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Abstract: Chemotherapy is the principal treatment for advanced cancer patients. However, chemotherapeutic resis-
tance, an important hallmark of cancer, is considered as a key impediment to effective therapy in cancer patients. 
Multiple signaling pathways and factors have been underscored to participate in governing drug resistance. Post-
translational modifications, including ubiquitination, glycosylation, acetylation and phosphorylation, have emerged 
as key players in modulating drug resistance in gynecological tumors, such as ovarian cancer, cervical cancer and 
endometrial cancer. In this review article, we summarize the role of ubiquitination in governing drug sensitivity in 
gynecological cancers. Moreover, we describe the numerous compounds that target ubiquitination in gynecological 
cancers to reverse chemotherapeutic resistance. In addition, we provide the future perspectives to fully elucidate 
the mechanisms by which ubiquitination controls drug resistance in gynecological tumors, contributing to restoring 
drug sensitivity. This review highlights the complex interplay between ubiquitination and drug resistance in gyneco-
logical tumors, providing novel insights into potential therapeutic targets and personalized treatment strategies to 
overcome the bottleneck of drug resistance.
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Introduction

Gynecological tumors, mainly comprising ovari-
an, cervical, and endometrial cancers, repre-
sent a substantial health burden worldwide, 
impacting female health across various age 
groups [1, 2]. Despite significant advance-
ments in early detection and therapeutic strat-
egies, these malignancies remain formidable 
to manage due to the emergence of drug resis-
tance, which often leads to treatment failure 
and malignant disease progression [3, 4]. Over 
the past few decades, extensive research 
efforts have been dedicated to unraveling the 
intricate interplay between translational rese- 
arch and the complex mechanisms of drug 
resistance, with the aim of shedding light on 
the underlying complexities of gynecological 
tumors [5, 6]. Of particular concern is the for- 
midable challenge posed by the emergence of 

drug resistance mechanisms, which significant-
ly hinders the effective treatment of gynecologi-
cal tumors [7]. Ovarian cancer, which is fre-
quently diagnosed at advanced stages, exhi- 
bits a pronounced propensity for developing 
resistance to platinum-based chemotherapies, 
which are considered the cornerstone of first-
line treatment [8, 9]. Similarly, cervical cancer, 
primarily associated with persistent human 
papillomavirus (HPV) infection, can manifest 
resistance to both radiotherapy and platinum 
agents, further complicating therapeutic inter-
ventions [10, 11]. Additionally, endometrial can-
cer, a prevalent malignancy of the female re- 
productive system, also encounters obstacles 
related to drug resistance, impacting the effi-
cacy of hormonal therapies and other targeted 
interventions [12].

In recent years, posttranslational modifications 
(PTMs) have emerged as key regulators of cel-
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lular processes, influencing various aspects of 
protein function, stability, and cellular signaling 
[13-15]. Among these modifications, phos- 
phorylation, acetylation, ubiquitination, O-Glc- 
NAcylation and SUMOylation have been exten-
sively studied for their roles in cancer biology 
[16-20]. Dysregulation of these modifications 
can lead to altered cellular responses, ulti-
mately contributing to the development of  
drug resistance in cancer cells [21-24]. In the 

context of gynecological tumors, compelling 
evidence suggests that specific PTMs of key 
regulatory proteins are associated with drug 
resistance phenotypes (Figure 1). This compre-
hensive review aimed to explore the intricate 
link between ubiquitination and drug resistance 
in gynecological tumors. By consolidating cur-
rent research findings and the latest advance-
ments in our understanding of ubiquitination, 
we endeavored to provide a comprehensive 

Figure 1. PTMs participate in drug resistance of gynecological cancers. These PTMs include ubiquitination, acetyla-
tion, glycosylation, phosphorylation, methylation and SUMOylation.
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and insightful perspective on the impact of 
ubiquitination on drug resistance in ovarian, 
cervical, and endometrial cancers. Further- 
more, we shed light on potential therapeutic 
strategies targeting ubiquitination, with the 
goal of enhancing drug sensitivity and improv-
ing the clinical management of gynecological 
malignancies. Through this comprehensive ex- 
ploration, we aspired to contribute significantly 
to the advancement of precision medicine 
approaches and the development of personal-
ized therapeutic strategies for patients facing 
drug-resistant gynecological tumors, ultimately 
improving patient outcomes and quality of life.

Ubiquitination and deubiquitination in gyneco-
logical cancer

Ubiquitination is an enzymatic cascade that is 
conducted by the E1 Ub-activating enzyme,  
the E2 Ub-conjugating enzyme, and the E3 
Ub-protein ligase, leading to the transfer of 
ubiquitin, a 76 amino-acid protein, to the target 
proteins [25, 26]. E3 ubiquitin ligases are 
responsible for selecting specific substrates  
for ubiquitination and degradation [27]. There 
are three classes of E3 ligases: RING-type, 
homologous to the E6-AP carboxyl terminus 
(HECT)-type, and RBR-type [28, 29]. Ring-type 
E3 ligases are characterized by the presence of 
a ring-finger domain, a specialized zinc-finger 
structure that is crucial for their function. This 
domain enables the enzyme to interact with 
both the E2 enzyme and the substrate protein, 
thus catalyzing the ubiquitin transfer [30, 31]. 
RING-type E3 ligases include the Skp1-Cullin-F-
box (SCF) complex and the Anaphase Promot- 
ing Complex/Cyclosome (APC/C). The SCF com-
plex is a multi-protein E3 ubiquitin ligase com-
plex that is composed of four main components 
[32, 33]. S-phase kinase-associated protein 1 
(Skp1) acts as an adaptor. Cullin serves as a 
scaffold for the complex. The F-box protein 
determines substrate specificity [34]. Different 
F-box proteins target a wide range of substrates 
[35]. RING-finger proteins (such as Rbx1/Roc1) 
mediate the transfer of ubiquitin from the E2 
enzyme to the substrate. The APC/C, a highly 
complex E3 ubiquitin ligase, mainly regulates 
the cell cycle, primarily by driving cell cycle tran-
sitions from metaphase to anaphase and from 
anaphase to G1 [36]. The APC/C consists of 
several core subunits and is regulated by coact-
ivators such as Cdc20 and Cdh1 [37, 38], which 
maintain substrate specificity [39, 40].

HECT-type E3 ligases are a distinct group of 
enzymes involved in the ubiquitination process 
and have unique HECT domains. This domain is 
structurally different from that of RING-type E3 
ligases [41, 42]. In the ubiquitination process, 
the HECT domain directly participates in the 
transfer of ubiquitin to the target protein [43]. 
Unlike RING-type E3 ligases, HECT-type E3 
ligases form a transient thioester bond with 
ubiquitin before transferring it to the substrate 
protein [44]. The neural precursor cell ex- 
pressed, developmentally down-regulated 4 
(NEDD4) family is a good example of HECT-type 
E3 ligases [45]. The NEDD4 family is character-
ized by several structural features: a HECT 
domain, WW domains, and a C2 domain. The 
HECT domain is involved in the direct transfer 
of ubiquitin to the substrate proteins. WW 
domains mediate protein-protein interactions. 
These domains recognize proline-rich peptide 
motifs in target proteins or in regulatory pro-
teins. The C2 domain can bind to phospholipids 
and is involved in the localization of the ligase 
to cellular membranes [46, 47]. The nine mem-
bers of the NEDD4 family are NEDD4-1 (also 
known as NEDD4), NEDD4-2 (also known  
as NEDD4L), ITCH, WWP1, WWP2, SMURF1, 
SMURF2, NEDL1 (HECW1) and NEDL2 (HECW2) 
[48-50].

Deubiquitination is conducted by deubiquitin-
ases (DUBs), which can remove the ubiquitin 
from proteins involved in the regulation of 
diverse cell processes, including the cell cycle, 
apoptosis, autophagy, proliferation and differ-
entiation [51, 52]. DUBs, a group of enzymes, 
play a crucial role in the process of removing 
ubiquitin molecules from targeted proteins. 
DUBs are involved in ensuring a balance in the 
ubiquitination-deubiquitination cycle to main-
tain cellular homeostasis [53, 54]. These 
enzymes counteract the action of ubiquitin 
ligases, and thus, DUBs can rescue proteins 
from being targeted for degradation. There are 
several classes of DUBs, including the ubiqui-
tin-specific proteases (USP) and OTU domain-
containing proteases (OTUD) families, each 
characterized by distinct structural motifs and 
substrate specificities [55, 56]. Ubiquitination 
plays an essential role in the regulation of drug 
resistance in gynecological cancer [57].

Ovarian cancer

Ubiquitination and deubiquitination mediate 
chemotherapy sensitivity in ovarian cancer [58, 
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59]. One group used the 2-DE approach and 
the ESI-Q-TOF MS/MS method and detected 
differential protein expression profiles between 
cisplatin-resistant and cisplatin-sensitive ovar-
ian cancer cells. Ubiquitin carboxyl-terminal 
hydrolase isozyme L1 (UCH-L1) was identified 
as a key regulatory factor in the modulation of 
cisplatin resistance in ovarian cancer [60]. 
Another group showed that p62 enhanced the 
mitochondrial localization of p53 via interac-
tion with its UBA domain, leading to the modu-
lation of cisplatin sensitivity in ovarian cancer 
cells, indicating the critical role of the UPS in 
cisplatin resistance in ovarian cancer cells [61]. 
AEBP2, a zinc finger protein, is crucial for con-
trolling the growth and response to cisplatin, a 
widely used chemotherapy drug, in ovarian can-
cer cells [62, 63]. The genetic elimination of 
AEBP2 impedes ovarian cancer cell prolifera-
tion and enhances ovarian cancer cell sensitiv-
ity to cisplatin. However, AEBP2 itself is subject 
to ubiquitination, which is marked for degrada-
tion by the SCF β-TrCP ubiquitin ligase complex. 
Failure of its effective degradation leads to the 
development of cisplatin resistance in ovarian 
cancer [62]. Similarly, Fn14 overexpression has 
been shown to suppress cisplatin resistance  
in OVCAR-3 ovarian cancer cells. This occurs 
through a reduction in Hsp90 expression and 
disruption of the Mdm2-p53-R248Q-Hsp90 
complex, which is achieved by the Mdm2-
mediated ubiquitin-proteasome pathway [64].

UBC13, a critical player, is capable of revers- 
ing paclitaxel resistance in ovarian cancer. 
Downregulating UBC13 expression attenuates 
UBC13 ubiquitination and elevates DNMT1 lev-
els, leading to enhanced DNA methylation on 
the CHFR promoter. As a result, CHFR expres-
sion is reduced, and Aurora A levels are in- 
creased, effectively countering paclitaxel resis-
tance [65]. Furthermore, SIAH1, which acts as 
a ubiquitin ligase, employs its RING domain to 
promote the ubiquitination and subsequent 
degradation of RPS3. Dysregulation of RPS3 
expression or loss of SIAH1-mediated ubiquiti-
nation through the K214R mutant significantly 
impairs platinum-induced tumor suppression. 
This highlights the critical role of the SIAH1-
RPS3-NF-κB axis in addressing therapeutic 
resistance in epithelial ovarian cancer [66]. 
Additionally, the upregulation of Parkin expres-
sion has shown promise in inhibiting the prolif-
eration of chemotherapy-resistant ovarian can-

cer cells by promoting the ubiquitination and 
degradation of p53 [67]. OGT modulates the 
ubiquitination and degradation of NRF2 in ovar-
ian cancer cells by modifying KEAP1 through 
glycosylation, thus influencing ovarian cancer 
cell resistance to cisplatin [68].

Another vital study showed that in ovarian can-
cer cells, RING1A mediates the monoubiquiti-
nation of phosphorylated H2AX (γH2AXub1) at 
lysine 119 sites during platinum-induced DNA 
damage. Consequently, RING1A deficiency im- 
pairs the activation of the G2-M DNA damage 
checkpoint, reducing the ability of ovarian can-
cer cells to repair platinum-induced DNA dam-
age and increasing their sensitivity to platinum 
agents [69]. Ubiquitin-specific protease 14 
(USP14) is a biomarker for the occurrence of 
cisplatin resistance in ovarian cancer. The 
expression of USP14 is downregulated in cis- 
platin-resistant A2780 cells. Suppression of 
USP14 counteracts cisplatin cytotoxicity via 
enhancement of connexin 32 (Cx32) internal-
ization in ovarian cancer cells [70]. Another 
study showed that USP14 confers cisplatin 
resistance by targeting the BCL6 oncoprotein 
to prevent its proteasomal-dependent degrada-
tion in ovarian cancer [71]. Reduced expression 
of USP15 is observed in ovarian tumor tissues 
with paclitaxel resistance [72]. USP8 activity is 
elevated in cisplatin-resistant ovarian cancer 
cells. Depletion of USP8 enhances cisplatin 
sensitivity and inactivates receptor tyrosine 
kinases in ovarian cancer cells. USP8 downreg-
ulation promotes cisplatin-mediated caspase 
3/7 activation and survivin downregulation in 
ovarian cancer cells, leading to the promotion 
of cell apoptosis [73].

Akt contributes to resistance, partially by re- 
gulating the ubiquitination of FLIP, which is 
induced by cisplatin and dependent on p53 
[74]. Notably, acquired cisplatin-resistant ovar-
ian cancer cells exhibit elevated levels of MKP-1 
and PARP-1 protein expression, and silencing 
either protein improves the sensitivity of resis-
tant cells to cisplatin [75]. Additionally, the 
direct binding of CENPK to SOX6 results in 
changes to its interaction with β-catenin, lead-
ing to increased expression and translocation 
of β-catenin into the nucleus. This, in turn, pro-
motes the ubiquitination of p53, activating  
the Wnt/β-catenin signaling pathway while sup-
pressing the p53 pathway. As a consequence 
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of this dysregulation, epithelial-mesenchymal 
transition (EMT), which is involved in metasta-
sis; DNA replication, which promotes tumor cell 
proliferation; and tumorigenic pathways, which 
are crucial for cell stemness, are ultimately 
enhanced [76]. Higher expression of CRL4 is 
observed in cisplatin-resistant ovarian cancer 
cells. Downregulation of CRL4 by shRNA infec-
tion reverses cisplatin resistance via inhibition 
of BIRC3 by mediating STAT3 in ovarian cancer 
cells [77]. These compelling discoveries under-
score the pivotal role of ubiquitination in modu-
lating drug resistance mechanisms in ovarian 
tumors, providing potential avenues for devel-
oping targeted therapies to overcome resis-
tance and improve treatment outcomes (Figure 
2).

Cervical cancer

USP15 downregulation leads to paclitaxel re- 
sistance in HeLa cells by impairing the stability 
and activity of caspase-3. Decreased expres-
sion of USP15 is observed in paclitaxel-resis-
tant ovarian cancer tissues, suggesting that 
USP15 could be a diagnostic biomarker for 
paclitaxel-resistant cancer [72]. One study 
revealed that miR-100 expression is high in 
HeLa and SiHa cells under hypoxic conditions. 
USP15 was identified as a target of miR-100, 
and hypoxia inhibited the expression of USP15. 
Upregulation of miR-100 leads to paclitaxel 
resistance in cervical cancer cells by targeting 
USP15 [78]. The SPOP E3 ligase has been con-
firmed to play an essential role in tumorigene-

Figure 2. Ubiquitination plays a critical role in cisplatin resistance in ovarian cancer cells. Multiple compounds target 
ubiquitination to overcome the drug resistance of ovarian cancer cells.
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sis and cancer treatment [79]. Wu et al. report-
ed that SPOP expression is elevated in cervical 
cancer patients with pelvic lymph node metas-
tasis and is correlated with poor prognosis. 
SPOP enhances the proliferation and metasta-
sis of cervical cancer cells. SPOP triggers the 
spatial separation of PD-1 from PD-L1 in spa- 
tial localization and achieves immune toler-
ance, contributing to cervical cancer progres-
sion [80]. DRAK1 expression is downregulat- 
ed in paclitaxel-resistant cervical cancer cells, 
which is accompanied by the upregulation  
of TRAF6 expression and NF-κB activation. 
Downregulation of DRAK1 increases paclitaxel 
resistance in cervical cancer cells, while over-
expression of DRAK1 represses cell growth in 
paclitaxel-resistant cervical cancer cells. Che- 
moresistant cervical cancer samples exhibit 
lower expression of DRAK1. SPOP targets 
DRAK1 for ubiquitination and degradation and 
induces the growth of paclitaxel-resistant cervi-
cal cancer cells [81].

CUL4A expression is elevated in patients with 
cervical squamous cell carcinoma and is asso-
ciated with tumor stage, lymph node metasta-
sis and poor prognosis. Downregulation of 
CUL4A curtails cell proliferation, invasion and 
migration in cervical cancer. Silencing of CUL4A 
enhances cisplatin sensitivity in cervical can-
cer cells [82]. USP45 is illustrated to bind to 
Myc and cause its deubiquitination and sta- 
bilization. Overexpression of USP45 increases 
the expression of MYC and promotes cancer 
stemness and drug resistance. Knockdown of 
MYC abolishes USP45-mediated drug resis-
tance and stemness [83]. The compound 
α-mangostin can inhibit the expression of 
USP45 and abrogate cancer stemness and 
drug resistance. Specifically, α-mangostin in 
combination with doxorubicin alleviates USP45-
triggered cervical oncogenesis [83]. Centro- 
mere protein K (CENPK) is highly expressed in 
cervical tissues and is correlated with poor 
prognosis and cancer recurrence. Knockdown 
of CENPK prolongs survival time and improves 
chemotherapeutic effects in cervical cancer-
bearing mice. Mechanistically, CENPK interacts 
with SOX6 and impairs the binding between 
CENPK and β-catenin, leading to the promotion 
of β-catenin expression and nuclear transloca-
tion, the upregulation of p53 ubiquitination, the 
inactivation of the p53 signaling pathway and 

the activation of the Wnt/β-catenin pathway, 
which ultimately promotes cancer cell stem-
ness, EMT and cisplatin/carboplatin resistance 
in cervical cancer [84].

HAUSP reportedly stabilizes Cdc25A prote- 
in level in cervical cancer cells. Silencing of 
HAUSP reduces Cdc25A-involved colony forma-
tion and migration in HeLa cells. Furthermore, 
HAUSP knockdown alleviates tumor progres-
sion in mice. HAUSP increases resistance to 
DNA-damaging agents due to stabilization of 
the Cdc25A protein [85]. iASPP, an EMT induc-
er, stimulates cisplatin resistance in cervical 
cancer cells. Downregulation of iASPP reduces 
cell proliferation and sensitizes cervical cancer 
cells to cisplatin. iASPP increases the expres-
sion of miR-20a and subsequently induces  
EMT and cisplatin chemoresistance. Further- 
more, miR-20a suppresses the expression of 
FBXL15 and BTG3 in cervical cancer cells. 
Lower expression of FBXL5 and BTG3 is ob- 
served in cervical cancer tissues and is linked 
to poor outcomes in cervical cancer patients 
[86]. One study revealed that the copper chela-
tor D-penicillamine in combination with oxalipl-
atin suppresses tumor growth in oxaliplatin-
resistant SiHa cervical cancer cells. D-peni- 
cillamine increases the expression of the hCtr1 
protein, a copper influx transporter, via the pro-
motion of Sp1 expression, leading to p53 trans-
location to the cytosol from the nucleus and the 
induction of p53 ubiquitination and degrada-
tion as well as the suppression of the copper 
efflux transporter ATP7A [87]. Downregulation 
of CITED2 by shRNA results in cisplatin sen- 
sitivity via the promotion of p53 stabilization 
[88].

Endometrial cancer

Several studies have shown the critical role of 
ubiquitination in the regulation of drug resis-
tance in endometrial cancer. For example, 
RNF8 expression at the mRNA and protein lev-
els is elevated in doxorubicin- and cisplatin-
resistant endometrial cancer cells. RNF8 defi-
ciency stimulates cisplatin and doxorubicin 
sensitivity in endometrial cancer cells by re- 
ducing NHEJ efficiency and inducing Ku80 
retention on DSBs. Knockdown of RNF8 revers-
es cisplatin resistance in a cisplatin-resistant 
mouse xenograft model [89]. BRD2, BRD3 and 
BRD4 were confirmed as substrates of SPOP-
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CUL3. Endometrial cancer-associated SPOP 
mutants promote the degradation of BRD2, 
BRD3 and BRD4, leading to cell sensitization to 
BET inhibitors [90]. Moreover, USP14 a poten-
tial biomarker for stratifying patients with recur-
rent endometrial cancer. VLX570, an inhibitor 
of USP14, reduces cell proliferation via regula-
tion of cell cycle arrest and induction of cas-
pase-3-induced apoptosis in chemotherapy-re- 
sistant endometrial tumor cells [91]. The Skp2 
E3 ligase is highly expressed in endometrial 
cancer cells and is accompanied by low ex- 
pression of FOXO1 [92]. FBXL16 expression is 
upregulated and associated with MPA resis-
tance and poor outcomes in patients with 
endometrial cancer. Downregulation of FBXL16 
reduces the MPA tolerance of endometrial 
tumor cells. FBXL16 interacts with PP2A and 
inactivates PP2AB55α, attenuates the pAkt at 
Thr308, suppresses GSK-3β expression and 
results in reduced phosphorylation of cyclin 
D1at Thr286, which blocks cyclin D1 ubiquiti-
nation and degradation and MPA resistance in 
Ishikawa cells [93].

Compounds target ubiquitination to overcome 
drug resistance

Inhibitors of the proteasome

Evidence has demonstrated that compounds 
can overcome drug resistance via the regula-
tion of ubiquitination in gynecological cancer. 
For example, ALLnL, an inhibitor of the protea-
some, was reported to increase DNA platina-
tion and reduce DNA repair in ovarian cancer 
cells, leading to increased cisplatin toxicity in 
ovarian cancer cells via the inhibition of cispla-
tin-mediated ERCC-1 mRNA expression [94]. 
Lactacysin, an inhibitor of the proteasome, sup-
pressed cisplatin-induced ERCC-1 mRNA levels 
in ovarian cancer cells [94]. Bortezomib, a pro-
teasome inhibitor, increased the sensitivity of 
ovarian cancer cells to LDE225, a hedgehog 
antagonist. Bortezomib alone or in combination 
with LDE225 enhanced paclitaxel sensitivity 
via the induction of apoptosis and G2/M arrest. 
Bortezomib reduced the expression of ABCB1/
MDR1 and increased the acetylation of α-tu- 
bulin in ovarian cancer cells. Bortezomib in 
combination with either carboplatin or paclitax-
el exhibited synergistic effects on ovarian can-
cer cells [95]. Bortezomib increased the cispla-
tin sensitivity in ovarian cancer cells and cer- 
vical cancer cells [96, 97].

Treatment with epoxomicin, a proteasome in- 
hibitor, in combination with cisplatin caused 
the accumulation of p62 and p53 in the mito-
chondria, resulting in impaired mitochondrial 
function, which induced cell apoptosis and in- 
creased cisplatin sensitivity in ovarian cancer 
cells [61]. Gamma-secretase inhibitors (GSI-I) 
were reported to repress proteasome activity  
in ovarian cancer cells. Bortezomib alone or  
in combination with the hedgehog antagonist 
LDE225 reduced paclitaxel resistance via the 
modulation of apoptosis and G2/M phase 
arrest. Bortezomib inhibited the expression of 
ABCB1/MDR1 and promoted the acetylation of 
α-tubulin in ovarian cancer [98].

Caffeic acid phenethyl ester

Caffeic acid phenethyl ester (CAPE) reportedly 
inhibits ovarian cancer growth. CAPE was found 
to activate proapoptotic genes and regulate 
EMT-related genes in A2780 ovarian cancer 
cells and cisplatin-resistant A2780 cells [99]. 
CAPE reduced the progression of ovarian can-
cer via inhibition of the NF-kappaB signaling 
pathway [100]. CAPE deregulated the expres-
sion of the Bcl2/Bax genes and enhanced cell 
apoptosis in serous ovarian cancer OV7 cells 
[101]. CAPE was observed to increase pacli- 
taxel sensitivity in ovarian cancer cells [102]. 
CAPE suppressed the expression of USP8 and 
enhanced the efficacy of cisplatin in endometri-
oid ovarian carcinoma cells, including TOV112D 
and cisplatin-resistant IGROV-1 cells. CAPE in 
combination with cisplatin led to the upregula-
tion of p27 and the accumulation of cells in the 
G1 phase in cisplatin-resistant IGROV-1 cells 
[103]. CAPE had apoptotic effects on ME180 
human cervical cancer cells [104]. CAPE inhib-
ited cell growth and induced cell cycle arrest 
via regulation of E2F1 in cervical cancer cells 
[105]. CAPE has been observed to suppress 
the ubiquitination and degradation of p53, 
leading to the activation of apoptosis-related 
genes and the blockade of cervical cancer cell 
growth. CAPE reduced E6AP expression and 
impaired the binding between E6AP and p53, 
resulting in the promotion of p53 stabilization 
[106].

IU1

IU1, a pharmacological compound, inhibited 
Dengue virus replication via suppression of 
USP14 [107]. IU1 has been reported to have 
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antitumor potential via selective inhibition of 
USP14 [108-110]. IU1 promoted the sensitivity 
of breast cancer cells to enzalutamide via 
downregulation of the androgen receptor (AR) 
and inactivation of PI3K/AKT and Wnt/β- 
catenin [111]. IU1 also promoted enzalutamide 
sensitivity in castration-resistant prostate can-
cer cells [112]. IU1 inhibited cell proliferation 
and migration by targeting USP14 in thyroid 
cancer cells [113]. Moreover, IU1 was found to 
regulate murine double minute (MDM2) degra-
dation and inhibit cell proliferation in cervical 
cancer [114]. Hence, IU1 could regulate the 
degradation of USP14 and MDM2 in cervical 
cancer, leading to contribution of antitumor 
effects.

Piceatannol

Piceatannol, a metabolite of resveratrol, has 
been demonstrated to inhibit tumor develop-
ment and progression [115, 116]. For instance, 
piceatannol inhibits tumor progression by en- 
hancing Beclin-1 activity in gastric cancer [117]. 
Piceatannol activates autophagy and enhanc-
es the efficacy of immunogenic chemotherapy 
[118]. Piceatannol blocks the binding between 
VEGF and its receptors and has antiangiogenic 
effects [119]. Piceatannol increases cell apop-
tosis and represses cell proliferation by govern-
ing the PTEN/AKT signaling pathway in bladder 
cancer cells [120]. Piceatannol improves the 
effectiveness of cisplatin by altering the ex- 
pression of p53 and X-linked inhibitor of apop-
tosis protein (XIAP) in ovarian cancer. Picea- 
tannol promotes NOXA expression and regu-
lates the degradation of XIAP in a ubiquitina-
tion-dependent manner in ovarian cancer cells. 
Piceatannol enhances cisplatin sensitivity in 

ovarian cancer by influencing p53, XIAP and 
mitochondrial fission [121].

Conclusion and future perspectives

Ubiquitination plays a critical role in modulating 
drug sensitivity in cervical cancer, ovarian can-
cer, and endometrial cancer. Numerous com-
pounds can overcome the drug resistance by 
targeting ubiquitination in gynecological can-
cers (Figure 2, Table 1). A challenging yet prom-
ising area of research is the intricate interplay 
between drug resistance and ubiquitination in 
gynecological tumors. A potential strategy to 
overcome drug resistance and improve treat-
ment outcomes by targeting ubiquitination has 
emerged. Several issues need to be clarified to 
fully understand the role of ubiquitination in 
regulating drug sensitivity in gynecological 
cancers.

First, in addition to E3 ubiquitin ligases, E2 
enzymes are involved in drug resistance in 
gynecological cancers. Ubiquitin-conjugating 
enzyme E2 N (UBE2N) is decreased in ovarian 
cancer cells with paclitaxel resistance. Over- 
expression of UBE2N reduces the paclitaxel 
resistance of ovarian cancer cells. UBE2N gov-
erns paclitaxel sensitivity via regulation of the 
Fox/p53 axis in ovarian cancer [122]. HP1γ 
inhibits the expression of UBE2L3 and enhanc-
es p53 stability in cervical cancer cells. Lepto- 
mycin B suppresses the nuclear export of HP1γ 
and induces cisplatin-mediated apoptosis via 
activation of the p53 pathway. Doxorubicin 
accelerates the HP1γ-induced inhibition of 
UBE2L3 and enhances p53 stability [123]. 
Downregulation of UBE2L6 increases cisplatin 
sensitivity via suppression of ABCB6 transcrip-

Table 1. Compounds target ubiquitination to overcome the drug resistance of gynecological cancer
Item Characteristic Mechanisms Functions Ref
ALLnL Proteasome inhibitor Inhibiting cisplatin-mediated ERCC-1 mRNA 

expression.
Increases DNA platination, reduces DNA 
repair, increases cisplatin toxicity

[94]

Lactacysin Proteasome inhibitor Inhibits cisplatin-induced ERCC-1 mRNA levels. Inhibits cisplatin-induced ERCC-1 mRNA levels [94]

Bortezomib Proteasome inhibitor Induction of apoptosis and G2/M arrest. Increases paclitaxel sensitivity [95]

Epoxomicin Proteasome inhibitor Accumulation of p62 and p53, impaired  
mitochondrial functions, induction of apoptosis.

Increases cisplatin sensitivity [61]

GSI-I Represses proteasome 
activity

Independent of Notch inhibition. Reverses hedgehog antagonist LDE225 
resistance

[98]

CAPE A polyphenolic active 
ingredient in propolis

Inhibiting NF-κB, USP8, Bcl-2, E6AP, E2F1, 
enhances p53 stabilization, p27 expression.

Reduces E6AP, enhances p53 stabilization [106]

IU1 Inhibits Dengue virus 
replication

Regulates USP14 and MDM2 degradation, 
inhibits AR, PI3K/AKT, Wnt.

Inhibits cell proliferation [114]

Piceatannol A metabolite of resveratrol Regulates p53, XIAP, and PTEN/AKT. Enhances cisplatin sensitivity [121]
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tion [124]. Fused toes homolog (FTS), an E2 
variant without ubiquitin transfer activity, pro-
motes cisplatin resistance via suppression of 
EGFR-induced DNA damage repair in cervical 
cancer cells [125].

Second, mounting evidence has revealed that 
drug resistance is associated with EMT and 
cancer stem cells (CSCs). Because ubiquitina-
tion regulates EMT and CSCs, ubiquitination 
could govern drug resistance by targeting EMT 
and CSCs. The RNF144A E3 ubiquitin ligase 
targets LIN28B for ubiquitination and degrada-
tion and reduces CSC properties and malignant 
tumor progression in ovarian cancer [126].

Third, in addition to chemotherapeutic resis-
tance, ubiquitination participates in the ra- 
dioresistance of gynecological cancer cells. 
USP21 activates the Hippo signaling pathway 
to induce radioresistance via the deubiquitina-
tion of FOXM1 in cervical cancer cells [127]. 
USP21 expression was increased in radiation-
treated cervical cancer cells and cervical can-
cer tissues with radioresistance. Depletion of 
USP21 increases the radio-sensitivity of cervi-
cal cancer cells via regulation of the FOXM1/
Hippo pathway [127].

Fourth, the development of the MIL-88-
MG132@M nanoplatform as a sequential ubiq-
uitination and phosphorylation epigenetic re- 
gulation strategy has shown potential for over-
coming drug resistance in microsatellite insta-
bility-high colorectal cancer (mCRC) patients 
[128, 129]. To maximize its clinical application, 
further investigations should expand the scope 
of nanoplatforms to include ovarian and cervi-
cal cancers, conduct in-depth mechanistic 
studies to uncover additional signaling path-
ways involved in drug resistance modulation, 
and optimize the nanoplatform’s design for bet-
ter therapeutic efficacy and safety.

E2 enzymes play an essential role in drug sen-
sitivity in gynecological cancers. In the future, 
designing compounds that target the E2 
enzyme could be an alternative approach for 
improving drug sensitivity in gynecological can-
cers. It is unclear how ubiquitination progres-
sion governs drug resistance via the regulation 
of EMT and CSCs. Proteolysis-targeting chime-
ras (PROTACs) are a novel class of therapeutic 
agents designed to target and destroy specific 
proteins [130]. Unlike traditional small mole-

cule inhibitors that inhibit protein function, 
PROTACs work by harnessing their own protein 
degradation machinery in cells [131]. One study 
showed that FAK PROTAC impaired kinase-
dependent and kinase-independent pathways 
and suppressed tumor growth and metastasis 
in ovarian cancer [132]. Another study report- 
ed the use of highly potent nicotinamide ph- 
osphoribosyltransferase (NAMPT) PROTACs for 
ovarian cancer therapy [133]. In addition, FER-
targeting PROTACs were designed to anta- 
gonize ovarian cancer cell motility and invasion 
[134]. It is necessary to determine whether 
PROTACs can overcome drug resistance in 
ovarian cancer.

Natural compounds have been demonstrated 
to attenuate drug resistance by targeting ubiq-
uitination. It is necessary to point out that natu-
ral compounds have several disadvantages 
associated with their use in cancer treatment, 
such as limited potency and specificity, com-
plexity and variability, difficulty in isolation and 
purification, and poor stability. To comprehen-
sively grasp the role of unexplored ubiquitina-
tion in drug resistance mechanisms, further in-
depth research is warranted. By delving into 
these uncharted territories, we can gain valu-
able insights that may hold the key to advanc-
ing our understanding and therapeutic app- 
roaches for gynecological cancers by targeting 
ubiquitination.
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