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Abstract: Recent studies have shown that circular RNAs (CircRNAs) have the novel functions and molecular mecha-
nisms in the pathogenesis of malignant diseases. CircRNAs have been found to be associated with the occurrence 
and development of lymphoproliferative diseases, impacting on lymphocyte proliferation. This article provides a 
review of the pathogenesis of circRNAs in malignant lymphoproliferative disorders, focusing on conditions such as 
acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), and lymphoma. Additionally, it discusses the 
potential value of circRNAs as novel biomarkers or therapeutic targets in these disorders.
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Introduction

NcRNAs and circRNAs

The rapid development of high-throughput te- 
chnologies, such as RNA sequencing (RNA-
seq), has provided us the opportunity to explore 
the true role of non-coding gene product in vari-
ous types of cancer [1]. Although non-coding 
RNAs (ncRNAs) do not have encode effects, 
they have an indispensable role in the regula-
tion of gene expression, including RNA splicing, 
transcription or translation [2, 3]. The role of 
ncRNAs in the pathogenesis of human diseas-
es was first discovered in chronic lymphocytic 
leukemia (CLL) [4], and it has been reported to 
influence the metabolism of many tumors due 
to its specific biological function [5].

Circular RNA (CircRNAs) has attracted research-
ers’ attention in recent years as an important 
subtype of ncRNAs with novel functions and 
molecular mechanisms in malignant diseases 
[6]. Various circRNAs appear to be specifically 
expressed in particular cell type or develop-
mental stage [3], and they are abundantly in 
various tissues, peripheral blood [7], and even 

saliva [8]. They derive from precursor RNAs or 
catalyzed by group I and II ribozyme [9-11]. 
Initially, considered as byproducts of transcrip-
tion and regarded as “waste sequences” with-
out specific biological functions, circRNAs were 
primarily thought to be located in the cytoplasm 
[12-14]. Characterized by a covalent closed-
loop structure joining the upstream splice ac- 
ceptor site and the downstream splice donor 
site [3, 15], circRNAs lack 5’ to 3’ polarity and a 
polyadenylated tail to gain the remarkable sta-
bility, resisting to RNA enzymes degradation 
and are shown to have longer half-lives than 
other linear RNA in vivo [11, 16-18]. Based on 
their formation patterns, circRNAs can be cate-
gorized three types: Exonic circRNAs (ecircRNA) 
[19], exon-intron circRNAs (eicircRNA) [20], and 
circularized intron RNA (ciRNA) [21]. Moreover, 
circRNAs are highly conserved in evolution and 
tissue-specific in expression [11].

CircRNAs and malignant tumors

CircRNAs have a significant impact on diverse 
biological processes such as cell multiplication 
or migration [22, 23], cell cycle progression 
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[24], cell apoptosis [25], mirroring their roles in 
various neoplasms. CircRNAs can interact with 
RNA binding proteins (RBPs) [26, 27], and a few 
circRNAs containing short open reading frames 
(ORF) can be translated into specific functional 
proteins [28]. In certain cancers, circRNAs have 
also been found in exosomes [29, 30] (Figure 
1).

Unlike circRNAs, microRNAs (miRNAs), another 
linear subtype of ncRNAs, are more unstable 
[31], and are approximately 18-25 nucleotides 
in length [32, 33]. They are from the purposeful 
expression of the organism’s own genome,  
negatively regulating gene expression at the 
post-transcriptional level by degrading mRNAs 
or inhibiting translation through interactions 
with 3’-untranslated regions (UTR) of specific 
mRNAs, acting as tumor suppressors or onco-
genes and serving as potential cancer biomark-
ers [33-36]. Single-stranded form of miRNA 
can bind with Argonaute protein (AGO) to form 
effector assemblies, RNA-induced silencing 
complex (RISC), and targeting mRNA through 
complementary base pairing that called mi- 
croRNA recognition elements (MRE) [36, 37], 
acting mainly in the cytoplasm. With MRE, RNAs 
can regulate each other, which is known as 

competing endogenous RNA (ceRNA) hypothe-
sis [37].

Some circRNAs could also indirectly regulate 
gene expression by acting as ceRNAs through 
sponging miRNAs [34, 38]. CircRNA possess 
numerous seed-binding sites for miRNAs, the- 
reby enabling them to engage with specific 
miRNA molecules and form stable complexes. 
This interaction is highly specific, contingent 
upon the complementary base pairing between 
the circRNA and miRNA sequences [39]. Upon 
adsorption of miRNA by circRNA, the miRNA is 
sequestered, rendering it incapable of binding 
to its canonical target mRNAs. This sequestra-
tion effectively shields the target mRNAs from 
miRNA-mediated degradation or translational 
repression. Consequently, circRNAs enhance 
the stability of these target mRNAs and/or aug-
ment protein expression levels through a mech-
anism of competitive inhibition [39].

Beyond their established role in modulating 
gene expression, circRNAs may also engage in 
protein-level regulation by encoding micro pep-
tides with functional significance [40]. Notably, 
research has demonstrated that circDIDO1 
impedes the progression of gastric cancer. It 
achieves this by encoding a novel 529-amino 

Figure 1. CircRNAs can be categorized three types: Exonic circRNAs (ecircRNA), exon-intron circRNAs (eicircRNA), 
and circularized intron RNA (ciRNA). CircRNAs can interact with RNA binding proteins (RBPs), and a few circRNAs 
containing short open reading frames (ORF) can be translated into specific functional proteins. In certain cancers, 
circRNAs have also been found in exosomes. Importantly, some circRNAs can indirectly regulate gene expression by 
acting as competing endogenous RNA (ceRNAs) through sponging microRNAs (miRNAs).
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acid DIDO1 protein and by modulating the sta-
bility of the PRDX2 protein, thereby exerting its 
tumor-suppressive effects [41].

We have demonstrated the key role of circRNA-
miRNA-mRNA network in many malignant dis-
ease [42], and numerous studies have high-
lighted dysregulated levels of circRNAs in va- 
rious diseases, especially tumors [43]. For 
example, has_circRNA_100290, significantly 
upregulated, may act as a sponge of miR-136-
5p to promote laryngeal squamous cell carci-
noma progression via miR-136-5p/RAP2C axis 
[44]. Similarly, the absence of circ_BICD2 
exerts anti-tumorigenesis and anti-glycolysis in 
oral squamous cell carcinoma (OSCC) by spong-
ing miR-107 to downregulate HK2 expression 
[45]. Upregulation of circ-RPL15 in gastric can-
cer tissues, through the circ-RPL15/miR-502-
3p axis, predicts a poorer outcome for gastric 
cancer patients [46]. Hsa_circ_0001806 can 
facilitate the stemness of CRC cells by acti- 
vating the hsa_circ_0001806/miR-193a-5p/
COL1A1 axis [47]. Up-regulate expression of 
circ_0009910 can help chronic myeloid leuke-
mia (CML) cells become imatinib-resistant via 
the circ_0009910/miR-34a-5p/ULK1 pathway 
[48].

Recognized as novel potential diagnostic bio-
markers and therapeutic targets in blood tu- 
mors, circRNAs will play an important role in 
further elucidating pathological processes and 
molecular mechanisms.

Normal lymphocyte proliferation process and 
lymphoproliferative diseases

The hematopoietic compartments have respon-
sibility for the function and maintenance of the 
bone marrow (BM) and blood system [49]. 
Hematopoietic stem cell (HSC), self-renewing 
cells from bone marrow with long-term stable 
multi-lineage regenerative hematopoietic ac- 
tivity [50], can differentiate into all peripheral 
blood cells [51]. Multipotent progenitor cells 
arise from three cell type subpopulations of 
HSCs and differentiated into myeloid progeni-
tor cells or lymphoid progenitor cells, which 
could establish peripheral effector cell popula-
tions of the myeloid and lymphoid lineage [49]. 
Peripheral lymphocyte clones included natural 
killer (NK) cells, T lymphocyte, and B lympho-
cyte [51, 52]. There are two main types of T lym-
phocytes: T helper cells and cytotoxic T cell line 
[53]. B lymphocytes undergo differentiation 
and maturation in the bone marrow, then 
migrate to peripheral lymphoid organs through 
the blood where they eventually differentiated 
into plasma cells or memory cells [54, 55]. NK 
cells, like B lymphocytes, mainly develop in the 
bone marrow and have traditionally been clas-
sified as a componen t of the innate immune 
system; However, they have been shown to pos-
sess adaptive immune characteristics [52, 56] 
(Figure 2). Thus far, the participation of cir-
cRNAs in the regulation of hematopoiesis in 
hematopoietic compartments has been proven 

Figure 2. Hematopoietic stem cell (HSC), self-renewing cells from bone marrow with long-term stable multi-lineage 
regenerative hematopoietic activity, can differentiate into all peripheral blood cells. Multipotent progenitor cells 
arise from three cell type subpopulations of HSCs and differentiated into lymphoid progenitor cells, which could 
establish peripheral effector cell populations of the lymphoid lineage. Peripheral lymphocyte clones included natu-
ral killer (NK) cells, T lymphocyte, and B lymphocyte, and functions are exerted by plasma cells and memory cells.
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[57], and it has been found that circRNAs are 
related to the occurrence and development of 
lymphoproliferative diseases during the pro-
cess of lymphocyte proliferation [23]. However, 
data on the expression and function of these 
molecules involved in the diseases was still lim-
ited [58].

CircRNAs in acute lymphoblastic leukemia

Among the hematological tumors related to 
children, acute lymphoblastic leukemia (ALL) is 
the most common type of childhood leukemia 
[59], characterized by proliferation and accu-
mulation of lymphoid progenitor cells in bone 
marrow as well as other tissues [60]. Recent 
studies on ALL in children have shown a signifi-
cant improvement in overall survival rate (OS) 
at 5 years [61]. However, ALL in adults has his-
torically had a poor prognosis and limited treat-
ment options [62]. T-cell acute lymphoblastic 
leukemia (T-ALL) accounts for 15% of pediatric 
ALL cases and 25% of adult ALL cases [63]. It 
can be identified as pro-T, pre-T, cortical and 
mature T-ALL at different stages of differentia-
tion of leukemia clones by flow cytometry [64]. 
Although the event free survival rate (EFS) of 
T-ALL has been steadily improving [65], recur-
rent T-ALL is difficult to cure, and there are re- 
latively few new drugs developed for pediatric 
T-ALL with drug-resistance [66]. Therefore, 
exploring the pathological mechanism of cir-
cRNAs in ALL or T-ALL could provide new bio-
markers and therapeutic targets for future 
treatment.

Acute lymphoblastic leukemia (ALL)

CircADD2: Zhu et al. conducted a study on cir-
cADD2, one of the top three circRNAs that were 
markedly differentially expressed between the 
bone marrow samples of children with ALL and 
non-ALL ones. CircADD2 is a circRNA derived 
from exon 2-4 of ADD2 gene and it featured 
potential binding sites for miR-149-5p, this 
miRNA could act as an oncogene, regulating 
proliferation, cell cycle and apoptosis in T-cell 
acute lymphoblastic leukemia (T-ALL) [67, 68].

RNA immunoprecipitation assay (RIP) showed a 
complex interaction between circRNA, AGO2, 
and miRNA, revealed that the overexpression 
of circADD2 could sponge miR-149-5p to dimin-
ish the expression of AKT2, a signaling mole-
cule in the AKT signaling pathway that promot-

ed angiogenesis, tumor growth, cell migration, 
invasion, metastasis, and chemotherapy resis-
tance, promoting ALL cell apoptosis in vitro and 
in vivo of ALL patients as a suppressor [67, 69]. 
The study posited circADD2 as a potential bio-
marker or therapeutic target for childhood ALL. 
However, while the research predicted AKT2 as 
a target gene of miR-149-5p through database 
and verified that overexpression of circADD2 
significantly reduced the protein and mRNA lev-
els of AKT2 in cells, as well as the protein level 
of p-AKT2, it did not establish whether AKT2 
was the direct effector of the circADD2/miR-
149-5p/AKT2 axis in the etiopathogenesis of 
childhood ALL [67].

Circ-0000745: Previous research had demon-
strated that circ-0000745 may have a promo-
tional effect in the multiplication of various neo-
plasms, which are associated with poor 
prognoses [70-72], including acute lymphoblas-
tic leukemia. Liu et al. traced the assays and 
gathered information on circ-0000745, reveal-
ing its predominant presence in the cytoplasm 
and significant upregulation in leukemia cells 
[57]. Subsequent overexpression and knockout 
experiments revealed that circ-0000745 had 
the effect of promoting proliferation and inhi- 
biting apoptosis of leukemia cells. Building on 
prior studies highlighting the cell growth-pro-
moting effect of the ERK signaling pathway, the 
researchers used a western blot assay to show 
that the phosphorylation level of ERK was in- 
fluenced by circ-0000745 overexpressing, but 
the precise mechanism behind this influence 
remains to be elucidated [57, 73].

In childhood ALL, circ-0000745 also functions 
as an oncogene. Yang et al. conducted a loss-
of-function experiment, revealing that the ab- 
sence of circ-0000745 suppressed glucose 
metabolism, causing cell arrest and promoting 
apoptosis as well as ferroptosis of ALL cells 
[74]. The researchers predicted, using the Cir- 
cular RNA Interactome database, that miR-
494-3p was a target of circ-0000745, a hypoth-
esis supported by the concurrent enrichment of 
both circ-0000745 and miR-494-3p by the 
Ago2 antibody (Anti-Ago2) [74]. Further in vitro 
experiments confirmed that the oncogenic 
effect of circ-0000745 was partially mediated 
through the downregulation of miR-494-3p, 
which was sponged by circ-0000745 to upregu-
late the expression of NET1 protein [74]. These 
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findings suggest that circ-0000745 has the 
potential to serve as a novel biomarker for ALL.

circVRK1: Zhang et al. had reported that in ALL 
cells, where circVRK1 expression was signifi-
cantly upregulated, miR-4428 expression was 
correspondingly downregulated [75]. The over-
expression of circVRK1 or the inhibition of miR-
4428 was found to diminish the viability and 
Ki-67 protein expression in ALL cells. Con- 
currently, there was an observed increase in 
the rate of apoptosis and in the protein levels  
of cleaved caspase-3 and cleaved caspase-9. 
Furthermore, the co-transfection of circVRK1 
and miR-4428 was able to counteract the pro-
liferative and apoptotic effects induced by the 
overexpression of circVRK1 alone [75].

The present study delineated a novel molecular 
mechanism by which circVRK1 suppressed the 
expression of miR-4428, consequently attenu-
ating the proliferative capacity of ALL cells [75]. 
These effects suggested that circVRK1 acted 
as a potential therapeutic target for ALL, offer-
ing a promising avenue for developing targeted 
interventions.

T-cell acute lymphoblastic leukemia (T-ALL)

circ_0000094: Hou et al. discovered that 
circ_0000094 was remarkably downregulated 
in T-ALL tissues. Overexpression of this circu- 
lar RNA notably suppresses ALL cell viability, 
migration, and invasion, while also accelerat- 
ing apoptosis and enhancing the sensitivity of 
tumor cells to γ-secretase inhibitor (GSIs), whi- 
ch was associated with the NOTCH signaling 
pathway [76-78]. Subsequent RIP assay show- 
ed a direct interaction between circ_0000094 
and miR-223-3p [76]. Further experiments indi-
cated that circ_0000094 impeded T-ALL pro-
gression through the circ_0000094/miR-223-
3p/FBW7 pathway, highlighting its potential as 
a novel therapeutic target for T-ALL patients 
[76].

CircPRKCI: CircPRKCI, originating from the 
amplification of the 3q26.2 locus [79, 80], was 
widely recognized as an oncogene that sug-
gested poor prognosis in various malignancies 
such as lung adenocarcinoma [81], triple-nega-
tive breast cancer [82], hepatocellular carcino-
ma [82]. Data from studies by Zheng et al., 
coupled with bioinformatics analysis, had 
shown that the level of circPRKCI had a positive 

correlation with that of SOX4, while it exhibited 
an exactly reverse expression pattern between 
circPRKCI and miR-20a-5p [83]. Subsequent 
related research indicated that T-ALL cell sur-
vival could be suppressed by the deletion of 
circPRKCI or SOX4, or by the overexpression of 
miR-20a-5p in vitro. A poor prognosis of ALL, 
partly attributed to circPRKCI, suggested its 
role as a ceRNA in circPRKCI/miR-20a-5p/
SOX4 axis in T-ALL, as demonstrated in vitro. 
Targeting circPRKCI emerged as a promising 
therapeutic approach for T-ALL [83]. However, 
additional in vivo animal experiments are 
required to validate these findings [83].

Circ-PRKDC: Overexpression of circ-PRKDC 
had been shown to inhibit miR-375, thereby 
indirectly promoting the expression of FOXM1 
and activating the Wnt/β-catenin signaling 
pathway [84]. This activation contributed to 
5-FU resistance in colorectal cancer (CRC). 
Additionally, circ-PRKDC could function as a 
ceRNA for miR-198, leading to an increase in 
discoidin domain receptor 1 (DDR1) levels, 
enhancing CRC cell proliferation, migration, 
and invasion [85].

Ling et al. utilized RT-qPCR and western blot-
ting assay, tracing a high level of circ-PRKDC, 
whose decreased expression could upregulate 
miR-653-5p but downregulate Reelin (RELN) 
[86]. Reelin, a secreted extracellular matrix gly-
coprotein, had been associated with detrimen-
tal mutation in ALL [87]. The activation of PI3K/
AKT/mTOR signaling pathway was a prevalent 
phenomenon in a multitude of malignant neo-
plasms, where it is implicated in the promotion 
of cell proliferation, survival, and resistance to 
chemotherapy in T-ALL [88]. Rescue experi-
ments conducted by Ling et al. demonstrated 
that the downregulation of circ-PRKDC result- 
ed in the suppression of the PI3K/AKT/mTOR 
signaling pathway’s phosphorylation events, 
which subsequently led to the enhancement of 
apoptosis and autophagy in T-ALL cells [86]. 
These findings suggested that circ-PRKDC may 
serve as a biomarker in T-ALL and could offer a 
new treatment pathway for T-ALL patients.

CircPVT1: CircPVT1, a well-studied circRNA 
[89], had been recognized as an oncogene in 
various tumor pathological processes, includ-
ing nasopharyngeal carcinoma [90], gastric 
cancer [91], clear cell renal cell carcinoma [92]. 
Notably, it exhibited significantly increased lev-
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els in ALL but not in AML samples [93]. Prior 
research had established a close correlation 
between PVT-1 and c-MYC expression, with cir-
cPVT1 downregulation impacting c-MYC and 
Bcl-2 expression, leading to cell proliferation 
arrest and apoptosis in ALL cells [93, 94].

Jia et al. further demonstrated that circPVT1 
deletion inhibited T-ALL cell line activity and 
promoted apoptosis [95]. In T-ALL cells, the 
expression of circPVT1 was markedly elevated 
relative to that observed in cells derived from 
healthy individuals, suggesting its potential as 
a diagnostic biomarker. Acting as a sponge for 
miR-30e, circPVT1’s high expression in T-ALL 
cells was linked to poor prognosis, with its over-
expression resulting in a high recurrence rate 
and a low survival rate through the circPVT1/
miR-30e/DLL4 axis, which activates the Notch 
signaling pathway [95]. These findings under-
score the role of circPVT1 in T-ALL tumorigene-
sis via the modulation of miR-30e and DLL4, 
influencing the Notch signaling cascade, and it 
could lead to the development of more effec-
tive treatments and better prognosis for pa- 
tients with T-ALL.

Circ-0000745: The high expression of circ-
0000745 and Notch receptor 1 (NOTCH1) in 
T-ALL BM and T-ALL cell lines as well as their 
effects of promoting cell proliferation and inhib-
iting cell apoptosis to show a poor prognosis of 
T-ALL were experimentally validated by Feng et 
al. [96].

NOTCH1, a class I transmembrane protein in  
T cell maturation within the NOTCH signaling 
pathway [97], frequently experiences activating 
mutation that could either enhance the mTOR 
signaling pathway by targeting c-myc or elevate 
the levels of cyclin D3 and CDK4 [88], thereby 
promoting T-cell progression through the G1/S 
phase transition of the cell cycle [98]. The 
mRNA level of NOTCH1 was found to be posi-
tively correlated with that of circ-0000745,  
a relationship mediated by the miR-193b-3p 
sponge activity of circ-0000745, which in  
turn targeted NOTCH1 [96]. This discovery pro-
vided a new therapeutic strategy targeting 
circ_0000745 to regulate the proliferation and 
apoptosis of T-ALL cells.

B-cell acute lymphoblastic leukemia (B-ALL)

CircBCAR3: Zhao et al. had identified CircBCAR3 
as a significant sponge for miR-27a-3p, neutral-

izing the miRNA’s inhibitory effects on SLC7A11, 
a critical regulator of cellular iron metabolism 
[99]. The consequent upregulation of SLC7A11, 
driven by CircBCAR3’s sequestration of miR-
27a-3p, led to heightened intracellular iron lev-
els [99]. This increase was instrumental in initi-
ating ferroptosis in B-prolymphocytic leukemia 
(B-PLL) cells, a regulated cell death mechanism 
associated with iron metabolism and lipid per-
oxidation [99]. The onset of ferroptosis was 
mediated by the intricate balance of iron 
homeostasis and the generation of reactive 
oxygen species (ROS) [100, 101], which were 
essential components of the ferroptosis path-
way [100]. Therefore, strategies that target 
CircBCAR3 or modulate its interactions with 
miR-27a-3p and SLC7A11 could present novel 
therapeutic opportunities for B-PLL. Such inter-
ventions might be particularly effective in in- 
ducing ferroptosis in leukemia cells that were 
unresponsive to standard chemotherapy re- 
gimens.

CircRNAs in chronic lymphocytic leukemia 
(CLL)

Chronic lymphocytic leukemia (CLL) is a preva-
lent and incurable form of leukemia in Western 
countries [102], with a mounting incidence rate 
observed in China [103, 104]. Predominantly 
occurs in elderly patients, CLL is marked by 
highly variable clinical outcomes [102]. It is 
characterized by clonal proliferation and accu-
mulation of mature B cells in the blood, bone 
marrow, lymph nodes, and spleen [105]. Not- 
withstanding significant advancements in CLL 
treatment over the past three decades that 
have prolonged patients’ survival time [106], 
there remains a critical need for new biomark-
ers to predicting prognosis and for a deeper 
understanding of the molecular mechanisms 
and therapeutic targets of CLL. These insights 
are crucial for enhancing the future prognosis 
of CLL patients.

Circ_0132266: Wu et al. observed an up-regu-
lation of miR-337-3p expression in CLL cells in 
their prior study. Subsequent experiments fur-
ther substantiated this finding and elucidated 
the role of miR-337-3p in facilitating cell prolif-
eration and impeding apoptosis [107]. Utilizing 
bioinformatic analysis, they proposed promy-
elocytic leukemia (PML) gene, a common tumor 
suppressor that promoted cell apoptosis and 
arrested the cell cycle, was the target of miR-
337-3p [107]. In patients with acute promyelo-
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cytic leukemia (APL), the genetic fusion of PML 
and retinoic acid receptor alpha (RARA) genes 
leading to in functional loss of the tumor-sup-
pressive properties of PML and the production 
of the PML-RARa oncoprotein, disrupting the 
differentiation of bone marrow progenitor cells 
[108]. Furthermore, they identified circ_0132- 
266, a novel downregulated circRNA in periph-
eral blood mononuclear cells (PBMCs) of CLL 
patients compared to normal individuals, which 
had the binding sites of miR-337-3p, may act as 
a tumor suppressor through circ_0132266/
miR-337-3p/PML axis [107]. This study under-
scored the potential of circ_0132266 as both a 
therapeutic target and a biomarker for CLL, 
suggesting its utility in improving patient out- 
comes.

Circ-CBFB: Located at chromosome 16q22.1 
and originating from the reverse splicing of 
CBFB transcripts, hsa_circ_0000707 (circ-
CBFB) had a significant overexpression in CLL 
cells found by Xia et al. [109]. The expression 
levels of circRNA circ-CBFB served as a robust 
biomarker, markedly differentiating CLL patient 
cells from those of healthy individuals. Survival 
analysis and multivariate cox regression analy-
sis revealed that elevated expression of circ-
CBFB in patients with CLL was associated with 
reduced survival time, identifying high circCBFB 
expression as an independent prognostic indi-
cator for CLL [109].

Employing bioinformatics tools for analysis and 
prediction, the researchers hypothesized that 
the circular RNA circ-CBFB could directly bound 
to miR-607, thereby facilitating the restoration 
of FZD3, which was crucial for the pro-leukemia 
role of circ-CBFB, as it promoted cell prolifera-
tion, regulated cell cycle, and inhibits apoptosis 
[109]. FZD3, a member of the Frizzled family of 
receptors, was capable of transducing Wnt sig-
naling, promoting the activation of the Wnt 
pathway [110]. This pathway acted an effector 
molecule in the progress of CLL, as demon-
strated by the author’s experiment [109, 110].

CircRIC8B: Chronically elevated levels of lipo-
protein lipase (LPL) in CLL patients usually indi-
cated aggressive disease and were associated 
with a poor prognosis [111]. In an attempt to 
explore the role of lipid metabolism-related cir-
cRNA in CLL, Wu et al. identified circRIC8B, a 
highly expressed circRNA implicated in lipid 
metabolism. The overexpression of circRIC8B 

was found to promote the proliferation of leuke-
mia cells, which may indicate a poorer progno-
sis and a shorter survival time. Notably, CLL 
patients with low level of circRIC8B exhibited a 
significantly longer time to first treatment time 
[112].

The authors observed that circRIC8B could act 
as a sponge for miR-199b-5p, primarily seques-
tering it in the cytoplasm, thereby upregulating 
LPL mRNA expression. This mechanism pro-
motes lipid accumulation and suggested that 
circRIC8B functions as an oncogene in CLL 
[112]. Furthermore, the study revealed that 
ezetimibe, a cholesterol-lowering drug, effec-
tively inhibited CLL cells by reducing LPL levels. 
However, following ezetimibe treatment, an 
upregulation of circRIC8B levels was observed, 
which may be attributed to compensatory regu-
lation by other signaling pathways. This finding 
warrants further investigation to elucidate the 
underlying mechanisms [112].

CircZNF91: Compared with peripheral blood 
cells of healthy individuals, circZNF91 had a 
remarkable elevated level in CLL cells, correlat-
ing with a low survival rate and indicating its 
potential as a dependable diagnostic biomark-
er, as evidenced by the experimental data from 
Li et al. [113]. Depletion of circZNF91 result- 
ed in cell cycle arrest and the initiation of 
apoptosis.

Utilizing bioinformatics tools and databases, 
the authors predicted the presence of a direct 
binding site for circZNF91 within miR-1283, 
which was confirmed through RNA immunopre-
cipitation (RIP) assays [113]. The overexpres-
sion of miR-1283 had been shown to specifi-
cally target and inhibit the expression of the 
WEE1 gene, a pivotal cell cycle regulator that 
ensured accurate DNA replication and repair by 
inhibiting CDKs during the G2/M transition 
[114], thus involving in the progress of CLL. 
These findings suggested that circZNF91 could 
serve as a potential neo-target in the treatment 
of CLL [113] (Table 1).

CircRNAs in lymphoma

Diffuse large B-cell lymphoma (DLBCL)

Diffuse large B-cell lymphoma (DLBCL) was the 
most prevalent type of non-Hodgkin’s lympho-
ma (NHL) [115], representing approximately 
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one-third of all NHL cases globally [116]. This 
disease demonstrates significant variability in 
its clinicopathological and laboratory charac-
teristics [116], leading to diverse subtypes of 
DLBCL with distinct prognostic implications 
[117]. Despite this heterogeneity, the specific 
pathogenesis of DLBCL remained clear [118]. 
Therefore, there was an urgent need to identify 
novel biomarkers and therapeutic targets to 
improve treatment strategies and patient out- 
comes.

circ-APC: Through an analysis of circRNA micro-
array expression profiles, Hu et al. identified a 
novel circRNA associated with DLBCL, desig-
nated as circ-APC [119]. This circRNA was fo- 
und to be significantly downregulated in DLBCL 
tissue relative to neighboring normal cells. 
Subsequent qRT-PCR analysis showed that 
circ-APC was uniformly distributed between the 
cytoplasm and nucleus. In vitro and in vivo 
studies revealed that circ-APC functioned as a 
molecular sponge for miR-888 and also has the 
capacity to bind to the promoter region of  
APC, recruiting the DNA demethylase TET1. 
This interaction enhanced the expression of its 
host gene APC. The upregulation of APC sub- 
sequently facilitated the phosphorylation of 
β-catenin, leading to the inactivated of the  
typical Wnt/β-catenin pathway [120]. This regu-
latory mechanism positioned circ-APC as a 
potential tumor suppressor in DLBCL [119]. 
Additionally, the study identified circ-APC ex- 
pression levels as an independent protective 
factor for DLBCL, which meant that Lower circ-
APC expression in DLBCL was linked to ad- 
vanced Ann Arbor stage, treatment resistance, 
and a lower International Prognostic Index (IPI) 
score [119]. These studies conclusively estab-

lished circ-APC as a promising biomarker for 
DLBCL, highlighting its potential in predicting 
disease progression and therapeutic response.

CircCFL1: In a study conducted by Chen et al., 
bioinformatics analyses predicted that high 
mobility group box 1 (HMGB1), a DNA binding 
protein critical for regulating and maintaining 
stability, could be directly targeted by miR-107 
[121]. This direct interaction was confirmed 
through the dual-luciferase reporter assay. 
HMGB1, known for its elevated expression in 
various malignant disorders [122], played a 
role in promoting inflammatory responses fol-
lowing tissue damage and is implicated in 
revascularization, cell proliferation, and even 
tumor genesis, progress, and metastasis [123].

Further mechanistic insights were provided by 
the RNA pull-down and the RIP assays, which 
demonstrated that CircCFL1 interacted with 
miR-107. The upregulation of CircCFL1 was 
shown to directly bind to miR-107, alleviating 
the repression of the target gene HMGB1 and 
thereby boosting the growth of DLBCL cells 
[121]. Additionally, CircCFL1 had been shown 
to activate the AKT/ERK signaling pathway, fur-
ther promoting DLBCL cell proliferation [121]. 
These newly elucidated functions and mecha-
nisms of CircCFL1 may provide potential novel 
molecular targets for the therapeutic interven-
tion of DLBCL.

circ_OTUD7A: Liu et al. identified a circRNA, 
circ_OTUD7A, originating from OTUD7A, which 
was showed a demonstrable overexpression  
in DLBCL [124]. The Forkhead box protein P1 
(FOXP1), a member of the FOXP transcription 
factor sub-family, was essential for the normal 

Table 1. CircRNAs in leukemia
CircRNAs Also Known As Diseases Functions Levels Pathogenesis Refs
circADD2 hsa_circ_0120872 Childhood ALL Tumor suppressor ↓ circADD2/miR-149-5p/AKT2 [67]

circ_0000745 hsa_circ_0000745 Childhood ALL Oncogene ↑ circ_0000745/miR-494-3p/NET1 [74]

circ_0000745 hsa_circ_0000745 Childhood ALL Oncogene ↑ circ_0000745/miR-193b-3p/NOTCH1 [96]

circ_0000745 hsa_circ_0000745 ALL Oncogene ↑ circ_0000745/ERK [57]

circPRKCI T-ALL Oncogene ↑ circPRKCI/miR-20a-5p/SOX4 [83]

Circ-PRKDC circ_0136666 T-ALL Oncogene ↑ circPRKDC/miR-653-5p/RELN/PI3K/AKT/mTOR [86]

circ_0000094 T-ALL Tumor suppressor ↓ circ_0000094/miR-223-3p/FBW7 [76]

circPVT1 T-ALL Oncogene ↑ circPVT1/miR-30e/DLL4/Notch [95]

circ_0132266 has_circ_0132266 CLL Tumor suppressor ↓ circ_0132266/miR-337-3p/PML [107]

circ-CBFB hsa_circ_0000707 CLL Oncogene ↑ circ-CBFB/miR-607/FZD3/Wnt/β-catenin [109]

circRIC8B CLL Oncogene ↑ circRIC8B/miR199b-5p/LPL mRNA [112]

circZNF91 CLL Oncogene ↑ circZNF91/miR-1283/WEE1 [113]
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development of B cells and served as a prog-
nostic marker for DLBCL in the rituximab era, 
with elevated expression observed in DLBCL 
tissues [125]. FOXP1 could foster the growth of 
B-cell non-Hodgkin lymphoma by enhancing 
β-catenin-dependent transcription via CREB-
binding protein (CBP)’s protein acetylation, 
which in turn enhanced Wnt signaling [126, 
127]. The researchers discovered that silenc-
ing FOXP1 or circ_OTUD7A resulted in decreased 
CyclinD1 and Bcl-2 protein levels and elevated 
Bcl-2-associated X protein (Bax) protein levels, 
leading to cell cycle arrest and enhanced apop-
tosis of DLBCL cells [124].

Through bioinformatics analysis, the research-
ers identified miR-431-5p had been shown to 
directly bind to both circ_OTUD7A and FOXP1 
[124]. By sequestering miR-431-5p, circ_
OTUD7A increased FOXP1 expression, thereby 
promoting the proliferation, migration, and in- 
vasion of lymphoma cells [124]. The aforemen-
tioned studies suggested that circ_OTUD7A 
could potentially serve as a therapeutic target 
for DLBCL.

circPCBP2: Tumor cells had developed a 
sophisticated mechanism to evade detection 
and destruction by the immune system, which 
involved the expression of the protein pro-
grammed cell death-ligand 1 (PD-L1) [128]. By 
overexpression of PD-L1 on their surface, these 
cells could engage with Programmed Death-1 
(PD-1) receptors present on immune cells, par-
ticularly T cells [129]. The engagement of PD-1/
PD-L1 pathway transmitted an inhibitory signal 
to the T cells, effectively silencing their ability to 
mount an effective immune response against 
the tumor [130]. This strategic manipulation of 
the immune system by tumor cells was a key 
factor in immune evasion and contributes to 
the progression of cancer, and targeting the 
PD-1/PD-L1 pathway could reactivate the im- 
mune system’s capacity to recognize and 
attack cancer cells [130, 131].

Through bioinformatic analysis, Dong et al.  
discovered a reciprocal relationship between 
PD-L1 mRNA and a tumor suppressor miR-
33a/b [132]. Furthermore, they found a direct 
binding interaction between miR-33a/b and cir-
cPCBP2 [133]. These findings prompted the 
researchers to propose a novel molecular axis, 
circPCBP2/miR-33a/b/PD-L1 axis, which may 
play a critical role in stem-like characteristics 

and resistance to CHOP chemotherapy ob- 
served in DLBCL. This hypothesis was bolstered 
by subsequent research, which provided cor-
roborating evidence for the involvement of this 
axis in the disease’s progression and treatment 
response [133]. This molecular network’s char-
acterization uncovered critical mechanisms in 
DLBCL’s evolution, suggesting potential targets 
for future diagnostics and treatments.

circEAF2: Identification of Epstein-Barr virus 
(EBV) as the first virus to express specific miR-
NAs, such as miR-BART19-3p from the Bam 
HI-A region rightward transcript (BART) of the 
virus [134, 135], had illuminated its role of EBV 
as a potent oncogenic agent. EBV was particu-
larly implicated in cellular transformation and 
the development of tumors, particularly lym-
phomas [136].

Using circRNA high-throughput sequencing, 
Zhao et al. identified significantly reduced 
expression of circEAF2 in DLBCL tissue with 
chronic Epstein-Barr virus (EBV) infection, as 
opposed to EBV-negative DLBCL tissues [137]. 
The downregulation of circEAF2 was signifi- 
cantly associated with the presence of EBV in 
DLBCL, yet it appears to mitigate the progres-
sion of DLBC [137]. Lower levels of circEAF2 
were associated with unfavorable clinical fea-
tures and a more severe prognosis. In contrast, 
an elevated circEAF2 expression was indica- 
tive of superior progression-free survival (PFS) 
and overall survival (OS) rates, suggesting that 
circEAF2 could serve as a biomarker for a more 
favorable outcome in the progression of DLBCL 
[137]. Subsequent experiments revealed th- 
at circEAF2 had the sponge effect for miR-
BART19-3p, which results in the upregulation 
of APC and the downregulation of β-catenin lev-
els. This mechanism inhibited the progression 
of EBV-positive DLBCL and enhanced its sensi-
tivity to chemosensitivity, as well as promoting 
apoptosis [137].

Intriguingly, the researchers also discovered 
that EBV may disrupt the cyclization process of 
EAF2, selectively targeting the circular form 
and not its linear counterpart, thereby affect- 
ing the formation of circEAF2 [137]. Under- 
standing circEAF2’s role in EBV-positive DLBCL 
progression could enhance our knowledge of 
EBV lymphomagenesis and inform the develop-
ment of novel treatment strategies for EBV-
associated lymphoid malignancies.



CircRNAs in malignant lymphoproliferative disorders

4642 Am J Cancer Res 2024;14(9):4633-4651

Mantle cell lymphoma (MCL)

Mantle cell lymphoma (MCL), a rare type of 
non-Hodgkin lymphoma (NHL) [138], originated 
from B-lymphocytes and predominantly affect-
ed patients aged over 60 years [139]. Cha- 
racterized by a median overall survival (OS) of 
3-5 years with standard therapies [140, 141], 
MCL poses a significant clinical challenge. 
Although allogeneic bone marrow or hemato-
poietic stem cell transplantation during the first 
remission might offer a potential cure [141], 
the prognosis remains poor, with less than half 
of the patients surviving beyond five years post-
diagnosis [142]. Consequently, the urgent need 
to identify novel genetic markers for targeted 
treatments in MCL was an urgent and formida-
ble task in clinical practice.

circCDYL: Mei et al. conducted a series of 
experiments to explore the biological signifi-
cance of circ-chromodomain Y-like (circCDYL), 
which was reported to be circular spliced from 
exon 4 of CDYL gene [143, 144]. Their findings 
indicated that the upregulation of circCDYL in 
MCL cells could serve as a robust biomarker, 
effectively differentiating MCL patients from 
healthy individuals [145].

Through comprehensive bioinformatics analy-
ses, the researchers identified a complex co-
expression network involving circCDYL, encom-
passing five miRNAs, three lncRNAs, and five 
mRNAs. Specifically, the long non-coding RNA 
(lncRNA) MALAT1, which was found to be over-
expressed in MCL tissues, was highlighted as a 
potential prognostic factor. MALAT1’s role in 
cell cycle regulation was further elucidated 
through its interaction with EZH2 and the 
cyclin-dependent kinase suppressors p21 and 
p27 [145]. Additionally, the study suggested 
that circCDYL might regulate NOTCH1 expres-
sion, which was associated with poor survival 
in MCL. However, the detailed mechanisms by 
which circCDYL modulated these pathways and 
its potential as a therapeutic target in MCL war-
rant additional investigation [145].

CircCTNNA1: CircCTNNA1, originating from the 
CTNNA1 gene, had been demonstrated to be 
upregulated and to act an oncogenic role by 
promoting colon cancer progression through 
the sequestration of miR-149-5p, as estab-
lished in previous studies [146]. Lu et al. 
observed a comparable expression pattern of 

circCTNNA1 in patients with MCL, which was 
associated with poorer survival outcomes. 
However, no significant correlation was identi-
fied between circCTNNA1 expression levels 
and clinical characteristics, highlighting its 
potential as an independent prognostic bio-
marker [147]. The authors further discovered 
that circCTNNA1 could physically interact with 
miR-34a, a finding supported by bioinformatics 
tool and RNA pull-down assays [147]. Additional 
studies had unveiled the tumor suppressor role 
of miR-34a, it was downregulated in diffuse 
large B-cell lymphoma (DLBCL) and its overex-
pression increased the chemosensitivity of 
cancer cells to doxorubicin, thus improving 
therapeutic efficacy [148]. It was hypothesized 
that circCTNNA1 might contribute to MCL prolif-
eration by sequestering miR-34a [147]. The 
circCTNNA1 expression level could be utilized 
as a supplementary diagnostic marker for MCL, 
potentially aiding in the extension of patients’ 
survival [147] (Table 2).

Other lymphomas

Beyond the B-cell-derived lymphomas previ-
ously discussed, there were additional, more 
aggressive forms of lymphoma, including T-cell 
lymphoblastic lymphoma (T-LBL) and Natural 
Killer/T-cell lymphoma (NKTCL), which were 
characterized by higher lethality as the disease 
progresses [149, 150]. Over the years, a pleth-
ora of novel and validated biomarkers, along 
with effective therapeutic targets, had been 
discovered for these malignancies. Among the- 
se, circRNAs stood out as a promising area of 
focus for targeted therapies, holding the poten-
tial to significantly enhance patient outcomes.

T-cell lymphoblastic lymphoma (T-LBL)

T-cell lymphoblastic lymphoma (T-LBL) was an 
aggressive malignancy that arose from imma-
ture T-cell precursors or lymphoblasts, show-
casing heterogeneity [149]. This disease was 
marked by the presence of a localized mass, 
with minimal or no detectable involvement of 
blood or bone marrow [149]. Currently, the 
treatment of T-LBL typically involved chemo-
therapy regimens designed for leukemia, incor-
porating a variety of intensified drugs. How- 
ever, the identification of reliable prognostic 
factors for T-LBL remained a challenge [151]. 
Consequently, there was a critical need for the 
discovery of new, reliable biomarkers and ther-
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Table 2. CircRNAs in lymphoma
CircRNAs Also Known As Diseases Functions Levels Pathogenesis Refs
circ-APC hsa_circ_0127621 DLBCL Tumor suppressor ↓ Circ-APC/miR-888 or TET1/APC/Wnt/β-catenin [119]

circCFL1 DLBCL Oncogene ↑ CircCFL1/miR-107/HMGB1 [121]

circ_0003645 DLBCL Oncogene ↑ Circ_0003645/miR-335-5p/NFIB [168]

circ_0000877 hsa_circ_0000877 DLBCL Oncogene ↑ Circ_0000877/miR-370-3p/MAPK4/Hippo [169]

circ_OTUD7A DLBCL Oncogene ↑ Circ_OTUD7A/miR-431-5p/FOXP1 [124]

circPCBP2 DLBCL Oncogene ↑ CircPCBP2/miR-33a/b/PD-L1 [133]

circZNF609 DLBCL Oncogene ↑ CircZNF609/miR-153 [170]

circEAF2 DLBCL (EBV+) Tumor suppressor ↓ CircEAF2/miR-BART19-3p/APC/Wnt/β-catenin [137]

circCDYL MCL Oncogene ↑ CircCDYL/miR-101/EZH2/p21 p27 [145]

circCTNNA1 MCL Oncogene ↑ CircCTNNA1/miR-34a [147]

circADARB1 hsa_circ_0005037 NKTCL Oncogene ↑ CircADARB1/miR-214/p-Stat3 [160]

circKIF4A NKTCL Oncogene ↑ CircKIF4A/miR-1231/PDK1 or BCL11A [167]

circ-LAMP1 hsa_circ_101303 T-LBL Oncogene ↑ Circ-LAMP1/miR-615-5p/DDR2 [153]

circNSUN2 Lymphoma Oncogene ↑ NRF1/CircNSUN2/HMGA1/Wnt [171]

apeutic targets that could be effectively utilized 
throughout the disease’s trajectory [152].

Circ-LAMP1: In their investigation into the role 
of circRNAs in T-LBL, Deng et al. conducted a 
comparative analysis of circRNAs expression 
between T-LBL sample and thymic tissue from 
young children. This study led to the identifica-
tion of circ-LAMP1, a transcript of LAMP gene, 
as the most abundantly expressed circRNA in 
T-LBL tissues [153]. The authors discovered 
that circ-LAMP1 possessed growth-promoting 
and apoptotic inhibitory functions in T-LBL 
cells. Through bioinformatics analysis, they al- 
so identified miR-615-5p, a known tumor sup-
pressor across various neoplasms [154-156], 
as a downstream target of circ-LAMP1 [153]. 
The research team hypothesized that DDR2, a 
receptor tyrosine kinase (RTK) family member 
[157], might be involved in the circ-LAMP1/
miR-615-5p/DDR2 regulatory axis, modulated 
by miR-615-5p [153]. Subsequent research 
corroborated this hypothesis, underscoring the 
significance of circ-LAMP1 in T-LBL, suggesting 
its potential as a therapeutic target and a bio-
marker in T-LBL patients [153].

Natural Killer/T-cell lymphoma (NKTCL)

Natural Killer/T-cell lymphoma (NKTCL), a rare 
and highly aggressive subtype of non-Hodgkin’s 
lymphoma, was frequently associated with 
Epstein-Barr virus (EBV) [158]. This malignancy 
was predominantly extra-nodal, often occurring 
in sites such as the nasal cavity, palate, skin 
and other soft tissue, and was characterized by 
atypical early clinical manifestations, including 

fever, night sweats, and fatigue [159, 160]. 
Accurate diagnosis of NKTCL required immu- 
nohistochemical staining that was positive for 
CD2, CD56, cytoplasmic CD3ε (cCD3ε), and 
cytotoxic molecules specific to this lymphoma 
[161]. The standard treatment protocol typical-
ly combined chemotherapy with radiotherapy 
[162], however, these approaches had notable 
limitations, with a high propensity for disease 
relapse [158]. In the early stages, when symp-
toms are atypical, NKTCL required reliable bio-
marker for precise identification. Despite con-
siderable molecular research, there remained 
a critical need for effective prediction biomark-
ers and therapeutic targets for NKTCL.

CircADARB1: After microarray analysis and 
qRT-PCR assays, Mei et al. identified cir-
cADARB1 as one of the top five upregulated cir-
cular RNAs in NKTCL, whose expression corre-
lated with treatment efficacy rather than de- 
mographic or clinical variables. Notably, higher 
circADARB1 levels were associated with stable 
disease (SD) and progressive disease (PD) dis-
ease states [160]. The knockdown of cir-
cADARB1 enhanced Bax protein expression 
and inhibited NKTCL cell proliferation in both 
cellular and animal models [160]. Subsequent 
researches demonstrated an interaction bet- 
ween circADARB1 and miR-214-3p, as indicat-
ed by a significant decrease in luciferase activ-
ity in a dual luciferase assay. Bioinformatics 
analysis, corroborated by reduced p-Stat3 lev-
els upon circADARB1 knockdown, suggested 
that circADARB1 might regulate the STAT3 
pathway in NKTCL through miR-214-3p [160]. 
To sum up, circADARB1 was notably elevated  
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in the plasma of patients with NKTCL, suggest-
ing its utility as a diagnostic and prognostic 
biomarker.

CircKIF4A: In accordance with earlier research, 
circKIF4A had been established as an onco-
gene, playing a pivotal role in the development 
of various neoplasms, including papillary thy-
roid cancer [163], glioma [164], triple-negative 
breast cancer and NSCLC [165, 166]. He et al., 
through qPCR analysis, documented a remark-
able up-regulation of circKIF4A expression in 
NKTCL cell lines when compared to the normal 
NK cell clones. This overexpression was further 
identified as a robust independent prognostic 
biomarker for NKTCL, inversely associated with 
both overall survival (OS) and progression-free 
survival (PFS) of NKTL patients [167]. Notably, 
the suppression of circKIF4A was found to 
effectively inhibit the glycolysis activity in 
NKTCL cells [167]. Further experimental analy-
sis indicated that circKIF4A potentially spong- 
ed miR-1231, modulating the expression of 
BCL11A and PDK1, which are key players in the 
malignant progression of NKTCL. This interac-
tion delineated a novel circKIF4A/miR-1231/
BCL11A or PDK1 axis that could be targeted 
therapeutically [167] (Figure 2).

Conclusions and perspective

In summary, circRNA had emerged as great 
molecular entities, particularly in the context of 
malignant diseases pathogenesis. The advent 
of precision medicine had intensified the de- 
mand for more refined diagnostic and thera-
peutic modalities for lymphoproliferative disor-
ders. The researches described above had 
underscored the significant role that circRNA 
played in the initiation and advancement of 
these diseases, suggesting their potential to 
serve as both biomarker for disease detection 
and progression, as well as targets for thera-
peutic intervention.

Nonetheless, the journey from bench to bed-
side for circRNA applications in clinical settings 
was fraught with challenges that must be sur-
mounted. Many studies had thus far only estab-
lished the suppressive or oncogenic effects of 
specific circRNA in vitro, necessitating further 
validation of their roles and the elucidation  
of their underlying pathological mechanisms 
through rigorous in vivo experimentation. 
Moreover, the landscape of circRNA research 

was currently dominated by investigations into 
common lymphoproliferative diseases, with a 
dearth of studies focusing on rarer conditions. 
This disparity underscores an urgent need  
for additional research endeavors to address 
these knowledge deficits and expand the 
understanding of circRNA’s role across the full 
spectrum of lymphoproliferative diseases.

Furthermore, the transition from molecular 
insights to tangible clinical benefits hinged on 
the execution of extensive clinical research and 
experimental validation. Future studies must 
be designed to not only confirm the diagnostic 
and prognostic value of circRNAs but also to 
explore their utility in guiding personalized 
treatment strategies. This included assessing 
the efficacy and safety of circRNA-based thera-
pies, as well as their potential to complement 
or even surpass existing treatment paradigms.

In essence, while the potential of circRNAs in 
the realm of lymphoproliferative diseases was 
undeniably promising, the path to clinical appli-
cation was complex and required a concerted, 
multidisciplinary effort. The scientific commu-
nity must continue to delve into the intricacies 
of circRNA biology, while simultaneously foster-
ing collaboration between researchers, clini-
cians, and regulatory bodies to ensure that the 
full potential of circRNAs was realized in the 
fight against lymphoproliferative diseases.
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