, PD-L1: programmed death-ligand 1 (immunohistochemistry), TMB: tumor mutational burden.
the result of this analysis [26]. Since NOS2 can theoretically bring about a poor response to immunotherapy of cancer, inhibiting NOS2 may be a promising approach to enhance immunotherapy efficacy in certain types of cancer that show high NOS2 expression [27].

Our analysis demonstrated that poliovirus receptor (PVR) is also relatively highly expressed in colorectal and pancreatic cancer, while breast cancer and melanoma generally express PVR in the lower levels. It has been shown that PVR is involved in immune regulation in cancer and is deemed an attractive target for cancer immunotherapy [28]. PVR is expressed on the membrane of various cancer cells and serves as a ligand of TIGIT, whose interaction causes an immunosuppressive effect [29]. Thus PVR is thought to be a promising target for cancer immunotherapy [30]. PVR is expressed on the membrane of various cancer cells and serves as a ligand of TIGIT, whose interaction causes an immunosuppressive effect [29]. Thus PVR is thought to be a promising target for cancer immunotherapy [30].

In this analysis, V-set domain-containing T-cell activation inhibitor 1 (VTCN1) was highly expressed in breast, ovarian and uterine cancer, while its expression level was relatively lower in gastrointestinal cancer such as colorectal or gastric cancer. VTCN1 is known to be expressed in several types of cancers, including gastric, ovarian, and renal cancer [33]. While there are contradictory data regarding the role of VTCN1 in anti-cancer immunity [34, 35], inhibition of VTCN1 through monoclonal antibody was proven to lead to anti-tumor immunity in mice [36]. Given that VTCN1 is also a good candidate to be targeted in cancer immunotherapy, knowing the different expression levels in each cancer type should be of interest.

Although ICB through the PD-1/PD-L1 axis has revolutionized the medical treatment of cancer, a substantial portion of cancer patients does not respond to currently available immunotherapies [37]. Cancer immunity is a complex process, where the PD-1/PD-L1 axis contributes only partially. Many other molecules, including TIGIT, LAG3, TIM3, and VISTA, also play essential roles in the immune checkpoint, which explains the limited efficacy of monotherapy of PD-1 or PD-L1 inhibition [38]. Therefore, a comprehensive analysis of the molecules involved in the immune checkpoint in cancer is pivotal to enhance the efficacy of already available and newly investigated ICBs. The efficacy of relatlimab, a LAG-3 inhibitor, has been reported, which will eventually shed light on the combination of ICBs targeting multiple axes [39].

In this analysis, each checkpoint marker demonstrated distinct expression levels in different types of cancer. However, when we tried to capture the pattern of all checkpoint marker expression through principal component analysis, there was no distinctive expression pattern based on cancer types or other molecular characteristics such as PD-L1, TMB, or MSI. As PD-1/PD-L1 inhibitors shows more benefit in patients with high PD-1 and PD-L1 expression in certain types of cancers [2, 12], inhibitors of another axis are expected to be more effective in cancers with high target molecule expression. Therefore, it may be reasonable to design a clinical trial of a new therapeutic targeting an immune checkpoint molecule by examining expression level of that molecule in the tumors of potential patients, reflecting a precision immunotherapy approach.

Due to the complexity of cancer immunity, the 16 genes analyzed in this study may not fully represent immunomic status. Additionally, the number of patients with some cancer types was limited. Further exploration of prognostic and predictive implications of immunomic heterogeneity is warranted. Finally, this was a single center study; future investigation of samples from multiple centers may be worthwhile.

In conclusion, we demonstrate the diversity and heterogeneity in immune checkpoint marker expression among various types of cancer. Although the expression of some markers was correlated with cancer type and molecular features, overall, there was patient-to-patient variability between and within cancer types. This finding suggests the need for molecular interrogation of every patient in order to maximize the efficacy of already available and currently investigated therapeutics, consistent with a personalized immunotherapy strategy.
Acknowledgements

This study was funded in part by the NIH P30CA023100 (SK).

We followed any investigational interventions for which patients consented.

Disclosure of conflict of interest

Nicholas J Bevins serves as clinical laboratory director for Bertis Biosciences Inc., Birdrock Laboratory, and COVx Laboratory. Nicholas J Bevins serves as Chief Medical Officer of Sequence Sciences. Sarabjot Pabla is/was an employee of OmniSeq and declares the following relationships: stock ownership from Labcorp. Mary K Nesline is/was an employee of OmniSeq and declares the following relationships: stock ownership from Labcorp. Sean T Glenn is/was an employee of OmniSeq and declares the following relationships: None. Jeffrey M Conroy is/was an employee of OmniSeq and declares the following relationships: stock ownership from Labcorp. Paul DePietro is/was an employee of OmniSeq and declares the following relationships: stock ownership from Labcorp. Jason K Sicklick receives consultant fees from Deciphera, Aadi and Grand Rounds; serves as a consultant for CureMatch, received speakers fees from Deciphera, La-Hoffman Roche, Foundation Medicine, Merck, QED and Daiichi Sankyo; and owns stock in Personalis. Shumei Kato serves as a consultant for Medpace, Foundation Medicine, NeoGenomics and CureMatch. He receives speaker’s fees from Roche/Genentech and Bayer, and advisory board for Pfizer. He has research funding from ACT Genomics, Sysmex, Konica Minolta, OmniSeq, Personalis and Function Oncology. Razelle Kurzrock has received research funding from Biological Dynamics, Boehringer Ingelheim, Debiopharm, Foundation Medicine, Genentech, Grifols, Guardant, Incyte, Konica Minolta, Medimmune, Merck Serono, OmniSeq, Pfizer, Sequenom, Takeda, and TopAlliance; as well as consultant and/or speaker fees and/or advisory board for Actuate Therapeutics, AstraZeneca, Bicara Therapeutics, Biological Dynamics, Caris, Daiichi Sankyo, Inc., Datar Cancer Genetics, EISAI, EOM Pharmaceuticals, Ilyon, Merck, NeoGenomics, Neomed, Pfizer, Prosperdx, Roche, TD2/Volasta, Turning Point Therapeutics, X-Biotech; has an equity interest in CureMatch Inc., CureMetrix, and IDbyDNA; serves on the Board of CureMatch and CureMetrix, and is a co-founder of CureMatch.

Address correspondence to: Dr. Hirotaka Miyashita, Department of Hematology and Oncology, Dartmouth Cancer Center, 1 Medical Center Drive, Lebanon, NH 03766, USA. Tel: 603-650-4344; E-mail: miyashita.hirotaka@gmail.com; Dr. Shumei Kato, Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA. Tel: 858-822-2372; Fax: 858-822-6186; E-mail: smkato@health.ucsd.edu; Dr. Razelle Kurzrock, Worldwide Innovative Network (WIN) Consortium for Precision Medicine, Paris, France. E-mail: teoam2011@gmail.com

References

Heterogeneous immune checkpoint transcriptomic expression

Heterogeneous immune checkpoint transcriptomic expression

Supplementary Table 1. Overview of immune checkpoint markers

<table>
<thead>
<tr>
<th>Immune checkpoint markers</th>
<th>Molecular features</th>
<th>Association with cancer immunity</th>
<th>Examples of the drugs and their mechanism</th>
<th>Supplementary Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADORA2A</td>
<td>ADORA2A (adenosine A2A receptor) is expressed on variety of immune cells especially on T cells. When extracellular adenosine binds to ADORA2A, intracellular signaling that upregulate inhibitory cytokines and inhibitory receptors.</td>
<td>In-vivo experiment showed that inhibition of ADORA2A can upregulate cancer immunity.</td>
<td>Ciforadenant: oral antagonist of ADORA2A. Imaradenant: oral antagonist of ADORA2A.</td>
<td>[1, 2]</td>
</tr>
<tr>
<td>BTLA</td>
<td>BTLA (B- and T-lymphocyte attenuator) is mainly expressed on T-cells, but also on B-cells and dendritic cells. The main ligand of BTLA is herpes virus entry mediator (HVEM). The interaction between BTLA and HVEM leads to immunosuppression despite opposite effects have been described.</td>
<td>Increased expression of BTLA in tumor is reported to be associated with decreased anti-tumor immunity. BTLA neutralizing antibody showed better tumor control in mice.</td>
<td>BTLA neutralizing antibody.</td>
<td>[3]</td>
</tr>
<tr>
<td>CD276</td>
<td>CD276 (also known as B7-H3) is a tumor antigen expressed on various of cancer cells. Although CD276 binds to CD8+ T-cell tremlike transcript 2 in mice, the molecule to bind CD276 has not been identified in human.</td>
<td>CD276 in tumor is correlated with aggressive biology, low tumor infiltratitng T-cells, more tumor infiltrating regulatory T-cells, and suppression of NK-cell-mediated glioma cell lysis.</td>
<td>Omburtamab: humanized monoclonal antibody toward CD276. M2C01B: antibody drug conjugates with dacarbacin. CAR-T.</td>
<td>[4]</td>
</tr>
<tr>
<td>CTLA4</td>
<td>Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) is expressed on activated T cells. CD80 and CD86 are found on antigen-presenting cells (APC), which are ligands of CTLA4. Immune-inhibitory mechanism of CTLA4 is still unclear but it may remove CD80 and CD86 from APC so that they do not bind to immune-stimulatory receptors and modulate cellular motility.</td>
<td>Blockade of CTLA-4 using monoclonal antibody has been shown to bring about durable tumor regression in several clinical trials.</td>
<td>Ipilimumab: fully human IgG1 monoclonal antibody targeting CTLA4. Tremelimumab: fully human IgG2 monoclonal antibody targeting CTLA4.</td>
<td>[5]</td>
</tr>
<tr>
<td>IDO1</td>
<td>Indoleamine-pyrole 2,3-dioxygenase 1 (IDO1) is an enzyme expressed in various normal tissues but highly expressed in cancer cells. The immune checkpoint mechanism of IDO1 is unclear, but it decreases tryptophane and produces kynurenine, leading to cell cycle arrest of neighboring T-cells.</td>
<td>Some evidence exist that increased IDO1 expression in tumor is associated with poorer prognosis.</td>
<td>Epacodastat: selective, Trp competitive IDO1 inhibitor. Navoximod: Trp non-competitive IDO1 inhibitor. BMS-986205: irreversible inhibitor of IDO1.</td>
<td>[6, 7]</td>
</tr>
<tr>
<td>IDO2</td>
<td>Indoleamine-pyrole 2,3-dioxygenase 2 (IDO2) is a paralog of IDO1. Compared to IDO1, tryptophane catabolic activity of IDO2 is minimal and main function of IDO2 is unclear. The overexpression of IDO2 is reported in various types of cancer. IDO2 knock-out mice, especially female mice, demonstrated less risk to develop pancreatic ductal adenocarcinoma.</td>
<td>The overexpression of IDO2 is reported in various types of cancer. IDO2 knock-out mice, especially female mice, demonstrated less risk to develop pancreatic ductal adenocarcinoma.</td>
<td>Diaryl hydroxylamines: dual inhibitor of IDO1 and IDO2.</td>
<td>[8]</td>
</tr>
<tr>
<td>LAG3</td>
<td>Lymphocyte activation gene 3 (LAG3) is a cell surface molecule on activated T cells, NK cells, and B cells. LAG3 is a main ligand of MHC class II and Fibrinogen-like protein 1 and contributes to immune tolerance.</td>
<td>LAG3 is upregulated in various types of cancer.</td>
<td>Relatlimab: human IgG4 LAG-3-blocking antibody (combination with nivolumab was approved for unresectable or metastatic melanoma by FDA in 2022).</td>
<td>[9, 10]</td>
</tr>
<tr>
<td>NOS2</td>
<td>Nitric oxide synthase 2 (NOS2) is an enzyme expressed in epithelial cells of the liver, lung, and bone marrow. NOS2 plays a role in innate immunity and deficiency is associated with susceptibility to certain viral infections.</td>
<td>Aberrant expression of NOS2 has been reported in some cancers. Overexpression of NOS2 may contribute to resistance to immunotherapy in several types of cancer.</td>
<td>Currently no medication targeting NOS2 is available.</td>
<td>[11]</td>
</tr>
<tr>
<td>PD-1</td>
<td>Programmed cell death protein 1 (PD-1) is a protein expressed on T cells and pro B cells and macrophages. The ligands of PD-1 are programmed death ligand 1 (PD-L1) and 2 (PD-L2). Binding to PD-L1 or PD-L2, PD-1 induces apoptosis of antigen specific T cells and also reduces apoptosis of regulatory T cells.</td>
<td>PD-L1, a ligand of PD-1 is expressed in various types of cancer. Many clinical trials of monoclonal antibodies to PD-1 showed significant anti-tumor effect and four PD-1 inhibitors have been approved as cancer therapies.</td>
<td>Pembrolizumab: humanized antibody blocking PD-1. Nivolumab: fully human antibody blocking PD-1. Cemiplimab: humanized, hinge-stabilized, IgG4K monoclonal antibody blocking PD-1. Dostarlimab: humanized IgG4 monoclonal antibody blocking PD-1.</td>
<td>[12]</td>
</tr>
</tbody>
</table>
Heterogeneous immune checkpoint transcriptomic expression

PD-L1	Programmed death-ligand 1 (PD-L1) is a ligand of PD-1. PD-L1 is expressed on various immune cells, vascular endothelial cells and many types of malignant cells. When PD-L1 binds to PD-1, it induces apoptosis of antigen specific T cells. PD-L1, a ligand of PD-1 is expressed in various types of cancer. Many clinical trials of monoclonal antibodies to PD-L1 showed significant anti-tumor effect and four PD-L1 inhibitors have been approved as cancer therapies. Atezolizumab: fully human IgG1 antibody targeting PD-L1. Avelumab: fully human IgG1 antibody targeting PD-L1. Durvalumab: fully human IgG1 antibody targeting PD-L1.	[13]
PD-L2	Programmed death protein 1 ligand 2 (PD-L2) is a ligand of PD-1. PD-L2 is normally expressed on the antigen presenting cells, but also expressed in variety of tissues including malignancy. PD-L2 plays a role in immune tolerance cooperatively with PD-1 and PD-L1. The role of PD-L2 in cancer immunity is not as established as that of PD-L1. PD-L2 is reported to be an independent response marker to immunotherapy. There is no agent available that specifically inhibit PD-L2. However, PD-1 inhibitor inhibits both PD-1 and PD-L1 binding and PD-1 and PD-L2 binding.	[14]
PVR	Poliovirus receptor (PVR) is a transmembrane glycoprotein usually working to establish an inter-cellular adhesion with epithelial cells. PVR like protein co-signaling network plays a role in regulation of NK cells and T cells. In vivo evidence suggests higher PVR expression is associated with tumor growth. There is currently no medication to inhibit PVR.	[15]
TIGIT	T cell immunoreceptor with Ig and ITIM domains (TIGIT) is a transmembrane glycoprotein receptor expressed by T cells and NK cells. TIGIT is a part of PVR like protein co-signaling network and can bind to PVR and CD112. In vitro, vivo, and clinical study demonstrated the efficacy of TIGIT blockade promoting NK cell mediated anti-tumor reactivity.	[16]
TIM3	T-cell immunoglobulin and mucin-domain containing 3 (TIM3) is a transmembrane protein expressed on a variety of immune cells including T cells. There are several ligands of TIM3, including galectin-9, Pdtdser, HMGB1, CEACAM1. The interactions of TIM3 and its ligand lead to inactivation, energy and apoptosis of T cells. TIM3 expression is upregulated in various cancers. In vivo evidence suggests that co-blockade of TIM3 and PD-1 can result in tumor regression and improve anticaner T cell responses in advanced cancers. Sabatolinab: humanized IgG4 antibody targeting TIM3. Cobolimab: humanized IgG4 antibody targeting TIM3.	[17]
VISTA	V-domain Ig suppressor of T cell activation (VISTA) is a transmembrane protein expressed on myeloid cells, lymphocytes and tumor cells. VISTA serves as a ligand and a receptor. VISTA can bind with P-selectin glycoprotein ligand-1 or V-Set and immunoglobulin domain containing 3 and inhibit T cell proliferation and cytokine production. VISTA is overexpressed in various types of cancer compared to healthy tissues. CA-170: tripeptide small molecule antagonist of VISTA. CI-8993: human IgG1 kappa monoclonal antibody designed to antagonize the VISTA.	[18]
VTCN1	V-set domain-containing T-cell activation inhibitor 1 (VTCN1) is a transmembrane protein expressed on various normal cells, immune cells and tumors. The receptor of VTCN1 is not found yet. Overexpression of VTCN1 in various types of cancer has been reported. VTCN1 plays a role in different states of tumorigenesis, including cell proliferation, invasion, metastasis, anti-apoptosis. There is currently no medication to inhibit VTCN1.	[19]
Heterogeneous immune checkpoint transcriptomic expression

ADORA2A Expression by Tumor Type

Adjusted p = 2.32e-08

BTLA Expression by Tumor Type

Adjusted p = 0.155

CD276 Expression by Tumor Type

Adjusted p = 0.206
Heterogeneous immune checkpoint transcriptomic expression
Heterogeneous immune checkpoint transcriptomic expression
Heterogeneous immune checkpoint transcriptomic expression
Supplementary Figure 1. Box plots for the expression of checkpoint markers. Each box represents the middle 50% of scores for the group. The bottom of the box represents the first quartile, and the top represents the third quartile. The thick line dividing the box into two parts means the median. The upper whisker extends to the largest value no further than 1.5 times of inter-quartile range from the third quartile. The lower whisker extends to the smallest value no further than 1.5 times of inter-quartile range from the first quartile. Any values outside the scope of the box and the whiskers are regarded as outliers and demonstrated by solid dots. Gray dots represent all values in the entire cohort. P-values were calculated by the Kruskal-Wallis test with Bonferroni correction for the multiple comparisons for the 16 genes. ADORA2A, IDO1, LAG3, PD-L1, PVR, TIGIT, TIM3, VISTA and VTCN1 showed significant differences between cancer types (See also Figure 3 for information about IDO2 and NOS2). Abbreviations: BC: breast cancer, CRC: colorectal cancer, CUP: cancer of unknown primary, EC: esophageal cancer, H&NC: head and neck cancer, LBC: liver and bile duct cancer, LC: lung cancer, NEC: neuroendocrine cancer, OC: ovarian cancer, PC: pancreatic cancer, SC: stomach cancer, SIC: small intestine cancer, UC: uterine cancer.
Supplementary Table 2. The silhouette scores and standard deviation for random clusters of cancer types (See also Figure 4)

<table>
<thead>
<tr>
<th>Random Count</th>
<th>Items</th>
<th>Attempt 1</th>
<th>Attempt 2</th>
<th>Attempt 3</th>
<th>Attempt 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 Time</td>
<td>Mean</td>
<td>-0.1036</td>
<td>-0.1023</td>
<td>-0.1034</td>
<td>-0.1032</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.0149</td>
<td>0.0154</td>
<td>0.0152</td>
<td>0.0154</td>
</tr>
<tr>
<td>10000 Time</td>
<td>Mean</td>
<td>-0.1031</td>
<td>-0.1031</td>
<td>-0.1031</td>
<td>-0.1031</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.0154</td>
<td>0.0154</td>
<td>0.0153</td>
<td>0.0154</td>
</tr>
<tr>
<td>100000 time</td>
<td>Mean</td>
<td>-0.1031</td>
<td>-0.1030</td>
<td>-0.1030</td>
<td>-0.1030</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.0154</td>
<td>0.0154</td>
<td>0.0153</td>
<td>0.0154</td>
</tr>
</tbody>
</table>
Supplementary Figure 2. The cluster of plots of dataset for the selected 16 checkpoint RNA expression based on microsatellite status, tumor mutational burden and PD-L1 immunohistochemistry using principal component analysis. The cluster of plots of dataset the selected 16 checkpoint genes (see Supplementary Table 1) which were assessed for RNA expression level based on MSI, TMB and PD-L1 IHC using principal component analysis. The cluster assignment is made based on MSI, TMB and PD-L1 IHC. To test this prediction, we first use principal component analysis to allow 2D representation of 16-dimensional data (considering each gene a dimension). Examining the distribution of values in the 1st and 2nd dimensions with each parameter shown in a distinct color. From this plot, it does not seem that there is a clear distinction between MSI, TMB and PD-L1 IHC status in the expression of the 16 checkpoint genes.
Supplementary References

