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Abstract: Lenvatinib (LEN) is a multi-target TKI, which plays a pivotal role in the treatment of advanced hepatocellu-
lar carcinoma (HCC). The inevitable occurrence of drug resistance still prevents curative potential and is deleterious 
for the prognosis, and a growing body of studies is accumulating, which have devoted themselves to unveiling its 
underlying resistance mechanism and made some progress. The dysregulation of crucial signaling pathways, non-
coding RNA and RNA modifications were proven to be associated with LEN resistance. A range of drugs were found 
to influence LEN therapeutic efficacy. In addition, the superiority of LEN combination therapy has been shown to 
potentially overcome the limitations of LEN monotherapy in a series of research, and a range of promising indicators 
for predicting treatment response and prognosis have been discovered in recent years. In this review, we summarize 
the latest developments in LEN resistance, the efficacy and safety of LEN combination therapy as well as associated 
indicators, which may provide new insight into its resistance as well as ideas in the treatment of advanced HCC.
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Introduction

Liver cancer is the fifth most common tumor, 
and also the third leading of cancer mortality 
worldwide. There are approximately 870,000 
new cases and approximately 760,000 deaths 
of liver cancer in 2022, and the overall situa-
tion is not optimistic. Hepatocellular carcinoma 
(HCC) is the most common type of liver cancer 
with an insidious onset and a rapid progres-
sion, accounting for 75-85% of the total, and 
more than half of patients are diagnosed at the 
advanced stage and have lost the opportunity 
for surgical resection [1]. Systemic chemother-
apy is traditionally considered the main cura-
tive approach contributing to the improvement 
of both life quality and survival, but associated 
severe adverse reactions and extremely high 
drug resistance incidences made it difficult to 
achieve ideal therapeutic efficacy [2].

In 2007, the arrival of sorafenib (SOR), initially a 
multi-targeted tyrosine kinase inhibitor (TKI), 

considerably transformed this circumstance, 
which undoubtedly opened a new door for tar-
geted therapy and served as the solitary first-
line targeted drug for HCC therapy over the past 
decade, albeit the overall survival (OS) was pro-
longed only 2.8 months (10.7 vs 7.9 months) 
[3]. In recent years, systemic therapy for HCC 
has achieved remarkable advancements, and 
the advent of lenvatinib (LEN) broke the embar-
rassing situation. The continuous approval of 
molecular targeted drugs including cabozan-
tinib, ramucirumab and bevacizumab, and im- 
mune checkpoint inhibitors (ICIs) including ni- 
volumab and pembrolizumab, as well as the 
emergence of the breakthrough combination 
therapy of atezolizumab/bevacizumab (ATEZ/
BEV), which has greatly improved the prognosis 
of HCC [4]. However, the rise in the incidence  
of HCC has overshadowed this favorable sce-
nario to a certain extent, and drug resistance, 
adverse reactions, individual differences, and 
other factors persistently impede our progress.
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LEN, a multi-target TKI, directly inhibits related 
RTKs, including the platelet-derived growth fac-
tor receptor (PDGFR), KIT, and RET, as well as 
selectively suppresses the VEGFR1-3 and fibro-
blast growth factor receptors (FGFR1-3) [5]. Six 
years ago, the REFLECT study reported the 
superiority of LEN in OS, progression-free sur-
vival (PFS), time to progression (TTP), and 
objective response rate (ORR) [6, 7]. Despite 
LEN’s considerable role in systemic therapy in 
the past few years, acquired resistance is clini-
cally inevitable. A growing number of scientists 
have devoted themselves to deciphering the 
underlying mechanisms of LEN resistance and 
searching for new therapeutic targets, potential 
diagnostic markers, and prognostic indicators. 
Besides, combination therapy is undoubtedly 
identified as the future direction, with the aim 
of investigating the safety and clinical effica-
cies of various combination therapies, and a 
burgeoning number of studies have emerged. 
In our study, we concentrated our topics on 
these two aspects, collated and summarized 
the safety and therapeutic efficacy of LEN com-
bination therapy in HCC (Supplementary Table 
1), and the LEN resistance mechanism.

Advances of lenvatinib monotherapy in ad-
vanced HCC

Advances of lenvatinib monotherapy in ad-
vanced HCC

The REFLECT trial, a multicenter, phase III, ran-
domized, noninferiority study, has brought a 
new dawn to the targeted molecular-targeted 
therapy of HCC [7]. It revealed that, compared 
with the SOR group, the LEN group exhibited 
the longer mOS (13.6 vs 12.3 months) and 
mPFS (7.3 and 3.6 months), the higher ORR 
(40.6 vs 12.4%) and DCR (73.8 vs 58.4%), 
according to mRECIST criteria, respectively. The 
tumor response in a series of studies referred 
to in our review was evaluated by the RECIST 
v.1.1 or mRECIST criteria, the evaluation meth-
od of tumor response not mentioned is mRE-
CIST criteria by default. The relatively satisfac-
tory efficacy and safety of LEN determined its 
clinical superiority, and it was approved by the 
Food and Drug Administration of the United 
States in August 2018 for the first-line treat-
ment of patients with advanced uHCC. This 
section primarily concentrated on identifying 
potential prognostic indicators that may be 

capable of directing clinical medication and 
prediction of prognosis.

Biomarkers for guiding lenvatinib therapy and 
predicting prognosis

Within the context of examining the linkages 
between nutritional status and the efficacy of 
LEN therapy, the geriatric nutritional risk index 
(GNRI) and skeletal muscle index (SMI) were 
identified as key indicators of LEN treatment. 
GNRI is used to assess the nutritional status of 
aging patients, matched formula is calculated 
as follows: GNRI = 1.489 × serum albumin 
(g/L) + [41.7 × body weight (kg)/ideal body 
weight (kg)] [8]. Low GNRI scores have been 
linked to unfavorable outcomes in patients 
afflicted with heart failure [9], chronic hemodi-
alysis [10], and malignancy [11], etc. Akiyoshi et 
al. conducted a retrospective analysis involving 
61 HCC patients undergoing LEN treatment 
and observed that those with high GNRI levels 
(>98, n=35) exhibited a reduced discontinua-
tion rate (46.2 vs 17.1%, P=0.014), higher PFS 
(HR: 1.83; 95% CI: 0.996-3.351, P=0.047) 
[12]. Concurrently, SMI signifies skeletal mus-
cle mass, and the matched formula is calculat-
ed as follows: SMI = subcutaneous fat area 
(cm2)/height2 (m2), which has been detected 
intimately associated with poor prognosis in 
tumors [13-15]. Haruki et al. retrospectively 
enrolled 100 uHCC patients receiving LEN ther-
apy and examined the influence of SMI on 
patient survival prognosis. Based on the cre-
ation of sarcopenia assessment criteria of the 
Japan Society of Hepatology, low SMI is de- 
fined as <42 cm2/m2 for men and <38 cm2/m2 
for women [16]. Their finding indicated that the 
high SMI group has the lower withdrawal rate 
(17.1 vs 39.0%, P=0.042), the longer mOS 
(11.77 vs 8.80 months, P=0.021), and mTTF 
(7.67 vs 4.63 months, P=0.010) [17].

The frequent biomarkers of systemic inflam- 
mation such as c-reactive protein (CRP) levels, 
CRP to albumin ratio (CAR), Glasgow prognostic 
score (GPS), platelet-to-lymphocyte ratio (PLR), 
and neutrophil to lymphocyte ratio (NLR) have 
been consistently confirmed to be associated 
with LEN therapeutic effect across multiple 
studies. Okumura et al. enrolled 125 uHCC 
patients treated with LEN and observed that 
those with low CRP levels (<0.5 mg/dL) exhi- 
bited the longer mOS (22.9 vs 7.8 months, 
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P<0.001) and median time to treatment fai- 
lure (TTF) (8.5 vs 4.4 months, P=0.007) [18]. 
Similarly, Toshifumi et al. discovered that the 
lower CAR ratio group (<0.108) had the longer 
mOS (27.2 vs 13.3 months, P<0.001) and 
mPFS (8.8 vs 5.6 months, P<0.001) [19]. GPS, 
a predictive index derived from serum CRP and 
albumin levels, categorizes patients into three 
groups: GPS 0 denotes absence of both elevat-
ed CRP and hypoalbuminemia, GPS 1 indicates 
presence of either condition, and GPS 2 signi-
fies existing of both conditions. This scoring 
system has previously proven useful in predict-
ing cancer outcomes [20-22]. Toshifumi et al. 
examined 508 Child-Pugh A uHCC patients 
undergoing LEN therapy and identified that 
high GPS scores may be related to poor out-
comes. The study revealed that the mOS for 
patients assessed as GPS 0, 1 and 2 was 28.5, 
16.0, and 9.1 months, respectively (P<0.001), 
while the mPFS was 8.8, 6.8 and 3.8 months, 
respectively (P<0.001) [23]. Otherwise, PLR, an 
inflammatory indicator frequently linked to poor 
prognosis across a range of tumor types [24, 
25], was further investigated by Toshifumi et 
al., who recruited 283 uHCC patients with LEN 
therapy. They found that PLR (≥150) was sig- 
nificantly correlated with the shorter OS and 
PFS [26]. Additionally, NLR has been reported 
to be associated with poor prognosis in many 
malignancies [27]. Toshifumi et al. recruited 
237 uHCC patients and found that NLR≥4 was 
associated with poor OS and PFS as well as 
shorter DCR (67.3 vs 85.5%, P=0.007) [28].

To evaluate whether EGFR/ERBB2 alterations 
is a predictor of LEN resistance during initial 
treatment, Lim et al. retrospectively enrolled 
46 HCC patients with baseline ctDNA profiling. 
These patients were categorized into three 
groups: Group 1 consisted of patients with 
EGFR/ERBB2 alterations before LEN therapy 
(n=6), Group 2 consisted of patients without 
EGFR/ERBB2 alterations before LEN therapy 
(n=32), and Group 3 consisted of patients with 
EGFR/ERBB2 alterations before PD-1 therapy 
(n=17). Compared to group 1, group 2 had the 
higher DCR (62.5 vs 20%, P<0.05), and had 
longer mPFS (5.9 vs 2.2 months, P<0.05) and 
mOS (9.2 vs 3.9 months, P=0.08). This indicat-
ed that EGFR/ERBB2 alterations in patients 
may be associated with poor prognosis and 
LEN resistance in HCC patients [29].

Bi et al. retrospectively enrolled 9 patients with 
uHCC who received LEN treatment after liver 
biopsy. Through immunohistochemical staining 
and multicolor flow cytometry, they observed 
that patients with objective responses (n=4) 
had significant infiltration of T cells and PD-L1-
expressing macrophages in and around the 
HCC tissue (P<0.05). They propose that T cell 
infiltration and PD-L1 expression of macro-
phages may act as potential predictors of LEN 
response in HCC treatment [30].

In their research conducted by Shigesawa et 
al., it was found that among HCC patients ex- 
hibiting low serum FGF19 levels (<194 pg/ml) 
and receiving LEN therapy, the ORR of LEN ther-
apy was 86% (12/14), which was significantly 
higher than 31% (4/13) in patients with high 
FGF19 expression [31]. Osamun et al. reported 
a case of HCC with high FGFR4 expression 
which showed a better therapeutic effect for 
LEN after the failure of SOR treatment [32]. 
Norifumi et al. retrospectively analyzed 31 
recurring uHCC patients including 16 FGFR4-
positive patients and 15 FGFR4-negative pa- 
tients. All of these participants underwent LEN 
therapy and displayed evidence suggesting 
FGFR4-positive individuals having a superior 
ORR (68.8 vs 20.0%, P=0.0113) and improved 
progression-free survival (PFS; P=0.0052) [33]. 
Similarly, the longer mPFS (5.5 vs 2.5 months, 
P=0.01) and higher ORR (81 vs 31%, P=0.006) 
were also detected in 57 uHCC patients with 
immunohistochemically positive expression for 
FGFR4 [34].

To explore the relationship between well-con-
trolled viremia and the efficacy of treatment 
with LEN, a total of 129 patients were enroll- 
ed in Xiao et al.’s study, including 85 HBV-
associated HCC patients and 44 HCV-as- 
sociated HCC patients. They identified either 
patients with undetectable virus or patients 
receiving antiviral therapy for at least 6 months 
prior to LEN treatment as well-controlled vire-
mia patients. It was confirmed that both HBV- 
and HCV-HCC patients with well-managed vire-
mia exhibited longer PFS (8.8 vs 3.1 months, 
P<0.001) and OS (30.2 vs 12.8 months, 
P=0.041), which were significantly better than 
those in the uncontrolled viremia group. De- 
spite this, no significant correlation was eluci-
dated between HBV or HCV infections and  
the course of tumor progression among LEN-
treated HCC patients [35].
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Advances of lenvatinib combination therapy in 
advanced HCC

Advances of lenvatinib plus transcatheter arte-
rial chemoembolization therapy in advanced 
HCC

A comprehensive analysis was performed to 
assess the therapeutic potency and safety pro-
file of the LEN+transcatheter arterial chemo-
embolization (TACE) therapy for uHCC with por-
tal vein tumor thrombus (PVTT). A single study 
retrospectively analyzed a cohort of 12 HCC 
patients with PVTT who received consecutive 
combined therapy. The results unveiled that 
the mOS and mPFS were 16.9 and 6.15 mon- 
ths. Moreover, and the ORR and DCR were 75% 
and 91.7%, respectively. Notably, no treatment-
related deaths or severe adverse reactions 
(grade 4 events) were reported in their study 
period [36].

LEN plus TACE vs TACE: To compare the efficacy 
and safety between LEN+TACE vs TACE, a num-
ber of associated clinical trials are identified. 
Long et al. enrolled 46 patients treated with 
double therapy and 57 patients treated with 
TACE therapy. It was shown that the ORR in the 
LEN+TACE group was higher than that in the 
TACE group (69.57 vs 40.35%, P<0.05). No sig-
nificant difference in 1-year and 2-year PFS 
rates and 1-year OS rates between the two 
groups, but the 2-year OS rate in the LEN+TACE 
group was significantly higher than that in the 
TACE group (73.91 vs 50.88%, P=0.025). Al- 
though all reported TRAEs were manageable, 
the frequency of adverse events including 
hypertension, diarrhea, and gingival bleeding 
was notably greater in the double therapy group 
(P<0.05) [37]. Liu et al. retrospectively ana-
lyzed 66 patients diagnosed with BCLC sta- 
ge B2 HCC, of whom 34 patients underwent 
LEN+TACE therapy while the remaining 32 pa- 
tients received solely TACE therapy. In double 
therapy group, the 6-month (97.1 vs 93.8%), 
1-year (85.3 vs 81.1%), and 2-year (76.3 vs 
45.4%) OS rates (P=0.023) were dramatically 
prolonged than that in TACE group, despite no 
significant disparity in PFS rates (P=0.510) 
[38]. Xie et al. retrospectively enrolled 104 
uHCC patients and classified them into the 
LEN+TACE group (n=53) and TACE group (n=51). 
Their findings elucidated an enhanced ORR 
(77.36 vs 56.36%, P<0.05) in the LEN+TACE 

group as well as prolonged 12-month (81.1 vs 
64.7%, P<0.05) and 18-month OS rates (69.8 
vs 49.1%, P<0.05), yet no significant difference 
emerged in the incidence of TRAEs and 6-month 
OS rate between the two groups (P>0.05) [39]. 
Chen et al. retrospectively evaluated a cohort 
of 215 uHCC patients, to minimize the selec-
tion bias, 34 patients of the LEN+TACE group 
and 68 patients of the TACE group were select-
ed in a ratio of 1:2. The mPFS (8.3 vs 4.6 
months, P=0.008) and mOS (27.7 vs 18.4 
months, P=0.043) were prolonged, and the 
ORR (67.6 vs 39.7%, P=0.008) was dramatical-
ly increased in the LEN+TACE group [40]. Fu et 
al. retrospectively enrolled 120 patients treat-
ed with either LEN+TACE therapy (n=60) or 
TACE therapy (n=60). The LEN+TACE group ex- 
hibited higher ORR (68.3 vs 31.7%, P<0.001) 
and superior 1-year and 2-year OS rates (88.4 
vs 79.8%; 79.2 vs 49.2%, P=0.047), as well as 
higher 1-year and 2-year PFS rates (78.4 vs 
64.7%; 45.5 vs 38.0%, P<0.001). The most 
common TRAEs reported in the LEN+TACE gr- 
oup were decreased albumin (55.0%), hyper-
tension (48.3%), and decreased platelet count 
(46.7%), all of which were manageable [41].

LEN plus TACE vs LEN: To evaluate the efficacy 
and safety of LEN+TACE therapy vs LEN mono-
therapy, Kuroda et al. enrolled a total of 247 
uHCC patients who had been administered 
either LEN or LEN+TACE therapy and identified 
63 patients of each group after propensity 
score matching (PSM). It was found that mOS 
(31.2 vs 13.9 months, P=0.002) and mPFS 
(12.2 vs 7.1 months, P=0.037) in the LEN+TACE 
group were significantly superior to those in  
the LEN therapy group. Furthermore, the dou-
ble therapy group exhibited more satisfactory 
ORR (61.9%) and DCR (74.6%). No statistical 
difference was reported in TRAEs between the 
two groups [42]. Peng et al. initiated a multi-
center Phase III trial involving 338 uHCC 
patients, these subjects were randomly classi-
fied into the LEN+TACE group (n=170) and LEN 
group (n=168) in equal proportion. It was 
detected that the LEN+TACE group had the lon-
ger mOS (17.8 vs 11.5 months, P<0.001) and 
mPFS (10.6 vs 6.4 months, P<0.001), and the 
higher ORR (54.1 vs 25.0%, P<0.001) and DCR 
(94.1 vs 73.2%, P<0.001). In addition, multi-
variate analysis indicated that PVTT and treat-
ment allocation served as independent risk  
factors for OS [43]. Ando et al. retrospectively 
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enrolled 88 patients classified into LEN+TACE 
group (n=30) and LEN group (n=58). After PSM, 
19 patients from each group were chosen to 
analyze the prognosis. The LEN+TACE group 
had the relatively longer mPFS (11.6 vs 10.1 
months, P=0.019) and mOS (not reached vs 
16.9 months, P=0.007), and had higher inci-
dences of AST/ALT elevation and fever [44].

To evaluate the clinical efficacy and safety of 
LEN+drug eluting bead-TACE (DEB-TACE) thera-
py and LEN monotherapy. One study showed 
that uHCC patients receiving LEN+DEB-TACE 
therapy (n=142) had the longer mOS (15.9 vs 
8.6 months, P=0.0022) and mPFS (8.6 vs 4.4 
months, P<0.001), and the higher ORR (46.48 
vs 13.05%, P<0.001) than those receiving LEN 
therapy (n=69). The most common TRAEs in 
the LEN+DEB-TACE and LEN groups were ele-
vated AST levels (54.9%) and fatigue (46.4%), 
respectively, which were almost all manageable 
[45]. Another retrospective study included 118 
uHCC patients with LEN+DEB-TACE therapy and 
182 uHCC patients with LEN therapy, 78 pairs 
of patients were retained after PSM. It was 
found that the double therapy group had the 
higher ORR (57.7 vs 25.6%, P<0.001), 6-month 
and 12-month OS rates (88.5 vs 71.4%; 67.6 vs 
43.4%), and 6-month and 12-month PFS rates 
(60.3 vs 42.3%; 21.1 vs 10.3%), and also 
acquired the longer TTP (15.7 vs 11.3 months, 
P<0.001) and mOS (8.0 vs 5.0 months, P= 
0.003). Moreover, vascular invasion and treat-
ment mode were detected as independent pre-
dictors for OS and TTP [46].

LEN plus TACE vs SOR plus TACE: To evaluate 
the safety and therapeutic efficacy between 
LEN+TACE vs SOR+TACE therapy, an extensive 
meta-analysis encompasses the LEN+TACE 
group (n=261) and the SOR+TACE group (n= 
337). It was shown that LEN+TACE therapy 
group had the higher rate of odds ratio (OR) for 
ORR (OR: 3.63; 95% CI: 1.89-6.95; I squared 
statistic (I2) =57%, P<0.001) and DCR (OR: 
3.78; 95% CI: 2.00-7.16; I2=52%, P<0.001), 
and had the longer OS (HR: 0.67; 95% CI: 0.52-
0.85; I2=1%, P=0.001) and PFS (HR: 0.49; 95% 
CI: 0.88-0.62, P<0.001) and TTP (HR: 0.62; 
95% CI: 0.45-0.84, P=0.002) compared to 
SOR+TACE group. And, the incidences of hyper-
tension and proteinuria were dramatically in- 
creased in the LEN+TACE group, which was in 

contrast to the decreased incidence of hand-
foot-skin reaction [47]. There were several  
clinical studies suggesting the superiority of 
LEN+TACE therapy as follows. Xu et al. enrolled 
a total of 84 uHCC patients and divided them 
into the SOR+TACE group (n=24) and LEN+TACE 
group (n=25). The findings indicated that the 
LEN+TACE group had the longer mOS (13 vs 8 
months, P<0.05) and mPFS (10 vs 6.5 months, 
P<0.05), and the higher DCR (86.0 vs 76.7%, 
P=0.03) and ORR (62.8 vs 46.3%, P=0.027). 
With respect to TRAEs, the LEN+TACE group 
exhibited a higher incidence of diarrhea, hand-
foot syndrome, hypertension, and rash, albeit 
these were all controllable [48]. Yang et al. 
recruited 116 HCC patients with PVTT receiv- 
ing LEN+TACE therapy (n=59) or SOR+TACE 
therapy (n=57). It was observed that the LEN+ 
TACE group had the longer mOS (16.4 vs 12.7 
months, P=0.025), and the higher ORR (60.7 vs 
38.9%, P=0.022). The TRAEs of such two thera-
pies were all comparably safe and well tolerat-
ed [49]. Zhang et al. retrospectively evaluated  
a cohort of 112 patients receiving either 
LEN+TACE therapy (n=53) or SOR+TACE therapy 
(n=59). The LEN+TACE group had the longer 
mPFS (10.7 vs 6.0 months, P=0.002) and mOS 
(30.5 vs 20.5 months, P=0.018). Additionally, 
the higher DCR (81.1 vs 61.0%, P=0.020) and 
ORR (54.7 vs 44.1%, P=0.260) were also ob- 
served in the LEN+TACE group. Moreover, all 
TRAEs were comparable between the two 
groups [50].

To explore the efficacy and tolerability of 
LEN+DEB-TACE compared to SOR+DEB-TACE in 
the treatment of uHCC. Xu et al. retrospectively 
analyzed 150 patients and found that, in the 
LEN+DEB-TACE group (n=50), the ORR was sub-
stantially upraised (64.0 vs 33.3%, P=0.008), 
the OS and TTP were significantly prolonged 
than that in SOR+DEB-TACE group (n=100). 
Furthermore, subgroup analysis indicated that 
among patients with PVTT, the LEN+DEB-TACE 
regimen exhibited a superior OS and TTP, and 
patients with FGF21 amplification in the LEN+ 
DEB-TACE group had longer OS. In addition, the 
incidence of hand and foot skin reactions was 
significantly reduced in the LEN+DEB-TACE 
group (32.0 vs 49.0%, P=0.048), yet the inci-
dence of proteinuria (26.0 vs 10.0%, P=0.010) 
was significantly higher than that in the SOR+ 
DEB-TACE group [51].
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Advances of lenvatinib and atezolizumab/
bevacizumab therapy in advanced HCC

LEN therapy after ATEZ/BEV therapy failure: 
Yano et al. reported a 68-year-old male uHCC 
patient with adrenal metastasis, who was dis-
continued due to adrenal metastatic tumor 
enlargement after 3 weeks of treatment with 
ATEZ/BEV, and his drug was replaced with LEN 
monotherapy. Intriguingly, following 1 month 
treatment of LEN, he retrieved partial response 
(PR) and received conversion surgery therapy. 
Else, there were no significant complications 
during a 4-month follow-up without adjuvant 
therapy [52].

To evaluate the therapeutic efficacy of LEN in 
uHCC patients who have previously undergone 
ATEZ/BEV therapy. Hisanori et al. enrolled 20 
patients who received LEN after ATEZ/BEV 
treatment, and found that the ORR and DCR 
were 25.0 and 95.0%, respectively according  
to RECIST v.1.1 criteria, the mPFS and mOS 
were 6.0 and 10.5 months, respectively [53]. In 
addition, another investigation encompassed 
14 uHCC patients receiving LEN therapy sub- 
sequent to ATEZ/BEV therapy failure. The DCR 
was 57.1%, mPFS and mOS were 4.2 and 8.3 
months, respectively, and the TRAEs were all 
tolerable [54]. Alternatively, one study involved 
137 HCC patients treated with ATEZ/BEV and 
observed the mOS and mPFS were 21.1 and 
10.5 months, respectively. And, 50 patients 
progressed during ATEZ/BEV therapy, of whom 
24 patients re-engaged in LEN therapy and har-
vested the encouraging mOS of 15.3 months, 
mPFS of 4.0 months, and ORR of 54.2% from 
the initiation of LEN therapy. And, the TRAEs in 
LEN therapy patients were all manageable [55].

LEN vs ATEZ/BEV: To elucidate the therapeutic 
efficacy and safety of LEN vs ATEZ/BEV. Toshi- 
fumi et al. recruited a total of 358 uHCC 
patients treated with ATEZ/BEV (n=177) or LEN 
(n=181) and found that mPFS in the ATEZ/BEV 
group was substantially longer than that in the 
LEN group (10.8 vs 7.3 months, P=0.019) [56]. 
The better prognosis and safety of ATEZ/BEV 
as the first-line therapy were also demonstrat-
ed in several studies. Takashi et al. retrospec-
tively enrolled 304 patients divided into ATEZ/
BEV group (n=152) and LEN group (n=152). It 
was observed that ATEZ/BEV group had the 
longer mPFS (8.3 vs 6.0 months, P=0.005) and 

mOS (not reached vs 20.2 months, P=0.039), 
higher surgical conversion rate (8.6 vs 1.9%, 
P=0.007). The ATEZ/BEV group demonstrated 
a lower incidence of anorexia, fatigue, and 
grade 3+ proteinuria, and a higher rate of grade 
3+ bleeding [57]. Similarly, one prospective 
multi-center study included 272 HCC patients 
treated with ATEZ/BEV (n=90) or LEN (n=182), 
and indicated that ATEZ/BEV group (n=66) had 
the longer mPFS (8.8 vs 5.2 months, P=0.012) 
after PSM (1:1). Additionally, the rate of discon-
tinuation due to AEs was dramatically reduced 
in ATEZ/BEV group (12.1 vs 28.8%, P=0.018) 
[58].

A single study aimed to evaluate the efficacy 
and safety of ATEZ/BEV vs LEN in the treatment 
of uHCC patients with advanced age (>80 
years), which encompassed 170 patients re- 
ceiving LEN therapy and 92 patients receiving 
ATEZ/BEV therapy. Additionally, no statistical 
discrepancy in ORR, DCR, mPFS, and mOS was 
discerned between the two groups, yet the inci-
dence of post-progressive treatment in the 
ATEZ/BEV group was notably higher (59.0 vs 
35.7%, P=0.01), and the rate of discontinuation 
due to AEs was lower than that in the LEN group 
(20.7 vs 40.6%, P=0.001) [59].

Conversely, there still existed some studies 
reporting LEN’s superiority, particularly in pa- 
tients with special clinical characteristics. One 
investigation incorporated 217 uHCC patients 
with Child-Pugh B, demonstrating that the mOS 
in 152 patients receiving LEN therapy was  
prolonged compared to 65 patients receiving 
ATEZ/BEV therapy (13.8 vs 8.2 months, 
P=0.005), with no statistically significant dis-
parity observed for mPFS within their research 
[60]. Else, another study integrated 8 retro-
spective cohort studies encompassing a total 
of 3690 uHCC patients, subgroup analysis indi-
cated that LEN exhibited positive results in OS 
(HR 1.32, 95% CI 1.04-1.67, P=0.380) among 
the non-viral infected patients, despite superior 
survival outcome of PFS and reduced incidence 
of 3/4 AEs being observed in ATEZ/BEV group 
[61]. In a retrospective study involving 2205 
uHCC patients: LEN group (n=1341) and ATEZ/
BEV group (n=864), no difference in OS was 
identified between the two groups (P=0.739), 
but subgroup analysis suggested that ATEZ/
BEV prolonged the OS in patients with viral 
infection (P=0.024), while LEN prolonged OS in 
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patients with nonalcoholic steatohepatitis/ 
nonalcoholic fatty liver disease (P=0.014) [62].

LEN plus TACE vs ATEZ/BEV plus TACE: To eval-
uate the efficacy and safety of LEN+TACE vs 
ATEZ/BEV+TACE in treatment for uHCC. Zhao et 
al. enrolled 34 patients in each of two groups, 
and discovered no substantial difference in the 
6-month, 12-month OS rates, the mPFS, ORR, 
and DCR between the two groups according  
to RECIST v.1.1 or mRECIST criteria. Besides, 
the LEN+TACE group has a higher incidence  
of hand-foot skin reaction (35.3 vs 5.9%, 
P=0.003) and proteinuria (17.9 vs 2.9%, 
P=0.046) compared to those in the ATEZ/
BEV+TACE group [63].

Biomarkers for guiding atezolizumab/bevaci-
zumab or lenvatinib therapy and predicting 
prognosis: C-X-C Motif Chemokine Ligand 9 
(CXCL9) is a ligand of the chemokine receptor 
CXCR3, which can induce lymphocyte infiltra-
tion into the lesion site and inhibit tumor growth 
[64]. To investigate the correlation between 
serum levels of CXCL9 and ATEZ/BEV thera-
peutic efficacy in uHCC, Hosoda et al. demon-
strated that the serum levels of CXCL9 were 
considerably diminished in uHCC with early pro-
gressive disease (PD), and patients with elevat-
ed serum levels of CXCL9 (≥333 pg/mL) ex- 
hibited a reduced early PD occurrence (2.9 vs 
35.3%, P=0.0012) and prolonged mPFS (7.57 
vs 4.20 months, P=0.0084). Conversely, in the 
LEN therapy group, it was determined that the 
patients with low serum levels of CXCL9 (<333 
pg/mL) had a reduced early PD frequency (4.9 
vs 14.6%, P=0.15) and higher ORR (69.8 vs 
43.9%, P=0.027), else, patients with low se- 
rum levels of CXCL9 (<308 pg/mL) had a mar-
ginally significantly longer mOS (61.67 vs 39.75 
months, P=0.096) [65].

It was observed that CD8+ tumor-infiltrating 
lymphocytes (TILs) have undergone exhaustion 
in the tumor microenvironment (TME) of HCC, 
and reversing this process may augment HCC 
therapy [66, 67]. To investigate whether CD8+ 
TILs can predict the response of HCC patients 
to ATEZ/BEV or LEN therapy. Akifumi et al. 
enrolled 39 uHCC patients treated with ATEZ/
BEV (n=24) or LEN (n=15). By immunohisto-
chemical staining of HCC tissues prior to sys-
tematic treatment, it was found that, in the 
ATEZ/BEV group, patients with high CD8+ TILs 
expression (n=12) had the higher ORR (66.6 vs 

33.3%, P=0.012) and DCR (83.3 vs 50.0%, 
P=0.031) and longer mPFS (6.9 vs 4.7 months, 
P=0.047). In addition, it was found that patients 
with high CD8+ TILs expression (n=5) had high-
er ORR (40 vs 20%, P=0.417), lower DCR (40 vs 
80%, P=0.121) and shorter mOS (6.3 vs 9.5 
months, P=0.315), but the sample size was too 
small to draw rational conclusion [68].

Advances of lenvatinib plus radiotherapy 
therapy in advanced HCC

It was widely acknowledged that radiotherapy 
(RT) exhibited encouraging advantages in treat-
ing uHCC patients with PVTT. Many studies 
have demonstrated the superiority of LEN+RT 
combined with PD-1 and/or TACE therapy in 
uHCC. We summarized the associated studies 
in this section as follows. Qian et al. reported a 
62-year-old female diagnosed with recurrent 
HCC with right atrium (RA) and inferior vena 
cava (IVC) tumor thrombosis, who showed PR 
after receiving LEN+PD-1+RT treatment and 
acquired more than 7 months of PFS with main-
tenance therapy of LEN+PD-1 [69]. Moreover, 
to assess the efficacy and safety of LEN+PD-
1+RT therapy for uHCC patients with main trunk 
portal vein tumor thrombus (Vp4), Li et al. 
enrolled 39 uHCC patients with PVTT (Vp4) 
receiving such triple therapy. Encouragingly, 
the mOS and mPFS were 9.4 and 4.9 months, 
respectively, and the ORR was 61.5%. All TRAEs 
were manageable and no treatment-related 
deaths occurred [70]. Additionally, it was found 
that RT upregulated PD-L1 expression in HCC 
patients and amplified the effects of immuno-
therapy [71, 72].

LEN plus RT vs LEN: To evaluate the efficacy 
and tolerability of LEN+stereotactic body radia-
tion therapy (SBRT) compared to LEN mono-
therapy in uHCC with PVTT. Ji et al. retros- 
pectively analyzed 37 patients treated with 
LEN+SBRT and 77 patients treated with LEN 
treatment. It was discerned that, in the LEN+ 
SBRT group, the mOS (19.3 vs 11.2 months, 
P<0.001) and mPFS (10.3 vs 5.3 months, 
P<0.001) were significantly prolonged, and the 
ORR (56.8 vs 20.8%, P<0.001) was improved 
than that in the LEN group. The subgroup analy-
sis also confirmed the superior prognosis of 
combination therapy in both the Vp1-2 and 
Vp3-4 subgroups. Otherwise, most of the 
TRAEs were controllable, and no statistical dif-
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ference was observed in the incidences bet- 
ween the two groups [73].

A single study suggested that LEN or SOR aug-
mented radio responsiveness in uHCC therapy. 
In vivo experiments revealed that the xenograft 
tumor growth and vascular volume density 
were inhibited in nude mice following 2 weeks 
of treatment with LEN or SOR. Additionally, in 
contrast to treatment for SOR, LEN induced 
vascular normalization more efficaciously and 
promptly, and strongly improved the intratu-
moral microenvironment of HCC, augmenting 
its radio responsiveness [74].

LEN plus RT vs RT: To evaluate the clinical effi-
cacy and safety of LEN+SBRT vs SBRT in the 
treatment of uHCC, Wang et al. retrospectively 
enrolled a total of 144 patients, including 106 
patients who received SBRT therapy and 38 
patients who underwent LEN+SBRT therapy. 
After the PSM, 35 patients from each group 
proceeded to further evaluation, and it was 
shown that the LEN+SBRT group exhibited 
notably prolonged mOS (16.8 vs 11.0 months, 
P=0.043) and mPFS (9.1 vs 3.7 months, P< 
0.001), along with an elevated ORR (54.29 vs 
22.86%, P=0.007). In addition, the majority of 
toxicities observed in the LEN+SBRT group 
were mild to moderate and manageable [75].

LEN plus TACE plus RT vs LEN plus TACE: To 
investigate the efficacy and safety between 
LEN+TACE+ external RT therapy vs LEN+TACE 
therapy for uHCC with PVTT, Dong et al. pro-
spectively recruited a total of 102 patients 
receiving LEN+TACE+RT therapy (n=51) or 
LEN+TACE therapy (n=51). The triple therapy 
group demonstrated superior mOS (22.8 vs 
17.1 months, P=0.031) and mPFS (12.8 vs 
10.5 months, P=0.035), albeit with an incre- 
ased rate of TRAEs (100 vs 64.7%, P<0.001). 
However, there were no significant differences 
noted in the occurrence of grade 3/4 TRAEs 
among these groups (54.9 vs 49.0%, P=0.552) 
[76].

Advances of lenvatinib plus anti-PD-1 plus 
hepatic arterial infusion chemotherapy therapy 
in advanced HCC

Hepatic arterial infusion chemotherapy (HAIC) 
is an extensively utilized strategy for treating 
advanced HCC, and its indications have greatly 
expanded over the last few decades [77]. The 

synergistic effect of LEN+PD-1+HAIC has dem-
onstrated superior outcomes in uHCC treat-
ment, we organized and summarized existing 
pertinent studies detailed below. Yuan et al. 
reported a 52-year-old female patient with ma- 
ssive uHCC, who underwent one cycle of com-
bined therapy (mHAIC+TACE+LEN+PD-1), and 
three cycles of combined therapy (mHAIC+ 
LEN+PD-1), and then achieved complete res- 
ponse (CR). Besides, they also reported a 
57-year-old male uHCC patient with PVTT, who 
received 4 cycles of LEN+PD-1+HAIC therapy 
and achieved PR with a PFS of up to 7 months 
[78]. To evaluate this combined therapy’s effi-
cacy and tolerability, a retrospective study 
included 61 uHCC patients receiving LEN+PD-
1+HAIC therapy, revealing an ORR of 57.4%, 
DCR of 82.0%, and mPFS of 6.0 months. The 
most common TRAEs were neutropenia, ab- 
dominal pain, and elevated AST levels, which 
were all manageable [79]. Besides, Xu et al. ret-
rospectively analyzed 97 uHCC patients with 
high-risk features: Vp4 and/or tumor occupa-
tion ≥50% liver volume (TO≥50%), who received 
LEN+HAIC+PD-1 therapy. The mPFS and mOS 
were 9.8 and 19.3 months, respectively, the 
ORR and DCR were 78.3% and 92.8%, respec-
tively, and TRAEs were all manageable. In their 
study, it was found that the patients with low 
serum levels of procalcitonin (PCT) (≤0.13 ng/
mL) had a better prognosis [80]. Moreover, one 
study retrospectively analyzed the clinical data 
of 98 uHCC patients receiving LEN+PD-1+TACE/
HAIC therapy. The 37 patients were classified 
as potentially resectable (PRP), and the other 
61 patients were defined as non-potentially 
resectable population (NPRP). The ORRs for 
such two groups were 67.9% and 22.9% based 
on RECIST v.1.1 criteria. In the PRP group, 15 
patients underwent surgical resection (3 of 
them achieved pCR), which had the longer 
mPFS (25 vs 13 months, P=0.0025) and mOS 
(not reached vs 21 months, P=0.014) [81].

LEN plus PD-1 plus HAIC vs LEN plus PD-1: To 
explore the efficacy and safety of LEN+PD-
1+HAIC group vs LEN+PD-1 group in uHCC 
patients. Fu et al. retrospectively enrolled a 
total of 142 uHCC patients with PVTT and  
categorized them into either LEN+PD-1+HAIC 
group (n=89) or LEN+PD-1 group (n=53). The 
results indicated that the triple therapy group 
had the superior mOS (26.3 vs 13.8 months, 
P<0.001), mPFS (11.5 vs 5.5 months, P<0.001), 
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and the ORR (61.8 vs 20.8%, P<0.001) were 3 
times higher than those in LEN+PD-1 group. 
Although the occurrence of TRAEs was uprais- 
ed in the LEN+PD-1+HAIC group, most were tol-
erable and manageable [82]. Additionally, Chen 
et al. retrospectively evaluated 170 PD-L1 
staining uHCC patients and subsequently di- 
vided them into two groups: LEN+PD-1+HAIC 
group (n=84) and LEN+PD-1 group (n=86). It 
was found that the mOS (17.7 vs 12.6 months, 
P=0.001) and mPFS (10.9 vs 6.8 months, 
P=0.001) were prolonged in LEN+PD-1+HAIC 
group. And, the incidence of TRAEs was also 
greatly higher than that in the LEN+PD-1 group 
(79.8 vs 62.8%, P=0.015), albeit those TRAEs 
were all controllable [83]. Furthermore, com-
pared with LEN+PD-1 group (n=25), a separate 
study revealed that LEN+PD-1+HAIC group 
(n=45) had the higher ORR (40.0 vs 16.0%, 
P=0.038) and DCR (77.6 vs 44.0%, P<0.001), 
and the longer mOS (15.9 vs 8.6 months, 
P=0.0015) and mPFS (8.8 vs 5.4 months, 
P=0.032) [84]. Similarly, Diao et al. retrospec-
tively analyzed a total of 121 TACE-refractory 
uHCC patients, who received either LEN+PD-
1+HAIC therapy (n=58) or LEN+PD-1 therapy 
(n=63). The ORR (48.30 vs 23.80%, P=0.005) 
and DCR (87.90 vs 69.80%, P=0.02) were 
increased, and the mOS (24.0 vs 13.0 months, 
P=0.001) and mPFS (13.0 vs 7.2 months, 
P<0.001) were dramatically prolonged in LEN+ 
PD-1+HAIC group. Multivariate analysis show- 
ed that cirrhosis, Child-Pugh B and LEN+HAIC+ 
PD-1 therapy served as independent prognos-
tic factors for OS and PFS, respectively. In addi-
tion, the TRAEs were all controllable in both 
groups [85].

LEN plus PD-1 plus HAIC vs LEN plus PD-1 plus 
TACE: To evaluate the clinical efficacy of LEN+ 
PD-1+HAIC vs LEN+PD-1+TACE in the treatment 
of uHCC patients with PVTT and arterio-portal 
shingle (APF). Lin et al. enrolled a total of 95 
patients, including 34 patients in the LEN+PD-
1+HAIC group and 61 patients in the LEN+PD-
1+TACE group. The results indicated that the 
LEN+PD-1+HAIC group had the higher ORR 
(52.9 vs 27.9%, P=0.03) and DCR (100 vs 
88.5%, P=0.001) according to RECIST v.1.1 cri-
teria, along with the longer mOS (25.0 vs 19.3 
months, P=0.035), mPFS (21.74 vs 8.74 
months, P=0.007) and median duration of 
response (mDOR) (20.43 vs 9.13 months, 
P=0.067) [86].

LEN plus PD-1 plus HAIC vs LEN plus HAIC: A 
single study assessed the therapeutic effec-
tiveness and safety between the groups with 
LEN+PD-1+HAIC therapy (n=75) and LEN+HAIC 
therapy (n=74). And, the results showed that 
the LEN+PD-1+HAIC group exhibited a higher 
mOS (16.0 vs 9.0 months, P=0.002) and longer 
mPFS (11.0 vs 6.0 months, P<0.001), and were 
more susceptible to developing hypertension 
(28.00 vs 13.51%, P=0.029) [87]. Furthermore, 
another study retrospectively collected clinical 
information from 145 HAIC refractory uHCC pa- 
tients who received LEN+PD-1+HAIC therapy 
(n=51) or LEN+HAIC therapy (n=51) and found 
that mOS (43.6 vs 18.9 months, P=0.009) and 
mPFS (35.6 vs 9.4 months, P=0.009) in the 
LEN+PD-1+HAIC group were dramatically pro-
longed [88].

LEN plus PD-1 plus HAIC vs LEN plus PD-1 plus 
HAIC plus TAE: To evaluate the effectiveness 
and safety of the combination of LEN+PD-
1+HAIC, supplemented by/without TAE, a re- 
trospective study including 100 patients (50 
patients of each group) revealed the longer 
mOS (14.1 vs 11.3 months, P=0.041) and 
mPFS (5.6 vs 4.4 months, P=0.037), and high-
er ORR (72.0 vs 52.0%, P=0.039) and better 
DCR (88.0 vs 76.0%, P=0.118) in the quadru-
ple therapy group, albeit not statistically signifi-
cant. And, 59% of patients were reported to 
emerge with manageable TRAE of gastrointesti-
nal discomfort [89].

LEN plus PD-1 plus HAIC vs LEN: To evaluate 
the effectiveness and tolerability between 
LEN+PD-1+HAIC therapy and LEN therapy in 
uHCC. One study retrospectively analyzed 157 
patients, categorized as the LEN+PD-1+HAIC 
group (n=71) and LEN group (n=86). The results 
indicated that the LEN+PD-1+HAIC group had 
longer mPFS (11.1 vs 5.1 months, P<0.001) 
and mOS (not reached vs 11 months, P<0.001), 
and the higher ORR (67.6 vs 13.6%, P<0.001). 
In addition, 14.1% of patients in the LEN+PD-
1+HAIC group achieved a CR for all lesions, and 
21.1% attained a CR for intrahepatic target 
lesions. Notably, the occurrence of grade 3/4 
TRAEs was higher in the LEN+PD-1+HAIC group 
but manageable among these participants 
[90].

Biomarkers for guiding LEN plus PD-1 plus 
HAIC therapy and predicting prognosis: There 
still existed several studies that had unearthed 
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relevant biomarkers potentially advantageous 
in directing the LEN+PD-1+HAIC treatment regi-
men. We summarized these findings within this 
section. Lai et al. found that the low C-C motif 
chemokine ligand 28 (CCL28) and betacellulin 
(BTC) levels were positively correlated with poor 
prognosis, which may function as a predictive 
biomarker for such triple therapy [91]. Further- 
more, a retrospective study enrolled 88 uHCC 
patients receiving LEN+PD-1+HAIC therapy and 
revealed that the patients belonging to the low 
NLR group (<3.46) exhibited superior OS (not 
reached vs 9.6 months, P=0.017) and mPFS 
(18.3 vs 5.3 months, P=0.0015) [92].

Advances of lenvatinib plus HAIC therapy in 
advanced HCC

LEN plus HAIC vs HAIC: To investigate the effec-
tiveness and tolerability of LEN+HAIC vs HAIC 
therapy in uHCC, Long et al. enrolled 132 
patients receiving HAIC therapy and 110 pa- 
tients receiving LEN+HAIC therapy. The 1-year, 
2-year, and 3-year OS rates of the LEN+HAIC 
group were all higher than those in the HAIC 
group (63.6 vs 47.2%, 12.1 vs 11.8% and 3.0 
vs 2.7%, respectively, P<0.001). The BMI and 
AST levels were identified as independent prog-
nostic factors of OS [93]. Along the same lines, 
another small sample research retrospectively 
analyzed the clinical information from 4 uHCC 
patients with HAIC therapy and 9 uHCC patients 
with LEN+HAIC therapy. The ORR was dramati-
cally higher in the LEN+HAIC group (66.7 vs 0, 
P<0.05) based on RECIST v.1.1 criteria, and no 
significant difference in the mOS (7.0 vs 6.0 
months) and mPFS (5.0 vs 3.0 months) was 
found between both groups [94].

LEN plus HAIC vs LEN plus HAIC plus sequential 
ablation: To evaluate the effectiveness and tol-
erability of LEN+HAIC therapy vs LEN+HAIC+ 
sequential ablation therapy in uHCC patients. 
Liu et al. retrospectively analyzed a total of 150 
uHCC patients, with 97 belonging to the LEN+ 
HAIC group and 53 belonging to the LEN+ 
HAIC+ sequential ablation. The mOS (30 vs 
13.6 months, P=0.010) and mPFS (12.8 vs 5.6 
months, P<0.001) were significantly prolonged 
in this triple therapy group. And, there was no 
significant difference in the rate of TRAEs 
observed between these two groups [95].

Advances of lenvatinib vs HAIC therapy in 
advanced HCC

LEN vs HAIC: To compare the effectiveness and 
tolerability of LEN therapy vs HAIC therapy in 
uHCC patients. A comprehensive, multi-center 
cohort study enrolled 244 patients treated with 
either LEN (n=71) or HAIC (n=173). After PSM, a 
total of 52 patients from each group were cho-
sen, the HAIC group had a higher DCR (73.1 vs 
51.9%), and no statistical difference was found 
in ORR (26.0 vs 23.1%, P=0.736) based on the 
RECIST v1.1 criteria, mPFS (3.6 vs 4.0 mon- 
ths, P=0.706) and mOS (10.8 vs 7.9 months, 
P=0.106) between the HAIC and LEN groups. 
Subgroup analysis of patients with high tumor 
burden showed the highly longer OS in the  
HAIC group (10.0 vs 5.4 months, P=0.004). 
Furthermore, no disparity was identified in the 
incidence of grade 3/4 TRAEs between these 
two groups [96].

LEN vs HAIC plus PD-1: To evaluate the effec-
tiveness and tolerability of LEN vs PD-1+HAIC 
therapy in uHCC patients. A retrospective study 
enrolled 118 uHCC patients with vascular inva-
sion and/or extrahepatic spread, categorized 
as the LEN group (n=65) and PD-1+HAIC gr- 
oup (n=53). Compared with the LEN group,  
it was found that the PD-1+HAIC group had lon-
ger mOS (17.1 vs 10.1 months, P=0.005) and 
mPFS (9.3 vs 4.8 months, P=0.006), along with 
higher ORR (47.2 vs 9.2%, P<0.001) and DCR 
(86.8 vs 69.2%, P=0.002) according to RECIST 
v.1.1 criteria. Both groups have an acceptable 
safety profile [97].

Advances of lenvatinib plus anti-PD-1 therapy 
in advanced HCC

It has been widely demonstrated that LEN+PD-1 
therapy has a synergistic effect to increase 
therapeutic efficacy in uHCC, in this segment, 
we primarily discuss the impact and outcome 
of uHCC patients receiving such combination 
therapy. Yang et al. retrospectively analyzed 
378 uHCC patients receiving the LEN+PD-1 
therapy, who exhibited mOS of 17.8 months, 
mPFS of 6.9 months, ORR of 19.6%, and DCR 
of 73.5% [98]. Consistently, Xu et al. retrospec-
tively analyzed 210 patients undergoing LEN+ 
PD-1 therapy, revealing ORR and DCR of 28.1% 
and 75.2% according to RECIST v.1.1 criteria, 
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respectively, and the mOS of 17.2 and mPFS  
of 8.4 months, respectively. Subgroup analysis 
indicated that Child-Pugh A patients had signifi-
cantly longer mOS (18.8 vs 5.9 months) and 
mPFS (9.1 vs 4.4 months) than Child-Pugh B 
patients, patients with albumin-bilirubin (ALBI) 
grade 1 also had a significantly higher mOS 
compared to grade 2/3 patients (23.5 vs 13.4 
months), and patients with ALBI grade 2/3 had 
a higher incidence of grade 3/4 TRAE (57.5 vs 
38.5%) [99]. Sun et al. retrospectively evaluat-
ed the clinical data of 84 uHCC patients receiv-
ing LEN+PD-1 therapy, of whom 31 patients 
with TO≥50% and 30 patients with Vp4 inva-
sion. The mPFS and mOS among these pa- 
tients were 6.6 and 11.4 months, respectively. 
Subgroup analysis showed that patients with 
TO≥50% had a lower ORR (P=0.015) according 
to RECIST v.1.1 criteria and shorter mPFS 
(P<0.001). On the contrary, no substantial dis-
tinction was found in ORR, mPFS and mOS 
between HCC patients with and without tumor 
thrombosis [100].

Furthermore, a retrospective study affirmed 
the favorable efficacy and safety of LEN+PD-1 
therapy in uHCC patients after the progre- 
ssion of original LEN treatment (n=46). This 
study illustrated satisfactory therapeutic out-
comes, reporting the ORR and DCR of 23.9  
and 71.7% according to RECIST v.1.1 criteria, 
and the mPFS and mOS of 6.9 and 14.5 
months. The most common TRAEs were anorex-
ia (43.5%), hypothyroidism (43.5%), and hyper-
tension (36.9%), all of which were all manage-
able [101].

Moreover, to elucidate the distinct outcomes 
between the synchronous and asynchronous 
treatment of LEN+PD-1 in uHCC, a study 
enrolled 213 oligometastatic advanced HCC 
patients and divided them into two groups: the 
simultaneous treatment group (121 patients 
received simultaneous LEN+PD-1 therapy) and 
the asynchronous treatment group (92 patients 
received PD-1 therapy 3 months after receiving 
LEN prior to tumor progression). Compared with 
the asynchronous treatment group, the syn-
chronous treatment group exhibited greater OS 
rates at 12 (93.4 vs 71.5%) and 24 months 
(58.1 vs 25.3%) and significantly higher PFS 
rates at 6 (82.6 vs 63.4%), 12 (42.6 vs 14.2%) 
and 18 months (10.8 vs 0%) [102].

Association between LEN plus PD-1 therapy 
and surgical resection: For those with advanc- 
ed uHCC, preoperative systemic therapy (PST) 
is deemed pivotal in the treatment of advanced 
uHCC patients, improving the surgical conver-
sion rates, although its efficacy and safety are 
unclear. Zhang et al. enrolled 56 uHCC patients 
with BCLC stage B/C receiving the LEN+PD-1 
therapy. The surgical conversion rate was 
55.4%, ORR was 53.6%, and mPFS and the 
mOS were 8.9 and 23.9 months, respectively. 
Of the 31 successfully converted patients, 21 
underwent surgery with the R0 resection rate 
of 85.7%, the pathological complete response 
(pCR) rate of 38.1%, and the 12-month RFS 
rate of 47.6% [103]. Another investigation com-
prised 107 uHCC patients, after LEN+PD-1 the- 
rapy, 30 patients experienced tumor regression 
(15 of them achieved OR) and underwent con-
version surgery, and 10 patients were con-
firmed to reach pCR. After a median follow-up 
of 16.5 months, 28 patients were alive and 11 
of them had tumor recurrence [104]. Overall, it 
was confirmed that such double therapy may 
improve conversion resection rates in initial 
uHCC patients, thereby improving prognosis 
[104].

Furthermore, to evaluate the efficacy and safe-
ty of LEN+PD-1 therapy before surgical resec-
tion, one study involved 147 patients, 49 of 
whom underwent PST prior to HCC surgery and 
98 underwent upfront hepatectomy. In compar-
ison with the UH group, patients in the PST 
group had more intraoperative blood loss and 
blood transfusion, longer postoperative hospi-
tal stay, lower ALBI score after surgery, and liver 
failure occurrence were more common after 
postoperative hepatectomy, nevertheless, the 
30-day morbidity and 90-day mortality were 
similar in both groups [105].

LEN plus PD-1 vs LEN: To evaluate the efficacy 
and safety of LEN+PD-1 therapy vs LEN thera-
py, many researches emerged continuously in 
recent years. Josep et al. executed a global ran-
domized, double-blind, Phase III study (LEAP-
002), including 1309 patients, 794 of whom 
were randomly allocated to the LEN+PD-1 
group (n=395) or the LEN+ placebo group 
(n=399). It was demonstrated that the LEN+ 
PD-1 group had longer mOS (21.2 vs 19.0 
months, P=0.023) and mPFS (8.2 vs 8.0 
months, P=0.047). Moreover, there was no sta-
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tistical disparity in TRAEs and treatment-relat-
ed deaths between the two groups [106]. 
Concurrently, a retrospective study collated 
clinical data from 139 uHCC patients catego-
rized into the LEN+PD-1 group (n=54) and the 
LEN group (n=85). Compared with the LEN ther-
apy group, the double therapy group had longer 
mOS (21.7 vs 12.8 months, P=0.0051) and 
mPFS (11.3 vs 6.6 months, P=0.0128), and 
acquired higher DCR (92.6 vs 74.1%, P=0.006) 
and ORR (38.9 vs 24.7%, P=0.076). Hyper- 
tension was the most common AE in both 
groups, and some immune-related AEs, such 
as hypothyroidism (n=5) and elevated serum 
creatinine (n=3), etc., occurred only in the 
LEN+PD-1 group, all TRAEs were controllable 
[107]. Additionally, another retrospective study 
also supported that in the treatment of uHCC, 
the ORR was higher in the LEN+PD-1 group 
(n=40) than in the LEN group (n=47) (45.0 vs 
23.4%, P=0.03) according to RECIST v.1.1 crite-
ria, and the mPFS (7.5 vs 4.8 months, P=0.05), 
and mOS (22.9 vs 10.3 months, P=0.01) were 
also prolonged in the LEN+PD-1 group. The 
most TRAEs were dermatitis (35.0%), pruritus 
(27.5%), and hypothyroidism (27.5%). Only a 
minor proportion of patients experienced grade 
3/4 toxicity reactions [108]. Similarly, to investi-
gate the efficacy of LEN+PD-1 therapy in uHCC 
patients infected with HBV, another retrospec-
tive study discerned that the LEN+PD-1 therapy 
group exhibited superior longer mOS (21.4 vs 
14 months, P=0.041) and mPFS (8.0 vs 6.3 
months, P=0.015) compared to those in the 
LEN therapy group, and there was no significant 
difference in TRAEs between the two groups. 
The subgroup analysis was conducted to find 
that the Child-Pugh B HCC patients with PVTT 
or extrahepatic diffusion (EHS) possessed high 
sensitivity to LEN+PD-1 therapy which increased 
12-month survival by 38% (higher than 18% in 
the rest of the population) [109]. In addition, 
many studies have compared the therapeutic 
efficacy of LEN+PD-1 therapy and LEN mono-
therapy, which consistently shed light on the 
superiority of such double therapy [110-112].

LEN plus PD-1 vs regorafenib+PD-1: Aiming to 
assess the therapeutic efficacy and safety of 
uHCC patients treated with LEN+PD-1 vs rego-
rafenib (REG) +PD-1 after SOR treatment fail-
ure. Xu et al. enrolled 61 uHCC patients and 
divided them into the LEN+PD-1 group (n=32) 
and REG+PD-1 group (n=29). Based on RECIST 

v.1.1 criteria, the ORR (12.5 vs 10.3%, P= 
0.557) and DCR (71.9 vs 58.6%, P=0.207) 
were improved in the LEN+PD-1 group, and the 
mOS (5.3 vs 4.0 months, P=0.512) and mPFS 
(14.1 vs 13.7 months, P=0.764) were better in 
LEN+PD-1 group, although no statistical differ-
ence was observed between the two groups. All 
TRAEs that happened in these two groups were 
controllable. The findings of this study suggest-
ed that the PD-1+LEN/REG therapy exhibited 
promising therapeutic effects post-SOR the- 
rapeutic failure, and the LEN+PD-1 therapy 
seemed to exhibit better results [113].

LEN plus PD-1 vs SOR plus PD-1: To compare 
the clinical efficacy of LEN+PD-1 vs SOR+PD-1 
in the treatment of uHCC patients. Hsueh et al. 
recruited 208 uHCC patients, 49 of whom were 
treated with SOR+PD-1, 39 patients were treat-
ed with LEN+PD-1, and the result showed that 
the LEN+PD-1 group had higher ORR (23.08 vs 
18.37%, P=0.944) and DCR (41.03 vs 28.57%, 
P=0.561), and longer mOS (13.1 vs 7.8 months, 
P=0.017), along with the similar incidence of 
TRAEs [114].

LEN plus PD-1 vs PD-1: To evaluate the 
LEN+PD-1 therapy vs PD-1 therapy in uHCC 
treatment, Liu et al. retrospectively collected 
94 patients with advanced HCC, among them, 
39 patients treated with PD-1 and 30 patients 
treated LEN+PD-1, and found that the LEN+ 
PD-1 group had significantly the higher ORR 
(32.7 vs 10.3%, P=0.013) and DCR (80.0 vs 
53.8%, P=0.012) according to RECIST v.1.1 cri-
teria, and the longer mPFS (10.6 vs 4.4 months, 
P<0.001) as well as mOS (18.4 vs 8.5 months, 
P=0.013) [115].

LEN plus PD-1 vs surgery: To assess the prog-
nosis of HCC patients at high recurrence risk 
with/without postoperative adjuvant treatment 
of LEN+PD-1 treatment. One study enrolled 
137 HCC patients, 85 of whom underwent hep-
atectomy alone, and 52 patients underwent 
hepatectomy combined with postoperative ad- 
juvant LEN+PD-1 therapy. Compared to the 
hepatectomy group, the adjuvant therapy group 
displayed a greater mRFS (not reached vs 5.5 
months, P<0.001), a higher 2-year RFS rate 
(56.5 vs 24.2%, P<0.001), whereas no dispari-
ty was observed in mOS of both groups (26.4 vs 
26.6 months, P=0.098). Multivariate analysis 
indicated that adjuvant therapy loss, high Child-
Pugh grade, high AFP levels, MVI, and satellite 
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disease were independent risk factors for 
recurrence within 6 months postoperatively 
[116].

The mechanisms of action concerned with  
anti-PD-1 plus lenvatinib therapy: In this sec-
tion, we summarized several studies dedicated 
to uncovering the associated mechanisms of 
LEN+PD-1 therapy efficacy. Yang et al. con-
firmed that LEN contributed to the formation of 
the NRP-1-PDGFRβ complex and activated the 
CRKL-G3G-Rap1 signaling cascade in endothe-
lial cells, induced vascular normalization, and 
synergistically augmented the efficacy of PD-1 
therapy [117]. Zhou et al. demonstrated that 
LEN notably enhanced immunogenic cell death 
(ICD), a crucial cell death type that occurred in 
anti-cancer therapy process [118], and upregu-
lated ICD receptors, TLR3 (upregulating PD-L1 
expression) and TLR4 (promoting HCC cell 
apoptosis). Histopathology and survival progno-
sis analysis also suggested that the TLR3 and 
TLR4 positive rates were markedly elevated  
in patients treated with LEN, and untreated 
patients with TLR3-positive expression exhibit-
ed superior OS and RFS (P<0.05) [119]. The 
Phosphatidylinositol-glycan biosynthesis class 
L (PIGL) was identified as an inhibitory meta-
bolic enzyme involved in the regulation of TME, 
rendering HCC sensitive to LEN+PD-1 therapy. 
Mechanistically, Hua et al. discovered that ele-
vated nuclear PIGL inhibited the cMYC/BRD2 
axis to diminish the CCL2 and CCL8 expression 
through recruitment of macrophages and regu-
latory T cells involved in the formation of immu-
nosuppressor TME, thereby inhibiting tumor 
immune escape and promoting the combina-
tion therapeutic effects. It was also confirmed 
that elevated nuclear PIGL predicted better 
prognosis of HCC patients and equipped poten-
tial application value to guide such double ther-
apy through survival analysis [120].

A study revealed that physical activity synergis-
tically improved prognosis in uHCC patients 
treated with LEN+PD-1. They found that the 
exercise group (n=28) had the better OS 
(HR=0.220, 95% CI: 0.060-0.799) and PFS 
(HR=0.158, 95% CI: 0.044-0.562), and higher 
ORR (95% CI: 1.482-14.102) than those in the 
sedentary group (n=31). Mechanistically, it was 
found that physical activity suppressed the 
Treg cell infiltration and immune checkpoint 
expression (CTLA4, TIGIT and TIM3), augment-

ing the LEN+PD-1 therapy efficacy [121]. Yi et 
al. also found that LEN could inhibit FGFR4 to 
reduce PD-L1 expression levels and Treg differ-
entiation, improving anti-PD-1 efficacy in HCC, 
and proposed that high FGFR4 expression may 
be used as a biomarker for predicting better 
efficacy in HCC patients using LEN+PD-1 thera-
py [122]. Mex-3 RNA binding family member C 
(MEX3C), as a RNA-binding protein, has been 
shown to facilitate tumor progression [123, 
124]. Guo et al. found that MEX3C was upregu-
lated in HCC tissues and was associated with 
poor prognosis, and deduced that targeting 
MEX3C may influence tumor microenvironment 
via regulating the abundance and proportion of 
immune cells including Tregs, MDSCs, and NK 
cells, which may potentially intensify immuno-
therapy efficacy [125]. Through single gene 
sequencing of HCC samples treated with/with-
out LEN+PD-1 treatment, Chen et al. detected 
that the LEN+PD-1 therapy increased the TNF/
NF-κB signaling in all immune cell types. Fur- 
ther studies showed that mucosal-associated 
invariant T (MAIT) cells secreted TNF and acti-
vated TNF receptor superfamily member 1B 
(TNFRSF1B) on regulatory T cells, thereby pro-
moting immunosuppression, which contributed 
to HCC therapeutic resistance to the LEN+PD-1 
therapy [126].

Biomarkers for guiding LEN plus PD-1 therapy 
and predicting prognosis: Lots of studies have 
shown the association between obesity and 
adverse prognosis in tumor patients [127], it 
has been reported that subcutaneous adipose 
tissue (SAT) parameters are linked to tumor 
progression [128]. Zhang et al. retrospectively 
enrolled 56 uHCC patients receiving the LEN+ 
PD-1 therapy. Based on SAT volume index (SAT 
area divided by height squared: cm2/m2) and 
density, patients were divided into two groups: 
high-risk group (low SAT volume index and high 
density, n=21) and low-risk group (high SAT vol-
ume index and low density, n=35). They discov-
ered that the ORR of high-risk patients was con-
siderably decreased (19.0 vs 54.3%, P=0.021), 
the mPFS was significantly shortened (6.0 vs 
12.0 months, P=0.035), and a significant re- 
duction in OS rates was noticed in high-risk 
patients with BCLC stage C as well [129].

To investigate the utility of peripheral blood 
lymphocyte subsets in predicting the respon-
siveness of LEN+PD-1 therapy in uHCC patients. 
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Zou et al. contrasted the peripheral blood lym-
phocyte subpopulation counts of 15 patients 
with OR and 16 patients without OR post-
LEN+PD-1 therapy, revealing that T helper (Th) 
cells and natural killer (NK) cells exhibited a 
propensity to be more abundant in the OR 
group. They deduced that the patients with ele-
vated counts of Th cells or NK cells may have a 
higher ORR [130]. In addition, another prospec-
tive cohort study scrutinized peripheral blood 
samples from 61 advanced or uHCC patients 
within 3 days prior to initiation of LEN+PD-1 
therapy. Peripheral naive CD8 T cell subsets 
served as predictive biomarkers for LEN+PD-1 
therapy in these patients, and were poorly 
expressed at cellular levels in responders. The 
optimal cutoff for peripheral naive CD8 T cell 
subsets was determined to be 6.24%, and the 
sensitivity, specificity, positive predictive value, 
and negative predictive value of double the- 
rapy response were 81.0%, 61.5%, 63.0%, and 
80.0%, respectively [131]. Cao et al. retrospec-
tively analyzed 194 uHCC patients receiving 
LEN+PD-1 therapy, and confirmed the ratio of 
white blood cell counts (×109/L)/lymphocyte 
proportion (%) as a novel circulating immune 
index (CII), which was an independent prognos-
tic indicator for OS. The mOS were prolonged in 
patients with CII≤43.1 compared to patients 
with CII>43.1 (24.7 vs 15.1 months, P=0.019), 
and the low CII levels group also had better 
DCR (89 vs 73%, P=0.031) according to RECIST 
v.1.1 criteria [132].

Advances of lenvatinib plus anti-PD-1 plus 
TACe therapy in advanced HCC

The superiority of the LEN+PD-1+TACE therapy 
has been demonstrated in a series of studies. 
Within this segment, we mainly elucidated the 
efficacy and safety of such triple therapy, the 
specific content was as follows. Wu et al. evalu-
ated the clinical data of 62 uHCC patients and 
discovered that patients treated with the 
LEN+PD-1+TACE therapy attained the highest 
ORR (80.6%) and hepatectomy conversion rat- 
es (53.2%) compared with any double therapy 
or single therapy [133], the incidence of TRAEs 
was 74.2%, which were all controllable. Simi- 
larly, Ying et al. retrospectively analyzed 53 
uHCC patients receiving the LEN+PD-1+TACE 
therapy, the ORR was 54.9%, mPFS was 8.5 
months, and all TRAEs were manageable [134]. 
Wu et al. recruited and analyzed 35 patients 

receiving the LEN+PD-1+DEB-TACE therapy. The 
ORR was 82.9%, the DCR was 91.4%, the mTTR 
was 7 weeks, the mPFS was 9 months, and 
40% of patients underwent surgical interven-
tion, all TRAEs were controllable [135]. Notably, 
the findings of several studies [136-141] were 
consistent with the outcome as mentioned 
above.

Recently, the LEN+PD-1+TACE therapy has 
come to the fore as a promising therapy in 
treatment of uHCC. There are also several stud-
ies focused on the efficacy of this combination 
therapy in uHCC patients with PVTT as follows. 
It was reported that a 51-year-old-aged uHCC 
patient with PVTT obtained a chance of sur- 
gical resection following treatment with LEN+ 
PD-1+TACE, and achieved a cure with tumor-
free status for over 34 months [142]. Li et al. 
retrospectively enrolled 68 uHCC patients with 
PVTT who received LEN+PD-1+TACE therapy, 
among them, the ORR and DCR were 26.1% 
and 78.3%, respectively, the mPFS and mOS 
were 9.3 and 18.2 months, respectively. The 
tumor number >3 was identified as an adverse 
risk factor for PFS and OS. And, no treatment-
related deaths occurred, all TRAEs were con-
trollable [143]. Another study further analyzed 
41 uHCC patients with PVTT (Vp4), the ORR 
was 68.3%, the mOS and mPFS were 21.7 and 
14.5 months, respectively, 12 of whom (29.3%) 
achieved the criteria for conversion rate to liver 
resection. A total of 35 patients (85.3%) experi-
enced TRAEs that did not result in mortality 
during therapy [144]. Furthermore, compared 
with a total of 58 uHCC patients receiving triple 
therapy, the uHCC patients with IVC and/or RA 
tumor thrombosis had greater ORR (62.1%) and 
DCR (94.9%), and longer mPFS of 14.3 months 
[145].

LEN plus PD-1 plus TACE vs LEN plus TACE: In 
recent times, a plethora of studies have been 
undertaken to evaluate the efficacy and safety 
of LEN+PD-1+TACE therapy vs LEN+TACE thera-
py in uHCC treatment. A prospective study by 
Cai et al. encompassed 81 uHCC patients and 
classified them into the LEN+PD-1+TACE group 
(n=41) and the LEN+TACE group (n=40). It was 
observed that the triple therapy group had dra-
matically longer mOS (16.9 vs 12.1 months, 
P=0.009) and mPFS (7.3 vs 4.0 months, 
P=0.002), and higher ORR (56.1 vs 32.5%, 
P=0.033) and DCR (85.4 vs 62.5%, P=0.019), 
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and there was no statistical difference in the 
incidence of TRAEs and its severity. Never- 
theless, it was noted that the LEN+PD-1+TACE 
therapy failed to achieve superior clinical out-
comes in patients with Vp4 [146]. Furthermore, 
another study mainly focused on unresectable 
multiple nodular and large HCC and revealed 
that, compared to the LEN+TACE group (n=49), 
the LEN+PD-1+TACE (n=33) group had longer 
PFS (9.4 vs 5.9 months, P<0.01) and OS (16.4 
vs 11.0 months, P<0.01), higher local response 
rate (LRR) (51.5 vs 46.9%, P=0.233) and DCR 
(81.8 vs 77.6%, P=0.429), and had no massive 
bleeding or treatment-related deaths [147]. In 
agreement with the above results, Sun et al.’s 
research also indicated that, compared to the 
LEN+TACE therapy (n=52), the LEN+PD-1+TACE 
therapy (n=31) had longer mPFS (12.5 vs 6.6 
months, P<0.001) and mOS (18.9 vs 13.9 
months, P<0.001), improved the ORR (71 vs 
42.3%, P=0.023), and no statistical disparity 
was observed in DCR between two groups 
(93.5 vs 80.8%, P=0.195), all TRAEs were toler-
able in these two groups. After multivariate 
analysis, tumor number and treatment modali-
ty were identified as two independent progno-
sis factors for PFS and OS, else, BCLC stage 
was also recognized as another prognosis fac-
tor for OS [148]. Besides, the superior thera-
peutic efficacy in the LEN+PD-1+TACE group 
has been reported in several studies [149- 
151].

LEN plus PD-1 plus TACE vs LEN plus PD-1: To 
evaluate the effectiveness and safety of LEN+ 
PD-1+TACE therapy vs LEN+PD-1 therapy, many 
related studies have been conducted persis-
tently over the past few years. One study ana-
lyzed 118 uHCC patients who received either 
LEN+PD-1+TACE therapy (n=60) or LEN+PD-1 
therapy (n=58). The results shown that the  
triple therapy group had longer mOS (29.0 vs 
17.8 months, P<0.01) and mPFS (16.2 vs 10.2 
months, P<0.01), and higher ORR (76.7 vs 
44.9%, P<0.01) and DCR (96.7 vs 75.9%, P< 
0.01) [152]. Similarly, Wang et al. found that, 
after 1:1 PSM to minimize bias (n=86), the 
LEN+PD-1+TACE group had a higher ORR (55.8 
vs 30.2%, P=0.017) and DCR (86.0 vs 65.1%, 
P=0.024), longer mOS (20.5 vs 12.8 months, 
P=0.013) and mPFS (12.1 vs 7.8 months, 
P=0.030), while there were no notable differ-
ences in TRAEs between the two groups, most 
of TRAEs were transient, manageable, and 

swiftly reversible [153]. Moreover, Lang et al. 
retrospectively analyzed 152 uHCC patients, 
including 39 patients receiving LEN+PD-1 and 
75 patients receiving LEN+PD-1+TACE after 1:2 
PSM. It was found that the LEN+PD-1+TACE 
group had longer mPFS (11.1 vs 5.1 months, 
P=0.033), mOS (not reached vs 14.0 months, 
P=0.0039), and higher ORR (44.0 vs 23.1%, 
P=0.028). No statistical disparity was detected 
in the incidence of grade ≥3 TRAEs between 
the two groups [154]. Furthermore, there was 
another study revealing that the LEN/SOR+PD-
1+TACE group also had higher ORR (63.0 vs 
29.6%, P<0.001) and DCR (85.2 vs 53.7%, 
P<0.001), longer mPFS (9.9 vs 5.8 months, 
P=0.026) and OS (not reached vs 18.5 months, 
P=0.003) [155].

LEN plus PD-1 plus TACE vs SOR plus PD-1 plus 
TACE: In addition, there exists one study show-
ing the better efficacy of LEN+PD-1+TACE ther-
apy than SOR+PD-1+TACE therapy in uHCC 
patients. Zou et al. enrolled 165 uHCC patients 
with PVTT who were treated with LEN+PD-
1+TACE (n=80) or SOR+PD-1+TACE (n=85) and 
observed that the LEN+PD-1+TACE group had 
longer mOS (21.7 vs 15.6 months, P=0.0027) 
and mPFS (6.3 vs 3.2 months, P<0.001), along 
with higher ORR (41.25 vs 30.59%, P=0.008) 
and DCR (86.25 vs 62.35%, P=0.008). And, 
there was no significant difference noted in the 
incidence and severity of TRAEs between these 
two groups [156].

LEN plus PD-1 plus TACE vs PD-1 plus TACE vs 
TACE: To evaluate the efficacy and safety of 
LEN+PD-1+TACE therapy vs PD-1+TACE/TACE 
therapy in uHCC therapy. Wu et al. retrospec-
tively analyzed a total of 141 BCLC stage C HCC 
patients who were divided into LEN+PD-1+TACE 
group (n=57), PD-1+TACE (n=41) and TACE 
group (n=43). The mOS of the LEN+PD-1+TACE 
group was significantly prolonged compared to 
that in both the PD-1+TACE group (19.8 vs 15.7 
months, P<0.001) and the TACE group (19.8 vs 
9.4 months, P<0.001). The mPFS in the LEN+ 
PD-1+TACE group (11.4 months, 95% CI 7.6-
15.3) was better than that in the PD-1+TACE 
groups (11.4 vs 8.4 months, P<0.001) and  
the TACE group (11.4 vs 4.8 months, P<0.001) 
as well. And, the superior outcomes of ORR 
(57.9%) and DCR (75.4%) were also detected  
in the LEN+PD-1+TACE group than those in the 
other two groups. The LEN+PD-1+TACE group 
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had a higher incidence rate of grade 3+ TRAEs 
(28.1%) which were all acceptable [157]. In 
addition, Xiang et al. observed that 56 uHCC 
patients treated with LEN+PD-1+TACE dis-
played longer mPFS (22.5 vs 14.0 months, 
P=0.0013), and OS (26.0 vs not reached, 
P=0.0045), higher ORR (64.3 vs 38.3%, P= 
0.010) and DCR (85.7 vs 57.4%, P=0.002)  
compared to those in patients treated with 
PD-1+TACE (n=47) [158]. Compared with the 
TACE group (n=54), Qu et al. found the higher 
ORR (67.9 vs 29.6%, P<0.001), and the longer 
mPFS (11.9 vs 6.9 months, P=0.003) as well as 
mOS (23.9 vs 15.3 months, P<0.001) in the 
LEN+PD-1+TACE group (n=56), and the TRAEs 
encountered were all manageable [159].

LEN plus PD-1 plus TACE vs SOR plus TACE/
LEN plus TACE: In addition, one study eluci- 
dated the therapeutic advantage of LEN+PD-
1+TACE therapy relative to SOR+TACE or LEN+ 
TACE therapy. Compared to the LEN+TACE 
group (n=32), it was shown that the mOS (26.7 
vs 17.9 months, P=0.031) and mPFS (8.2 vs 
6.6 months, P=0.047) were significantly pro-
longed, and ORR (86.96 vs 46.88%, P<0.001) 
and DCR (100 vs 75%, P<0.001) were greatly 
improved in the LEN+PD-1+TACE group (n=23). 
And, the mOS (26.7 vs 14.4 months, P=0.007) 
and mPFS (8.2 vs 6.0 months, P=0.005) were 
also prolonged, and the ORR (86.96 vs 34.48%, 
P<0.001) and DCR (100 vs 48.28%, P<0.001) 
were improved in the LEN+PD-1+TACE group 
compared to the SOR+TACE group (n=29). Fur- 
thermore, no obvious difference in the inci-
dence of TRAEs and their severity was seen 
amongst these three groups [160].

Biomarkers for guiding LEN plus PD-1 plus 
TACE therapy and predicting prognosis: To 
date, several prognostic factors have been dis-
covered in HCC patients with the treatment of 
LEN+PD-1+TACE, demonstrating considerable 
promise to be effective markers in guiding 
treatment programs and evaluating prognosis. 
Alpha-fetoprotein (AFP) and de-γ-carboxyproth- 
rombin (DCP) are common tumor markers in 
the diagnosis of HCC [161], and alterations in 
these protein levels may serve as predictors  
of recurrence and survival outcomes in HCC 
patients treated with LEN+PD-1+TACE therapy 
[162-164]. Besides, Luo et al. observed that 
>50% reduction in the AFP or DCP levels after  

6 weeks of the LEN+PD-1+TACE therapy may 
predict better ORR, longer PFS and OS [165].

Qu et al. demonstrated that NLR acted as an 
independent factor associated with PFS and 
OS in the LEN+PD-1+TACE group, and proved 
that mPFS (20.1 vs 6.2 months, P<0.001) were 
significantly prolonged in the low NLR group 
(≤3.11) [159]. Simultaneously, NLR level was 
elucidated as the only independent prognostic 
factor for both OS and PFS in a cohort of 63 
uHCC patients receiving LEN+PD-1+TACE thera-
py, the low NLR group (<3.2) showed longer 
mPFS (19.3 vs 7.3 months, P<0.001) and mOS 
(28.9 vs 16.9 months, P<0.001), higher ORR 
(86.7 vs 39.4%, P<0.001), and were more 
accessible to reach early tumor shrinkage  
(ETS) ≥10% (73.3 vs 21.1%, P<0.001) [137]. 
Moreover, Li et al. also confirmed that uHCC 
patients with NLR≤2.165 had longer mOS (not 
reached vs 17.7 months, P=0.003) and mPFS 
(15.2 vs 7.5 months, P=0.047) [138]. Besides, 
Ning et al. analyzed and indicated that the 
serum procalcitonin (PCT) level also served as 
an independent prognostic factor of PFS and 
OS in HCC patients receiving LEN+PD-1+TACE 
therapy, the mPFS (15.5 vs 7.5 months, 
P=0.001) and mOS (25.3 and 15.3 months, 
P=0.016) were highly upraised in patients with 
low serum levels of PCT (≤0.13 ng/mL) [145].

Early tumor response has been detected to be 
a prognostic factor of surgical resection rates 
in Li et al.’s experiment. In their study including 
94 uHCC patients receiving LEN+PD-1+TACE 
therapy, 68 (72.3%) of whom acquired early 
tumor response, and had significantly higher 
conversion surgery rates (44.1 vs 7.7%, P= 
0.001), longer mPFS (15.4 vs 7.8 months, 
P=0.005) as well as mOS (23.1 vs 12.5 mon- 
ths, P=0.004) [166]. Furthermore, the tumor 
number was also determined as an indepen-
dent prognostic factor for uHCC patients re- 
ceiving LEN+PD-1+TACE therapy. In patients 
with tumor number ≥3, the mOS (25.1 vs 14.1 
months, P=0.012) and mPFS (16.4 vs 6.6 
months, P=0.007) were longer than that in pa- 
tients with tumor number<3 [138]. Moreover, 
multifactorial analysis of the LEN+PD-1+TACE 
group also showed that PVTT, Child-Pugh gra- 
de, interleukin-17 (IL-17), VEGF, PCT, and CRP 
were all independent factors of OS (P<0.05) 
[156].
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The underlying mechanism of lenvatinib 
resistance

MAPK/ERK signaling

As widely known, MAPK/ERK signaling is a  
classic oncogenic signaling pathway, and it is 
discerned to be predominantly activated in 
HCC [167], which is highly associated with low 
survival and early recurrence in HCC patients 
[168, 169]. The exploration of molecular tar-
geted therapy to inactivate carcinogenic signal-
ing pathways, including MAPK/ERK signaling 
has progressed rapidly [170]. LEN suppress- 

ed the receptor tyrosine kinase (RTK) to sup-
press downstream signaling pathways includ-
ing MAPK/ERK signaling, inhibiting HCC occur-
rence and development [171]. Recent studies 
have indicated that the activation of MAPK/
ERK signaling might be linked to LEN re- 
sistance (Figure 1).

Junjie et al. established LEN resistant (LR) -HCC 
cell lines and performed the sandwich enzy- 
me immunoassay, revealing the activation of 
MAPK/ERK signaling pathways and upregula-
tion of epithelial-mesenchymal transition (EMT) 
markers in LR-HCC cells [172]. Moreover, there 

Figure 1. The correlation between the dysregulation of three crucial signaling pathways and Lenvatinib resistance. 
The dysregulation of PI3K/AKT/mTOR, MAPK/ERK, and autophagy signaling pathways was proven to be associated 
with LEN resistance in HCC treatment. A series of proteins and a range of drugs, including Chinese herbal extracts, 
anti-tumor targeted drugs, NSAIDs and hypoglycemic drug etc., were observed to directly and indirectly act on cor-
responding targets associated with these signaling pathways, thus modulating LEN resistance.
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are still many studies supporting the correla-
tion between the MAPK/ERK signaling overac- 
tivation and LEN resistance. Wang et al. identi-
fied Frizzled-10 (FZD10) as a potential target 
for HCC prevention and treatment, which was 
highly expressed in hCSCs, where it may acti-
vate the β-catenin/c-Jun/MEK/ERK signaling 
axis to induce LEN resistance in HCC cells 
[173]. MAPKs are inactivated by dual-specificity 
phosphatases (DUSPs), such as DUSP4. Huang 
et al. demonstrated DUSP4 as a pivotal gene 
associated with LEN resistance via CRISPR/
Cas9 library screening. They identified that 
DUSP4 was downregulated at both mRNA and 
protein levels in LR-HCC cells, and DUSP4 
knockout improved LEN therapeutic effective-
ness in vitro and in vivo, indicating that DUSP4 
deficiency triggered LEN resistance by activat-
ing MAPK/ERK signaling [174]. Concurrently, by 
using CRISPR/Cas9 library screening, Lu et al. 
identified two key resistance genes, neurofibrin 
1 (NF1) and DUSP9, as key drivers of LEN resis-
tance in HCC. They further elucidated that NF1 
loss activated MAPK/ERK and PI3K/AKT sig-
naling pathways, whereas DUSP9 loss contrib-
uted to MAPK/ERK signaling pathway, thereby 
phosphorylating and activating FOXO3 and trig-
gering its degradation, finally resulting in LEN 
resistance [175]. Cancer-associated fibroblasts 
(CAFs) was convinced to exert key roles in che-
moresistance [176, 177], the secreted phos-
phoprotein 1 (SPP1) produced by CAFs was 
identified to activate MAPK/ERK and PI3K/
AKT/mTOR signaling through the integrin-pro-
tein kinase C-α (PKCα) signaling and promote 
EMT process, leading to LEN resistance in HCC 
[178]. YRDC, an ATPase integral to the biosyn-
thesis of ubiquitous tRNA modification [179], 
can activate the MAPK/ERK signaling pathway 
and is proven positively correlated with HCC 
cell proliferation and metastasis [180]. Guo et 
al. found that YRDC knockdown inhibited the 
sensitivity of HCC cells to LEN and demonstrat-
ed its anti-tumor effect in vivo [181]. Further 
experiments confirmed that YRDC promoted 
the KRAS translation by regulating tRNA modifi-
cation, and then activated the RAS/RAF/MEK/
ERK signaling to participate in inducing LEN 
resistance.

In recent years, natural extracts used in tumor 
treatment have attracted more and more atten-
tion, and a large number of studies have 
focused on its potential anti-tumor and revers-

ing-drug resistance mechanism. Amentoflavone 
(AMF), a biflavonoid extracted in plants, was 
proven to inhibit HCC progression [182]. Yang 
et al. found that AMF not only enhanced the 
LEN-induced inhibition of AKT/ERK signaling, 
but also promoted cell apoptosis, thus enhanc-
ing HCC sensitivity to LEN [183]. Sophoridine is 
a naturally bioactive alkaloid extracted in the 
roots of Sophora flavescens Ait, which has 
been proven to inhibit HCC development [184]. 
Zhong et al. found that sophoridine not only 
inhibited LR-HCC cell proliferation, migration, 
but also reversed LEN resistance in vitro and in 
vivo. Mechanistically, sophoridine decreased 
the expression of transcription factor E26 
transformation specific sequence 1 (ETS-1) in 
LR-HCC cells to downregulate VEGFR2 expres-
sion and downstream RAS/RAF/MEK/ERK sig-
naling, thereby augmenting the HCC sensitivity 
to LEN [185]. Oxysophocarpine (OSC) is one of 
the active alkaloid components extracted from 
the Chinese herb sophora flavescens Ait, which 
has been found to exert anti-tumor effects  
in oral squamous cell carcinoma [186]. Zhao et 
al. revealed that OSC downregulated FGFR1 
expression and downstream AKT/mTOR and 
ERK signaling, entitling HCC cells sensitive to 
LEN [187].

PI3K/AKT signaling

The dysregulation of PI3K/AKT signaling is the 
most frequent aberrancy in human cancer 
[188]. Studies have shown that its activation 
plays pivotal roles in the occurrence and de- 
velopment of HCC by promoting angiogenesis 
[189, 190], accelerating cell cycle [191], regu-
lating the autophagy process [192, 193], and 
inhibiting apoptosis [194], finally inducing drug 
resistance [195-197]. A large number of stud-
ies indicated that the SOR resistance of HCC is 
strongly correlated with the abnormal PI3K/
AKT signaling activation. For example, some 
upstream effectors like IGF-1R [198], YB-1 
[199], and FNDC5 [200] have been demon-
strated to upregulate PI3K/AKT signaling, thus 
inducing SOR resistance in HCC. Recent stud-
ies have successively elucidated that its over-
activation partially contributes to LEN resis-
tance in HCC. In this section, we focus on the 
correlation between LEN resistance and aber-
rant PI3K/AKT pathway activation (Figure 1).

Metformin was found to not only reduce the 
risk of hepatocarcinogenesis [201], but also 
improve the sensitivity of HCC cells to SOR, and 
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inhibit HCC recurrence and metastasis after 
surgical resection [202]. Furthermore, it was 
discerned that the combination of LEN and 
metformin synergistically inhibited HCC growth 
in vivo and in vitro. Mechanistically, Cheng et al. 
substantiated that metformin inhibited the ac- 
tivation of AKT signaling, subsequently reduced 
the downstream effector FOXO3 phosphoryla-
tion levels and stimulated its nuclear aggrega-
tion, thereby reversing LEN resistance [203]. 
Similar to the pharmacological activities of 
Metformin, Curcumin, a naturally derived plant 
extract, has been found to suppress RTKs such 
as EGFR, IGF, VEGFR, etc. [204], participate in 
inhibiting HCC progression [205] as well as 
functioning as a chemical sensitizer for many 
drugs [206]. Katsuki et al. discovered that cur-
cumin reversed acquired LEN resistance by in- 
hibiting EGFR and its downstream PI3K/AKT 
signaling [207]. Integrin subunit beta 8 (ITGB8), 
an important member of the integrin family 
[208], was detected overexpressed in various 
tumor cells [209]. Hou et al. observed that 
ITGB8 was considerably overexpressed in LR- 
HCC cells and found that ITGB8 knockout 
reversed LEN resistance in vitro and in vivo. 
They further revealed that ITGB8 could enhance 
AKT stabilization and activate AKT signaling  
by increasing HSP90 expression levels, thus 
inducing LEN resistance [210]. In addition, 
CD73 was found to activate AKT signaling and 
further activated SOX9 transcription through 
c-MYC and simultaneously inhibited GSK3β to 
prevent SOX9 ubiquitination and degradation, 
which promoted the HCC CSC stemness, facili-
tated HCC cell growth as well as induced LEN 
resistance [211]. Its elevated expression was 
correlated with unfavorable prognoses of HCC 
patients [212].

Autophagy signaling

Autophagy is a process stimulated in response 
to various environmental stresses in human 
body, exerts critical roles in maintaining cellu- 
lar homeostasis [213]. Recently, studies have 
cumulatively concentrated on the correlation 
between autophagy regulation and tumorigen-
esis as well as development, however, whether 
autophagy progress acts tumor inhibition or 
promotion effect remains controversial [214]. 
In relation to occurrence and development of 
HCC, existing studies demonstrated that auto- 
phagy progress inhibited tumor growth in the 
early stage of HCC [215], but autophagy rever- 

sely changed its anti-tumor role into an onco-
genic role when tumor developed into its ad- 
vanced stage [216]. Studies have shown that 
the abnormal regulation of autophagy is intri-
cately related to drug resistance [217-219], but 
the correlations between autophagy and LEN 
resistance remain poorly studied, which is 
shown in Figure 1.

Neuropirin 1 (NRP1), a non-tyrosine kinase 
transmembrane glycoprotein that exert crucial 
roles in angiogenesis, cell proliferation, migra-
tion, and invasion [220], has been observed 
abnormally highly expressed in HCC [221]. 
Paula et al. found a sharp increase of NRP1 
expression in HCC tissues, which was strongly 
associated with unfavorable prognoses. They 
found that LEN upregulated the autophagy 
pathway to reduce NRP1 expression in HCC 
cells, thereby inhibiting cell proliferation and 
migration. Bafilomycin A1 (BAFA1), an autopha-
gy inhibitor, was demonstrated to inhibit the 
autophagic degradation of NRP1 and upregu-
late its expression on HCC cell membrane, 
thereby inducing LEN resistance [222]. Simi- 
larly, Stomatin-like protein 2 (STOML2) is a 
mitochondrial intima protein contributing to 
tumor development in a variety of cancer types 
[223, 224], and is notably overexpressed in 
HCC tissues and intimately related to the poor 
prognosis of HCC patients [225]. It was proven 
that STOML2 overexpression promoted HCC 
cell proliferation, migration, and invasion, and 
inhibited apoptosis in vitro. Mechanistically, it 
stabilized PINK1 to promote HCC progression, 
and enhance mitochondrial autophagy to in- 
duce LEN resistance [225]. Additionally, syn-
thetic protein 6 (STX6) is one of the soluble 
N-ethyl maleimide-sensitive factor attachment 
protein receptor (SNARE) family members, whi- 
ch plays important roles in regulating almost  
all cell intimal transport events [226] and has 
been detected upregulated in the vast majority 
of tumors [227]. Zhou et al. found that STX6 
was overexpressed in HCC tissues at both pro-
tein and mRNA levels, which was closely asso-
ciated with poor prognosis of HCC patients. It 
was found that STX6 promoted the formation  
of autolysosomes and accelerated LC3B (one 
classical autophagy marker) degradation, pro-
moting cell proliferation, migration, and inva-
sion, and enhancing LEN resistance. Further, 
they found that upstream stimulus factor 2 
(USF2), as an upstream transcriptional repres-
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sor, bound to the STX6 promoter to suppress 
its expression, inhibiting HCC cell growth and 
reversing LEN resistance [228]. Through ge- 
nome-wide CRISPR-Cas9 screening, Pan et al. 
identified lysosomal protein transmembrane  
5 (LAPTM5) as a key protein correlated with 
LEN resistance in HCC. Functionally, LAPTM5 
knockdown significantly augmented the sensi-
tivity of HCC cells to LEN, and its overexpres-
sion significantly suppressed xenogenic tumor 
growth with LEN treatment. Mechanistically, 
they found that LAPTM5 contributed to LEN 
resistance by promoting autolysosome forma-
tion. Importantly, it was detected that LAPTM5 
expression was inversely associated with LEN 
sensitivity in clinical hepatocellular carcinoma 
samples [229]. Additionally, Ma et al. found 
that nucleotide-binding oligomerization domain 
containing 2 (NOD2) was significantly downreg-
ulated in HCC tissues, and low NOD2 expres-
sion was highly associated with a poor progno-
sis. NOD2 overexpression significantly inhibited 
the HCC cell proliferation and invasion in vitro, 
suppressed xenograft tumor growth in vivo, 
and increased the sensitivity of HCC cells to 
LEN. Mechanistically, NOD2 exerted its anti-
tumor effect via activating AMPK signaling 
pathway, which activated autophagy-mediated 
cell apoptosis to inhibit LEN resistance [230]. 
Moreover, Tang et al. found that the combina-
tion of Secukinumab (a specific biological agent 
targeting IL-17A) and LEN significantly inhibited 
the growth of xenogenic tumors. Mechanistically, 
the combination of Secukinumab and LEN sig-
nificantly increased the LC3 conversion rate in 
tumor tissues (the ratio of LC3II to LC3I) to 
decrease the BCL2 protein expression, thus 
promoting the autophagy pathway to inhibit 
HCC growth in vivo [231]. Else, Compound 
Phyllanthus urinaria (CP) is a kind of traditional 
Chinese herbal medicine, which has been prov-
en to exhibit anti-tumor effects in experiments 
as well as clinics [232]. In vitro and in vivo, Liao 
et al. demonstrated that LEN combined with CP 
treatment resulted in superior therapeutic out-
comes in HCC therapy than either agent used 
independently. Mechanistically, CP enhanced 
the efficacy of LEN by promoting exosome-
mediated autophagy inhibition, and thus effec-
tively inhibited HCC progression [233].

mTOR signaling

The mammalian target of rapamycin (mTOR)  
is an atypical serine/threonine protein kinase 
belonging to the PI3K-related protein kinase 

family, which integrates a variety of extracellu-
lar signals such as amino acids, energy states, 
and growth factors to participate in biological 
processes such as gene transcription, protein 
translation and ribosome synthesis, thus play-
ing pivotal roles in cell growth, apoptosis, au- 
tophagy and metabolism [234, 235]. The aber-
rant activation of mTOR signaling has been  
frequently detected in HCC, which is critical for 
HCC tumorigenesis and development and res- 
ponsible for doxorubicin [236] and SOR [237] 
resistance during HCC therapy. Nowadays, 
mTOR has been recognized as a validated ther-
apeutic target for the treatment of many tumor 
types including HCC [238, 239]. Herein, we dis-
cuss the potential relationship between LEN 
resistance and mTOR signaling regulation 
(Figure 1).

Consistent with Etienne et al.’s research men-
tioned above, Fan et al. observed that SREBP2 
was highly expressed in HCC tissue at both 
mRNA and protein levels, and its high expres-
sion was still closely associated with poor prog-
nosis [240]. They confirmed that Betulin, a 
SREBP2 inhibitor, decreased intracellular cho-
lesterol levels and enhanced HCC sensitivity  
to LEN by inhibiting the mTOR/IL-1β pathway 
[240]. Moreover, forkhead box protein A2 
(FOXA2), a key transcription factor for liver de- 
velopment and metabolic homeostasis [241], 
was discovered to be lowly expressed in HCC 
tissues, and its low expression was associated 
with poor prognosis. Mechanistically, Wang et 
al. demonstrated that FOXA2 overexpression 
upregulated liver kinase B1 (LKB1) phosphory-
lation and Ste20-related adaptor α (STRADα)/
LKB1 axis to activate the AMPK/mTOR signal-
ing, thereby enhancing the HCC cell sensitivity 
to LEN [242].

WNT/β-catenin signaling

Wnt/β-catenin signaling is one of the most 
important regulatory pathways in living organ-
isms, and β-catenin, as a key regulatory pro-
tein, is a vital biomarker for detecting the sta-
tus of signaling activation [243]. The extrace- 
llular wnt protein interacts with and activates 
membrane receptors to transmit signals into 
cells, and β-catenin degradation activity is 
inhibited through regulating downstream pro-
tein kinase phosphorylation. Consequently, β- 
catenin accumulates steadily in cytoplasm, 
enters the nucleus, and activates downstream 
gene expression by activating specific tran-
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scription factors [243], which is involved in the 
regulation of cell proliferation and differentia-
tion, cell cycle, and tumorigenesis, etc. [244, 
245]. Aberrant activation of the wnt/β-catenin 
signaling pathway has been observed in up to 
half of HCC patients, and its abnormal activa-
tion promotes HCC growth [246-248] and drug 
resistance [249, 250]. Herein, we mainly focus 
on the correlation between LEN resistance  
and wnt/β-catenin signaling regulation in this 
section (Figure 2).

Tan et al. found that glutathione Peroxidase 2 
(GPX2) was significantly overexpressed in HCC 
tissue and associated with poor therapeutic 

effectiveness of LEN. They demonstrated that 
LEN inhibited the nuclear translocation of β- 
catenin to repress GPX2 transcription, incre- 
asing reactive oxygen species (ROS) genera-
tion, and triggering HCC cell apoptosis [251]. 
Interferon regulatory factor 2 (IRF2), a pivotal 
nuclear transcription factor regulating related 
gene transcription [252, 253], was revealed to 
exhibit high expression in HCC tissues and 
associated with poor prognosis [254]. Guo et 
al. found the IRF2 was upregulated in HCC at 
both mRNA and protein levels, which was also 
positively correlated with β-catenin expression. 
Through a series of experiments, it was con-
firmed that IRF2 increased β-catenin expres-

Figure 2. The correlation between the dysregulation of other signaling pathways and lenvatinib resistance. The dys-
regulation of lipid metabolism, wnt/β-catenin signaling, hippo signaling, notch signaling, hedgehog signaling, RNA 
modifications and ferroptosis was found to participate the regulation of LEN resistance in uHCC treatment. And, a 
series of proteins and a range of drugs acted on corresponding targets to play roles in promoting or inhibiting LEN 
resistance in HCC treatment.
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sion and augmented downstream signaling, 
thereby promoting HCC cell proliferation, inhib-
iting cell apoptosis, and inducing LEN resis-
tance [255]. In addition, Zhang et al. identified 
that peroxisome proliferator-activated receptor 
gamma coactivator-1α (PPARGC1A), a critical 
receptor involved in regulating energy homeo-
stasis, was lowly expressed in HCC and show- 
ed a poor prognosis. In hypoxic conditions, 
PPARGC1A inhibited bone morphogenetic pro-
tein and activin membrane-bound inhibitor 
(BAMBI) expression via downregulating wnt/β-
catenin signaling, thereby reversing its inhibi-
tion on the downstream TGF-β/SMAD signaling, 
subsequently upregulating acyl-CoA syntheta- 
se long-chain family member 5 (ACSL5) ex- 
pression to facilitate ROS production, resulting 
in inhibition of HCC progression and LEN resis-
tance [256]. Moreover, through functional anal-
ysis, Liang et al. showed that CDK6 played a 
key role in regulating LEN resistance by enhanc-
ing the stemness of HCC. Mechanistically, 
CDK6 bound to and phosphorylated GSK3β, 
thus leading to the activation of wnt/β-catenin 
signaling. In vitro experiments confirmed that 
Palbociclib, a CDK4/6 inhibitor, had a synergis-
tic effect with LEN to exert the greatest inhibi-
tory effect and remodel the tumor immune 
microenvironment [257].

Hedgehog signaling

Hedgehog signaling is an intracellular pathway 
with three protein ligands: Sonic hedgehog 
(SHH), Indian hedgehog (IHH), and Desert 
hedgehog (DHH). Upon ligands binding to the 
Patched (PTCH), the repression of Smoothened 
(SMO) by PTCH is reversed, which activates gli-
oma-associated oncogene homolog 1-3 (GLI1-
3) to enhance the downstream genes tran- 
scription. Hedgehog signaling serves a pivotal 
function in physiological embryonic develop-
ment, adult tissue maintenance, renewal, and 
regeneration by controlling cell fate, prolifera-
tion, and differentiation [258, 259]. A growing 
body of studies has indicated that dysregula-
tion of this signaling is intimately linked to 
tumor occurrence and development, including 
glioblastoma [260], medulloblastoma [261], 
melanoma [262], pancreatic carcinoma [263] 
as well as HCC [264, 265], etc. Recently, accu-
mulated studies have confirmed that activation 
of hedgehog signaling enhanced drug resis-
tance during tumor treatment, such as cisplatin 
in bladder cancer [266], azithromycin in multi-

ple myeloma [267], as well as TKIs: erlotinib in 
lung cancer [268], and SOR in HCC [269]. The 
section presents an overview of several recent-
ly studies regarding the correlation between 
LEN resistance and Hedgehog signaling re- 
gulation (Figure 2).

The CD133 expression was closely related to 
drug resistance [270], tumor invasion, and 
metastasis in HCC [271, 272], and it was inti-
mately related to LEN resistance in HCC cells 
[273]. GANT61, as a hedgehog signaling inhibi-
tor, inhibits the GLI1/2 and downregulates its-
induced gene transcription [274], suppressing 
undifferentiated HCC cell growth [275]. It was 
discovered that GANT61 inhibited hedgehog 
signaling in HCC cells with high CD133 ex- 
pression levels, suppressed HCC growth and 
reversed LEN resistance in vivo and in vitro 
[273]. In addition, Jing et al. first determined 
the anti-tumor effect of Flubendazole in HCC  
in vivo and in vitro, and further identified that 
proprotein convertase subtilisin/kexin type 9 
(PCSK9), a vital serine protease regulating lipid 
metabolism, as the target for flubendazole, was 
highly expressed in HCC tissues and closely 
associated with the poor prognosis. The stu- 
dy revealed that flubendazole directly reduc- 
ed PCSK9 expression, consequently inhibiting 
SMO and downregulating hedgehog signaling, 
which prevented HCC progression as well as 
increased LEN sensitivity [276]. Sterol regula-
tory element-binding protein 2 (SREBP 2), a 
main regulator of de novo cholesterol biosyn-
thesis and uptake [277], has been observed 
overexpressed in CRC [278] and PRAD [279], 
and correlated to drug resistance [280]. Etie- 
nne et al. found that the SREBP2-mediated 
cholesterol production pathway was significant-
ly upregulated in LR-HCC cells, confirmed that 
SREBP2 was highly expressed in HCC tissues 
and closely related to unfavorable prognosis. 
Mechanistically, the caspase 3 (CASP3) upreg-
ulated SREBP2 to promote cholesterol biosyn-
thesis, and then 25-hydroxycholesterol (25-
OHC), an oxysterol derivative of cholesterol, 
activated the SMO, GLI1/2 and downstream 
target genes of the hedgehog signaling [281], 
contributing to LEN resistance. And, they also 
found that Simvastatin, an inhibitor of HMG 
CoA reductase treating hypercholesterolemia, 
dramatically blocked cholesterol synthesis to 
inhibit the hedgehog signaling in HCC, which 
improved the therapeutic effectiveness of LEN 
in tumor organoids and xenografts experiments 
[282].
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Epithelial-mesenchymal transition

EMT is a pathological process characterized by 
loss of epithelial features and high expression 
of mesenchymal cell-related genes [283]. It 
has been clearly indicated that EMT was closely 
related to HCC invasion and migration [284]. In 
recent years, an increasing number of studies 
have confirmed that EMT was involved in drug 
resistance [285, 286]. We summarized several 
recent studies on the relationship between LEN 
resistance and EMT regulation in this section 
(Figure 2).

In HCC cells, Fang et al. elucidated that LEN 
increased the expression of epithelial-related 
proteins, such as E-cadherin and β-catenin, 
and concurrently downregulated the expres-
sion of intermediate mesenchymal markers, 
such as Fibronectin, Vimentin, and EMT-re- 
gulated transcription factors ZEB1, Snail, and 
Twist7 in a dose-dependent manner. Mechani- 
stically, LEN not only accelerated the DNMT1 
and UHRF1 degradation via enhancing ubiquiti-
nation modification, but also inhibited ERK sig-
naling activation to reduce the expression of 
DNMT1 and UHRF1 at the mRNA level, which 
jointly upregulated the expression of E-cadherin 
and inhibited EMT process to prevent tumor 
metastasis in HCC [287]. Additionally, the acti-
vation of the hepatocyte growth factor (HGF)/c-
MET axis was found closely associated with 
tumor invasion and metastasis [288]. Further 
investigations from Fu et al. team revealed that 
HGF inhibited the LEN-induced anti-prolifera-
tion, pro-apoptotic and anti-invasive effects, 
increased the expression of N-cadherin and 
Vimentin, and decreased the expression of 
E-cadherin in HCC cells treated with LEN. It was 
demonstrated that the activation of the HGF/c-
MET axis promoted LEN resistance in high 
c-MET expression HCC cells through activating 
PI3K/AKT and MAPK/ERK signaling as well as 
intensifying EMT process [289]. Ring finger pro-
tein 8 (RNF8) is one of the E3 ubiquitin ligases 
linked to DNA damage repair mechanisms 
[290], which was also detected to suppress 
[291] or promote [292] tumor growth. Kuang et 
al. discovered that RNF8 was upregulated in 
HCC tissues and correlated with a poor progno-
sis. In vitro experiments further found that 
RNF8 attenuated the EMT process and HCC 
cell migration, enhancing LEN resistance [293].

FGF19/FGFR4 signaling

It is well known that fibroblast growth factor 
(FGF) signaling is essential to many intracellu-

lar biological processes [294]. FGF19 is one  
of the FGFs subtypes and is observed highly 
expressed in HCC tissues and closely associat-
ed with a poor prognosis [295]. FGFR4, the 
major isoform of FGFRs in human hepatocytes, 
is now recognized as the only receptor specific 
for FGF19, and is also overexpressed in HCC 
[296]. Nowadays, a large number of studies 
have demonstrated that FGF19/FGFR4 signal-
ing significantly promotes HCC cell survival, 
proliferation, invasion, and metastasis [295, 
297, 298]. In this section, we provide an over-
view of recent research concerning the corre- 
lation between LEN resistance and FGF19/
FGFR4 axis.

Yuta et al. demonstrated that the FGF19 over-
expression enhanced LEN sensitivity in HCC 
cells. As a tumor-derived protein, ST6 β-galac- 
toside α-2,6-sialyltransferase 1 (ST6GAL1) was 
elucidated to be upregulated in several tumor 
types and promote tumor invasion and metas-
tasis [299-301]. They revealed that FGF19 pos-
itively regulated ST6GAL1 expression by pro-
moting the phosphorylation of signal transduc- 
tion and transcriptional activator 3 (STAT3), one 
important transcription factor essential to HCC 
cell growth, enhancing the sensitivity of HCC 
cells to LEN [302]. Besides, they deduced that 
circulating ST6GAL1 levels had the potential to 
serve as a non-invasive indicator of LEN sensi-
tivity [303]. Lysine demethylase 6A (KDM6A) 
plays crucial roles in various cancer types [304-
306], and its aberrant elevation in HCC tissues 
has been correlated with poor prognosis, 
recently [307]. Guo et al. found that KDM6A 
knockdown inhibited HCC growth both in vitro 
and in vivo, and significantly reversed LEN 
resistance. Mechanistically, they revealed that 
KDM6A upregulated FGFR4 expression to acti-
vate the PI3K/AKT/mTOR signaling, inducing 
LEN resistance [307]. Furthermore, Norifumi et 
al. first demonstrated that LEN inhibited FGFR4 
to inactivate glutathione peroxidase 4 (GPX4), 
accelerating lipid ROS accumulation to induce 
iron-dependent death in HCC cells. They further 
found that NRF2 overexpression inhibited iron 
death and induced LEN resistance [33].

Lipid metabolism regulation

Lipids are an integral component of cell biologi-
cal membranes, involved in energy storage and 
metabolism, playing an important role in signal-
ing transduction and maintaining cell homeo-
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stasis [308, 309]. Dysregulation of lipid me- 
tabolism is a significant hallmark of carcinogen-
esis and is correlated with the HCC occurrence 
and progression [310-312]. Recently, extensive 
research concentrated on elucidating the cor-
relation between dysregulation of lipid metabo-
lism and anti-tumor drug resistance [313]. ATP 
citrate lyase (ACLY), a pivotal enzyme in lipid 
metabolism, was upregulated or activated in 
various tumor types [314, 315]. In addition, it 
has been shown that targeted downregulation 
of ACLY could impede lipid metabolism and 
also reverse the SOR resistance of HCC cells 
[316]. Here, we mainly summarize several stud-
ies concerning the correlation between lipid 
regulation and LEN in HCC treatment (Figure 2).

The 2-arachidonic glycerol (2-AG) was highly 
overexpressed in various tumor types and posi-
tively correlated with tumor growth in most 
tumor types [317-319]. Diacylglycerol lipase α 
(DAGLA), a critical hydrolase regulating 2-AG, 
was found to be highly expressed in HCC tis-
sues at both protein and mRNA levels and as- 
sociated with poor prognosis. Yan et al. proved 
that the DAGLA/2-AG axis was activated in HCC 
tissues, and revealed that DAGLA activated 
2-AG to inhibit LATS1 and YAP phosphorylation, 
and then promoted YAP nuclear translocation, 
which activated the hippo pathway to promote 
HCC progression and induce LEN resistance 
[320]. Additionally, the activation of the PI3K/
AKT axis was also verified to inhibit downstream 
hippo signaling, therefore promoting the HCC 
progression and inducing LEN resistance. Liu  
et al. also observed that STOML2 was an ab- 
normally upregulated protein in HCC, its high 
expression was strongly associated with poor 
clinicopathological features and prognosis. Me- 
chanistically, STOML2 stabilizes c-Jun N-ter- 
minal kinase (JNK2) via inhibiting its ubiquitina-
tion and degradation, which activates the sterol 
regulatory element binding protein 1 (SREBP1), 
one transcription factor regulating the expres-
sion of several key enzymes in lipid synthesis, 
and accelerated its nuclear translocation to 
promote lipogenesis, thus promoting the HCC 
progression and triggering LEN resistance 
[321].

Glycolysis

Abnormal activation of glucose metabolism 
was ubiquitously discovered in HCC patients 

and was closely associated with high malig- 
nant phenotypes [322, 323]. Acylphosphatase 
1 (ACYP1), a small cytoplasmic enzyme catalyz-
ing the hydrolysis of the carboxyl-phosphate 
bond of acylphosphates, was found highly ex- 
pressed in HCC tissues and correlated with 
poor prognosis [324]. Wang et al. confirmed 
that ACYP1 overexpression promoted HCC cell 
proliferation, invasion, and migration in vitro 
and in vivo. Through differentially expressed 
genes screen and functional enrichment analy-
sis, they showed that ACYP1 participated in 
regulating aerobic glycolysis, especially the pro-
duction of lactic acid, and thus promoted HCC 
progression. Subsequent data analysis unveil- 
ed that lactate dehydrogenase (LDHA) acted as 
an indispensable downstream factor of ACYP1 
in regulating glycolysis and promoting tumor 
progression. Furthermore, they observed that 
ACYP1 interacted with HSP90 and regulated 
the stability of c-MYC and revealed that ACYP1 
enhanced LEN resistance through the ACYP1/
HSP90/MYC/LDHA axis [325] (Figure 2).

Notch signaling

Notch signaling is an evolutionarily highly con-
served signaling pathway integral to cell fate, 
including Notch receptors (Notch 1-4), Notch 
ligands (Delta-like ligands, DLL1/3/4 or Jagged 
ligands, JAG1/2), CBF1, Suppressor of Hairless, 
Lag-1 (CSL) and Notch effector. The Notch1-4 
binds to the notch ligands on the neighboring 
cell membrane, and then releases the notch 
protein fragment (Notch intracellular domain, 
NICD), which binds to the CSL, regulating tran-
scription of downstream target genes [326]. 
Nowadays, Notch signaling is proven to be cru-
cial in normal liver development [327], and par-
ticipates in regulating HCC tumorigenesis, an- 
giogenesis, invasion, and metastasis [328] as 
well as promoting SOR resistance [329]. Tran- 
smembrane 4 L six family 1 (TM4SF1) was 
identified as an oncoprotein, which was highly 
expressed in HCC and closely associated with 
adverse prognosis [330]. Yang et al. revealed 
that TM4SF1 activated the Notch pathway by 
upregulating myosin heavy chain 9 (MYH9), 
thereby promoting cancer HCC cell stemness 
and enhancing LEN resistance [331] (Figure 2).

RNA modification

N7-methylguanosine (m7G) and N6-methylade- 
nosine (m6A), two of the most common RNA 



Challenge of lenvatinib application in HCC

4137	 Am J Cancer Res 2024;14(9):4113-4171

modification types, exert pivotal roles in tu- 
mor progression [332, 333]. In mammals, the 
methyltransferase-like 1 (METTL1)/WD repeat 
domain 4 (WDR4) complex is essential for nor-
mal mRNA translation, neural self-renewal, and 
differentiation. METTL1 binds to its cofactor 
WDR4 to install m7G modification in tRNA, 
miRNA and mRNA [334]. There existed several 
studies identifying that METTL1/WDR4 was 
upregulated in HCC tissues and played onco-
genic roles [332, 335, 336] as well as induced 
SOR resistance [337].

Recently several studies explored the effects  
of METTL1/WDR4 on LEN therapy efficacy. 
Huang et al. found that METTL1/WDR4-me- 
diated m7G tRNA modification facilitated down-
stream EGFR translation [338] and activated 
MAPK/ERK signaling in HCC cells, inducing LEN 
resistance. Else, Han et al.’s study demonstrat-
ed that the METTL1/WDR4, CSC markers, and 
m7G modification were highly upregulated in 
LR-HCC tissues/cells, and elevated WDR4 ex- 
pression promoted HCC progression and result-
ed in LEN resistance via directly regulating 
TRIM28 to upregulate associated downstream 
genes [339]. In addition to METTL1, another 
family member-METTL3 was detected at high 
expression levels in LR-HCC cell lines and tis-
sues as well, and METTL3 upregulated EGFR 
expression in m6A-dependent manner and 
enhanced MAPK/ERK signaling, thereby trig-
gering LEN resistance [340]. Else, Metformin 
was proven to restore PPARGC1A expression 
through counteracting its m6A modification via 
inhibition of METTL3, subsequently suppress-
ing downstream wnt/β-catenin signaling and 
enhancing the therapeutic efficacy of LEN 
[256].

N4-acetylcytidine (ac4C) is a highly conserved 
RNA modification, the only acetylation event 
described in eukaryotic RNA, and is catalyz- 
ed by n-acetyltransferase 10 (NAT10) [341]. 
Previous studies illustrated that NAT10 was 
upregulated in HCC tissues and associated 
with adverse prognosis [342], thereby acceler-
ating EMT to enhance HCC growth and induce 
doxorubicin resistance [343]. Endoplasmic re- 
ticulum stress (ERS) is a pathological state and 
has been proven to exert oncogenic and immu-
nosuppressive effects [344]. One recent study 
similarly showed that NAT10 was upregulated 
in HCC tissues at mRNA levels and associated 

with a poor prognosis. In vivo and in vitro ex- 
periments revealed that NAT10 upregulated the 
ac4C modification of HSP90AA1, and main-
tained its stabilization, which enhanced ERS to 
promote the HCC metastasis and induce LEN 
resistance [345] (Figure 2).

Hypoxia

Intratumoral hypoxia is a typical characteristic 
of HCC and has been proven associated with 
drug resistance [346]. Takahashi et al. found 
that HCC cells were more resistant to LEN 
under hypoxic conditions. Microarray analysis 
was performed to identify the fibronectin 1 
(FN1) as the most related gene that encoded 
FN1 protein. They confirmed that hypoxia-
induced upregulation of HIF-1α and other tran-
scription factors, thereby enhancing FN1 ex- 
pression and leading to LEN resistance [347] 
(Figure 2).

Drug combination

Intriguingly, some studies have found that sev-
eral existing drugs and LEN may have synergis-
tic effects potentiating anti-tumor activity in the 
treatment of HCC. Hirotetsu et al. found that 
the combination of low-dose LEN and Losar- 
tan, one angiotensin-II (AT-II) receptor blocker, 
achieved cellular and vascular inhibition by 
inhibiting VEGF-A expression, and demonstrat-
ed in xenograft trials that oral losartan com-
bined with LEN diminished subcutaneous tu- 
mor load and intratumoral angiogenesis in 
nude mice [348]. Another study determined 
that Vitamin C increased LEN sensitivity and 
synergistically inhibited HCC cell proliferation, 
migration, and invasion in vitro experiments 
[349]. Graziana et al. showed that Abemaciclib, 
one CDK4/6 inhibitor, was involved in enhanc-
ing the LEN sensitivity in HCC cells [350]. In 
Takahashi et al.’s study, they identified a key 
differentially expressed protein c-SRC in LR- 
HCC cells and conducted experiments to reveal 
that Dasatinib, the c-SRC inhibitor, increased 
the sensitivity of LR-HCC cells to LEN in a dose-
dependent pathway [351]. ATP binding cas-
sette subfamily B member 1 (ABCB1, MDR1) 
and breast cancer resistance protein (BCRP), 
two important members of ATP binding cas-
sette (ABC) family, are involved in drug efflux 
from tumor cells, thereby reducing the effica-
cious concentration of anti-tumor drugs and 
leading to chemotherapy failure [352, 353]. 
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drug resistance of HCC attracted increasing 
attention in recent years. For instance, lncRNA 
MALAT1 inhibits HCC cell apoptosis induced  
by 5-fluorouracil [366]. LncRNA SNHG1 triggers 
SOR resistance in HCC by activating the AKT 
signaling [367], etc. To date, there has been 
little research concerning LEN resistance ca- 
used by lncRNA dysregulation, which is shown 
in Figure 3.

LncRNA HOTAIRM1 was upregulated in LR-HCC 
cells, and knockdown of HOTAIRM1 was con-
firmed to dramatically increase the sensitivity 
of LEN in HCC cells. Mechanistically, Gu et al. 
revealed that HOTAIRM1 downregulated miR-
34a and upregulated BECLIN-1 to result in 
autophagy activation, inducing LEN resistance 
[368]. LncRNA XIST was upregulated in LR-HCC 
cells and its high expression was associated 
with LEN resistance in vitro. Duan et al. revealed 
that XIST induced LEN resistance via activating 
the EZH2/NOD2/ERK axis [369]. In addition, 
lncRNA AC026401.3 was found highly expre- 
ssed in HCC tissues and was positively corre-
lated with poor prognosis, while AC026401.3 
knockdown enhanced LEN sensitivity in HCC 
cells. Notably, Wang et al. uncovered that 
AC026401.3 interacted with octamer-binding 
transcription factor 1 (OCT1) to enhance the 
E2F2 transcription, thereby triggering LEN re- 
sistance in HCC [370]. Besides, Ting et al. found 
that lncRNA MT1JP was significantly upregulat-
ed under LEN stimulation in HCC cells, and in 
vitro experiments demonstrated that MT1JP 
overexpression promoted LEN resistance in 
HCC cells. Mechanistically, they found that 
MT1JP, as a competitive endogenous RNA 
(ceRNA) of miR-24-3p, inhibited miR-24-3p ex- 
pression, thereby reversing its inhibitory effect 
on B-cell lymphoma 2 (BCL2), an anti-apoptotic 
protein, suppressing cell apoptosis and induc-
ing LEN resistance [371]. Furthermore, Chen et 
al. detected that lncRNA USP2-AS1 expression 
was significantly upregulated in response to 
hypoxic conditions and confirmed that USP2-
AS1 was highly expressed in HCC tissues and 
positively correlated with tumor size. In vitro 
experiments showed that USP2-AS1 overex-
pression significantly increased HCC cell pro- 
liferation, migration, and invasion, and USP2-
AS1 knockdown enhanced the LEN treatment 
efficacy. Mechanistically, USP2-AS1 increased 
hypoxia-inducible factor 1α (HIF1α) expression 
and its downstream target genes expression by 
enhancing the binding of Y-box binding protein 

Sun et al. elucidated that ABCB1 and BCRP 
transporters were dramatically upregulated in 
LR-HCC cells and found that Elacridar, an 
ABCB1 and BCRP inhibitor, could reverse LEN 
resistance in uHCC [354]. Moreover, in vivo and 
in vitro experiments, Hu et al. identified that the 
EGFR-STAT3-ABCB1 signaling was abnormally 
activated in the LR-HCC models, which was 
also suggested in the pathological tissues of 
LR-HCC patients. Further, they revealed that 
EGFR upregulated ABCB1 by activating STAT3, 
which induced LEN resistance by enhancing its 
exocytosis. In addition, Erlotinib, a type of TKI, 
was found to not only inhibit EGFR phosphory- 
lation to downregulate ABCB1 expression, but 
also directly repress the LEN exocytosis medi-
ated by ABCB1, which together enhanced LEN 
therapeutic efficacy [355].

Non-steroidal anti-inflammatory drugs (NSAIDs) 
have been determined to exert anti-tumor activ-
ity by blocking cyclooxygenase 2 (COX2) [356]. 
Yan et al. revealed that LEN+ Aspirin therapy 
significantly enhanced the inhibitive effects in 
cell proliferation, tumor growth, and angiogen-
esis in vivo and in vitro. Mechanistically, they 
found that the combination therapy downregu-
lated the phosphorylation levels of CDK2, RB, 
AKT, ERK, MEK, and 4EBP1, enhanced the 
expression of P21 and P27, and decreased the 
expression of c-MYC and LDHA, synergistically 
participating in tumor inhibition to reverse LEN 
resistance [357]. Deng and his colleagues 
uncovered that LEN increased the recruitment 
of neutrophils, stimulated the polarization of 
neutrophils towards the N2 phenotype, and 
increased the PD-L1 expression in HCC cells, 
leading to LEN resistance. Additionally, they 
found that Celecoxib can decrease the survival 
rate of neutrophils stimulated by lactate, there-
by boosting LEN’s anti-tumor effects [358].

LncRNA

Long non-coding RNA (lncRNA) is a transcript 
with a length of more than 200 nucleotides 
that regulates gene expression at different lev-
els, thereby involving in different biological and 
pathological processes [359, 360]. Dysregu- 
lation of lncRNA in HCC has been widely con-
firmed to have tumor-promoting and suppres-
sive effects, and intensive studies have found 
that lncRNA plays important roles in tumor 
growth and drug resistance [361-365]. The cor-
relation between dysregulation of lncRNA and 
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Figure 3. The correlation between the dysregulation of non-coding RNAs (ncRNAs) and lenvatinib resistance. The 
dysregulation of non-coding RNA, including lncRNA, circRNA and microRNA, was demonstrated to be closely related 
to LEN resistance in uHCC. A series of lincRNA and circRNA, as ceRNAs, regulated downstream mRNA expression by 
competitively binding with miRNA, thus involving in regulation of LEN resistance. In addition, ncRNAs participated 
in regulating associated signaling pathways, including MAPK/ERK, AKT, hippo, autophagy, NF-κB and FGFR4 signal-
ing, which promoted or inhibited LEN resistance in HCC treatment. Solid lines represent the role in promoting LEN 
resistance, and dashed lines represent the role in suppressing LEN resistance in uHCC treatment. Pointed arrows 
represent activating effects, and blunt arrows represent inhibitory effect. The same is true for arrows and lines 
described below.

1 (YBX1) to HIF1α under hypoxia conditions, 
thereby impeding HCC progression and induc-
ing LEN resistance [372]. Furthermore, Chen et 
al. observed that lncRNA MKLN1-AS was upreg-
ulated in HCC tissues and patients with higher 
MKLN1-AS expression had remarkably shorter 
DFS and OS. Functionally, MKLN1-AS knock-
down significantly inhibited the HCC cell metas-
tasis and growth in vitro and in vivo, and 
enhanced the effect of LEN-induced apoptosis 
[373]. Moreover, Hiroyuki et al. showed that 
lncRNA NEAT1 induced LEN resistance by 
upregulating SOD2 expression to change the 
growth mode of HCC cell lines from MEK/ERK 
to AKT-dependent mode [374]. Inhibition of 
ROS levels and reduction of redox state status 

were observed in LR-HCC cells. Zhang et al.  
first show that lncRNA LINC01607, as a ceRNA, 
competed with miroRNA-892b and triggered 
protective mitochondrial autophagy by upregu-
lating P62, thereby promoting LEN resistance 
in HCC cells [375]. Song et al. found that PINK1 
was elevated in LR-HCC cells and tissues, and 
through a series of experiments, they identified 
that lncRNA FGD5-AS1 competitively regulated 
PINK1 with miR-5590-3p, promoted PINK1-
mediated mitochondrial homeostasis, and led 
to LEN resistance [376].

Different from the several lncRNAs above which 
were involved in facilitating HCC development 
and inducing LEN resistance, the downregula-
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from LR-HCC cells to sensitive cells via exo-
somes, thereby inducing LEN resistance [389].

Instead, several studies reveal that circRNAs 
participate in inhibiting HCC development and 
reversing LEN resistance. Bi et al. found that 
circFAM134B, as a ceRNA, competed with poly 
(A) binding protein cytoplasmic 4 (PABPC4) to 
upregulating FAM134B, which promoted endo-
plasmic reticulum autophagy and enhanced 
LEN-induced iron death in HCC cells [390]. 
CircKCNN2 was found lowly expressed in HCC 
tissues and patients with high circKCNN2 
expression exhibited superior OS and RFS. 
Through a series of experiments, Liu et al. 
found that circKCNN2 overexpression inhibited 
HCC cell proliferation and migration in vitro, 
promoted tumor growth in vivo, and simultane-
ously inhibited LEN resistance. Mechanistically, 
they confirmed that circKCNN2 targeted miR-
520c-3p and downregulated its expression, 
then upregulating methyl-DNA-binding domain 
protein 2 (MBD2) expression to downregulate 
FGFR4 expression, which inhibited HCC pro-
gression and increased the sensitivity of HCC 
cells to LEN [391].

MicroRNA

MicroRNA (miRNA, miRs) are a special class of 
small non-coding RNA molecules targeting spe-
cific mRNAs to prevent or degrade their transla-
tion, essential in biological processes, includ-
ing HCC development [392, 393]. Based on the 
specificity of the target genes, miRNAs can act 
as tumor suppressors or oncogenes, and its 
dysregulation is closely related to HCC cell pro-
liferation, invasion, metastasis, autophagy, etc. 
[394, 395]. In recent years, research on drug 
resistance and miRNA has been continuously 
carried out, including LEN resistance (Figure 3).

The c-MET was overexpressed in more than 
80% of HCC tissues and associated with poor 
prognosis [396]. Mucin 15 (MUC15) is a mem-
brane-associated protein and its downregula-
tion is closely linked to the adverse prognosis 
of HCC [397]. Han et al. found that MUC15 was 
downregulated in relapsed HCC tissues and 
LR-HCC tissues, and revealed that miR-183-
5p.1 directly bound to MUC15 3’-UTR to inhibit 
its expression and reverse downstream c-MET/
PI3K/AKT/SOX2 signaling inactivation, promot-
ing HCC progression and inducing LEN resis-
tance [398]. In addition, Yuan et al. found that 

tion of lncRNA ZEB2-19 was identified in HCC 
tissues and significantly linked to poor progno-
sis. A series of experiments was conducted by 
Cao et al. and demonstrated that ZEB2-19 sig-
nificantly inhibited cell proliferation, metasta-
sis, dryness maintenance as well as LEN resis-
tance in HCC cells. Mechanistically, ZEB2-19 
interacted with transformer 2α (TRA2A), pro-
moted its degradation and inhibited the radial 
spoke head 14 homolog (RSPH14) expression 
at mRNA levels, consequently attenuating the 
NF-κB signaling to suppress LEN resistance 
[377].

CircRNA

CircRNA is a special type of lncRNA character-
ized by a single-stranded covalent closed-loop 
structure [378]. In recent years, a series of 
studies have demonstrated that the dysregula-
tion of circRNA is intimately linked to HCC 
occurrence and development, including cell 
proliferation [379, 380], invasion, migration 
[381, 382], and apoptosis [383, 384]. Although 
there exist several studies focused on the cor-
relations between circRNAs and drug resis-
tance, including SOR resistance [385-387], few 
investigations have been carried out on its 
underlying mechanisms associated with LEN 
resistance, which is shown in Figure 3.

Zhang et al. discovered that circMED27 was 
significantly increased in the serum and tissues 
of HCC patients, and associated with a poor 
prognosis. They revealed that circMED27, as a 
ceRNA of miR-655-3p, competed with miR-
655-3p and enhanced ubiquitin-specific pepti-
dase 28 (USP28) expression, thus facilitating 
HCC progression and triggering LEN resistance 
[388]. Hao et al. found that circPAK1 was highly 
expressed in HCC tissues and was associated 
with poor prognosis in HCC patients. In vitro 
experiments showed that circPAK1 knockdown 
inhibited HCC cell proliferation, migration, inva-
sion, and angiogenesis. Animal experiments 
also confirmed that circPAK1 promoted HCC 
development. Mechanistically, through compet-
itively binding 14-3-3 with YAP, circPAK1 weak-
ened the recruitment and cytoplasmic immobi-
lization of YAP, thereby promoting YAP nuclear 
localization and inactivating hippo signaling to 
enhance HCC progression. In addition, they 
also observed that circPAK1 can transport 
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reducing macrophage-induced inflammation 
and immunosuppression, which augmented 
the therapeutic efficacy of LEN [405]. Focal 
adhesion kinase (FAK) plays important roles in 
a wide range of tumor progression, including 
HCC [406-408], which has been observed to 
be elevated at protein and mRNA expression as 
well as phosphorylation levels in LR-HCC cells. 
In vitro and in vivo experiments demonstrated 
that FAK inhibition reversed resistance to LEN 
in HCC. Mechanistically, FAK promoted LEN 
resistance through activation of WNK lysine-
deficient kinase 1 (WNK1) [409].

Ubiquitin-specific proteases (USPs) are one of 
the largest deubiquitinate families regulating 
the stability of downstream effectors [410], its 
dysregulation has been demonstrated to play 
important roles in tumor progression, including 
HCC [411]. Chen et al. found elevated expres-
sion of USP1 in HCC tissues at mRNA and histo-
logical levels, which was associated with poor 
prognoses in both OS and DFS. It was found 
that USP1 enhanced the stability of c-KIT to 
promote HCC cell growth. In addition, they dem-
onstrated that USP1 overexpression promoted 
LEN-induced apoptosis in HCC cells [412]. USP 
22, a deubiquitinating enzymes closely associ-
ated with tumor progress, has been shown to 
induce tumor drug resistance [413, 414]. Guo 
et al. discovered overexpression of USP22 in 
LR-HCC cells, and its knockout suppressed cell 
invasion, migration, and dryness. Additionally, 
cytological and animal experiments revealed 
that USP22 knockdown promoted the LEN sen-
sitivity of HCC cells. Moreover, they found that 
USP22 positively regulated jumonji domain-
containing protein 8 (JMJD8), an oncoprotein 
instrumental in promoting EMT and tumor im- 
mune escape [415], leading to LEN resistance 
in HCC [416].

In addition, there were still many studies elu- 
cidating that several key proteins played sig- 
nificant roles in regulating LEN resistance in 
HCC, but the specific resistance mechanism 
remained unclear. For instance, MEX3C, as an 
RNA-binding protein essential to regulating cel-
lular energy balance [417], was detected to be 
upregulated in HCC tissues and positively asso-
ciated with a poor prognosis. And, the combina-
tion of MEX3C knockdown and LEN showed a 
stronger inhibitory effect on HCC cells in vitro 
[125]. Aldo-keto reductase family 1 member C1 
(AKR1C1) was highly expressed in HCC tissues 

miR-3154 was upregulated in HCC tissues and 
correlated with poor OS and DFS of uHCC 
patients. In vitro and in vivo experiments sh- 
owed that miR-3154 knockdown inhibited HCC 
cell self-renewal, proliferation, metastasis, and 
tumorigenesis. Mechanistically, miR-3154 di- 
rectly targeted HNF4α to upregulate its expres-
sion, thus promoting HCC progression. Notably, 
through cohort analysis and patient-derived 
xenografts (PDX) model analysis, patients with 
high miR-3154 expression might exhibit strong 
LEN resistance [399].

Furthermore, several studies have elaborated 
on the oncogenic role of miRNAs in HCC. For 
instance, miR-3-128p was significantly down-
regulated in LR-HCC cells, and its overexpres-
sion inhibited LR-HCC cell proliferation, induced 
apoptosis, and enhanced the anti-cancer effi-
cacy of LEN in cellular culture and animal mod-
els. Mechanistically, miR-3-128p downregulat-
ed c-MET expression and then inhibited AKT 
signaling and ERK signaling, which inhibited 
HCC progression and enhanced LEN sensitivity 
to HCC [400]. In vitro experiments, Yan et al. 
elucidated that miR-23b overexpression syner-
gized with LEN to inhibit HCC cell proliferation, 
migration, invasion, and angiogenesis, thus en- 
hancing its sensitivity in HCC [401]. Moreover, 
the clinical cohort analysis demonstrated that 
HCC patients with high miR-6071 expression 
had more survival benefits from LEN treatment, 
it was detected that miR-6071 was downregu-
lated in hepatic cancer stem cells (hCSCs) and 
its overexpression inhibited hCSCs self-renewal 
and tumorigenesis, along with HCC cell prolif-
eration and migration. Mechanistically, Chen  
et al. identified that miR-6071 targeted the 
11’UTR of PTPN3 to inhibit its translation, 
thereby inhibiting HCC development and ren-
dering HCC cells sensitive to LEN [402].

Others

Zinc transporter 1 (ZNT1) is the unique trans-
porter regulating Zn2+ from the intracellular to 
extracellular compartment [403] and has been 
detected highly expressed in HCC tissues from 
patients with poor prognoses [404]. Dan et al. 
found that ZNT1 was significantly downregulat-
ed in macrophages of HCC in humans, and its 
low expression was associated with shorter 
survival time. Mechanistically, ZNT1 regulated 
Zn2+ transport to control the endocytosis of toll-
like receptor 2 (TLR2) and PD-L1, and then 
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therapy and perceived that TACE may deserve 
careful consideration before LEN treatment in 
large HCC, which may substantially decrease 
the risk of tumor rupture and bleeding [426].

Digestive system adverse effects

Digestive tract ulcers, bleeding and perfora-
tion: Maito et al. reported an 82-year-old male 
HCC patient who exhibited epigastric pain, vom-
iting, and jaundice after three months of LEN 
treatment [427]. Endoscopic evaluations re- 
vealed multiple duodenal ulcers, one of which 
was located at the Vater’s ampulla, causing 
cholestasis. They deduced that LEN could 
potentially trigger duodenal ulcers, leading to 
obstructive jaundice. Saori et al. reported a 
78-year-old male patient with uHCC who was 
diagnosed with colitis after one month of LEN 
treatment and regained with discontinuation of 
LEN [428]. Naomi et al. reported a rare case  
of a 75-year-old advanced HCC patient with 
small bowel metastases who suddenly devel-
oped abdominal pain and was diagnosed with 
perforation of the small intestine by imaging 
after one month of LEN treatment [429]. They 
speculated that the perforation of the small 
intestine might correlate with the strong antian-
giogenic effects of LEN. Additionally, it was 
reported that advanced HCC patients associ-
ated with alcoholic liver disease and non-alco-
holic fatty liver disease had a higher incidence 
of adverse events such as intestinal leakage 
following LEN treatment [430]. Mizokami et al. 
reported a case of intestinal fistula after treat-
ment with LEN and the postoperative pathology 
revealed notable mitotic arrest of the colon epi-
thelium, suggesting a potential link between 
intestinal perforation and LEN [431]. Moreover, 
Keiichiro et al. first reported a case of tracheo-
esophageal fistula during LEN therapy [432].

Cholecystitis and gallbladder perforation: Ka- 
zunaga et al. reported a 67-year-old man with 
advanced HCC, who developed acute right 
upper quadrant abdominal pain accompanied 
by fever after six days of LEN treatment and 
was diagnosed with acute non-calculous chole-
cystitis. Although the patient improved after 
antibiotics and endoscopic nasobiliary drain-
age treatment (ENBD), acute non-calculous 
cholecystitis recurred three days after taking a 
low dose of LEN again. They perceived that 
recurrent acute non-calculous cholecystitis in 

and was speculated as a predictive biomarker 
signifying poor prognosis and LEN resistance 
[418]. Brain-expressed X-linked 4 (BEX4) was 
positively correlated with resistance to LEN in 
HCC cells [419]. 1-acyl-sn-glycerol-3-phosphate 
acyltransferaseδ (APGAT4) was significantly 
highly expressed in HCC tissues and was asso-
ciated with poor prognosis, which was suggest-
ed to promote HCC progression and induce LEN 
resistance [420].

Adverse effects of lenvatinib in HCC treatment

Although LEN exerted better curative efficacy, 
there existed adverse reactions difficult to 
avoid. The REFLECT study has reported that the 
adverse reactions of LEN in the treatment of 
HCC mainly include hypertension, fatigue, diar-
rhea, decreased appetite, weight loss, and 
arthralgia/myalgia, etc. [7]. In addition to some 
common side effects, LEN may occasionally 
induce a multitude of relatively unexpected and 
adverse events. Herein, we primarily summa-
rized the researches associated with rare side 
effects.

Hemorrhage and bleeding

Sawako et al. conducted a retrospective study 
with a total of 68 uHCC patients treated with 
consecutive LEN therapy and observed that 5 
of them had an intraperitoneal or intratumoral 
hemorrhage, the tumor volume of the patients 
with hemorrhage was relatively large, and their 
prognosis was worse than that of patients with-
out hemorrhage. They perceived that while LEN 
treatment could rapidly inhibit tumor blood sup-
ply, it still increases the risk of tumor-related 
bleeding [421, 422]. Similarly, Aya et al. report-
ed two cases of HCC rupture hemorrhage short-
ly after treatment with LEN and suggested that 
LEN acted on VEGFR to inhibit the regeneration 
of damaged vascular endothelial cells, which 
may lead to bleeding [423]. Masayuki et al. 
reported a case of a 77-year-old patient who 
appeared with spontaneous rupture of lung 
metastases from HCC after LEN treatment 
[424]. Yoshiaki et al. report a case of a 72-year-
old male with HCC who developed tumor lysis 
syndrome (TLS) and HCC rupture on the se- 
cond day after LEN treatment [425]. Katsutoshi 
reported a case of an 80-year-old man with 
multiple HCC who developed multiple internal 
tumor bleeding eight days after receiving LEN 
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may be a common cause of fatigue during LEN 
treatment [441]. Kohya et al. identified FGF2,  
a key metabolic regulator and appetite modu- 
lator [442, 443], as a potential predictor of 
decreased appetite in HCC patients treated 
with LEN [444].

Respiratory adverse effects

Takeshi et al. reported a relatively slow pro- 
gression of LEN-induced interstitial pneumonia 
case. For this patient, the focal ground glass 
opacity with infiltrating shadows in both lung 
fields was found two months after LEN treat-
ment. Four months later, the patient presented 
respiratory symptoms, had to withdraw the LEN 
treatment, and died shortly thereafter [445]. In 
addition, Yasuhiro et al. first reported a 60-year-
old HCC patient with multiple lung metastases 
who developed pneumothorax after six months 
of LEN treatment [446].

Cutaneous adverse reactions

Kanzaki et al. reported a HCC patient who 
acquired pyoderma gangrenosum during the 
LEN therapy [447]. Yukari et al. first reported a 
case of generalized erythema rash (GER) during 
LEN treatment [448]. It has been reported that 
extragenital condyloma acuminatum occurred 
in HCC patients treated with LEN in combina-
tion with PD-1 inhibitors [449]. Iwasa et al. took 
the lead in reporting a case of an HCC patient 
with skin ulcers after receiving LEN combined 
with proton beam therapy [450]. Cha et al. 
reported a 60-year-old uHCC male who devel-
oped stage IV skin ulcers with full skin shedding 
and muscle tissue necrosis after receiving LEN 
treatment for two weeks and had complete skin 
recovery after LEN withdrawal [451]. Rachel et 
al. report a 66-year-old male uHCC patient with 
end-stage renal disease who developed symp-
toms of psoriasiform eruption after two weeks 
of LEN treatment, and such symptoms improved 
after drug reduction and active treatment. In 
addition, they proposed that the increase in the 
proportion of T lymphocytes induced by LEN-
mediated immunomodulatory may be respon-
sible for the initiation of psoriasiform eruption 
[452].

Endocrine adverse effects

Katherine et al. reported a case of a 24-year-
old HCC patient with multiple episodes of 

this patient was closely related to LEN treat-
ment [433]. Shuya et al. reported on a 59-year-
old male HCC patient with multiple bone metas-
tases, who developed general fatigue and was 
subsequently diagnosed with gallbladder perfo-
ration four months after treatment with LEN. 
This patient reinitiated with LEN treatment 
after receiving conservative treatment and an 
unexpected occurred gallbladder rupture one 
month later, thus indicating that LEN was the 
causative agent for gallbladder perforation 
[434].

Diarrhea: Furthermore, diarrhea was also noted 
to be common during TKI therapy. Ecombe et 
al. suggested that TKI-induced diarrhea might 
be caused by disorders in intestinal function 
induced by modifications within the intestinal 
microbiome [435]. Yosuke et al. explored the 
relationship between the intestinal microbiome 
and LEN-associated diarrhea through the ex- 
amination of stool samples between diarrheal 
and non-diarrheal groups and found the butyr-
ate metabolic pathway was notably enriched 
via KEGG enrichment analysis, which induced 
the regulatory T cells development and was 
essential for the regulation of intestinal inflam-
mation [436].

Hepatic encephalopathy: Liu et al. reported a 
42-year-old uHCC patient with cirrhosis, classi-
fied as Child-Pugh C, who developed hepatic 
encephalopathy following three consecutive 
days of LEN+PD-1 therapy. After the discontinu-
ation and positive treatment, the symptoms of 
this patient were continuously improved, and 
his blood ammonia gradually decreased to nor-
mal levels [437].

Tiredness, fatigue and decreased appetite

Cancer patients occasionally experience fati- 
gue during the treatment period, known as  
cancer-related fatigue. It has been reported 
that abnormal adenosine triphosphate synthe-
sis is closely related to the occurrence of fati- 
gue [438]. Carnitine serves a crucial role in 
mitochondrial β-oxidation of fatty acids to gen-
erate ATP. Studies have shown that the reduc-
tion of serum carnitine levels in patients receiv-
ing cisplatin chemotherapy is related to fatigue 
occurrence [439, 440]. Hironao et al. assessed 
carnitine levels in blood and urine samples 
from 20 HCC patients treated with LEN within 1 
month and confirmed that carnitine deficiency 
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of whom received low-dose aspirin to prevent 
thrombosis, 2 patients received phlebotomy, 
and no thromboembolic complications occurr- 
ed. The Hb decreased significantly after the 
withdrawal of LEN (P<0.05). In addition, they 
detected elevated levels of erythropoietin (EPO) 
in histopathological liver biopsies, and deduced 
that LEN may increase EPO secretion through 
its anti-angiogenic activity, thereby leading to 
elevated Hb levels [460].

Discussion

HCC is an aggressive malignancy with a poor 
prognosis, which seriously endangers human 
health. Given its insidious onset, HCC is fre-
quently diagnosed at advanced and unresect-
able stages [461]. LEN is widely used in clini- 
cal treatment due to its excellent therapeutic 
effect, albeit the occurrence of drug resistance 
remains unavoidable. Nowadays, combination 
therapy is widely and firmly considered the 
futural trend of HCC treatment, combined tar-
geted drugs, and immune checkpoint inhibitors 
with or without local treatment shine brilliantly 
in the treatment of advanced HCC [4]. Besides, 
a lot of prospective and retrospective studies 
have also focused on the efficacy and tolerabil-
ity of LEN combination therapy and found sev-
eral associated prognostic indicatorss (Table 
1), which may aid in the treatment section in 
clinical practice.

Aberrant regulations of signaling pathways 
including PI3K/AKT [207], wnt [255], autopha-
gy process [222] and MAPK/ERK signaling 
[173], etc., are strongly related to LEN resis-
tance. Studies revealed that several targeted 
drugs synergistically amplified the LEN thera-
peutic efficacy and delayed or even reversed 
drug resistance process by regulating key pro-
teins in such signaling (Table 2). Concretely, 
Tan et al. first found that the EGFR inhibitor gefi-
tinib reversed LEN resistance by inhibiting the 
negative feedback activation of ERK and its 
downstream signaling during LEN treatment. 
Besides, Secukinumab has also been reported 
to promote autophagy by inhibiting IL-17A-
induced BCL2 degradation, thereby antagoniz-
ing drug resistance [231]. It provides us with 
new reflections on whether the combination of 
other clinically targeted drugs with LEN simi- 
larly could potentially augment LEN sensitivity 
and yield superior survival. For example, Te- 
potinib was observed to inhibit SOR resistance 

severe hypoglycemia over several months of 
SOR treatment, whose hypoglycemia is under 
control after the change of medication with LEN 
[453]. Yoichi et al. first reported a case of ovar-
ian insufficiency in a 25-year-old HCC woman 
post a forty-eight-day treatment of LEN. In addi-
tion, the patient underwent hepatectomy, and 
within two months after the end of LEN treat-
ment, the levels of related hormones returned 
to normal and the normal menstrual cycle 
resumed [454]. Maito et al. reported a case of 
a 74-year-old HCC male who ensured fatigue 
and palpitation after forty-two-day treatment of 
LEN and was diagnosed with destructive thy-
roiditis. In addition, he was further diagnosed 
with hypothyroidism three months later [455]. 
To investigate the incidence of the LEN-induced 
hypothyroidism in HCC patients. Shusuke et al. 
executed a single-center retrospective study 
including a total of 61 HCC patients. The find-
ings revealed a striking high rate of high-grade 
hypothyroidism at 36.1% (22/61). Multivariate 
analysis identified non-smoking and eosinophil 
count ≤150/µL as risk factors for LEN-induced 
high-grade hypothyroidism [456]. Additionally, 
Takenori et al. found that in comparison with 
LEN or ATEZ/BEV therapy group, there may be a 
higher incidence of thyroid dysfunction in HCC 
patients treated with LEN+ATEZ/BEV [457].

Renal adverse effects

Nakashima et al. reported a 77-year-old 
Japanese woman with HCC who developed 
severe renal insufficiency and refractory hyper-
tension within one month of the lowest dose  
of LEN therapy. The drug-induced thrombotic 
microangiopathy, podocytopathies, as well as 
polar vascular disease were further verified 
through renal biopsy [458]. Thaninee et al. 
reported a 67-year-old uHCC patient with BCLC 
B stage, who was diagnosed with nephrotic syn-
drome (NS) after two weeks of LEN treatment, 
and the symptoms gradually improved within a 
week after LEN discontinuation [459].

Blood system adverse effects

Laurence et al. retrospectively analyzed 23 
uHCC patients who had been treated with LEN 
for at least one month. The 20 patients (87%) 
occurred a significant increase in hemoglobin 
(Hb) levels (P<0.001), and the Hb was elevat- 
ed above 16.5 g/dL in 10 patients (all male), 7 
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Table 1. The indicators for predicting prognosis and therapeutic efficacy in uHCC
Therapeutic approaches Indicators reflecting good therapeutic efficacy References
LEN Low serum CRP levels (<0.5 mg/dL) [18]

Low CAR ratio (<0.108) [19]
Low GPS scores [23]
High GNRI scores (>98) [12]
Low PLR (<150) [26]
Low NLR (<4) [28]
High SMI (≥42 cm2/m2 for men and ≥38 cm2/m2 for women) [17]
Significant infiltration of T cells and PD-L1-expressing macrophages [30]
Low serum levels of FGF19 (<194 pg/mL) [31]
High histological expression of FGFR4 [32, 33]
With well-controlled HBV or HCV viremia [35]
Without EGFR/ERBB2 alterations [29]
Low serum levels of CXCL9 (<308/333 pg/mL) [65]

LEN+HAIC+PD-1 Low serum levels of PCT (≤0.13 ng/mL) [80]
LEN+HAIC+PD-1
LEN+PD-1

High serum levels of CCL28 (>5.9 ng/ml) and BTC (>387.8 pg/mL) [91]
Low NLR (<3.46) [92]
High expression of nuclear PIGL [120]

LEN+PD-1
LEN+PD-1+TACE

High FGFR4 expression [122]
High counts of peripheral Th (>153 cells/uL) and NK cells (>214 cells/uL) [130]
High SAT volume index and low density [129]
Low peripheral naive CD8 T cell subsets (<6.24%) [131]
Low white blood cell counts (×109/L)/lymphocyte proportion (%) (≤43.1) [132]
>50% decrease in the serum levels of AFP or DCP [165]

LEN+PD-1+TACE Low NLR (≤3.11) [159]
Low NLR (<3.2) [137]
Low NLR (≤2.165) [138]
Low serum levels of PCT (≤0.13 ng/mL) [145]

Abbreviations: BTC: Betacellulin; CAR: CRP to albumin ratio; CCL28: C-C motif chemokine ligand 28; CRP: c-reactive protein; 
CXCL9: C-X-C motif chemokine ligand 9; GNRI: Geriatric nutritional risk index; GSP: Glasgow prognostic score; HAIC: Hepatic 
arterial infusion chemotherapy; LEN: Lenvatinib; NK cell: Natural killer cell; NLR: Neutrophil to lymphocyte ratio; PCT: Procal-
citonin; PIGL: Phosphatidylinositol-glycan biosynthesis class L; PLR: Platelet-to-lymphocyte ratio; SAT: Subcutaneous adipose 
tissue; SMI: Skeletal muscle index; TACE: Transcatheter arterial chemoembolization.

by inhibiting c-MET in HCC, and it remains 
unknown whether it antagonizes LEN resis-
tance by inhibiting c-MET and its downstream 
factors [462]. Alternatively, the activation of 
RAS and its downstream MAPK/ERK pathway 
has been extensively identified in HCC [463], 
and whether the existing MEK inhibitors and 
most recent proposed pan-RAS inhibitors (BI-
2865) [464] can cooperate with LEN in the 
treatment of advanced HCC is still waiting to be 
explored in future.

Interestingly, several studies have determined 
that chronic disease-related drugs could syner-
gistically potentiate the clinical efficacy of LEN 
(Table 2). Metformin, as the first-line hypoglyce-

mic agent for type 2 diabetes treatment, was 
found to enhance LEN sensitivity by inhibiting 
AKT pathway and downstream signaling activa-
tion [203]. Furthermore, aspirin is widely used 
in the treatment of rheumatism or arthritis, and 
anti-thrombotic prevention of atrial fibrillation 
and myocardial infarction, which has been also 
detected to improve the efficacy of LEN by 
inhibiting AKT/ERK signaling [357]. It is viable 
to collect and analyze the clinical information of 
HCC patients with chronic illness mentioned 
above and evaluate their treatment response 
to LEN.

In conclusion, while LEN combination therapy 
has indeed improved prognoses compared wi- 
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Table 2. The correlation between associated drugs and lenvatinib resistance in uHCC treatment
Drug name Drug types Roles LEN resistance Reference
Elacridar ABCB1 and BCRP inhibitor Inhibition of ABCB1 and BCRP Inhibition [354]
Flubendazole Anthelmintic Inhibition of PCSK9 and hedgehog signaling Inhibition [276]
Losartan AT-II receptor blocker Suppressing VEGF-A expression Inhibition [348]
Secukinumab Biologic agent targeting IL-17A Inhibition of BCL2 expression and promotion of autophagy pathway Inhibition [231]
Palbociclib CDK4/6 inhibitor Inhibition of wnt/β-catenin signaling Inhibition [257]
Abemaciclib Chinese herbal extracts Inhibition of c-MYC Inhibition [350]
Amentoflavone Inhibition of AKT/ERK signaling Inhibition [183]
Sophoridine Inhibition of VEGFR2 and MAPK/ERK signaling Inhibition [185]
OSC Inhibition of FGFR1, AKT/mTOR and MAPK/ERK signaling Inhibition [187]
Betulin Inhibition of the mTOR/IL-1β signaling Inhibition [240]
CP Inhibition of exosome-mediated autophagy Inhibition [233]
Curcumin Inhibition of EGFR and PI3K/AKT signaling Inhibition [207]
Dasatinib c-SRC inhibitor Inhibition of c-SRC Inhibition [351]
Erlotinib EGFR inhibitor Inhibit of STAT/ABCB1 axis and inhibition of LEN exocytosis Inhibition [355]
GANT61 GLI1/2 inhibitor Inhibition of hedgehog signaling Inhibition [273]
Simvastatin HMG CoA Reductase inhibitor Inhibition of cholesterol synthesis and hedgehog signaling Inhibition [282]
Metformin Hypoglycemic drug Inhibition of AKT signaling Inhibition [203]
Metformin Inhibition of wnt/β-catenin signaling Inhibition [256]
BAFA1 Macrolide antibiotics Inhibit autophagic degradation of NRP1 Promotion [222]
Aspirin NSAIDs Downregulation of AKT and MAPK/ERK signaling Inhibition [357]
Celecoxib Decrease the survival rate of PD-L1 neutrophils Inhibition [358]
Vitamin C Vitamins / Inhibition [349]
Abbreviations: ABCB1: ATP binding cassette subfamily B member 1; BCRP: Breast cancer resistance protein; PCSK9: Proprotein convertase subtilisin/kexin type 9; BCL2: B-cell 
lymphoma 2; OSC: Oxysophocarpine; CP: Compound phyllanthus urinaria; BAFA1: Bafilomycin A1; NSAIDs: Non-steroidal anti-inflammatory drugs.
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JW, Palmer D, Tamai T, Saito K, Dutcus CE and 
Lencioni R. Overall survival and objective re-
sponse in advanced unresectable hepatocel-
lular carcinoma: a subanalysis of the REFLECT 
study. J Hepatol 2023; 78: 133-141.

[7]	 Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Pis-
caglia F, Baron A, Park JW, Han G, Jassem J, 
Blanc JF, Vogel A, Komov D, Evans TRJ, Lopez 
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783.
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Aging Clin Exp Res 2021; 33: 1477-1486.
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of cohort studies. Kidney Blood Press Res 
2018; 43: 1878-1889.
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th LEN monotherapy, the specific mechanism 
remains elusive. In recent years, although many 
studies have revealed partial LEN resistance 
mechanisms, there are still many unknown 
fields waiting to be explored, the precision ther-
apy for HCC is still a long way to go. We sincere-
ly hope that this could offer some inspiration  
to researchers, which may help them to choose 
individual treatment precisely, as well as ac- 
quire new research ideas to further reveal the 
mechanism of LEN resistance in HCC.
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Supplementary Table 1. The advances of lenvatinib combination therapy in advanced HCC

Therapy Regimens mOS (months) mPFS 
(months) ORR (%) DCR (%) Efficacy 

Evaluation References

LEN+TACE vs TACE (46 vs 57) / / 69.57 vs 40.35, 
(P<0.05)

/ mRECIST [37]

LEN+TACE vs TACE (34 vs 32) / 17.00 vs 14.00, 
(P=0.510)

64.7 vs 34.4, 
(P=0.014)

79.4 vs 59.4, 
(P=0.066)

[38]

LEN+TACE vs TACE (53 vs 51) / / 77.36 vs 56.36, 
(P<0.05)

94.34 vs 79.89, 
(P<0.05)

[39]

LEN+TACE vs TACE (34 vs 68) 27.7 vs 18.4, 
(P=0.043)

8.3 vs 4.6, 
(P=0.008)

64.1 vs 36.5, 
(P=0.002)

79.4 vs 69.1, 
(P=0.272)

[40]

LEN+TACE vs TACE (60 vs 60) / / 68.3 vs 31.7, 
(P<0.001)

93.3 vs 86.7, 
(P<0.224)

[41]

LEN+TACE vs LEN (170 vs 168) 17.8 vs 11.5, 
(P<0.001)

10.6 vs 6.4, 
(P<0.001)

54.1 vs 25.0, 
(P<0.001)

94.1 vs 73.2, 
(P<0.001)

[43]

LEN+TACE vs LEN (19 vs 19) not reached vs 16.9, 
(P=0.007)

11.6 vs 10.1, 
(P=0.019)

63.2 vs 63.2, 
(P=1.0)

100 vs 100, 
(P=1.0)

[44]

LEN+DEB-TACE vs LEN (142 vs 69) 15.9 vs 8.6, 
(P=0.0022)

8.6 vs 4.4, 
(P<0.001)

46.48 vs 13.05, 
(P<0.001)

76.76 vs 56.52, 
(P<0.001)

[45]

LEN+DEB-TACE vs LEN (78 vs 78) 8.0 vs 5.0, 
(P=0.003)

/ 57.7 vs 25.6, 
(P<0.001)

75.6 vs 56.4, 
(P=0.011)

[46]

LEN+TACE vs SOR+TACE (25 vs 24) 13.0 vs 8.0, 
(P<0.05)

10 vs 6.5, 
(P<0.05)

62.8 vs 46.3, 
(P=0.027)

86.0 vs 76.7, 
(P=0.03)

[48]

LEN+TACE vs SOR+TACE therapy (59 
vs 57)

19.0 vs 10.8, 
(P=0.022)

8.4 vs 7.43, 
(P=0.081)

60.7 vs 38.9, 
(P=0.022)

96.4 vs 96.3, 
(P>0.05)

[49]

LEN+TACE vs SOR+TACE therapy (53 
vs 59)

30.5 vs 20.5, 
(P=0.018)

10.7 vs 6.0, 
(P=0.002)

54.7 vs 44.1, 
(P=0.260)

81.1 vs 61.0, 
(P=0.020)

[50]

LEN+DEB-TACE vs SOR+DEB-TACE 
(50 vs 100)

14.9 vs 12.3, 
(P=0.043)

/ 64.0 vs 33.3, 
(P=0.008)

76.0 vs 68.0, 
(P=0.310)

[51]

LEN vs ATEZ/BEV (181 vs 177) / 7.3 vs 10.8, 
(P=0.019)

/ / [56]

LEN vs ATEZ/BEV (152 vs 152) 20.2 vs not reached, 
(P=0.039)

6.0 vs 8.3, 
(P=0.005)

47.5 vs 44.2, 
(P=0.440)

80.8 vs 88.9, (P 
= 0.013)

[57]

LEN vs ATEZ/BEV (66 vs 66) 20.6 vs not reached, 
(P=0.577)

5.2 vs 8.8, 
(P=0.012)

52.4 vs 43.8, 
(P=0.330)

82.5 vs 76.6, 
(P=0.404)

[58]

LEN vs ATEZ/BEV (170 vs 92) 17.9 vs 14.0, (P=0.7) 6.3 and 7.2, 
(P=0.2)

35.9 vs 33.7, 
(P=0.8)

62.9 vs 63.0, 
(P=1.0)

[59]

LEN vs ATEZ/BEV (152 vs 65, with 
Child-Pugh B)

13.8 vs 8.2, 
(P=0.005)

8.2 vs 6.9, 
(P=0.8443)

35.0 vs 18.0, 
(P=0.0185)

65.0 vs 55.0, 
(P=0.2213)

[60]

LEN+TACE vs ATEZ/BEV+TACE (34 
vs 34)

/ 6.03 vs 7.03, 
(P=0.545)

58.8 vs 61.8, 
(P=0.804)

85.3 vs 82.4, 
(P=0.742)

[63]

LEN+SBRT vs LEN (37 vs 77) 19.3 vs 11.2, 
(P<0.001)

10.3 vs 5.3, 
(P<0.001)

56.8 vs 20.8, 
(P<0.001)

91.9 vs. 64.9, 
(P=0.005)

[73]

LEN+SBRT vs SBRT (35 vs 35) 16.8 vs 11.0, 
(P=0.043)

9.1 vs 3.7, 
(P<0.001)

54.29 v 22.86, 
(P=0.007)

85.71 vs 46.43, 
(P=0.005)

[75]

LEN+TACE+RT vs LEN+TACE (51 vs 
51, with PVTT)

22.8 vs 17.1, 
(P=0.031)

12.8 vs 10.5, 
(P=0.035)

56.9 vs 51.0, 
(P=0.551)

92.1 vs 90.2, 
(P=0.727)

[76]

LEN+PD-1+HAIC vs LEN+PD-1 (89 vs 
53, with PVTT)

26.3 vs 13.8, 
(P<0.001)

11.5 vs 5.5, 
(P<0.001)

61.8 vs 20.8, 
(P<0.001)

/ [82]

LEN+PD-1+HAIC vs LEN+PD-1 (84 
vs 86)

17.7 vs 12.6, 
(P=0.001)

10.9 vs 6.8, 
(P=0.001)

59.5 vs 41.9, 
(P=0.022)

88.1 vs 82.6, 
(P>0.05)

[83]

LEN+PD-1+HAIC vs LEN+PD-1 (45 
vs 25)

15.9 vs 8.6, 
(P=0.0015)

8.8 vs 5.4, 
(P=0.032)

40.0 vs 16.0, 
(P=0.038)

77.6 vs 44.0, 
(P<0.001)

[84]

LEN+PD-1+HAIC vs LEN+PD-1 (58 vs 
63, TACE-refractory uHCC patients)

24.0 vs 13.0, 
(P=0.001)

13.0 vs 7.2, 
(P<0.001)

48.3 vs 23.8, 
(P=0.005)

87.9 vs 69.8, 
(P=0.02)

[85]

LEN+PD-1+HAIC vs LEN+PD-1+TACE 
(34 vs 61)

25.0 vs 19.3, 
(P=0.035)

21.74 vs 8.74, 
(P=0.007)

52.9 vs 27.9, 
(P=0.03)

100 vs 88.5, 
(P=0.001)

RECIST 
v.1.1 criteria

[86].
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LEN+PD-1+HAIC vs LEN+HAIC (75 
vs 74)

16.0 vs 9.0, 
(P=0.002)

11.0 vs 6.0, 
(P<0.001)

45.33 vs 33.78, 
(P=0.146)

78.66 vs 62.12, 
(P=0.027)

mRECIST [87]

LEN+PD-1+HAIC vs LEN+HAIC (58 vs 
87, HAIC refractory uHCC patients)

43.6 vs 18.9, 
(P=0.009)

35.6 vs 9.4, 
(P=0.009)

/ / [88]

LEN+PD-1+HAIC+ TAE vs LEN+PD-
1+HAIC (50 vs 50)

14.1 vs 11.3, 
(P=0.041)

5.6 vs 4.4, 
(P=0.037)

72.0 vs 52.0, 
(P=0.039)

88.0 vs 76.0, 
(P=0.118)

[89]

LEN+PD-1+HAIC vs LEN (71 vs 86) not reached vs 11, 
(P<0.001)

11.1 vs 5.1, 
(P<0.001)

67.6 vs 13.6, 
(P<0.001)

90.1 vs 72.1, 
(P=0.005)

[90]

LEN+HAIC vs HAIC (110 vs 132) / 19.4 vs 16.1, 
(P=0.092)

/ / [93]

LEN+HAIC+ sequential ablation vs 
LEN+HAIC (53 vs 97)

30.0 vs 13.6, 
(P=0.010)

12.8 vs 5.6, 
(P<0.001)

/ / [95]

LEN vs HAIC (52 vs 52) 7.9 vs 10.8, 
(P=0.106)

4.0 vs 3.6, 
P=0.706

23.1 vs 28.8, 
(P=0.502)

51.9 vs 73.1, 
(P=0.026)

RECIST v1.1 
criteria

[96]

LEN vs PD-1+HAIC (65 vs 53) 10.1 vs 17.1, 
(P=0.005)

4.8 vs 9.3, 
(P=0.006)

9.2 vs 47.2, 
(P<0.001)

69.2 vs 86.8, 
(P=0.002)

[97]

LEN+PD-1 vs LEN+ placebo (395 
vs 399)

21.2 vs 19.0, 
(P=0.023)

8.2 vs 8.0, 
(P=0.047)

26.1 vs 17.5 81.3 vs 78.4 [106]

LEN+PD-1 group vs LEN (54 vs 85) 21.7 vs 12.8, 
(P=0.0051)

11.3 vs 6.6, 
(P=0.0128)

38.9 vs 24.7, 
(P=0.076)

92.6 vs 74.1, 
(P=0.006)

mRECIST [107]

LEN+PD-1 vs LEN group (40 vs 47) 22.9 vs 10.3, 
(P=0.01)

7.5 vs 4.8, 
(P=0.05)

45.0 vs 23.4, 
(P=0.03)

83.5 vs 76.6, 
(P=0.5)

RECIST 
v.1.1 criteria

[108]

LEN+PD-1 vs REG+PD-1 (32 vs 29) 5.3 vs 4.0, 
(P=0.512)

14.1 vs 13.7, 
(P=0.764)

12.5 vs 10.3, 
(P=0.557)

71.9 vs 58.6, 
(P=0.207)

[113]

LEN+PD-1 vs PD-1 (30 vs 39) 18.4 vs 8.5, 
(P=0.013)

10.6 vs 4.4, 
(P<0.001)

32.7 vs 10.3, 
(P=0.013)

80.0 vs 53.8, 
(P=0.012)

[115]

LEN+PD-1+TACE vs LEN+TACE (41 
vs 40)

16.9 vs 12.1, 
(P=0.009)

7.3 vs 4.0, 
(P=0.002)

56.1 vs 32.5, 
(P=0.033)

85.4 vs 62.5, 
(P=0.019)

mRECIST [146]

LEN+PD-1+TACE vs LEN+TACE (33 
vs 49)

16.4 vs 11.0, 
(P<0.01)

9.4 vs 5.9, 
(P<0.01)

51.7 vs 47.9, 
(P>0.05)

81.8 vs 77.6, 
(P=0.429)

[147]

LEN+PD-1+TACE vs LEN+TACE (31 
vs 52)

18.9 vs 13.9, 
(P<0.001)

12.5 vs 6.6, 
(P<0.001)

71.0 vs 42.3, 
(P=0.023)

93.5 vs 80.8, 
(P=0.195)

[148]

LEN+PD-1+TACE vs LEN+PD-1 (60 
vs 58)

29.0 vs 17.8, 
(P<0.01)

16.2 vs 10.2, 
(P<0.01)

76.7 vs 44.9, 
(P<0.01)

96.7 vs 75.9, 
(P<0.01)

[152]

LEN+PD-1+TACE vs LEN+PD-1 (86 
vs 86)

20.5 vs 12.8, 
(P=0.013)

12.1 vs 7.8, 
(P=0.030)

55.8 vs 30.2, 
(P=0.017)

86.0 vs 65.1, 
(P=0.024)

[153]

LEN+PD-1+TACE vs LEN+PD-1 (75 
vs 39)

not reached vs 14.0, 
(P=0.0039)

11.1 vs 5.1, 
(P=0.033)

44.0 vs 23.1, 
(P=0.028)

62.7 vs 43.6, 
(P=0.051)

[154]

LEN+PD-1+TACE vs SOR+PD-1+TACE 
(80 vs 85)

21.7 vs 15.6, 
(P=0.0027)

6.3 vs 3.2, 
(P<0.001)

41.25 vs 30.59, 
(P=0.008)

86.25 vs 62.35, 
(P=0.008)

[156]

LEN+PD-1+TACE vs PD-1+TACE (57 
vs 41)

19.8 vs 15.7, 
(P<0.001)

11.4 vs 8.4, 
(P<0.001)

57.9 vs 41.5, 
(P=0.108)

75.4 vs 58.5, 
(P=0.076)

[157]

LEN+PD-1+TACE vs TACE (57 vs 43) 19.8 vs 9.4, 
(P<0.001)

11.4 vs 4.8, 
(P<0.001)

57.9 vs 32.6, 
(P=0.012)

75.4 vs 55.8, 
(P=0.039)

[157]

LEN+PD-1+TACE vs PD-1+TACE (56 
vs 47)

26.0 vs not reached, 
(P=0.0045)

22.5 vs 14.0, 
(P=0.0013)

64.3 vs 38.3, 
(P=0.010)

85.7 vs 57.4, 
(P=0.002)

[158]

LEN+PD-1+TACE vs TACE (56 vs 54) 23.9 vs 15.3, 
(P<0.001)

11.9 vs 6.9, 
(P=0.003)

67.9 vs 29.6, 
(P<0.001)

92.9 vs 83.3, 
(P=0.122)

[159]

LEN+PD-1+TACE vs LEN+TACE (23 
vs 29)

26.7 vs 14.4, 
(P=0.007)

8.2 vs 6.0, 
(P=0.005)

86.96 vs 34.48, 
(P<0.001)

100 vs 48.28, 
(P<0.001)

[160]

LEN+PD-1+TACE vs SOR+TACE (23 
vs 32)

26.7 vs 17.9, 
(P=0.031)

8.2 vs 6.6, 
(P=0.047)

86.96 vs 46.88, 
(P<0.001)

100 vs 75, 
(P<0.001)

[160]


