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Abstract: Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype, accounting for 30%-40% 
of non-Hodgkin lymphoma in adults. The mechanisms underlying DLBCL occurrence are extremely complex, and in-
volve the B-cell receptor (BCR) and Toll-like receptor (TLR) signaling pathways, as well as genetic abnormalities and 
other factors. With the development of high-throughput sequencing, an increasing number of abnormal genes have 
been identified in DLBCL. Among them, the tumor protein p53 (TP53/p53) gene is important in DLBCL occurrence. 
Patients with DLBCL carrying TP53 gene abnormalities generally have poor prognosis and studies of p53 have po-
tential to provide a better basis for their treatment. Normally, p53 is maintained at low levels through its interaction 
with murine double minute 2 (MDM2), and prevents tumorigenesis by mediating cell cycle arrest, apoptosis, and 
repair of damaged cells, among other processes. Therefore, the prognosis of patients with DLBCL harboring TP53 
gene abnormalities (mutations, deletions, etc.) is poor, and targeting p53 for tumor therapy has become a research 
hotspot, following developments in molecular biology technologies. Current treatments targeting p53 mainly act by 
restoring the function or promoting degradation of mutant p53, and enhancing wild-type p53 protein stability and 
activity. Based on the current status of p53 research, exploration of existing therapeutic methods to improve the 
prognosis of patients with DLBCL with TP53 abnormalities is warranted.
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is a het-
erogeneous hematologic malignancy, and the 
most common non-Hodgkin lymphoma (NHL) 
type in the World Health Organization classifi-
cation, comprising approximately 30%-40% of 
NHL in adults [1]. Although many patients with 
DLBCL can be cured using the R-CHOP (ritux-
imab, a humanized monoclonal CD20 antibody 
plus cyclophosphamide, doxorubicin hydrochlo-
ride, vincristine sulfate, and prednisolone) regi-
men as first-line treatment, around 10%-15% 
exhibit primary refractory disease and a further 
20%-25% patients relapse, usually within the 
first 2 years [2-5]. Existing salvage chemothe- 
rapy regimens, combined with autologous he- 
matopoietic stem cell transplantation, can only 
cure approximately 10% of patients with re- 
lapsed/refractory (R/R) DLBCL [6-8].

Abnormalities of the tumor protein p53 (TP53/
p53) gene and dysregulation of p53 pathways 
are important reasons underlying the develop-
ment of various malignancies. Deletion of TP53 
is detected in 8%-24% of DLBCL, and around 
20% of DLBCL tumors have TP53 gene muta-
tions. Thus, p53 pathway inactivation has an 
important role in DLBCL development. Many 
scholars have investigated the mechanisms 
involved in p53 activity in DLBCL. For example, 
Lu et al. elaborated the mechanism underlying 
TP53 gene function in the context of DLBCL 
from several perspectives, including the involve-
ment of microRNA (miRNA), copy number altera-
tions, p53 deficiency, and MDM2, among oth-
ers [9]. Further, different aspects of p53 activity, 
including RNA levels, protein structure, and pro-
tein stability, were summarized by Xu-Monette 
et al. [10]. The general consensus of studies to 
date is that patients with DLBCL with p53 gene 
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Figure 1. A. The TP53 gene is located on chromosome 17p13.1. B. The dominant TP53 transcript includes 11 exons, 
divided into untranslated region (UTR) and coding sequence (CDS). C. p53 protein domains include an N-terminal 
transactivation domain (TAD), a proline-rich domain (PRD), a core DNA-binding domain (DBD), nuclear localization 
sequence (NLS), oligomerization domain (OD), and basic repression (BR) region of the DBD.

abnormalities have poor prognosis; therefore, 
development of methods to target the p53 
pathway, by understanding the underlying me- 
chanisms, is warranted and could help to im- 
prove DLBCL patient prognosis, underling the 
significance of this aspect of our study. To date, 
there has been a lack of specific studies into 
the targeting of p53 in patients with DLBCL. In 
this review, we summarize the latest develop-
ments in understanding of the different me- 
chanisms involving p53 in DLBCL, as well as 
recent progress in therapeutic approaches tar-
geting p53.

Structure and function of the TP53 gene

TP53 is the most commonly mutated gene in 
human cancer cells, and among the most wide-
ly studied tumor suppressor genes. TP53 is 
located on chromosome 17p13.1, where it 
spans 19,144 bp. The dominant TP53 tran-
script is a 2586-nucleotide mRNA, including a 
5-untranslated region (UTR) in exons 1 and 2, 
coding sequence (CDS) in exons 2 to 11, and a 
3-UTR in exon 11 [10, 11]. The p53 protein 
encoded by TP53 comprises 393 amino acids 
and contains multiple functional domains and 

motifs, including an N-terminal transactivation 
domain, a proline-rich domain, a core DNA-
binding domain (DBD; the main target for mu- 
tations), a nuclear localization sequence, an 
oligomerization domain, and a basic repression 
region of the DBD [10, 12]. The DBD contains a 
central immunoglobulin-like β-sandwich scaf-
fold, as well as a loop-sheet-helix structure and 
two large loops, and can bind DNA to influence 
transcriptional activity (Figure 1).

Under normal conditions, p53 maintains a 
dynamic balance with the murine double min-
ute 2 (MDM2) negative feedback pathway, 
which promotes p53 protein degradation to 
maintain it at a low level [13, 14]. Wild-type p53 
protein is activated when stimulated by stress-
ors, such as carcinogenic factors, hypoxia, heat 
shock, and UV irradiation, among others. Ac- 
tivated p53 binds to specific DNA response ele-
ments and regulates downstream target genes 
(including BAX, NOXA, PUMA, P21, etc.) through 
two pathways: transcription-dependent activi-
ties (TAs) and transcription-independent activi-
ties (TIAs). TAs primarily occur in the nucleus 
and are activated or inhibited by p53 through 
direct or indirect binding to target genes. TIAs 
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Figure 2. (1) p53 is activated when stimulated by stress factors (carcinogenic factors, hypoxia, heat shock, ul-
traviolet radiation, etc.). Activation signals inhibit the expression of murine double minute 2 (MDM2) via ataxia 
telangiectasia-mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR). Simultaneously, ATM can directly 
phosphorylate p53 via CHK1/2. Further, ARF can enhance p53 transcriptional activity by combating the p53 decay 
regulated by MDM2. Activated p53 protein induces arrest of the cell cycle in G1 phase, restoring cell function and 
repair cellular damage, or inducing apoptosis to eliminate damaged cells, thus avoid tumorigenesis, by regulating 
downstream target genes, including BAX, NOXA, PUMA, and P21, among others. (2) CREB-binding protein (CREBBP, 
also called CBP) and E1A-binding protein P300 (EP300, also called P300) can acetylate p53 and activate p53 
transcriptional activity. P300 affects the concentration of p53 in normal cells through its synergistic interaction with 
MDM2. CBP can also acetylate BCL-6, reducing its activity as a transcriptional repressor, thereby increasing p53 
activity. (3) PRIMA-1 and its methyl analog, APR-246, are initially converted to the active metabolite, methylene qui-
nuclidinone (MQ), that reacts covalently with specific thiol groups of the mutant p53 protein, converting mutant p53 
protein to wild-type. Moreover, MDM2 inhibitors (nutlin-3a, idasanutlin, ALRN-6924) activate p53 by disrupting the 
MDM2/p53 interaction. MDM2-p53 signaling is downstream of indoleamine 2,3-dioxygenase 1 (IDO1) in DLBCL. 
1-Methyl-L-tryptophan (1-L-MT) can inhibit MDM2 expression by reducing IDO1 activity, thereby activating the p53 
pathway and inducing p53-induced apoptosis and cell cycle arrest.

are mediated by protein-protein interactions, 
and associated with apoptosis via the intrinsic 
mitochondrial pathway and autophagy [10]. 
Together, these processes can induce cell cy- 
cle arrest in G1 phase, restore cell function, 
and allow damage to be repaired, or induce 
apoptosis to eliminate damaged cells, thus 
avoiding tumorigenesis [15-17].

The p53 protein is mainly regulated by two 
mechanisms in response to DNA damage. The 
first is in association with ataxia telangiecta- 
sia-mutated (ATM) protein phosphorylation. On 
DNA damage, the upstream ATM molecule sup-
presses expression of the p53 down-regulatory 
factor, MDM2, leading to p53 phosphorylation 
on Ser15 and extending the p53 protein half-
life. Simultaneously, ATM can also directly 
phosphorylate p53 via CHK1/2, which greatly 
enhances the ability of p53 to bind target DNA 
(Figure 2) [17]. The second mechanism is inde-
pendent of ATM phosphorylation. In normal 

cells, nucleolin binds to the 5’UTR of TP53 
mRNA, inhibiting p53 translation, and main-
taining low p53 protein levels. When DNA is 
damaged, ribosomal protein L26 (RPL26) com-
petitively binds to the 5’UTR of TP53 mRNA, 
thereby increasing p53 protein levels [18]. 
Abnormalities of TP53 inhibit cell growth and 
apoptosis, with cell division, proliferation, and 
repair reduced or even abolished, leading to 
accumulation of mutations in somatic cells, 
and eventual cancer development [10].

Mechanism underlying p53 dysfunction in 
DLBCL

The MDM2-p53 pathway

MDM2 is an important negative regulator of 
p53. Under normal circumstances, MDM2 
transports p53 protein to the cytoplasm and 
promotes its degradation. Further, p53 can 
induce MDM2 expression, leading to a negative 
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feedback self-regulatory loop [19]. Inhibition of 
MDM2 and its cognate complex protein, MDMX, 
is the most important regulatory pathway for 
p53 activation. Stress signals can upregulate 
the expression of ATM, ataxia telangiectasia 
and Rad3-related (ATR), and other proteins, 
through sensory proteins, thereby reducing 
MDM2 levels [20]. MDM2 is amplified in a sub-
set of DLBCL tumors, resulting in increased 
ubiquitination and degradation of p53, and 
decreasing its nuclear accumulation and tran-
scriptional activity. Moreover, MDM2 binds to 
and transcriptionally silences p53. TP53 muta-
tions, MDM2 overexpression, and downregula-
tion of p19ARF (a negative regulator of MDM2), 
are all important factors influencing DLBCL  
initiation [21, 22], with TP53 mutations and 
MDM2 overexpression highly correlated in 
DLBCL. Møller et al. found that 23 of 37 (62%) 
lymphoma cases had one or more abnormali-
ties in p53 pathway components (p53, p19ARF, 
and MDM2), while 9 cases (24%) had two or 
three gene abnormalities [22]. MDM4 is a pro-
tein that shares structural similarities with 
MDM2; however, unlike MDM2, which degrades 
p53, MDM4 inhibits p53 by binding its tran-
scriptional activation domain. Amplifications of 
MDM4 are also detected in DLBCL, and may 
decrease p53 transcriptional activity (Figure 2) 
[7, 23].

ARF promotes MDM2 degradation and stabiliz-
es p53, and is frequently deleted in DLBCL. 
Several studies have shown that ARF can 
enhance p53 transcriptional activity by com-
bating MDM2-mediated p53 decay [24-26]. 
Proteins such as ATM and DNA-dependent pro-
tein kinase (DNA-PK) can be activated in re- 
sponse to DNA damage conditions, inducing 
p53 Ser15 phosphorylation and reducing the 
ability of p53 to bind to MDM2, thereby stabiliz-
ing p53 and enhancing its activity [18, 27]. 
Mutations in the important cell cycle check-
point kinase, ATM, are associated with inferior 
progression free survival (PFS) of patients with 
DLBCL [28, 29].

CREB-binding protein (CREBBP, also termed 
CBP) and E1A-binding protein P300 (EP300, 
also termed P300) are two key acetyltransfer-
ases and transcriptional cofactors that regu-
late gene expression by controlling the acetyla-
tion levels of histone and non-histone proteins. 
CREBBP and EP300 can acetylate p53 and 

activate its transcriptional activity, while P300 
affects p53 levels in normal cells through its 
synergistic interaction with MDM2 [30-32]. 
CREBBP can also acetylate BCL-6, reducing its 
transcriptional repression function, and there-
by increasing p53 activity [21, 33]. Acetylation 
of p53 after DNA damage or oncogene activa-
tion may be regulated by changes in the confor-
mation or affinity of the P300/MDM2 complex. 
Hence, mutations in CREBBP and EP300 inacti-
vating the acetyltransferase activity of these 
two proteins, impair p53 acetylation and ac- 
tivity [23, 34, 35]. CREBBP mutations, include 
truncating and missense mutations in the his-
tone acetyltransferase domain, have been re- 
ported in 20% of patients with DLBCL, while 
EP300 is mutated in 10% of DLBCLs [31, 36, 
37].

p53 mutations

TP53 mutations are the most common genetic 
alterations detected in human tumor cells and 
the most frequent TP53 mutation is located in 
the region encoding the p53 DBD, often occur-
ring in exons 4-7; mutations are rarely observ- 
ed in the TP53 promoter and UTR. TP53 muta-
tions include missense, nonsense, and synony-
mous changes. Missense mutations, affecting 
only one amino acid, and expressed as a full-
length mutant p53 protein with a single amino 
acid substitution, are the most common. Based 
on the dysfunctionality of the resulting protein, 
p53 mutations can be classified as DNA-
contact mutations (such as R248 and R273) 
and conformational mutations (such as R175, 
G245, R282, and R249) [12, 38]. DNA-contact 
mutations occur in the DBD and change amino 
acid residues in the DNA contact surface, 
directly affecting their ability to control the tr- 
anscription of targeted genes. Conformational 
mutations usually result in a more dramatic 
alteration of p53 protein structure than that 
caused by DNA-contact mutations [39]. Around 
90% of p53 mutations are accompanied by 
loss of function. Mutant p53 protein can both 
lose the tumor suppressor effect of its wild-
type counterpart and exhibit dominant nega- 
tive regulation of residual wild-type p53 [10, 
40, 41]. Alternatively, many p53 mutant pro-
teins also acquire new activity to promote 
tumorigenesis independently of wild-type p53 
protein, termed gain-of-function (GOF). GOF 
mutant p53 increases tumor malignancy in var-
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ious ways, including by mediating tumor metas-
tasis, chemoresistance, and invasiveness, and 
is associated with shorter patient survival [12, 
15, 39].

Although TP53 mutations are the most com-
mon gene mutations in human tumor cells, 
their incidence in lymphomas is relatively low 
(20%) [22]. Zlamalikova et al. detected 26 TP53 
mutations in 131 DLBCL cases (19.8%), 3 of 
which carried two p53 mutations. Of the 26 
mutations, 24 were missense, and 2 were non-
sense, leading to formation of a premature ter-
mination codon. All mutations were localized  
in the CDS [42]. Møller et al. identified 7 TP53 
mutations in 37 DLBCL cases, all of which were 
base substitution missense mutations affect-
ing the conserved hotspot regions of exons 
5-8, which is within the CDS, consistent with 
the findings of previous studies [22].

TP53 deletion

Compared with TP53 mutation, TP53 gene 
deletion has been less extensively studied. 
Tamimi et al. performed polymerase chain 
reaction amplification and sequencing of sam-
ples from 23 patients with DLBCL and found 
that 35% had TP53 allele deletion [43]. A st- 
rong correlation between TP53 point mutations 
and TP53 loss is established; hence, when the 
TP53 gene on one chromosome is deleted, th- 
at on the other allele is frequently mutated. 
Zlamalikova et al. analyzed loss of the TP53 
locus in 131 DLBCL cases and found that 20 
(15.3%) had TP53 gene deletions, with concur-
rent TP53 mutations in 10 [42]. Similar to TP53 
mutations, TP53 deletion is associated with 
inferior prognosis of patients with DLBCL. Jia et 
al. studied 50 patients with DLBCL by fluores-
cence in situ hybridization, and found that 40% 
had TP53 gene deletions. In addition, these 
authors applied a Cox proportional hazards 
regression model to analyze factors associated 
with survival prognosis in all patients with 
DLBCL, and showed that patients with DLBCL 
harboring TP53 gene deletion had poor progno-
sis, independent of age. The elevated propor-
tion of TP53 gene deletions reported in that 
study, relative to previously published data, 
may be attributable to differences in DLBCL 
patient samples and detection techniques [44].

MiRNA and p53

MiRNAs are highly conserved, non-coding, sin-
gle-stranded RNA molecules which occur wide-

ly in eukaryotes and comprise 18-23 nucleo-
tides. MiRNAs can recognize binding sites in 
target gene mRNA 3’-UTRs, and function to 
inhibit transcription, or reduce or degrade 
mRNA, thus inhibiting the expression of down-
stream genes and weakening or eliminating 
their function [45, 46]. In DLBCL, miRNA can 
exert pro- or tumor suppressor effects through 
a number of known cancer-related genes. For 
example, miR-155, miR-17-92, and miR-21 act 
as oncogenes by altering the expression levels 
of MYC, SHIP, and FOXO1, respectively; con-
versely, miR-34a, mir-144, and miR-181a act 
as tumor suppressors by altering the expres-
sion levels of SIRT1, BCL-6, and CARD11, 
respectively [35, 47]. TP53 can mediate its 
antitumor effects by regulating the transcrip-
tion of a range of microRNA molecules. MiR-34 
family members are direct targets of p53 and 
were the first miRNAs found to be directly regu-
lated by p53 as a tumor suppressor. One study 
profiled miRNA gene expression in p53-positive 
and p53-deficient cells, revealing that the miR-
34 family was among the most up-regulated 
gene families in p53-positive cells. The miR-34 
family includes miR-34a, miR-34b, and miR-
34c, which are encoded by two different ge- 
nes. When cells are stimulated, p53 activates 
miR-34a expression by demethylating the CpG 
island in its promoter region, consequently reg-
ulating miR-34a target genes. Moreover, miR-
34a activates p53 by inhibiting the c-MYC/
SIRT1 pathway, which upregulates miR-34a 
expression, thereby causing cell cycle arrest 
[35, 45, 48]. MiR-34a expression is significant-
ly lower in lymphoma than in normal lymph 
nodes. Similarly, miR-34a expression is low in 
patients with DLBCL. He et al. analyzed 58 
patients with DLBCL and found that only 5 
(8.6%) were miR-34a positive, and most the 
miR-34a-positive cases were weakly positive, 
with significantly lower levels than those in nor-
mal lymph nodes [49]. Further, low miR-34a 
expression is associated with poor prognosis in 
patients with DLBCL [49, 50]. In addition, in an 
experiment to investigate DLBCL resistance to 
doxorubicin, researchers observed a significant 
correlation between high miR-34a expression 
and improved overall survival (OS) by univariate 
Cox regression [51].

Prognosis of patients with DLBCL with an 
abnormal TP53 gene

The International Prognostic Index (IPI) is an 
important tool used to evaluate the prognosis 
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of patients with of DLBCL; however, given the 
biological heterogeneity and complexity of DL- 
BCL, exploration of new biomarkers with prog-
nostic significance is of considerable interest. 
Research on prognostic indicators can help in 
exploring DLBCL pathogenesis, as well as hav-
ing the potential to identify new and rational 
therapeutic targets for this biologically diverse 
disease. Most recent studies have considered 
both high p53 protein expression and TP53 
mutations as independent prognostic factors 
associated with poor survival of patients with 
DLBCL [21, 52-56]. In a follow-up analysis of 
506 patients with DLBCL, Zijun Y. Xu-Monette 
et al. found that 395 DLBCL patients without 
TP53 mutations had a median OS of 94.49 
months, while 111 patients with TP53 muta-
tions had a median OS of 52.90 months, and 
concluded that both OS and PFS were superior 
in patients with DLBCL without p53 mutations 
than in those with p53 mutations [57]. Zla- 
malikova et al. found that TP53 mutations were 
associated with shorter OS and PFS in patients 
with DLBCL treated using the R-CHOP regimen 
[42]. A study reported by Antonin Bouroumeau 
et al. found that, univariate analysis of a cohort 
of patients with DLBCL receiving R-CHOP as 
first-line treatment, showed that p53 overex-
pression (positive threshold, 50%) was associ-
ated with inferior prognosis. Moreover, a DLBCL 
subgroup with high p53 expression was associ-
ated with c-MYC overexpression and poor prog-
nosis [2]. Qin et al. showed that BCL-2 and p53 
mutations were significantly associated with 
poor prognosis in patients with DLBCL treated 
using the R-CHOP regimen, independent of IPI. 
Nine patients with both BCL-2 and p53 muta-
tions had an extremely poor prognosis, with 
median PFS only 4 months and OS 13 months 
[58]. Together, these data suggest that p53  
is both a valuable prognostic biomarker for 
DLBCL patients treated with or without R-CHOP 
[58-61].

Nevertheless, some studies have also found no 
relationship between p53 protein expression 
and survival. Rujirojindakul et al. performed 
immunohistochemical staining of samples from 
108 patients with DLBCL; univariate analysis of 
the results revealed no significant differences 
in complete remission rate (CRR), OS, or dis-
ease-free survival between p53-positive (posi-
tive threshold, 50%) and -negative groups [62]. 
Baran et al. analyzed data from 40 patients 

with histologically proven diagnosis of nodal 
DLBCL and also concluded that p53 expression 
and OS were not significantly associated [63]. 
These differences may reflect the fact that p53 
protein expression does not exactly coincide 
with p53 mutations. For example, p53 protein 
accumulation in DLBCL tissues was assessed 
by immunoblotting by Zlamalikova et al., who 
found that 15.3% of cases showed p53 protein 
accumulation, including 6 p53 wild-type cases; 
hence, the concordance rate of p53 mutations 
and p53 protein accumulation was 86.3% [42]. 
Therefore, the lack of direct correlation between 
p53 mutation and p53 overexpression mea-
sured by immunohistochemical approaches, 
and the relationship of TP53 mutation, p53  
protein, and the prognosis of patients with 
DLBCL requires more precise investigation.

Targeted therapy of p53 in DLBCL

Restoring the normal function of mutant p53

Mutant p53 proteins frequently accumulate at 
high levels in human cancers, and targeting 
mutant p53 sites has emerged as an attrac- 
tive therapeutic strategy for tumors containing 
mutant p53. The main strategy for targeting 
mutant p53 is to restore wild-type p53 activity 
and deplete mutant p53 levels in cancer cells. 
PRIMA-1, a mutant p53 reactivator, and its 
methyl analog, APR-246, are initially converted 
to the active metabolite, methylene quinuclidi-
none (MQ), a Michael acceptor that reacts 
covalently with specific thiol groups of mutant 
p53 protein, converting it to wild-type [13, 15, 
64]. In addition, PRIMA-1 restores unfolded 
wild-type p53, which can promote tumor inva-
sion in a similar way to mutant p53 proteins. 
Hence, PRIMA-1 can be beneficial to patients 
with tumors containing either mutant or unfold-
ed wild type p53 [39, 65]. APR-246 can restore 
mutant p53 transcriptional activation function, 
thus inducing human cancer cell apoptosis, 
and has shown promising results in several 
clinical trials [15, 66]. For example, a phase 1 
clinical trial (NCT00900614) was conducted to 
test the safety and activity of APR-246 in R/R 
hematological malignancies, including 3 NHL 
cases (Table 1) [66]. Most studies to date have 
found that p53 mutation is associated with 
poor prognosis in patients with DLBCL. Hong et 
al. conducted a study including 2464 patients 
with DLBCL and concluded that p53 mutations 
in exon 7 were associated with poor OS, where-
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Table 1. Targeted drugs related to p53
Category Mechanism Target Drugs Trials
Mutant p53 
activator

Converts MQ to an active metabolite that reacts 
covalently with specific thiol groups of the mutant 
p53 protein

p53 PRIMA-1, 
APR-246

NCT00900614, NCT03745716, 
NCT04990778, NCT03072043, 
NCT04214860

MDM2 antagonist Disrupts the p53-MDM2 interaction and activates
p53

MDM2 RG7112 NCT00623870

Idasanutlin NCT02633059, NCT04029688, 
NCT03850535, NCT02545283, 
NCT02670044

APG115 NCT04496349, NCT04275518, 
NCT02935907, NCT04358393

Has affinity for both MDM2 and MDM4, and 
blocks their interaction with p53

MDM2, 
MDM4

ALRN-6924 NCT02264613, NCT02909972

XOP1 inhibitor Inhibits the nuclear export of p53 and restores 
p53 nuclear localization

XPO1 Selinexor NCT03955783, NCT06169215, 
NCT02835222, NCT04717700, 
NCT02227251

G2 phase arrest 
regulators

Synthetic lethal interactions with p53-deficient 
cancer cells

ATR Berzosertib NCT04802174, NCT04826341, 
NCT03641313

CHK1 Prexasertib NCT02649764, NCT03735446

as mutations in exons 5 and 6 were associated 
with poor PFS. These authors also applied APR-
246 to treat p53-mutated DLBCL cells and a 
xenograft mouse model, and found that APR-
246 induced p53-dependent ferro-phagocyto-
sis of DLBCL cells with p53 missense muta-
tions in exon 7, and ferroptosis of DLBCL cells 
carrying wild-type p53 and other p53 muta-
tions [67]. Hence, APR-246 has potential as a 
future therapeutic approach for patients with 
DLBCL carrying mutant p53.

Enhancing the stability and activity of wild-type 
p53 protein

Disrupting the p53-MDM2 interaction impairs 
MDM2-mediated p53 degradation, thereby in- 
creasing p53 stability and expression. Nutlins 
were the first potent and selective small-mole-
cule MDM2 antagonists identified able to inhib-
it the p53-MDM2 interaction, leading to p53 
stabilization and p53 pathway activation [68, 
69]. Nutlin-3a, the active isoform of nutlin-3, is 
a potent MDM2 inhibitor that disrupts the p53-
MDM2 interaction and activates p53, thereby 
upregulating the pro-apoptotic proteins, BAX 
and PUMA, and inducing apoptosis in DLBCL 
cell lines with the translocation [23, 70]. 
Therapeutic experiments using nutlin-3a have 
been conducted in various human tumors, 
including nasopharyngeal carcinoma, Kaposi’s 
sarcoma, and multiple hematological tumors 
[71, 72]. The response of chronic lymphocytic 

leukemia (CLL) to nutlin-3a depends on p53 
status, and CLL cells in the early progressive 
CLL subgroup are particularly sensitive to nut-
lin-3a. Saddler et al. performed MDM2 inhibi- 
tor killing experiments on 106 CLL samples  
(87 without abnormal p53 and 19 with p53 
sequence mutations or absent expression) and 
found that the mean 50% inhibitory concentra-
tion (IC50) values for CLL cases with or without 
p53 abnormalities were 3.55 and 22.9 µM, 
respectively. This finding indicates that CLL 
without p53 abnormalities is more sensitive to 
nutlin-3; however, no such studies have been 
conducted in DLBCL [73]. 

RG7112 (RO5045337) is a second-generation 
nutlin-3a compound with potential antitumor 
activity that can inhibit proteasome-mediated 
enzymatic degradation of p53 by preventing 
the MDM2-p53 interaction. This allows restora-
tion of p53 transcriptional activity, leading to 
reinstatement of p53 signaling, finally inducing 
p53-mediated tumor cell apoptosis. Compared 
with nutlin-3a, RG7112 has a lower IC50 value 
in tumor cells and is more selective for MDM2; 
however, the side effects of RG7112 are promi-
nent, including inhibition of platelet formation 
and gastrointestinal symptoms in patients with 
leukemia, which requiring caution in using 
RG7112 to treat hematological disorders. A 
phase I trial (Table 1) to determine the maxi-
mum tolerated dose of RG7112 in leukemia 
(NCT00623870) has been completed [74-77].
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Idasanutlin (RG7388) is a potent and selective 
MDM2 antagonist that inhibits binding of 
MDM2 to p53 and showed significant antitu-
mor activity in a xenograft model of DLBCL 
when combined with obinutuzumab and vene-
toclax. This three-drug combination remarkably 
improved the tumor-free survival of mice. 
Idasanutlin combined with rituximab and vene-
toclax has been investigated for use in treating 
patients with R/R DLBCL; however, the study 
was prematurely terminated because of the 
overall modest benefit achieved with the maxi-
mal tolerable dose during the escalation phase, 
and Phase II of the study was never initiated. 
No results data were generated; therefore, the 
trial outcomes were not reported [7, 23, 78]. A 
study (NCT04029688) evaluating the safety, 
tolerability, pharmacokinetics, and preliminary 
activity of idasanutlin in combination with 
either chemotherapy or venetoclax for treat-
ment of pediatric and young adult participants 
with R/R acute leukemias or solid tumors is 
ongoing (Table 1). ALRN-6924 (sulanemadlin), 
an orally available peptide inhibitor, has an 
affinity for both MDM2 and MDM4, and blocks 
their interaction with p53. At high doses, ALRN-
6924 exhibits on-mechanism anticancer activ-
ity in TP53 wild-type tumor models. Further, 
ALRN-6924 reduced tumor cell growth and  
prolonged survival of acute myeloid leukemia 
xenograft mice. The results of a phase I trial 
(NCT02264613) demonstrated that ALRN-
6924 was well-tolerated and had anti-tumor 
activity in patients with solid tumors and lym-
phomas bearing wild-type TP53 (Table 1) [15, 
79-81]. 

Sun et al. demonstrated that the MDM2-p53 
signaling pathway is downstream of indole-
amine 2,3-dioxygenase 1 (IDO1) in DLBCL, and 
that reducing IDO1 activity could activate the 
p53 pathway by inhibiting MDM2 expression, 
thereby inducing the p53 apoptotic pathway 
and cell cycle arrest. The natural substrate of 
IDO, L-Trp, has an analog, 1-Methyl-L-tryptophan 
(1-L-MT), which acts as an IDO1 inhibitor by 
competitively inhibiting IDO1 enzyme activity, 
thereby activating the p53 pathway and induc-
ing cell cycle arrest and apoptosis to inhibit 
DLBCL cell growth [82]. Exportin-1 (XPO1; also 
known as CRM1) is a member of the importin  
β family of nuclear export protein receptors, 
which is responsible for nuclear export of tumor 
suppressor proteins and bioregulatory proteins, 

such as p53, p21, PI3K/Akt, and NF-κB, among 
others. The transcriptional activation activity of 
p53 depends on its nuclear localization, and 
XPO1 mediates protein nuclear export, includ-
ing of p53. High XPO1 expression predicts poor 
prognosis for patients with DLBCL [83]. Se- 
linexor, an XPO1 inhibitor, reduces p53 nuclear 
export and restores its nuclear localization, and 
has received approval from the US Food and 
Drug Administration (FDA) for use in treating 
R/R DLBCL after at least two lines of systemic 
therapy, showing an overall response rate of 
28% in the SADAL trial [84-86].

Other therapeutic pathways associated with 
p53

In addition to direct targeting of p53, applica-
tion of mutant synthetic lethal p53 genes has 
also become a hot topic in recent years; for 
example, targeting of non-coding RNA, among 
other approaches. The term “synthetic lethali-
ty” indicates that, while disruption of either of 
two genes with synthetic lethal interactions 
alone is permissible, complete disruption of 
both genes results in cell death. Therefore, 
developing and targeting synthetic lethal part-
ners may become an attractive therapeutic 
strategy for non-modifiable genes [32]. Abnor- 
malities of the p53 pathway prevent normal 
p53 function and activate signaling cascades 
to promote tumor progression and compensate 
for loss of function. Many synthetic lethal part-
ners may be hidden in these altered pathways. 
Regulators of the G2 checkpoint (ATR, CHK1, 
MK2, Wee1) were the first identified synthetic 
lethal interactors in p53-deficient cancer cells. 
Berzosertib (M6620) is the earliest ATR inhibi-
tor applied in a clinical trial in humans [87]. 
Other G2 phase arrest regulators may also act 
as synthetic lethal chaperones for mutant p53. 
Prexasertib, a CHK1 inhibitor, demonstrated 
antitumor activity in several models derived 
from high-grade serous ovarian cancer patient 
samples [87]. The BCL-2 selective inhibitor, 
APG-2575, can exert a synthetic lethal effect 
with the MDM2-p53 inhibitor, APG115, in 
DLBCL, and effectively inhibited DLBCL with 
high BCL-2 expression by activating the mito-
chondrial apoptotic pathway. APG115 restores 
the tumor suppressor activity of p53 by block-
ing the MDM2-p53 interaction. For DLBCL with 
wild-type p53 and high BCL-2 expression, APG-
2575 had a strong synergistic effect with the 
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MDM2-p53 inhibitor, APG115, inducing more 
significant apoptosis [88]. 

Autophagy is a housekeeping process that con-
trols protein and organelle quality and recycles 
intracellular components. Under conditions of 
nutritional deprivation, autophagy can main-
tain normal biological activities by recycling 
misfolded proteins and dysfunctional mito-
chondria as alternative resources; however, 
autophagy can also promote lymphoma cell 
survival by recycling toxic intracellular materials 
and inhibiting apoptosis. The autophagy path-
way can reduce mutant p53 degradation, 
thereby promoting tumor progression [89]. The 
autophagy inhibitor, spautin-1, promotes mo- 
lecular chaperone-mediated autophagy degra-
dation of mutant p53 protein, and selectively 
induces cell death of mutant p53-expressing 
cancer cell lines under confluency conditions 
[90, 91]. Due to the complexity of autophagy 
pathway activation and the cardiotoxicity of 
spautin-1, this anticancer therapeutic strategy 
requires further careful evaluation.

Chimeric antigen receptor (CAR) T cells are 
genetically engineered to express a synthetic 
tumor antigen recognizing a T cell receptor 
(TCR) that can induce T cell-mediated antitu-
mor effects. CAR-T therapy is a new type of pre-
cision targeted therapy, which has achieved 
good results in clinical tumor treatment [85, 
92], and represents a significant advance in 
the treatment of patients with R/R DLBCL, as 
second-line therapy for those with refractory 
disease or early relapse (within 12 months) 
after first-line chemoimmunotherapy. Long-
term remission has been reported in approxi-
mately 30%-40% of patients who received 
CAR-T therapy, suggesting that it has curative 
potential [93-95]. TP53 gene alteration confers 
inferior prognosis in patients with R/R aggres-
sive B cell NHL. The p53 tumor suppressor 
gene is associated with poor CAR-T response in 
DLBCL [96], and in DLBCL patients with p53 
abnormalities, anti-CD19 and anti-CD22 chi-
meric antigen receptor (CAR19/22) T cell cock-
tail treatment alone or in combination with 
autologous stem cell transplantation (ASCT) 
resulted in higher objective response rate,  
CRR, PFS, and OS; this finding suggests that 
CAR19/22 T cell therapy is effective for treat-
ment of R/R aggressive B-NHL with p53 altera-
tions [97, 98]. A case report of a patient with 

DLBCL with P53 gene mutation who underwent 
CD19 CAR T cell infusion after ASCT, found that 
complete molecular response was achieved at 
+1 month and maintained without any adverse 
effects [99]. Hence, the combination of CAR T 
cell administration with ASCT represents a 
potential therapeutic option for patients with 
DLBCL harboring p53 mutations.

Conclusion

TP53 is among the most highly relevant genes 
associated with human tumors identified to 
date, and its inactivation is closely related to 
the occurrence of multiple tumors. Although 
TP53 abnormalities are lower in DLBCL than in 
other tumors, they remain an important con-
tributor to DLBCL occurrence and development. 
TP53 mutations and deletions are associated 
with poor prognosis of patients with DLBCL, 
indicating that p53 is a possible therapeutic 
target in this disease. Drugs targeting p53 gene 
abnormalities mainly function via the following 
routes: restoring the normal function of mutant 
p53 protein, promoting mutant p53 protein 
degradation, and enhancing wild-type p53 pro-
tein stability and activity. In recent years, there 
has been considerable progress in the clinical 
success of targeting p53; for example, the tar-
geted drug, rezatapopt (PC14586), is highly 
effective in treating solid tumors with p53 Y220 
mutations, and the US FDA has qualified reza-
tapopt to treat patients with locally advanced 
or metastatic solid tumors with TP53 Y220C 
mutations for fast-track approval.

For patients with DLBCL, gene therapy target-
ing p53 continues to face numerous challeng-
es. First, there are multiple types and sites of 
p53 mutations, and the same mutations may 
play different roles in different cell types. 
Targeted drugs may only be effective against 
some p53 mutations. Second, it is unclear how 
the different mechanisms of action underlying 
p53 activity in DLBCL are interconnected and 
whether inhibition of one of these mechanisms 
affects other aspects. Third, some experimen-
tal targeted drugs, such as the MDM2 inhibitor, 
RG7112, exhibit strong myelotoxicity, inhibit 
platelet formation, and have other adverse 
effects; hence, their application in DLBCL has 
greater risks compared with solid tumors. 
Fourth, some p53-targeting drugs, such as 
APR-246, have p53-independent effects, and 
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these also need to be considered when explor-
ing targeted drugs. Overall, there remain con-
siderable challenges for clinical application of 
p53-targeted drugs as stand-alone therapies. 
Therefore, in future studies, combination of 
p53-targeted drugs and existing treatment op- 
tions can be considered, to develop improved 
treatments for patients with DLBCL and TP53 
gene abnormalities. Further, focus on methods 
to adapt appropriate drugs to specific p53 
mutations and design optimal personalized 
treatment options for patients with p53-mutat-
ed DLBCL, is warranted.
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