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Abstract: In early gastric cancer (EGC), the presence of lymph node metastasis (LNM) is a crucial factor for determin-
ing the treatment options. Endoscopic resection is used for treatment of EGC with minimal risk of LNM. However, 
owing to the lack of definitive criteria for identifying patients who require additional surgery, some patients undergo 
unnecessary additional surgery. Considering that histopathologic patterns are significant factor for predicting lymph 
node metastasis in gastric cancer, we aimed to develop a machine learning algorithm which can predict LNM status 
using hematoxylin and eosin (H&E)-stained images. The images were obtained from several institutions. Our pipe-
line comprised two sequential approaches including a feature extractor and a risk classifier. For the feature extrac-
tor, a segmentation network (DeepLabV3+) was trained on 243 WSIs across three datasets to differentiate each 
histological subtype. The risk classifier was trained with XGBoost using 70 morphological features inferred from the 
trained feature extractor. The trained segmentation network, the feature extractor, achieved high performance, with 
pixel accuracies of 0.9348 and 0.8939 for the internal and external datasets in patch level, respectively. The risk 
classifier achieved an overall AUC of 0.75 in predicting LNM status. Remarkably, one of the datasets also showed a 
promising result with an AUC of 0.92. This is the first multi-institution study to develop machine learning algorithm 
for predicting LNM status in patients with EGC using H&E-stained histopathology images. Our findings have the po-
tential to improve the selection of patients who require surgery among those with EGC showing high-risk histological 
features.

Keywords: Gastric cancer, lymph node metastasis, machine learning, deep learning, endoscopic resection, com-
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Introduction

Gastric cancer is the fifth most common can-
cer, and third most common cause of cancer-
related mortality worldwide. It has a high inci-
dence rate in Central and East Asia [1, 2]. In 
Korea and Japan, which are some of the hotspot 
countries for gastric cancer, the development 
of population-based screening programs has 
enabled early detection and treatment [3, 4]. 
For early gastric cancers (EGC) with a minimal 

risk of lymph node metastasis (LNM), the pre-
ferred treatment is endoscopic curative re- 
section, such as endoscopic mucosal resection 
or endoscopic submucosal dissection [5, 6]. 
Endoscopic resection is superior to surgical 
resection for improving patient quality of life 
and reduce the risks associated with surgery. 
However, it should be performed only when 
LNM is absent. If LNM is suspected, additional 
gastrectomy with lymphadenectomy is neces-
sary [7, 8]. The JGCA (Japanese Gastric Cancer 
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Association) guidelines recommend the eCura 
scoring system to categorize patients at risk 
after endoscopic resection (e.g., of patients 
with eCura C-2 have certain LNM risk) [6]. 
Currently, there is no definite criteria for identi-
fying patients who may require additional sur-
gery after endoscopic resection. Hence, though 
only about 15% of patients with EGC have LNM, 
some of these patients undergo unnecessary 
additional surgery [9, 10]. Despite the use of 
various imaging modalities to aid in deciding 
the treatment strategy, this situation continues 
to persist [11-14]. Considering the frequency of 
LNM in EGC, additional surgical treatment may 
not be effective, but the potential risk of LNM 
cannot be disregarded.

Recently, as artificial intelligence has revolu-
tionized the medical field, several studies have 
been conducted to predict LNM using computa-
tional analyses [8, 15-21]. Most of these stud-
ies are based on radiologic images [16-18], 
clinicopathologic features [8, 19, 21], or both 
[15, 20]. Histological imaging provides a higher 
density of morphological information for the  
primary tumor than other clinicopathological 
parameters or radiological images. Considering 
that the risk of LNM is determined by the pri-
mary tumor, it is necessary to apply advanced 
computational analysis to identify the intricate 
and diverse morphological patterns (which can-
not be seen by naked human eyes) with hema-
toxylin and eosin (H&E)-stained slides.

Several studies have predicted LNM using com-
putational pathology [22-27]. However, most 
previous studies have used histological images 
of advanced cancers, for an understanding of 
cancer-related information. There is currently 
only one study [23] that has reported the pre-
diction of LNM in early-stage cancer with rela-
tively limited cancer-related image information. 
Moreover, no study has employed deep learn-
ing techniques using histological images to pre-
dict LNM in gastric cancer. In our previous 
study, we successfully classified histological 
subtypes of gastric cancer using deep learning 
[28]. Considering the histopathological pat-
terns as a significant factor for predicting lymph 
node metastasis in gastric cancer, we aimed to 
provide an enhanced treatment guide for EGC 
patients with LNM. To achieve this goal, we 
obtained H&E-stained histological images from 
multiple institutions and extracted morphologi-

cal features from the slides. Subsequently, 
machine learning was applied to predict the 
LNM status.

Materials and methods

Study design

We conducted LNM classification using 1,237 
whole slide image (WSI) datasets obtained 
from five different institutions (HGH, Hanyang 
University Guri Hospital; KBSMC, Kangbuk 
Samsung Medical Center; SS, Seoul St. Mary’s 
Hospital; ISH, International St. Mary’s Hospital; 
KUMC, Korea University Medical Center). Our 
approach consisted of three main steps: tu- 
mor segmentation, tumor morphology feature 
extraction, and lymph node metastasis classifi-
cation. The workflow of the proposed method is 
illustrated in Figure 1.

Data collection and image preprocessing

Ethical approval was obtained from the eth- 
ics committees of the respective institutions 
(HGH, 2020-09-002; KBSMC, 2021-06-030; 
SS, KC20RISI0329; ISH, IS21TISI0033; KUMC, 
2020AN0385). Representative slide sections 
of surgical specimen from EGC cases were 
selected and scanned with Aperio, Mirax, 
Phillips and Hamamatsu at X40 equivalent 
magnification (0.25 μm per pixel) and digi-
talized into svs, mrxs, tiff and ndpi format. ASAP 
(Automated Slide Analysis Platform) was used 
for pixel-based annotation of differentiated 
tumors, undifferentiated tumors, and normal 
tissues. The annotation was performed by two 
gastrointestinal pathologists (S.A., S.H.L.) and 
two general pathologists (Y.-N.S., Y.J.L), and in 
case of disagreement consensus was reached 
through discussion.

The WSIs obtained from the five different insti-
tutions exhibited color differences owing to 
batch effects. Therefore, we examined the 
color distribution of patches generated from 
the WSIs from each institution, and the results 
are shown in Supplementary Figure 1. Con- 
sidering these color differences, we divided the 
internal datasets for tumor segmentation into 
HGH, KBSMC, and SS, and the external datas-
ets into ISH and KUMC.

A total of 13,538 patches were generated by 
the five institutions at a magnification of 10×, 
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Figure 1. Overview of study design. A. Tumor regions on whole slide image were identified and annotated as regions of interest. B. Semantic segmentation was 
performed into three types: differentiated tumor, undifferentiated tumor, and normal. C. 70 morphologic features (see Supplementary Materials for details) were 
computed. D. Morphologic features were processed to predict lymph node metastasis using machine learning. E. Lymph node metastasis prediction performance 
was visualized by ROC curves and confusion matrix.
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with a patch size of 512 × 512 pixels. Details of 
the patches are summarized in Table 1.

Development of multi-class segmentation net-
work for the subtype of gastric cancer

For tumor segmentation, we used SE-Res- 
NeXt101-32x4d as the encoder model in 
DeepLabV3Plus. The four classes included nor-
mal tissues, differentiated tumors, undifferen-
tiated tumors, and background. Due to class 
imbalance, we employed an imbalance sampler 
to achieve a 1:1:1 ratio for normal, differentiat-
ed, and undifferentiated tumor patches. During 
training, the batch size was set to 64, and we 
used Dice loss with a 1e-4 learning rate and 
the CosineAnnealingLR scheduler. Augmen- 
tation techniques were applied for training, 
including location augmentation (horizontal flip, 
vertical flip, shift scale rotate), transform aug-
mentation (elastic transform, grid distortion, 
optical distortion), and color augmentation 
(random brightness contrast). Before training, 
normalization was conducted by dividing the 
patches by the maximum pixel value of 255.

For all 1,237 WSIs, we used a trained tumor 
segmentation model to infer the tumor masks 
at the patch-level, and the images were pro-
cessed using a sliding window approach to 
obtain slide-level results. For patch-level infer-
ence, we compared each patch with the corre-
sponding tissue mask patch, and only per-

We extracted over 70 morphological features 
related to differentiated and undifferentiated 
tumor regions from slide-level masks of the 
1,237 WSIs. These features were quantified 
and analyzed in the total tumor and main tumor 
regions. The total tumor region includes all the 
segmentation results, whereas the main tumor 
region comprises the largest ones. We extract-
ed eight quantitative and five qualitative fea-
tures related to the characteristics of the tumor 
area from the main tumor region because we 
expected that the main tumor regions would 
exhibit the most distinct qualitative features. 
Detailed information regarding these features 
is summarized in Supplementary Table 1.

Development of machine learning model to 
predict lymph node metastasis using the inter-
pretable morphologic features

We stratified the 1,237 WSIs acquired for LNM 
classification based on the institution they 
were collected from, and then split them into 
training and test datasets in an 8:2 ratio. This 
ensured that the occurrence of lymph node 
metastatic cases in each institution was dis-
tributed proportionally in both datasets. As a 
result, the training dataset consisted of 987 
WSIs and the test dataset consisted of 250 
WSIs. The distribution of slides and lymph node 
metastasis cases at each institution is shown 
in Table 2.

Results

Robust deep learning network for tumor sub-
type segmentation on internal and external 
datasets

The inferences for differentiated/undifferenti-
ated tumors and normal tissues are shown in 
Figure 2 (slide-wise) and Supplementary Figure 
2 (patch-wise). The performance of the seg-
mentation network at the patch and slide levels 
is presented in Table 3. The mean pixel accu-
racy of the external cohort, which was not used 

Table 1. Patch-wise data scheme trained for tumor subtype 
segmentation

HGH KBSMC SS ISH KUMC All 
Training set 2,692 2,361 2,156 0 0 7,209
Validation set 770 675 616 0 0 2,061
Test set 384 337 308 1,017 2,222 4,268
Total 3,846 3,373 3,080 1,017 2,222 13,538

formed inferences on patches where 
the tissue ratio was greater than 0.3. 
We did not apply morphology opera-
tions (e.g., opening or closing) as a 
postprocessing method to prevent 
distortion of tumor morphology.

Extraction of interpretable morpho-
logic features

Table 2. Slide-wise data scheme trained for 
LNM classifier

Train set Test set
Total

LNM (-) LNM (+) LNM (-) LNM (+)
HGH 202 29 51 7 289
KBSMC 196 16 50 4 266
SS 161 18 41 4 224
ISH 48 4 13 1 66
KUMC 280 33 71 8 392
Total 887 100 226 24 1,237
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for training, was as high as 0.8939 and 0.9877 
at the patch and slide levels, respectively. The 
performance of the segmentation network for 
differentiated and undifferentiated tumors is 
shown in Supplementary Table 2. Overall, the 
segmentation performance for differentiated 
tumors was significantly better than that for 
undifferentiated tumors, likely because of the 
higher number of patches available for differen-
tiated tumors. The slide-level inference results 
for both tumor types were low; however, this 
was because the areas occupied by differenti-
ated and undifferentiated tumors were very 
small on the entire slide.

Introspection of segmentation network by 
visualization of the learned representation

To verify that the encoder of the segmentation 
model was well-trained, the latent vectors of 
the patch-level test datasets through the 
encoder were mapped to UMAP (Uniform 
Manifold approximation and Projection for visu-
alization) [29]. Figure 3A shows a scatter plot of 
UMAP embedding colored according to the tis-
sue type. Representative patches with similar 
features, according to the encoder, were clus-

tered closely in distinct regions, proving the dis-
criminant performance of the model. Among 
the undifferentiated tumors, some appeared to 
be integrated into the differentiated tumor clus-
ter. Those outside of the distribution patches 
were reviewed by pathologists and confirmed to 
be differentiated tumors (Figure 3B).

Interpretable morphologic features can predict 
lymph node metastasis in early gastric cancer

The basic characteristics according to each 
cohort are shown in Supplementary Tables 3 
and 4. And Table 4 shows the results of lymph 
node metastasis prediction using XGBoost. The 
model was trained using 70 morphological fea-
tures obtained from 987 masks and tested on 
250 cases. The feature importance plot used in 
this model is shown in Supplementary Figure 3. 
Of the 70 morphologic features included in the 
model, the top 5 ranked features were ‘filled 
area of total tumor’, ‘area of total tumor’, ‘equiv-
alent diameter of total tumor’, ‘perimeter of 
total tumor’, and ‘perimeter of undifferentiated’ 
in sequential order. The overall AUC approached 
0.75, whereas ISH, SS, and HGH achieved AUC 
above 0.8. Remarkably, despite not being used 

Figure 2. Results of segmentation network for tumor subtype in slide level. H&E-stained slides (A) alongside cor-
responding visualizations of tissue-type ground truth (B) and prediction (C) in external dataset. Slide regions are 
classified into three tissue types: differentiated tumor (dark orange), undifferentiated tumor (brown), or normal (light 
orange).

Table 3. Performance of tumor subtype segmentation across path-wise and slide-wise
Datasets mIoU F1-Score mPA Recall Precision
Patch - internal (1,029) 0.77 0.8696 0.9348 0.8694 0.8698
Patch - external (3,239) 0.6551 0.7878 0.8939 0.7875 0.7881
Slide - external (39) 0.6152 0.6701 0.9877 0.7803 0.6663
mPA = mean Pixel Accuracy.
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in segmentation training, the ISH showed a 
notable AUC of 0.92. However, the performance 
of KBSMC external dataset was slightly lower  
at approximately 0.65. The ROC curves and 
confusion matrix for each institution and the 
overall institution are shown in Figure 4 and 
Supplementary Figure 4. The results of the 
same detailed statistical analyses using SGD 
and LGB are presented in Supplementary 
Tables 5 and 6, respectively. The correspond-
ing ROC curves are shown in Supplementary 
Figures 5 and 6.

Clinicopathologic analysis of false negative 
results

Nine false-negative slides were obtained from 
the XGBoost model. Pathologists reviewed the 
pathology reports and inference masks. In five 
of the nine false-negative cases, poorly differ-
entiated tumor cells were scattered diffusely as 

individual cells in the stroma (Supplementary 
Figure 7). In those cases, although the analysis 
was performed using a representative section, 
the segmentation model often predicted sub-
optimal results. This could be interpreted as a 
limitation of data labeling in supervised learn-
ing because the annotation is not pixel-based. 
In addition, there were two cases in which the 
images used for the analysis were not repre-
sentative. Although the initial pathological diag-
nosis indicated the depth of SM3 invasion or 
the presence of lymphovascular invasion, the 
corresponding area was not included in the 
image used for analysis (Supplementary Figure 
8).

Discussion

Predicting lymph node metastasis status in 
patients with EGC is very important for deter-
mining appropriate treatment. In this study, we 

Figure 3. Visualization of representation learning and actual segmentation results for differentiated tumor area of 
UMAP. A. Uniform Manifold Approximation and Projection (UMAP) visualization showing disentangled representa-
tion in differentiated/undifferentiated tumor and normal tissue. B. H&E-stained slides alongside corresponding 
visualizations of tissue-type ground truth and prediction (differentiated tumor, dark orange; undifferentiated tumor, 
brown, MMP=1).

Table 4. Performance of XGBoost for predicting lymph node metastasis
HGH KBSMC SS ISH KUMC Total 

AUC (± CI) 0.8011 (± 0.0058) 0.6450 (± 0.0202) 0.8293 (± 0.0064) 0.9231 (± nan) 0.7007 (± 0.0050) 0.7487 (± 0.0021)

Accuracy 0.59 0.87 0.73 0.86 0.62 0.7

Weighted Precision 0.87 0.85 0.9 0.95 0.86 0.87

Weighted Recall 0.59 0.87 0.73 0.86 0.62 0.7

Weighted F1-Score 0.66 0.86 0.79 0.89 0.7 0.76
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developed an LNM prediction model that is 
morphologically interpretable using whole-slide 
images of primary tumors. The model yielded 
satisfactory predictions with an AUC of 0.8 for 
the internal dataset. Although its performance 
was reduced to an AUC of 0.65 in one of the 
external datasets, it was as high as 0.92 in 
another external dataset. These variations sug-
gest that the model learns by extracting biologi-
cally relevant features from HE images rather 
than random correlations between artifacts 
and LNM in the training and test cohorts. 
Various studies have attempted to predict LNM 
from primary tumor histology using deep learn-
ing algorithms in other cancers including the 
colorectal [23, 26], bladder [24], prostate [25], 
breast [30], and melanoma [22]. However, to 
the best of our knowledge, this is the first study 
to demonstrate the potential of deep learning 
to predict LNM status from routine H&E-stained 
slides of primary EGC.

Current guidelines for the endoscopic treat-
ment of EGC include histological differentia-
tion, tumor size, depth of invasion, and the 
presence of an ulcer. This indicates that a 
patient’s prognosis and the likelihood of lymph 
node metastasis, can be influenced by the his-
tological phenotype of the cancer. Several stud-
ies have shown that an undifferentiated histo-

differentiated, undifferentiated, and combined 
tumor areas. Consequently, it was possible to 
inversely estimate the crucial features used in 
the prediction model. Specifically, among the 
70 morphological features incorporated into 
the model, more of the features associated 
with the undifferentiated tumor area (perime-
ter, number of regions, and filled area) were 
included in the top 10 features as opposed  
to the differentiated tumor area. Furthermore, 
the fact that features representing the quan- 
tity of a tumor have been identified as mea- 
ningful indicators has biological plausibility 
considering previous studies showing that 
undifferentiated histologic type is a risk factor 
for LNM.

This study was performed in a large multicenter 
cohort, and the generalizability of the model 
was confirmed through external validation. 
Furthermore, the model demonstrated remark-
able prediction accuracy (AUC of 0.8), even in 
the absence of clinical or radiological informa-
tion other than the histological features of the 
primary tumor. This is comparable to the AUC 
value of 0.836 obtained by the modified eCura 
system [36]. This is important because our 
method overcomes the limitations of the classi-
cal scoring system, which has limited accuracy 
and consistency for variable measurement.

Figure 4. The ROC curve for predicting LNM using XGBoost.

logical pattern is a risk factor 
for LNM [31-35]. Based on the 
assumption that the ratio and 
distribution pattern of tumor 
differentiation in the slide 
images might affect LNM, we 
annotated tumors into differ-
entiated and undifferentiat- 
ed subtypes. Subsequently, a 
multiclass segmentation net-
work was developed using the 
annotated image, and a LNM 
prediction model was devel-
oped by extracting morpho-
logical features from each 
area of the tumor.

This paper proposes a novel 
approach for developing a 
prediction model. Unlike pre-
vious studies on other organs 
that used scoring heat maps 
for LNM prediction [24-26, 
30], we utilized morphologi- 
cal features extracted from 
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However, this study has some limitations. 
Firstly, as a multimodal study, the AUC for pre-
dicting LNM differed between cohort (Figure 4). 
Specifically, the ISH cohort exhibited a high AUC 
of 0.92. Besides differences in tumor size and 
submucosal invasion among the basic charac-
teristics (Supplementary Table 5), the confu-
sion matrix (Supplementary Figure 4) suggests 
that the proportion effect may have influenced 
the results due to the smaller number of true 
LNM cases in the ISH cohort. Comparing the 
color distribution (Supplementary Figure 1) 
between the cohort with a relatively larger num-
ber of cases and a high AUC (SS: 0.83) and the 
cohorts with lower AUCs (KUMC: 0.7, KBSMC: 
0.64), it is evident that the SS cohort has a 
much more favorable color distribution. This 
indicates that data disparity due to color distri-
bution is a crucial factor affecting LNM predic-
tion results, highlighting the need to overcome 
data disparity through the pre-training strategy 
for robust feature extraction [37]. Secondly, 
although a good accuracy for predicting LNM 
was achieved using the deep learning model, 
there is a drawback inherent to supervised 
learning stemming from the labor-intensive 
nature of the image annotation process. In 
addition, it has constraints in identifying new 
image biomarkers because it relies on pre-
defined targets. To overcome the limitations of 
supervised learning, automatic feature extrac-
tion from images should be attempted using a 
recent medical foundation model trained on 
unlabeled data [38, 39]. Although pathological 
images containing high density information 
were used, a comprehensive analysis requires 
multimodal data that integrates AI with various 
data types, including histopathological images, 
tabular, and textual information from pathology 
reports. This comprehensive approach will 
enhance the model’s accuracy and robustness 
[40, 41]. To achieve this, cross-attention mo- 
del, which has been shown to effectively inte-
grate multimodal data for improved perfor-
mance in predictive tasks is necessary [42-44]. 
Additionally, model lighting and extensive exter-
nal validation are required to ensure feasibility 
in clinical practice.

Conclusion

In conclusion, we developed a prediction model 
for identifying patients who might be at a higher 
risk of developing LNM in EGC based on digital 
H&E slides of primary gastric cancer. The model 

is not subject to intra- or inter-observer varia-
tions, which enables its application in various 
institutions. Ultimately, this model could aid in 
reducing the overtreatment of patients with 
EGC who do not need surgery, while ensuring 
appropriate treatment for those who need 
surgery.
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Supplementary Figure 1. Color distribution analysis graph and representative matched H&E image in (A) HGH, (B) 
KBSMC, (C) SS, (D) ISH, and (E) KUMC and (F) total cohort color distribution.

Supplementary Table 1. Lists of interpretable morphologic features 
No. Feature Descri ption
1 tot_tumor1_ratio Proportion of tumor1 areas in total tumor areas
2 tot_tumor2_ratio Proportion of tumor2 areas in total tumor areas
3 main_ tumor1_ratio Proportion of tumor1 areas in the 5 largest tumor areas
4 main_tumor2_ratio Proportion of tumor2 areas in the 5 largest tumor areas
5 tot_all num_region Number of total tumor regions
6 tot_all_area Area of total tumor
7 tot_all_convex_area Convex area of total tumor
8 tot_all filled_area Filled area of total tumor
9 tot_all_perimeter Perimeter of total tumor
10 tot_all_equiv_diameter Equiv diameter of total tumor
11 tot_all_euler_number Euler number of total tumor
12 tot_all_mj_axis_length Major xis length of total tumor
13 tot_all_mi_axis_length Minor xis length of total tumor
14 tot_tumor1_num_region Number of tumor1 regions
15 tot_tumor1_area Area of tumor1
16 tot_tumor1_convex_area Convex area of tumor1
17 tot_tumor1_flled_area Filled area of tumor1
18 tot_tumor1_perimeter Perimeter of tumor1
19 tot_tumor1_equiv_diameter Equiv diameter of tumor1
20 tot_tumor1_euler_number Euler number of tumor1
21 tot_tumorl_mj_axis_length Major axis length of tumorl
22 tot_tumor1_mi_axis_length Minor axis length of tumor1
23 tot_tumor2_num_region Number of tumor2 regions
24 tot_tumor2_area Area of tumor2
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25 tot_tumor2_convex_area Convex area of tumor2
26 tot_tumor2_filled_area Filled area of tumor2
27 tot_tumor2_perimeter Perimeter of tumor2
28 tot_tumor2_equiv_diameter Equiv diameter of tumor2
29 tot_tumor2_euler_number Euler number of tumor2
30 tot_tumor2_mj_axis_length Major axis leng th of tumor2
31 tot_tumor2_mi_axis_length Minor axis length of tumor2
32 main_all_area Area of the 5 biggest tumor
33 main_all_convex_area Convex area of the 5 largest tumor
34 main_all_flleld_area Filled area of the 5 largest tumor
35 main_all_perimeter AIll perimeter of the 5 largest tumor
36 main_all_equiv_diameter Equiv diameter of the 5 largest tumor
37 main_all_euler_number Euler number of the 5 largest tumor
38 main_all_mj_axis_length Major axis length of the 5 largest tumor
39 main_all_mi_axis_length Major axis length of the 5 largest tumor
40 main_all_eccentricity All eccentricity of the 5 largest tumor
41 main_all_extent Al| extent of the 5 largest tumor
42 main_all_solidity All solidity of the 5 largest tumor
43 main_all_pa_ratio Pa ratio of the 5 largest tumor
44 main_all_fractal_dimension Fractal dimension of 5 largest tumor
45 main_tumor1_area Area of the the 3 largest tumor1
46 main_tumor1_convex_area Convex area of the the 3 largest tumor1
47 main_tumor1_filled_area Filled area of the the 3 largest tumor1
48 main_tumor1_perimeter Perimeter of the the 3 largest tumor1
49 main_tumor1_equiv_diameter Equiv diameter of the 3 largest tumor1
50 main_tumor1_euler_number Euler number of the 3 largest tumor1
51 main_tumor1_mj_axis_length Major axis length of the 3 largest tumor1
52 main_tumor1_mi_axis_length Minor axis length of the 3 largest tumor1
53 main_tumor1_all_eccentricity All eccentricity of the 3 largest tumor1
54 main_tumor1_all_extent All extent of the 3 largest tumor1
55 main_tumor1_all_solidity All solidity of the 3 largest tumor1
56 main_tumor1_all_pa_ratio All pa ratio of the 3 largest tumor1
57 main_tumor1_all_fractal_dimension All fractal dimension of the 3 largest tumor1
58 main_tumor2_area Area of the 3 largest tumor2
59 main_tumor2_convex_area Convex area of the 3 largest tumor2
60 main_tumor2_filled_area Filled area of the 3 largest tumor2
61 main_tumor2_perimeter Perimeter of the 3 largest tumor2
62 main_tumor2_equiv_diameter Equiv diameter of the 3 largest tumor2
63 main_tumor2_euler_number Euler number of the the 3 largest tumor2
64 main_tumor2_mj_axis_length Major axis length of the 3 largest tumor2
65 main_tumor2_mi_axis_length Minor axis length of the 3 largest tumor2
66 main_tumor2_eccentricity All eccentricity of the 3 largest tumor2
67 main_tumor2_extent All extent of the 3 largest tumor2
68 main_tumor2_solidity All solidity of the 3 largest tumor2
69 main_tumor2_pa_ratio All pa ratio of the 3 largest tumor2
70 main_tumor2_fractal_dimension All fractal dimension of the 3 largest tumor2.
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Supplementary Figure 2. Results of segmentation network for tumor subtype in patch level. H&E-stained slides 
alongside corresponding visualizations of tissue-type ground truth and prediction in internal and external dataset 
(MMP=1). Slide regions are classified into three tissue types: differentiated tumor (dark orange), undifferentiated 
tumor (brown), or normal (light orange).

Supplementary Table 2. Performance of tumor subtype segmentation 
Datasets IoU F1-Score PA Recall Precision
Differentiated
    patch - internal (1,029) 0.7999 0.8881 0.9339 0.8842 0.8933
    patch - external (3,239) 0.5659 0.6764 0.8526 0.71 0.683
    slide -external (39) 0.296 0.3718 0.9909 0.5694 0.3419
Undifferentiated
    patch - internal (1029) 0.5595 0.6976 0.9468 0.7442 0.726
    patch - external (3,239) 0.2952 0.3813 0.9234 0.4481 0.5309
    slide -external (39) 0.2707 0.365 0.9944 0.6261 0.3571
PA = Pixel Accuracy.
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Supplementary Table 3. Basic characteristics according to cohort
Characteristics HGH (289) ISH (66) KUMC (392) KBSMC (266) SS (224) p-value
Size (mm) 27.6 23 30.8 33.4 29.5 0.00035
Submucosal invasion 0.00003
    Present 123 (47.1%) 15 (22.7%) 203 (51.8%) 102 (38.3%) 103 (46.0%)
    Absent 138 (52.9%) 51 (77.3%) 189 (48.2%) 164 (61.7%) 121 (54.0%)
    Missing 28 0 0 0 0
Perineural invasion 0.14286
    Present 11 (4.2%) 3 (4.5%) 5 (1.3%) 6 (2.3%) 5 (2.2%)
    Absent 250 (95.8%) 63 (95.5%) 387 (98.7%) 260 (97.7%) 219 (97.8%)
    Missing 28 0 0 0 0
Lymphovascular invasion 0.0004
    Present 62 (23.8%) 12 (18.2%) 53 (13.5%) 28 (10.5%) 42 (18.8%)
    Absent 199 (76.2%) 54 (81.8%) 339 (96.5%) 238 (89.5%) 182 (81.2%)
    Missing 28 0 0 0 0
Lymph node metastasis 0.36964
    Present 36 (12.5%) 5 (7.6%) 41 (10.5%) 20 (7.5%) 22 (9.8%)
    Absent 253 (87.5%) 61 (92.4%) 351 (89.5%) 246 (92.5%) 202 (90.2%)
    Missing 0 0 0 0 0

Supplementary Table 4. Basic characteristics according to cohort (ISH vs others)
Characteristics ISH (66) Data sets other than ISH (948) p-value
Size (mm) 23 30.4 0.00282
Submucosal invasion 0.00018
    Present 15 (22.7%) 531 (46.5%)
    Absent 51 (77.3%) 612 (53.5%)
    Missing 0 28
Perineural invasion 0.22225
    Present 3 (4.5%) 27 (2.4%)
    Absent 63 (95.5%) 1116 (97.6%)
    Missing 0 28
Lymphovascular invasion 0.61096
    Present 12 (18.2%) 185 (16.2%)
    Absent 54 (81.8%) 958 (83.8%)
    Missing 0 28
Lymph node metastasis 0.67305
    Present 5 (7.6%) 119 (10.2%)
    Absent 61 (92.4%) 1052 (89.8%)
    Missing 0 0
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Supplementary Figure 3. Feature importance plot in XGBoost.
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Supplementary Figure 4. Confusion matrix and ROC curve for predicting LNM using XGBoost.
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Supplementary Table 5. Performance of SGD for predicting lymph node metastasis
HGH KBSMC SS ISH KUMC Total 

AUC (± CI) 0.7731 (±0.0083) 0.58 (±0.0283) 0.82 (±0.0059) 0.8461 (±nan) 0.7042 (±0.0050) 0.7345 (±0.0023)

Accuracy 0.6 0.78 0.64 0.79 0.58 0.65

Weighted Precision 0.85 0.87 0.93 0.95 0.85 0.87

Weighted Recall 0.6 0.78 0.64 0.79 0.58 0.65

Weighted F1-Score 0.67 0.82 0.72 0.84 0.66 0.72

Supplementary Table 6. Performance of LGB for predicting lymph node metastasis
HGH KBSMC SS ISH KUMC Total 

AUC (± CI) 0.6639 (± 0.0111) 0.69 (± 0.0122) 0.7317 (± 0.0175) 0.8462 (± nan) 0.6056 (±0.0114) 0.6574 (± 0.0030)

Accuracy 0.53 0.69 0.51 0.71 0.59 0.59

Weighted Precision 0.87 0.86 0.88 0.94 0.85 0.87

Weighted Recall 0.53 0.69 0.51 0.71 0.59 0.59

Weighted F1-Score 0.61 0.76 0.61 0.78 0.67 0.67

Supplementary Figure 5. The ROC curve for predicting LNM using SGD.
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Supplementary Figure 6. The ROC curve for predicting LNM using LGB.

Supplementary Figure 7. Representative image of a slide that the poorly differentiated tumor component is scat-
tered diffusely as individual cells in the stroma (H&E, ×10, ×100, inlet).
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Supplementary Figure 8. Representative image of a slide that inadequetely reflect the original diagnosis of SM3 
invasion, as the tumor in the scanned slide is confined to the mucosa (H&E, ×10, ×100, inlet).


