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Abstract: The tumor microenvironment (TME) plays a critical role in high energy metabolism during tumorigenesis, 
progression and metastasis. Among them, adipocytes, as an important component of the TME, can transform into 
cancer-associated adipocytes (CAAs) through dedifferentiation via interactions with tumor cells. These CAAs provide 
nutrients, growth factors, cytokines and metabolites to the tumor and later transdifferentiate into other stromal cells 
at a later stage to alter tumor growth, metastasis and the drug response and ultimately influence the treatment and 
prognosis of ovarian cancer. This review outlines the physiological functions of CAAs and discusses the progress in 
the use of CAAs as therapeutic targets in ovarian cancer. 
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Introduction

Ovarian cancer (OC) is among the three most 
common fatal malignant gynecological cancers 
and poses a significant risk to women’s health 
[1]. Ovarian malignancies comprise a variety of 
pathological forms, with epithelial ovarian can-
cer (EOC) being the most common, accounting 
for approximately 80% of ovarian malignancies 
[2]. The occurrence of OC is asymptomatic, and 
the majority of patients are clinically diagnosed 
at an advanced stage when metastasis and 
spread have already occurred, resulting in 4.4% 
of cancer-related deaths [3]. The elevated mor-
tality rate is likely due to various factors, includ-
ing chemoresistance and significant intraperi-
toneal metastasis [1]. Debulking surgery and 
platinum-taxane maintenance chemotherapy 
are the current front-line standards of therapy. 
Maintenance therapy with antivascular drugs 
or PARP inhibitors has also been shown to pro-
long progression-free survival (PFS) [4].

As with many other tumor types, OC grows in 
close proximity to an anatomy rich in adipose 
tissue, and its unique site of metastasis is the 
omentum [5]. An outstanding characteristic of 
the greater omentum is its adipose tissue, 
which can provide energy for tumor cells and 

create a more invasive microenvironment for 
tumor progression [6]. Clinical observations 
and retrospective clinical studies have shown 
that EOC rarely metastasizes outside the perito-
neal adipocyte-rich environment; thus, OC does 
not follow classical lymphatic and blood meta-
static routes but rather has a specific intraperi-
toneal dissemination route. Metastases can 
spread through the peritoneal cavity and into 
omental adipose tissue, which is rich in adi-
pose-derived stem/stromal cells (ADSCs) [7]. 
Subsequently, the continuous paracrine secre-
tion of extracellular vesicles (EVs) yields a vari-
ety of secretory factors and metabolites that 
enhance the proliferation of OC cells and pro-
mote their transformation to a highly invasive 
and metastatic phenotype [8].

The tumor microenvironment (TME) is a com-
plex network of adipocytes, fibroblasts, vascu-
lar endothelial cells, immune cells and ex- 
tracellular matrix proteins that creates condi-
tions favoring the emergence of malignant 
clones [9]. An increasing number of studies 
have confirmed that cancer-associated adipo-
cytes (CAAs), an essential component of the 
TME, play a role in the progression of OC [10]. 
Upon the invasion of tumor-adjacent adipocytes 
by tumor cells, the downregulation of terminal 
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differentiation marker genes, such as peroxi-
some proliferator-activated receptor-γ (PPAR-γ) 
and CCAAT/enhancer binding protein-α (C/EBP-
α), leads to dedifferentiation into preadipocyt- 
es or reprogramming into CAAs [11]. Abnormal 
energy metabolism in malignant tumors and 
the TME can lead to abnormally active lipolysis 
of CAAs. CAAs secrete tumor-associated adipo-
kines, inflammatory factors, and exosomes and 
act as fuel reservoirs to promote tumor cell  
proliferation, invasion, angiogenesis, immune 
escape and drug resistance. Mature adipo-
cytes consequently develop further, lose their 
lipid content, and show fibroblast-like associat-
ed properties [12]. This review provides an 
overview of the progress in research on the role 
of adipocytes in OC, specifically how CAAs sig-
nificantly affect the biological behavior and 
prognosis of OC, and analyses the potential of 
adipocytes as a therapeutic target for treating 
OC.

Mature adipocytes vs. CAAs 

As a near neighbor to ovarian epithelial cells, 
the adipose microenvironment serves as the 
preferred site for OC metastasis and the most 
frequent location for residual and recurrent dis-
ease. Adipocytes in the TME modified by tumor 
cells are referred to academically as CAAs, 
which are formed based on the dedifferentia-
tion of adipocytes, mainly through the following 
related mechanisms: the WNT-PCP signaling 
pathway, the WNT/β-catenin signaling pathway, 
and tumor-derived exosomes [13]. In terms of 
cellular morphology, mature adipocytes com-
prise predominantly white adipose tissue, that 
is similar in size to normal cells, with round and 
large monolipid droplets [14]. Compared with 
mature adipocytes, CAAs exhibit an irregular 
shape, smaller volume, and small, dispersed 
lipid droplets [15]. Functionally, mature adipo-
cytes possess endocrine functions. The expres-
sion and secretion of associated adipokines 
can regulate physiological functions such as 
appetite, immunity, coagulation, vascular tone 
and metabolic balance [16]. However, after 
tumor cells invade neighboring adipocytes, the 
expression of adipocyte differentiation mark-
ers, such as adiponectin, resistin and fatty acid 
binding protein (FABP4 or adipocyte protein 2, 
aP2), is initially reduced. Subsequently, the lev-
els of their transcriptional regulators, PPAR-γ 
and C/EBP-α, are also decreased, and these 

cells in turn dedifferentiate into preadipocyt- 
es or are reprogrammed into CAAs [17]. CAAs 
exhibit a series of characteristics, including 
overexpression of inflammatory cytokines and 
proteases, as well as the differential expres-
sion of adipokines, including leptin and adipo-
nectin [18]. As tumors progress, CAAs reorga-
nize their actin cytoskeleton and acquire a 
fibroblast-like morphology by upregulating the 
expression of fibroblast-like biomarkers such 
as fibroblast activation protein (FAP), smooth 
muscle actin (a-SMA) and chondroitin sulfate 
proteoglycans [19]. Thus, CAAs may develop a 
more malignant phenotype than the original 
adipocytes, promoting OC proliferation, inva-
sion, metastasis, immune escape and drug 
resistance through a lower immune barrier and 
the production of more aggressive adipokines 
in addition to other cytokines (Figure 1).

Adipokines and inflammatory cytokines de-
rived from adipocytes

Adipocytes regulate several life activities th- 
rough the secretion of cancer-associated adi-
pokines, including leptin, adiponectin, visfatin, 
and resistin, as well as cancer-associated 
inflammatory cytokines, such as interleukin-6 
(IL-6), monocyte chemotactic protein 1 (MCP-
1), plasminogen activator inhibitor 1 (PAI-1) and 
tumor necrosis factor alpha (TNF-α). CAAs also 
produce metabolites, such as fatty acids (FAs) 
and diglycerides, which impact the fat distribu-
tion, insulin secretion, energy expenditure, and 
the inflammatory response [20]. The interac-
tion between adipocytes and OC cells contrib-
utes positively to the proliferation, migration, 
invasion, and drug resistance of tumor cells 
[21]. In this study, we examine the impacts  
of leptin, adiponectin, visfatin, chemokines, 
MCP-1 and other crucial cytokines on in this 
crosstalk relationship. Targeting these cancer-
associated adipokines and cytokines presents 
novel therapeutic possibilities for treating OC.

Leptin 

Leptin is linked to the proliferation, migration, 
invasion and angiogenesis of tumors. A prior 
investigation revealed a significant increase in 
the expression of both leptin and its receptor in 
tissues affected by breast cancer compared to 
benign breast tissue and normal paracarcino-
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Figure 1. Interaction between adipocytes and ovarian cancer cells diagram. IL-6, interleukin-6; IL-8, interleukin-8; 
IL-17A, interleukin-17A; MCP-1, monocyte chemotactic protein 1; PAI-1, plasminogen activator inhibitor 1; TNF-α, 
tumor necrosis factor alpha; TNF-β, tumor necrosis factor beta; MMP2, matrix metalloproteinase 2; MMP9, matrix 
metalloproteinase 9; CCL5, C-C motif chemokine ligand 5; EMT, epithelial mesenchymal transition.

ma tissue. We also identified strong correla-
tions between the expression levels of these 
genes and lymph node metastasis and Ki-67 
expression [22, 23]. In HepG2 and MCF7 tu- 
mor cells, leptin can promote the phosphoryla-
tion of the adaptor protein phosphotyrosine 
interaction 1 (APPL1) in tumor cells, thereby 
enhancing tumor proliferation and migration 
[24]. Leptin increases the likelihood of obesity-
associated cancers, particularly hormone-de- 
pendent tumors such as breast cancer, endo-
metrial cancer, and ovarian cancer. In OC, leptin 
increases the expression of cyclin D1 and 
myeloid cell leukemia-1 (Mcl-1) by activating 
the methyl ethyl ketone (MEK)/extracellular 
regulated protein kinases 1/2 (ERK1/2) and 
PI3K/AKT signaling pathways, thereby inhibit-
ing apoptosis and stimulating proliferation, 
which is associated with shorter survival of 
patients with malignant tumors [25]. Thus, 
leptin has the capacity to control various as- 
pects of tumorigenesis and development th- 
rough autocrine, endocrine and paracrine path-
ways, making it an essential target for the pre-
vention and treatment of OC.

Visfatin

Visfatin is implicated in β-oxidation, the inflam-
matory pathway and the angiogenesis path- 
way. Additionally, visfatin was found to increase 
the invasiveness of glomus granulosa cells by 
increasing the expression of matrix metallopro-
teinase 2 (MMP2) while decreasing the levels 
of CLDN3 and CLDN4 [26]. A separate study 
revealed that visfatin enhances lipid accumu- 
lation and promotes tumor cell growth, prolif-
eration and metastasis through the epidermal 
growth factor receptor (EGFR)/phosphatidylino-
sitol 3-kinase (PI3K)/protein kinase B (AKT)/
glycogen synthase kinase 3 beta (GSK3β)/ste-
rol-regulatory element binding protein-1 (SR- 
EBP-1) signaling pathway [27]. Visfatin-inhibit- 
ing drugs can impede carbohydrate metabo-
lism by blocking the glycolytic process in malig-
nant tumor cells after the drugs have entered 
the cells, thereby promoting tumor cell apopto-
sis [28]. Moreover, silencing visfatin can also 
enhance the chemosensitivity to 5-FU through 
the SDF-1/CXCR4/Akt signaling pathway [29]. 
Therefore, further study of lipid-mediated cell 
plasticity will be conducive to the development 
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of better methods for the prevention and treat-
ment of OC, especially in obese patients.

Resistin

The binding of resistin to its receptor triggers 
various signaling pathways, resulting in tumor 
cell proliferation, invasion, migration, drug re- 
sistance and the epithelial-mesenchymal tran-
sition (EMT). For instance, increased expres-
sion and secretion of resistin can stimulate 
prostate cancer cell proliferation by activating 
the PI3K/AKT signaling pathway [30]. Addi- 
tionally, resistin stimulates the invasion and 
metastasis of lung adenocarcinoma cells by 
activating the Toll-like receptor 4 (TLR4)/Src/
EGFR/PI3K/nuclear factor-k-gene binding (NF-
κB) signaling pathway and subsequently pro-
motes tumor progression [31]. With respect to 
treatment resistance, resistin releases its epi-
genetic repression by DNA methyltransferases 
(DNMT1 and DNMT3a), increasing ABC trans-
porter expression and drug efflux in multiple 
myeloma. Additionally, resistin can activate the 
adenosine 5’-monophosphate (AMP)-activated 
protein kinase (AMPK)/mammalian target of 
rapamycin (mTOR)/unc-51-like autophagy acti-
vating kinase 1 (ULK1) and c-Jun N-terminal 
kinase (JNK) signaling pathways to induce 
autophagy in tumor cells, resulting in drug 
resistance [32]. Resistin is closely linked to 
tumorigenesis and development. Its carcino-
genic impact is mainly mediated by the induc-
tion of the EMT, which also affects the treat-
ment and prognosis of tumors [33]. Therefore, 
it is currently being studied as a potential strat-
egy for tumor treatment.

Adiponectin

Unlike most adipokines, adiponectin possess-
es distinct antitumor properties, including anti-
inflammatory effects, cell proliferation inhibi-
tion, insulin resistance reduction, and apoptosis 
promotion. A recent study showed that adipo-
nectin plays an important role in inhibiting 
tumor progression through its essential recep-
tors, AdipoR1 and AdipoR2 [34]. Lehr S et al. 
discovered that adiponectin has the potential 
to inhibit tumor cell proliferation and encourage 
tumor cell apoptosis by activating the AMPK 
signaling pathway and inhibiting the PI3K/AKT 
signaling pathway [35]. Nevertheless, adipo-
nectin can also stimulate the development of 
pancreatic cancer by enhancing the AMPK/

NAD-dependent deacetylase sirtuin-1 (Sirt1)/
PGC-1α signaling pathway [36]. In conclusion, 
adiponectin is an effective antitumor agent for 
a variety of tumors. It has shown therapeutic 
efficacy both as a standalone agent and as an 
adjuvant.

Estrogen

Adipocytes also produce high levels of the 
tumor-promoting hormone estrogen, especially 
in obese individuals [37]. Estrogen can enhance 
sympathetic tone in adipose tissue depots to 
varying degrees, either directly or by activating 
relevant receptors in adipocytes, to promote 
lipid deposition and function. Estrogen not only 
increases the risk of OC but also promotes 
tumor progression through its mitogenic capac-
ity in the early stages of OC, and estrogen defi-
ciency also leads to imbalances in glucose and 
lipid metabolism [38]. Interestingly, the two 
receptors of estrogen, ERα and ERβ, play com-
pletely opposite roles, which also provides dif-
ferent ideas for the treatment of tumors [39]. In 
ERα-positive OC, estrogen promotes the EMT 
pathway and induces a more malignant and 
invasive phenotype by activating the ERα/che-
mokine C-X-C-motif receptor 7 (CXCR7)/chemo-
kine ligand 11 (CXCL11) signaling axis [40]. 
However, ERβ can inhibit the expression and 
activity of ERα, thus inducing cell apoptosis and 
reducing the proliferation and metastasis of OC 
[41]. Furthermore, high ERβ expression and 
individual sensitivity to platinum/taxane-based 
chemotherapy regimens are positively correlat-
ed in OC [42]. Furthermore, estrogen metabo-
lites react with DNA to form estrogen DNA 
adducts, which are not only key factors in initi-
ating the occurrence of OC but can also be 
used as early diagnostic markers for assessing 
the risks of OC and other hormone-dependent 
cancers [43].

IL-6/8/17A

The expression and secretion of the inflamma-
tory cytokines IL-6/8/17A by adipocytes incre- 
ase upon coculture with tumor cells, facilitating 
the infiltration of inflammatory cells and the 
progression of tumors. IL-6 promotes tumor cell 
migration and invasion through the ERK/STAT3 
and Janus kinase (JAK)/signal transducer and 
activator of transcription 3 (STAT3) signaling 
pathway [44]. IL-8 increases the expression of 
FABP4, aiding in the absorption of FAs by adipo-
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cytes and facilitating the transport of OC cells 
to the greater omentum by regulating lipid me- 
tabolism [45]. IL-17A promotes FA uptake and 
utilization through the IL-17A/IL-17RA/p-STAT3/
FABP4 signaling axis, leading to the rapid 
growth and metastasis of OC in an adipocyte-
rich environment [46]. These inflammatory 
cytokines play crucial roles in tumorigenesis 
and tumor progression. Additionally, they bol-
ster the resistance of OC to primary chemother-
apy agents, namely, platinum and paclitaxel. 
Consequently, these cytokines could be po- 
tential targets for precision treatment of OC, 
but the specific mechanism requires further 
research.

MCP-1

Although previous research has suggested that 
MCP-1 production is involved in the host 
defense against tumors, recent studies have 
shown a positive correlation between MCP-1 
levels, tumor-associated macrophage (TAM) 
infiltration, and tumor progression. Sun C et al. 
proposed that tumor cells preferentially migrate 
to the omentum, which is abundant in adipo-
cytes, and that MCP-1 produced by these adi-
pocytes plays an essential role in this migration 
process. On one hand, the recruitment of TAMs 
by MCP-1 modulates the immune microenviron-
ment of tumors and contributes to the immune 
escape of tumor cells [47]. On the other hand, 
the specific binding of MCP-1 to its receptor 
CCR2 activates the PI3K/AKT/mTOR signaling 
pathway, leading to the expression of the down-
stream factors hypoxia inducible factor-1α (HIF-
1α) and vascular endothelial growth factor-A 
(VEGF-A), which favor OC growth and extensive 
abdominal metastasis [48]. Currently, anti-
MCP-1 antibodies or CCR-2 antagonists alone 
or in combination with other drugs have achie- 
ved some positive results in clinical trials for 
some tumors [49]. Therefore, a therapeutic 
strategy targeting MCP-1 and its associated 
signaling pathways is expected to be a thera-
peutic approach for preventing obesity-associ-
ated tumor progression.

PAI-1

PAI-1 is highly expressed in most cancers, 
including esophageal, gastric, and colorectal 
cancer, and is associated with a poor tumor 
prognosis [50]. PAI-1 can promote tumor angio-
genesis and thereby lead to cutaneous angio-

sarcoma progression. By constructing a xeno-
graft tumor model, Li Y et al. confirmed that 
PAI-1 promotes M2 macrophage polarization in 
colorectal cancer through the fibroblast growth 
factor receptor 2 (FGFR2)/PAI-1 signaling path-
way, which then induces effective immunosup-
pression and promotes tumor progression [51]. 
Another study documented the noteworthy ef- 
fect of PAI-1 on the regulation of immune check-
points by promoting lysosomal degradation of 
programmed cell death ligand 1 (PD-L1). Thus, 
antagonizing PAI-1 expression and secretion in 
peritumoral adipocytes may provide a poten- 
tial therapeutic target for tumor treatment. For 
example, the combination of a PAI-1 inhibitor 
and anti-PD-1 therapy was able to enhance the 
immune response and antitumor activity in 
xenograft tumor-bearing mice [52].

TNF-α

Although TNF-α has strong anti-inflammatory 
effects, it is widely acknowledged as an immu-
nosuppressive cytokine. Multiple studies have 
shown that TNF-α can significantly facilitate 
tumor formation and cancer cell proliferation 
by upregulating the transcript levels of various 
inflammatory and chemical factors. Moreover, 
it promotes tumor cell migration and invasion 
by enhancing the metastatic phenotype [53]. In 
epithelial tumors, TNF-α can stimulate MMP 
secretion, which then induces an EMT program 
in epithelial tumor cells to enhance tumor 
migration, invasion, and metastasis [54]. Fur- 
thermore, Salomon BL. et al. reported that 
TNF-α also facilitates tumor progression by 
upregulating VEGF expression to promote tu- 
mor angiogenesis [55].

The metabolites related to CAAs primarily con-
sist of FA and diacylglycerol. Compared with 
adipocytes from lean patients, adipocytes from 
obese patients supply more FAs to tumor cells. 
These free fatty acids can serve as a fuel 
source for cancer through mitochondrial fatty 
acid oxidation (FAO), which produces approxi-
mately twice the energy of glucose [56]. FAs 
are involved in the glucose uptake by various 
tumor cells, including OC cells. FAs can pro-
mote the growth and metastasis of malignant 
tumors by inducing the release of inflammatory 
factors and the recruitment of macrophages 
and lymphocytes to malignant tumor cells [57]. 
Furthermore, diacylglycerol is an endogenous 
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Figure 2. Adipokines derived from adipocytes impact signaling pathways governing ovarian cancer cell behaviour. 
CCL2, C-C motif chemokine ligand 2; CCL5, C-C motif chemokine ligand 5; IL-6, interleukin-6; IL-1β, interleukin-1 
beta; CXCL12, chemokine (C-X-C motif) ligand 12; OBR, leptin receptor; EGFR, epidermal growth factor receptor; 
TLR4, toll-like receptor 4; TNFR, tumor necrosis factor receptor; CCR2, chemokine C-C-motif receptor 2; CCR5, che-
mokine C-C-motif receptor 5; JAK, Janus Kinase; STAT3, signal transducer and activator of transcription 3; MAPK, 
mitogen-activated protein kinase; ERK, extracellular regulated protein kinase; PI3K, phosphoinositide 3-kinase; 
AKT, accredited kanban trainers; AMPK, adenosine 5’-monophosphate (AMP)-activated protein kinase; NF-�������κ������B, nu-
clear transcription factor kappa B; IKB, NF-kappa-B inhibitor; PGC-1α, peroxisome proliferator-activated receptor γ 
coactiva-tor-1 alpha; Sirt1, NAD-dependent deacetylase sirtuin-1; GSK3β, glycogen synthase kinase-3 beta; mTOR, 
mammalian target of rapamycin; SREBP-1, sterol-regulatory element binding proteins-1.

intermediate of fat metabolism in humans and 
has been shown to reduce visceral fat, inhibit 
weight gain and lower blood lipid levels [58]. 
Diacylglycerol can reduce programmed cell 
death, known as apoptosis, in malignant tumor 
cells by inhibiting the release of ceramide in the 
human body [59]. In summary, FAs and diglyc-
erides, the relevant metabolites of CAAs, play 
important fuel roles in the efficient glycolytic 
reactions of tumor cells, providing the energy 
required for the synthesis of the cancer bio-
mass, migration and invasion.

Numerous studies have revealed the mecha-
nisms through which CAAs promote the devel-
opment of OC cells (Figure 2). These mecha-
nisms include their lipid storage and endocrine 
functions, as well as their ability to release hor-
mones, inflammatory factors, and adipokines. 
On the other hand, signaling molecules pro-
duced by tumor cells can trigger the lipolysis of 
intratumor adipocytes and CAAs and even influ-
ence the entire global adipose tissue fat break-

down program within the body [60]. Tumor-
derived TNF-α and IL-6 further lead to muscle 
wasting by inducing adipose atrophy, leading to 
cancer cachexia and compromising patients’ 
quality of life and tolerance to antitumor drugs 
[61]. Blocking the interaction between tumor 
cells and CAAs may improve the treatment and 
prognosis of OC patients. Thus, inhibiting adi-
pokines, inflammatory factors, and metabolites 
produced by adipocytes could constitute a 
novel therapeutic strategy.

Effects of CAAs on the biological behavior of 
ovarian cancer cells

The adipose tissue microenvironment (ATME)  
is composed of various cell types, such as adi-
pocytes, stromal cells, immune cells, vascular 
endothelial cells and fibroblasts [9]. The adipo-
cyte-rich TME is important for the prolifera- 
tion, metastasis, immune escape, response to 
drugs and metabolic reprogramming of ovarian 
tumors.
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Effects of CAAs on the proliferation and metas-
tasis of OC

Tumor cells are capable of synthesizing most 
FAs for energy storage, protein synthesis, and 
the generation of signaling molecules requir- 
ed for various biological functions. However, 
endogenous lipids alone are insufficient to  
fuel tumor progression and survival. Therefore, 
tumors rely on adipocytes in the TME to acquire 
an additional abundant source of lipids. Adi- 
pose tissue is mainly divided into brown adi-
pose tissue (BAT) and white adipose tissue 
(WAT) according to its location, morphology and 
function [62]. Among these tissues, WAT is 
characterized by single lipid droplets rich in tri-
glycerides, which have high secretory activity in 
diseases such as tumors and obesity. Its core 
function is to store energy in the form of FAs, 
which affect, the metabolic processes of the 
system through the production of hormones 
and adipokines [63]. Research has validated 
that coculture of adipocytes and OC cells leads 
to an increase in the expression of FABP4, indi-
cating increased lipolysis in omental adipo-
cytes. This process promotes the spread of 
tumor cells [64]. Adipocytes not only serve as a 
source of energy for tumor cells but also release 
a plethora of dissimilar soluble factors that pro-
mote the proliferation, invasion, and chemo-
taxis of metastatic cells. Wang F et al. discov-
ered that CCDC3 derived from adipocytes could 
enhance the tumorigenesis of epithelial ovarian 
cancer (EOC) through the Wnt/β-catenin signal-
ing pathway [65]. Furthermore, Dai L et al. doc-
umented that the activation of adipocyte-in- 
duced SphK2 in EOC cells relies on ERK and 
that the inhibition of SphK2 significantly im- 
pedes adipocyte-induced cell proliferation [66]. 
Therefore, targeting adipocyte-produced cyto-
kines such as CCDC3 and SphK2, which are 
considered hotspots for the treatment of tu- 
mors, is also a potential approach for OC treat-
ment. In addition, CAA-derived lipid compounds 
can adapt to the rapid proliferation of tumor 
cells and cell signal transduction by accelerat-
ing the formation of cellular and organelle 
membranes [67].

Metastasis is a crucial manifestation of ad- 
vanced OC. A study confirmed that fat cell-
induced serine/threonine protein kinase 2 
(SIK2) activation promotes the movement, mi- 
gration, and transfer of OC cells by phosphory-

lating recombinant myosin light chain kinase 
(MYLK) in vitro and in vivo [68]. Furthermore, 
Wang C et al. discovered that SphK1 was over-
expressed in retinal metastases of patients 
with EOC. SphK1 regulates the conversion of 
E/N-cadherin induced by adipose cells through 
Twist1, which is a crucial process in OC metas-
tasis. This finding presents a novel target for 
the metastasis of epithelial cells in the ovaries 
[69]. Furthermore, the influence of dedifferenti-
ated adipocytes on the proliferation and migra-
tion of OC cells was examined using both an in 
vitro coculture experimental model and an in 
vivo mouse model. Iyoshi S et al. reported that 
the coculture of OC cells with adipocytes facili-
tated peritoneal adipocyte dedifferentiation by 
activating the Wnt/β-catenin signaling path-
way. Subsequently, these fibroblasts (O-ADFs) 
display tumor-promotion characteristics, as evi-
denced by increased proliferation and migra-
tion [70]. Current evidence indicates that adi-
pocyte-derived cytokines play an essential role 
in cancer progression. Additionally, adipocyte-
derived exosomes, which are extracellular vesi-
cles arising from the kernel body, are also sig-
nificant components of the adipose cancer 
interaction. Their paracrine and endocrine 
functions contribute to the progression and 
metastasis of primary tumors. In recent years, 
the treatment of OC with EVs, which have 
potential for use as a treatment option, has 
received increasing attention.

Effect of CAAs on immune escape of OC

OC is a solid tumor with a highly suppressive 
immune microenvironment. CAAs are not only 
enriched in the OC microenvironment but also 
associated with a poor patient prognosis. A 
substantial amount of data suggests that 
enhanced immune cell infiltration is linked to 
improved overall survival. One study revealed 
that CAAs-derived EVs transport SIRT1, which 
activates the CD24/recombinant sialic acid 
binding Ig like lectin-10 (Siglec-10) signaling 
pathway, encourages CD8+ T cells apoptosis to 
inhibit the immune response, and promotes OC 
tumorigenesis [71]. PD-L1 expression in CAAs 
prevents anti-PD-L1 antibodies from activating 
important antitumor functions of CD8+ T cells 
that help tumor cells escape the immune sys-
tem [72]. The combined actions of adipocytes 
and immune cells affect invasive tumor cell 
growth in the omentum, which is a key reason 
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why most OC patients display widespread peri-
toneal metastasis. In addition to lymphocytes, 
a significant accumulation of monocytes occurs 
in the TME, and these cells differentiate into 
macrophages in adipose tissue in association 
with obesity [63]. These macrophages sur-
round and ingest dead or dying adipocytes, 
forming crown-like structures (CLSs), a charac-
teristic morphology of adipose tissue macro-
phages [73]. Macrophages can be divided into 
two major subgroups, M0 and M1 macro-
phages, which are associated with a positive 
prognosis, and M2 macrophages, which are 
associated with a negative prognosis [71]. CAA-
derived EV-coated LINC01119 promotes M2 
macrophage polarization and immune system 
evasion in 3D cell models cocultured with OC 
cells. The host components of the ovarian 
tumor microenvironment, particularly peritone-
al mesothelial cells and adipocytes, produce 
Wnt5a, which promotes the adhesion, migra-
tion, and invasion of OC cells and peritoneal 
mesothelial cells, leading to extraperitoneal 
colonization. In a mouse xenograft tumor mo- 
del, the deletion of Wnt5a increased the pro-
portion of peritumoral cytotoxic T cells and M1 
macrophages and decreased the expression of 
PD-L1, which contributed to tumor killing and 
immune clearance [74]. An in-depth under-
standing of the interaction mechanisms among 
adipocytes, tumor cells and immune cells will 
facilitate the development of specific antitumor 
drugs and will continue to drive the develop-
ment of new antitumor treatments.

A recent study revealed that mesenchymal 
stem cells derived from adipose tissue next to 
tumors are vulnerable to dedifferentiation into 
multiple cancer-associated fibroblasts (CAFs) in 
the TME when cocultured with MDA-MB-231 or 
BT474 breast cancer cell. This group included 
the myofibroblast (myCAF) and inflammatory 
fibroblast (iCAF) subgroups. The myCAF pheno-
type contributes to extracellular matrix (ECM) 
remodeling, facilitating cancer cell migration 
and invasion, and promoting drug resistance. 
On the other hand, the iCAF phenotype is 
involved in immunosuppression and supports 
tumor growth in the TME [75]. During tumori-
genesis and progression, CAFs generate and 
secrete a variety of cell growth factors, inflam-
matory factors, metabolites, enzymes, and 
ECM proteins, including collagen and proteogly-
cans. These substances stimulate tumor cell 

proliferation, migration, angiogenesis, meta-
static phenotype, immune escape and the 
stemness of tumor stem cells [76, 77]. CAFs 
can increase the stiffness and thickness of the 
tumor extracellular matrix through the produc-
tion of collagen, fibronectin and lamin. This pro-
cess reduce blood vessel activity and decrease 
permeability to chemotherapeutic drugs, pro-
viding improved structural support for tumor 
migration. In addition to their analogous func-
tions, CAAs and their evolved CAFs are impli-
cated in multifaceted and dynamic metabolic 
reprogramming processes, which can alter the 
ECM under favorable circumstances. This pro-
cess can affect tumor treatment and the 
patient prognosis.

Moreover, ferroptosis is a novel type of iron-
dependent cell death characterized by the for-
mation of lipid peroxides and the excessive 
accumulation of reactive oxygen species. The 
TME of the high-score group contained more 
immune cells, including activated CD4(+) T 
cells, activated CD8(+) T cells, macrophages, 
and stromal cells (adipocytes, epithelial cells 
and fibroblasts). When constructing a prognos-
tic scoring system for OC patients, ferroptosis 
may impact the progression of OC through the 
mediation of tumor metastasis and immune 
patterns. You Y et al. confirmed four potentially 
sensitive drugs based on this prognostic score, 
namely, staurosporine, bleomycin B, DMOG 
and HG6-64-1, of which DMOG is considered a 
new targeted agent for the management of OC 
[78]. Therefore, elucidating the basic mecha-
nisms of immune cells and the immune cas-
cade driven by adipocytes is imperative to iden-
tify these cells as potentially profitable thera- 
peutic targets.

Effect of CAAs on the drug resistance of OC

Resistance to platinum drugs in EOC is increas-
ing at an alarming rate, with approximately 75% 
of patients developing chemotherapy resis-
tance and experiencing tumor relapse. Adi- 
pocytes in the TME are dynamic cells, and their 
influence on resistance to antitumor therapies 
is receiving increasing attention. Mukherjee A 
et al. presented evidence that high expression 
of FABP4, which is derived from adipocytes in 
ovarian cancer cells, not only promotes metas-
tasis but also mediates carboplatin resistance. 
Targeting FABP4 in ovarian cancer cells inhibit-
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ed their ability to adapt and colonize the adipo-
cyte-rich tumor microenvironment. Additionally, 
it increased the sensitivity of tumor cells to  
carboplatin both in vitro and in vivo [79]. 
Conversely, Zhou S et al. reported that the adi-
pocyte-secreted protein angiopoietin like pro-
tein 4 (ANGPTL4) activates the c-myc/NF-κB 
signaling pathway, which in turn stimulates the 
expression of the antiapoptotic protein Bcl-xL 
and members of the ABC transporter family, 
including ABCB1, ABCC1, and ABCG2. Finally, 
OC resistance to carboplatin was induced [80]. 
Another study revealed that arachidonic acid 
(AA) secreted by adipocytes obstructs cisplatin-
induced apoptosis by activating the AKT signal-
ing pathway, thereby augmenting the resis-
tance of ovarian cancer cells to chemotherapy 
drugs. Consequently, hindering AA production 
by adipocytes or obstructing their antiapoptotic 
function may inhibit chemotherapy resistance 
in patients diagnosed with EOC [81]. For pa- 
tients with advanced OC requiring high-dose 
hormone shock therapy, adipokines derived 
from adipocytes have the potential to decrease 
the antitumor efficacy of related hormone ther-
apy drugs. A study conducted by Bougaret L 
and his colleagues showed that adipose-
derived leptin, IL-6 and TNF-α were able to 
diminish the antiproliferative effects of 4-OH-
Tx, the primary active metabolite of the anties-
trogenic medication tamoxifen, in both 3D and 
coculture models of MCF7 tumor cells [82].

Several studies have confirmed that adipocytes 
not only stimulate relevant molecular pathways 
through cytokines, chemokines and hormones 
but also affect the TME by liberating EVs that 
contain miRNAs, which subsequently affect the 
drug resistance of OC cells and ultimately result 
in disparities in patient survival. On the one 
hand, the levels of miR-21 are markedly higher 
in EVs and tissue lysates collected from CAAs 
than in those collected from OC cells. MiR-21 
hinders the apoptosis of OC cells and confers 
chemoresistance by binding to APAF1 [83]. On 
the other hand, miR-181 enhances the sensitiv-
ity of OC cells to chemotherapy drugs by sup-
pressing MEST through the Wnt/β-catenin sig-
naling pathway [84]. MiR-146 targets LAMC2, 
decreases its expression, and activates the 
PI3K/AKT signaling pathway, thereby inhibiting 
chemotherapy resistance [85]. MiR-424 de- 
creases VEGF levels by inhibiting the myelo-
blastosis (MYB) signaling pathway, consequent-

ly diminishing the proliferation and angiogenic 
capability of tumor cells [86]. Hence, as a cru-
cial factor and mediator of intercellular com- 
munication, miRNA-based regulation is closely 
associated with adipocyte-secreted factors in 
OC progression and metastasis. Furthermore, 
EVs secreted by ADSCs have the potential to 
serve as effective carriers for drugs and bioac-
tive molecules, including miRNAs, siRNAs, long 
noncoding RNAs (lncRNAs), and cytokines. The- 
se EVs could result in lower minimum effective 
doses, reduced systemic toxicity, and protec-
tion of the drug from premature degradation. 
Thus, targeting EV communication may also be 
a promising new strategy for overcoming drug 
resistance during tumor treatment.

Another form of tumor therapy, oncolytic virus 
(OV) therapy, has been found to be more effec-
tive with the addition of FA transporter inhibi-
tors. Additionally, secreted products in adipo-
cyte-conditioned media significantly reduced 
OV-driven cell death and viral infection. Abera 
Surendran et al. discovered that these inhibi-
tors can sensitize breast cancer and ovarian 
cancer cells to OV therapy by reducing the lipid 
content within the TME. These findings suggest 
that combination strategies utilizing virothera-
py and FA transporter inhibitors have great cli- 
nical potential for overcoming OV resistance 
caused by adipocytes [87].

Effect of CAAs on the metabolism of OC

Tumor cells can acquire nutrients from an envi-
ronment that is depleted of nutrients. They uti-
lize these nutrients to preserve their trans-
formed state, accumulate biomass, and faci- 
litate cell proliferation [88]. The Warburg effect 
was first proposed in the 1920s. Tumor cells 
obtain large amounts of ATP through a series of 
molecular mechanisms to impair aerobic respi-
ration and perform efficient glycolysis, which 
can create an environment suitable for the sur-
vival of tumor cells and help them evade the 
normal apoptosis program and promote tumor 
proliferation and metastasis [89]. Since then, 
metabolic reprogramming has emerged as a 
hallmark of tumor cells. Numerous recent stud-
ies have focused on differential alterations in 
glucose, lipid, and amino acid metabolism 
occurring in key metabolic pathways associat-
ed with tumors to explore novel therapeutic 
strategies to counteract malignancies, includ-
ing OC.
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Ongoing interactions between OC cells and adi-
pocytes result in metabolic competition and 
symbiosis, leading to oncogenic metabolic re- 
programming of tumor cells and adjacent adi-
pocytes. Glucose metabolism in tumor cells is 
altered through aerobic glycolysis, which fulfills 
the energy needs of tumor cells in the cyto-
plasm. Pyruvate derived from glycolysis is con-
tinuously transformed into lactic acid. This  
process prevents glucose from entering the 
mitochondria for oxidative phosphorylation 
(OXPHOS) [90]. In general, lactic acid levels are 
high in solid tumors. A transmembrane protein 
associated with a poor tumor prognosis, the 
monocarboxylate transporter (MCT), mediates 
the transport of a variety of monocarboxylate 
salts, including lactic acid, ketones and pyru-
vate. In primary mammary-derived adipocytes, 
the overexpression of MCT1 and MCT2 is 
responsible for lactate uptake for additional 
energy, whereas MCT4 promotes lactate efflux 
to maintain a stable intracellular pH. These pro-
teins are involved in the proliferation, invasion, 
and migration of tumor cells and are closely 
related to the tumor prognosis. Moreover, 
MCT1 is involved in the uptake of monocarb-
ylate to generate more ATP for tumor utilization 
[91].

In addition to glucose metabolism, the metabo-
lism of FAs (including both synthesis and oxida-
tion) plays a significant role in the metabolic 
phenotype of OC. Hypoxia in the adipose-tumor 
microenvironment is the driving force for fat 
uptake by OC cells. OC cells stimulate adipo-
cyte lipolysis and the subsequent massive 
uptake and utilization of FAs from surrounding 
adipose tissue. Notably, FAs can be used as a 
fuel source for tumors through mitochondrial 
fatty acid oxidation (FAO), which produces app- 
roximately twice as much energy as glucose 
[92]. On the one hand, FAs enter tumor cells 
through specific fatty acid receptors and bind-
ing proteins, such as CD36 and fatty acid trans-
port protein 1 (FATP1). FAs are subsequently 
used to synthesize membrane structures, for 
energy metabolism (β-oxidation), or for lipid-
derived cell signaling molecules. On the other 
hand, FAs can be used as a structural unit of 
newly synthesized membrane phospholipids, 
and the uptake of FAs by tumor cells can 
increase the content of saturated FAs in the cell 
membrane and subsequently reduce tumor cell 
apoptosis and drug absorption [93]. In another 

potential pathway, omental adipocytes induce 
calcium-mediated SIK2 activation in OC cells, 
which in turn increases FA and cholesterol syn-
thesis through the PI3K/AKT and sterol regula-
tory element binding protein-1c (SREP-1c)/fatty 
acid synthase (FASN) and SREB2/HMGCR sig-
naling pathways, thereby promoting tumor cell 
proliferation and metastasis [94, 95]. Ladanyi 
A et al. reported that coculture of EOC cells with 
primary human omental adipocytes resulted in 
high plasma membrane expression of the FA 
receptor CD36, which promoted exogenous FA 
uptake and increased intracellular reactive oxy-
gen species (ROS) levels. Targeting stromal 
tumor metabolism by inhibiting CD36 may be 
an effective strategy for the treatment of EOC 
metastasis [96]. Thus, FA metabolism confers 
a survival advantage to OC cells, and blocking 
fatty acid synthesis inhibits tumor growth and 
survival, making treatments targeting FA me- 
tabolism a promising antitumor strategy. 

Furthermore, recent research into amino acids 
in the TME has indicated that adipose stromal 
cells within the TME can also participate in a 
symbiotic metabolic process with tumor cells 
through arginine metabolism. The manipula-
tion of the arginine metabolic pathway has the 
potential to impact tumor proliferation, inva-
sion, and apoptosis [97]. Glutamine is both the 
most abundant amino acid in plasma and an 
immune metabolic regulator in WAT. Research 
has showed that administering glutamine in 
vitro and in vivo results in reduced proinflam-
matory gene expression and protein levels in 
adipocytes, as well as decreased macrophage 
infiltration in WAT [98]. Adipocytes in the TME 
re-establish the metabolism of glutamine, from 
its breakdown to its synthesis, to supply more 
abundant nutrients for tumors, and they play a 
pivotal role in the metabolism of tumor cells 
[99].

Notably, lipoautophagy (autophagic degrada-
tion of lipids), another catabolic pathway that 
has recently been intensively studied, plays a 
role in the release of free fatty acids. These FAs 
can be used to construct cell membranes or 
are catabolized through β-oxidation to meet  
the increased energy and biosynthetic de- 
mands of tumor growth [100]. The TME triggers 
the AMPK pathway by regulating nutrients, oxy-
gen, growth factors and soluble factors, which 
regulates autophagy in OC. This process may 
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cause tumor cells to enter a nonproliferative 
quiescent state, protecting them from toxic 
damage while still retaining their stem cell-like 
properties [101]. Further evidence is needed to 
elucidate the perturbations of lipophagy in the 
TME, to fully understand its role in the develop-
ment and progression of OC, and to determine 
its potential as a novel therapeutic approach 
for this malignancy [102].

Given the role of adipocytes in nutrient metabo-
lism and energy expenditure and their cross-
talk with tumor cells, targeted metabolic re- 
search on adipocytes provides a potential pre-
cision therapeutic strategy for tumor treatment. 
The potential efficacy of some metabolic drugs 
currently in clinical trials, such as drugs target-
ing FASN, drugs targeting CD36, and PPAR-γ 
antagonists, are also highlighted. Thus, block-
ade of adipocyte-derived lipid uptake or lipid-
related pathways within tumor cells by single 
agents or combination chemotherapy may 
prove to be an effective strategy for tumors 
that grow in an adipocyte-rich tumor microen- 
vironment.

Mechanism of action of CAAs in the biological 
behavior of ovarian cancer

This article details how adipocytes contribute 
to OC proliferation, metastasis, immune es- 
cape, chemotherapy resistance, and metabolic 
reprogramming. Based on the existing evi-
dence, we established that adipocytes im- 
pact OC progression through four distinct 
mechanisms.

1) Adipocytes can secrete adipokines, nutri-
ents, miRNAs and other bioactive molecules 
into the TME to promote tumor cell proliferation 
and invasion. A prime example is leptin, which 
is secreted from WAT into the ATME. Leptin acts 
on the JAK-2/STAT, PI3K/AKT-1 and MAPK/
ERK1/2 signaling pathways and exerts syner-
gistic effects on a variety of different onco-
genes, cytokines and growth factors [103, 
104].

2) Adipocytes accelerate the immune escape 
of tumors and increase the resistance of OC to 
chemotherapy and immunotherapy by regulat-
ing immune cells within the TME, including  
lymphocytes, mononuclear cells/macrophages 
and mast cells. For example, adipocytes 
secrete chemokines into the TME, enabling 

them to recruit other inflammatory cells. In- 
filtrating inflammatory cells, such as mast cells, 
can generate a variety of proteases, including 
cathepsin S, which can lead to tumor progres-
sion and resistance to chemotherapy [105, 
106].

3) Adipocytes can regulate vascular endothelial 
cells, thereby promoting tumor angiogenesis 
and accelerating tumor progression. On the 
one hand, adipocytes in the ATME strongly sup-
port tumor growth and increase angiogenesis 
by releasing specific molecules directly into 
tumor cells. On the other hand, adipocytes 
recruit and activate macrophages through the 
CCL2/IL-1β/CXCL12 signaling pathway, which 
in turn promotes interstitial vascularization  
and angiogenesis [107, 108].

4) Adipocytes can modify the ECM structure, 
which is characterized by a high degree of fibro-
sis in the ATME, and thereby influence the bio-
logical behavior of tumors. An abundant profi-
broproliferative response can be observed in 
tumor areas enriched in adipocytes or located 
near adipose tissue, and the abnormal deposi-
tion of fibrous tissue can cause tissue stiff-
ness, impeding blood flow and reducing the 
permeability of chemotherapy drugs [109, 
110].

The connection between adipocytes in the TME 
of OC and tumor cells is so intimate that adipo-
cytes undergoing a series of secretory and met-
abolic transitions have been renamed CAAs. 
Understanding the precise mechanisms by 
which CAAs affect tumor cell biological behav-
ior is crucial for identifying potential therapeu-
tic targets and tumor immune escape for cur-
rent OC therapies, and a variety of biological 
mechanisms involved have been identified 
through studies of in vitro and animal models.

CAAs as a therapeutic targets for ovarian can-
cer and their clinical application potential

The complexity of current OC treatments ham-
pers the implementation and advancement of 
therapeutic approaches. The majority of pa- 
tients with OC will still relapse after initial treat-
ment with surgery combined with chemothera-
py. The therapeutic efficacy of OC treatment is 
mainly limited by chemotherapy resistance and 
a lack of targeted therapy. Among them, che-
motherapy resistance induced by adipocytes 
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surrounding tumors has been documented by 
numerous studies. According to clinical stu- 
dies, combination therapy, including cytotoxic 
drugs, targeted therapies, and lipid metabolism 
inhibitors, has proven to be more effective in 
tumor treatment. Several mechanisms indicate 
that therapeutic pathways directed toward adi-
pocytes may prove useful in the treatment of 
OC.

Targeting the lipid supply

The supply of FAs to tumor cells is restricted  
to reduce their sources of energy production, 
thereby inhibiting tumor growth and progres-
sion. Drugs targeting FASN and fatty acid trans-
porters can impact the production, transport, 
and utilization of lipids both in vivo and in vitro. 
For instance, inhibitors of CD36 (also known as 
a FA transport protein) are effective in decreas-
ing microector-derived FA uptake by OC cells, 
thereby restraining the proliferation, invasion, 
and migration mediated by adipocytes [96]. 
Treatment with an MCT1 inhibitor targeting 
another FA transporter is effective at reducing 
tumor growth and increasing the intratumoral 
lactate content [111]. Furthermore, the inhibi-
tion of lipoautophagy prevents the growth-pro-
moting effect of adipocytes and reduces the 
release of FAs and the ability of cancer cells to 
utilize FAs [100].

Targeting CAA-derived soluble factors 

Targeting adipocyte-derived soluble factors 
that confer platinum resistance increases tu- 
mor cell apoptosis and drug efflux. We have 
previously shown that adipocyte-secreted cyto-
kines such as FABP4, ANGPTL4 and AA induce 
OC resistance to platinum by activating their 
respective signaling pathways to stimulate the 
expression of antiapoptotic proteins and trans-
porters. Maraviroc (a CCR5 inhibitor approved 
by the FDA) can block the recruitment and 
polarization of TAMs via the CCL5 axis, thereby 
inhibiting the proliferation and metastasis of 
tumor cells and improving the overall survival of 
patients [112]. Therapeutic strategies targeting 
CAA secretion can improve the sensitivity of 
tumor cells to drugs, reduce the inflammatory 
response in the TME, change the immunosup-
pressive state of the body, and ultimately affect 
the occurrence, progression and treatment 
resistance of OC.

Targeting lipid-derived EVs

MiRNA replacement therapy targeting EVs can 
reduce the minimum effective dose and sys-
temic toxicity of drugs. Adipose tissue-derived 
EVs contain miRNAs, siRNAs, transcription fac-
tors, proteins and lipids, and these substances 
are involved in the regulation of cell communi-
cation and the modulation of cell biology. 
MiRNA expression is altered in ovarian cancer 
through a mechanism that not only upregulat- 
es proapoptotic molecules (BCL-2-associated X 
protein (BAX), recombinant caspase 9 (CASP9) 
and CASP3) but also downregulates the anti-
apoptotic protein B-cell lymphoma 2 (BCL2), 
which can function as either an oncogene or a 
tumor suppressor gene [113]. Therefore, EVs 
secreted by adipocytes are expected to be 
good carriers of drugs or bioactive molecules 
for the treatment of OC, which will be further 
confirmed in future clinical trials.

Targeting lipid metabolism

Lipid metabolism inhibitors are sensitive drugs 
that target tumor cells and angiogenesis. 
Bevacizumab and other antiangiogenic drugs 
are widely used in comprehensive clinical tumor 
treatment, mainly to inhibit tumor growth and 
metastasis by interfering with the supply of 
nutrients to the tumor. However, these drugs 
reduce the tumor vascular density and lead to 
tissue hypoxia. Hypoxia triggers the lipolysis of 
tumor-infiltrating CAAs and peritumoral CAAs, 
resulting in excess FAs. Hypoxia also upregu-
lates the expression levels of fatty acid translo-
case or its receptor CD36 in tumor cells to 
increase FA uptake. Within tumor cells, FAs are 
metabolized through the β-oxidative pathway to 
produce ATP, which supports tumor cell prolif-
eration and migration. These mechanisms par-
tially explain how CAAs promote resistance to 
antiangiogenic drugs, and thus the combina-
tion of lipid metabolism inhibitors and targeted 
antiangiogenic therapies reduces OC resis-
tance and benefits OC treatment and the prog-
nosis. The potential efficacy of several drugs 
that target lipid metabolism and are currently 
undergoing clinical trials is also being highlight-
ed. Aspirin alters the metabolomics and FA 
composition of 3t3-L1 adipocytes by inhibiting 
lipogenesis, oxidative stress, neoplastic forma-
tion, and obesity-related inflammatory respons-
es, ultimately inhibiting tumor cell growth and 
metastasis [114]. An adipocyte-rich microenvi-
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ronment promotes chemoresistance in EOC by 
upregulating the PPAR-γ/ABCG2 signaling path-
way. In vitro and in vivo experiments in mice 
have shown that the chemotherapeutic effect 
on OC cells can be improved to a certain extent 
by PPAR-γ inhibition. However, due to species 
heterogeneity, further explorations are needed 
before PPAR-γ inhibitons can be used in the 
clinic [115].

Targeting the formation of CAAs

In addition, drugs targeting the formation of 
CAAs can be developed. For instance, metfor-
min and epigallocatechin-3-gallate (EGCG) can 
inhibit the differentiation of ADSCs into adipo-
cytes, thereby reducing the formation of CAAs 
and inhibiting the proliferation and invasion of 
tumor cells [116, 117].

Interestingly, although ovarian epithelial carci-
noma is moderately sensitive to radiotherapy, 
its particular biological characteristics make it 
susceptible to widespread pelvic and abdomi-
nal metastases. Therefore, radiotherapy is not 
usually used for clinical OC. However, the inter-
action between adipose tissue and tumor cells 
undoubtedly amplifies the oxidative stress re- 
sponse, which subsequently diminishes the 
presence of free oxygen radicals, resulting in 
resistance to radiation therapy [118]. For ex- 
ample, adipocyte-derived cytokines have been 
shown to stimulate malignant tumor cells to 
produce high levels of IL-6, thereby protecting 
tumor cells from radiotherapy [119].

Although drugs have made significant contribu-
tions to OC treatment, drug resistance and a 
lack of targeted therapy have greatly reduced 
the treatment efficacy, shortened patient sur-
vival, and impaired the quality of life of OC 
patients. Traditional treatment strategies for 
OC have focused mainly on the tumor cells 
themselves, but with the growing interest in the 
TME, an increasing number of treatment strate-
gies are focused on the stromal cells in the 
TME, such as adipocytes. Most obese patients 
have inflammatory adipose tissue that resem-
bles chronic damage, and such fat depots can 
be a rich source of proinflammatory mediators 
[120]. In this environment, the influx of im- 
mune cells (including macrophages and lym-
phocytes), the production of proinflammatory 
mediators and growth factors, tissue remodel-
ing, and angiogenesis are used to maintain the 

inflammatory microenvironment and promote 
tumor growth and metastasis [121]. OC grows 
in anatomical sites rich in adipose tissue, and 
tumor invasion promotes the dedifferentiation 
of adipocytes to form CAAs. Subsequently, 
CAAs acquire a fibroblast-like phenotype and 
promote the implantation and metastasis of 
ovarian cancer cells by secreting large amounts 
of proteases and cytokines (including IL-6 and 
IL-8) [64]. Moreover, adipocyte-rich tissue can 
also provide tumor cells with a rich source of 
lipids for rapid tumor growth. Therefore, when 
administered either as a single agent or in com-
bination with standard chemotherapy regi-
mens, treatments blocking adipocyte-derived 
lipid uptake or reprogramming lipid metabo- 
lism in cancer cells may prove to be effective 
strategies to trest obesity-related tumors 
(Table 1). Finally, adipose inflammation is a 
reversible process, and the development of 
noninvasive methods to detect fat health, 
including blood-based biomarker signatures or 
radiographic techniques can assess the WAT 
inflammatory status and help to improve the 
treatment efficacy and quality of life of OC 
patients.

Conclusion

Ovarian cancer is one of the most challenging 
gynecological tumors, with a high risk of metas-
tasis, an extremely high recurrence rate and an 
alarming increase in resistance to chemothera-
peutic drugs. Recently, an increasing number of 
investigations have used adipocytes as an 
entry point for OC treatment and have probed 
the vast potential of adipocyte-targeted thera-
py in both in vitro experiments and clinical tri-
als. In general, the mechanisms of action of 
adipocyte-derived adipokines, metabolic repro-
gramming, ECM remodeling, miRNAs and im- 
mune cell regulation in the occurrence, devel-
opment and treatment of OC should be high-
lighted. Previously, we summarized the prog-
ress of research on the role of adipocytes in 
OC, particularly how CAAs can significantly 
influence the biological behavior and therapeu-
tic prognosis of OC. Moreover, this study high-
lights the potential to translate CAA-related 
therapeutic targets in current preclinical OC 
models into clinical applications. Current stud-
ies have shown that tumor cells and adipocyt- 
es have more obvious clinical relevance in 
obese patients and may weaken the therapeu-
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Table 1. Potential therapeutic targets of CAAs in ovarian cancer
Strategy Targets and drugs Preclinical and clinical effects Reference
Targeting lipid supply Inhibitor of CD36 Reduce FA uptake by tumor cells and inhibit adipocyte-mediated proliferation 

and invasion
[96]

FASN inhibition Reduce FA generation and the energy utilization of tumor cells [122]
MCT1 inhibition Reduce tumor growth and increase intra-tumor lactate [111]
Autophagy inhibition Reduce FA release and attenuate the ability of tumor cells to utilize FAs [123]

Targeting CAAs-derived soluble factors Monoclonal antibody against 
VEGF-A

Inhibit the proliferation, angiogenesis and metastasis [124]

Inhibitor of FABP4 Reduce the ability of tumor cells to adapt to and colonize adipocyte--rich TME 
and promote the sensitivity to carboplatin

[79]

Inhibitor of ANGPTL4 Promote the sensitivity to chemotherapy [80]
Inhibitor of AA Promote cisplatin-induced apoptosis of tumor cells [81]
Inhibitor of CCR5 (Maraviroc) Reduce the recruitment and polarization of TAMs, thereby inhibit tumor cell 

growth and metastasis
[125]

Thymoquinone Reduce the pro-inflammatory factors produced by CAAs such as IL-6 and  
IL-1β, thereby prevente the progression of tumor cells

[126]

Targeting lipid-derived EVs miR-21 Inhibit the apoptosis and chemoresistance of ovarian cancer cell [83]
miR-181 Increase the sensitivity to chemotherapy [84]
miR-424 Reduce the proliferation and angiogenesis of tumor cells [86]

Targeting lipid metabolism PPAR-γ inhibiton (GW9662) Promote tumor cell apoptosis and improve the effect of chemotherapy [115]
Aspirin Alter the metabolomic and FA composition of adipocytes and inhibit tumor 

cell growth and metastasis
[127]

Targeting the formation of CAAs Metformin Inhibit the differentiation of ADSCs into adipocytes, thereby inhibit the  
proliferation and invasion of tumor cells

[128]

Epigallocatechin-3-gallate 
(EGCG)

Inhibit the differentiation of ADSC into adipocytes, thereby prevent the  
invasive phenotype of tumor cells

[129]

FASN, fatty acid synthase; MCT1, monocarboxylate transporter 1; VEGF-A, vascular endothelial growth factor A; FABP4, fatty acid binding protein 4; ANGPTL4, angiopoietin like 
protein 4; AA, arachidonic acid; CCR5, chemokine C-C-motif receptor 5; PPAR-γ, peroxisome proliferator-activated receptor-γ; FAs, fatty acids; EVs, extracellular vesicles; ADSCs, 
adipose-derived stem/stromal cells.
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tic effect of cancer therapy. Therefore, direct 
lifestyle interventions, such as diet and exer-
cise, along with medical therapy may be the 
simplest and most effective strategies for such 
obese patients.

In the future, targeting adipocyte secretions, 
metabolites and lipid transport pathways will 
improve the efficacy of current OC treatments. 
Clinical studies have shown that while antitu-
mor therapy with cytotoxic drugs, focused on 
the inflammatory state of adipose tissue, com-
bined with lipid metabolism inhibitors and anti-
angiogenic drugs can effectively improve the 
efficacy of tumor therapy and prolong survival. 
Despite recent advances in adipocyte research, 
some unanswered questions remain. For exam-
ple, the true synergistic effect of related drugs 
targeting adipocytes, such as FASN inhibitors 
and CD36 agonists, needs to be evaluated in 
further studies. In addition, the wide use of EV 
treatment technology also has difficulties that 
have not yet been overcome, such as the low 
loading efficiency of exogenous methods and 
difficulties in isolating EVs using endogenous 
methods. Further research is needed to deter-
mine the safety and efficacy of this therapy. At 
present, in-depth research into the crosstalk 
between adipocytes and OC cells and the study 
of adipocytes as potential therapeutic targets 
for OC are the joint efforts of several research 
laboratories around the world. An increasing 
number of ovarian cancer patients will likely 
benefit from these studies in the near future.
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