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Abstract: Pancreatic cancer is an aggressive and metastatic tumor that lacks effective early detection and treat-
ment methods. There is an urgent need to further understand its underlying molecular mechanisms and identify 
new biomarkers for early detection. Zinc, a critical trace element and catalytic cofactor, is tightly regulated within 
cells. ZIP4, a zinc transporter protein significantly overexpressed in human pancreatic cancer, appears to play a piv-
otal role in tumor development by modulating intracellular zinc concentration. This review highlights the role of ZIP4 
in tumorigenesis, including its impact on pancreatic cancer growth, proliferation, migration, and drug resistance. 
ZIP4 exerts its effects by regulating zinc dependent transcriptional factors like CREB, STAT3, and ZEB1, resulting 
in upregulation of Cyclin D1, TP53INP1, ITGA3, CD44, ENT1 proteins, and miR-373. Moreover, ZIP4 mediates the 
miR373-PHLPP2-AKT signaling axis, which increases TGF-β expression. Coupled with CREB-activated macrophage 
catabolism-related genes SDC1 and DNM2, ZIP4 promotes cancer cachexia and supports amino acids to tumor 
cells under metabolic stress. Furthermore, ZIP4 facilitates bone resorption by osteoclasts via the RANKL-activated 
NF-κB pathway. A deeper understanding of these mechanisms may unveil potential targets for early diagnosis, prog-
nosis assessment, and dietary recommendations for pancreatic cancer. These findings hold clinical significance not 
only for pancreatic cancer but also for other malignancies exhibiting heightened ZIP4 expression.
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Introduction

Pancreatic cancer, notorious for its devastating 
impact, holds the highest mortality rate among 
cancers [1]. This grim prognosis is primarily due 
to its dense, proliferative stroma, a highly 
hypoxic and immunosuppressive tumor micro-
environment, and the absence of effective 
screening tools and biomarkers. The maximum 
5-year survival rate remains at a mere 10%, 
and by 2030, pancreatic cancer is projected to 
become the second leading cause of cancer-
related death in the United States [2]. Zinc, an 
essential trace element, serves as an intracel-
lular secondary messenger that regulates mul-
tiple signaling cascades, significantly influenc-
ing protein structure, enzyme activity, and gene 
regulation. Alterations in zinc concentrations in 
both the serum and malignant tissues of can-
cer patients have been consistently reported, 
underscoring its crucial role in cancer biology 

[3]. The intracellular free zinc concentration 
must be tightly regulated, typically maintained 
at pico-to-low nanomolar levels. Zinc transport-
ers are pivotal in preserving intracellular zinc 
homeostasis by facilitating the uptake of extra-
cellular zinc and its release into the cytoplasm 
[4]. Emerging evidence emphasizes the crucial 
role of zinc homeostasis and transport in can-
cer development, particularly in breast and 
pancreatic cancers [5, 6]. Notably, ZIP4 stands 
out as the predominant upregulated zinc trans-
porter protein and the most abundantly secret-
ed exosomal protein in highly malignant pancre-
atic cancers [7, 8]. This review focuses on the 
tumor-promoting effects of ZIP4 on pancreatic 
cancer proliferation, metastasis, drug resis-
tance, and cachexia. By unraveling the underly-
ing pathological mechanisms, we aim to identi-
fy novel therapeutic targets and biomarkers for 
early detection, treatment, tumor staging, and 
prognosis assessment in pancreatic cancer.
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The pathophysiological role of zinc

Zinc, an essential trace element and catalytic 
cofactor, plays crucial physiological and patho-
logical roles in maintaining normal cell growth 
and proliferation through its interaction with 
various transcription factors and metalloen-
zymes containing zinc finger motifs [9, 10]. Zinc 
deficiency can induce apoptosis, hinder growth, 
delay bone development, lead to osteoporosis, 
impaired DNA synthesis, and immune system 
malfunction [11, 12]. Dysregulated zinc trans-
porter proteins often disrupt the function of 
zinc finger transcription factors, including cyclic 
adenosine monophosphate response element 
binding protein (CREB), CREB binding protein, 
and metal-responsive transcription factor-1, 
resulting in abnormal cellular activity, disrupt-
ing the balance of normal growth, and promot-
ing uncontrolled transcription and cell prolifera-
tion. Additionally, zinc accelerates the malignant 
development of tumors as it is a component of 
vital enzymes, such as carbonic anhydrase and 
matrix metalloproteinases, both of which are 
involved in hypoxia, cell proliferation, angiogen-
esis, and metastasis [13, 14]. However, exces-
sive intracellular zinc is cytotoxic and can 
induce apoptosis, necessitating a homeostatic 
system to balance intracellular zinc uptake, 
storage, and efflux [15, 16]. Two solute linkage 
carrier gene families, SLC30 and SLC39, 
encode zinc transporters Zinc Transporter (ZnT) 
and Zrt- and Irt-like Protein (ZIP), respectively, 
which play antagonistic roles in regulating zinc 
availability [17]. ZnTs reduce intracellular zinc 
by facilitating its efflux from cells or seques- 
tering it into intracellular vesicles, while ZIPs 
increase intracellular zinc by promoting extra-
cellular uptake and vesicular zinc release into 
the cytoplasm [4].

Altered zinc transporter expression has been 
associated with various cancers. Studies have 
reported reduced zinc concentrations in the 
serum and malignant tissues of patients with 
prostate cancer or hepatocellular carcinoma 
[18, 19]. Breast cancer patients exhibit reduc- 
ed serum zinc levels but increased intracellu- 
lar zinc in malignant tissues due to low-level 
expression of ZnT1 [19-21]. Investigations also 
link breast cancer-associated proteins like ZIP6 
to lymph node metastasis and estrogen-posi-
tive breast cancer [22], while ZIP10 has been 
implicated in breast cancer cell invasion [23]. 

Differences in serum and tumor tissue zinc 
concentrations across various cancers suggest 
tissue-specific zinc uptake mechanisms [4], 
collectively highlighting the crucial role of zinc 
transporter in cancer development. Among 
these transporters, ZIP4, encoded by the 
SLC39A4 gene, regulates intracellular zinc lev-
els by absorbing dietary zinc and releasing it via 
vesicular compartments within intestinal epi-
thelial cells [9]. The role of ZIP4 in tumors has 
gained attention (Table 1). Microarray analyses 
revealed overexpression of ZIP4 mRNA in 
human pancreatic cancer tissues. Li M et al. 
confirmed this through real-time Reverse 
Transcription Polymerase Chain Reaction 
(RT-PCR) and immunohistochemical (IHC) stain-
ing, showing ZIP4 mRNA levels were approxi-
mately 5.5-fold higher in pancreatic cancer cell 
lines and tissues compared to human pancre-
atic ductal epithelial cells and surrounding nor-
mal tissues. Notably, ZIP4 expression was also 
elevated in pancreatic cancer tissues com-
pared to chronic pancreatitis tissues [5]. Fur- 
thermore, ZIP4 emerged as the most abundant-
ly secreted exosomal protein in highly malig-
nant pancreatic cancers [8]. These findings 
suggest ZIP4 is a potential contributor to pan-
creatic cancer pathogenesis and may serve as 
a valuable diagnostic marker. Overexpressed 
ZIP4 supplies additional zinc to fuel tumor cell 
growth and plays a multifaceted role in pancre-
atic cancer, including proliferation, invasion, 
metastasis, tumor malignancy grade, cancer 
cachexia, bone loss, and drug resistance.

ZIP4 promotes pancreatic cancer growth and 
proliferation and inhibits apoptosis

Zinc has been demonstrated to significantly 
impact cell proliferation by impacting DNA syn-
thesis and cell cycle progression through de- 
oxythymidine kinase and insulin-like growth 
factor-I [24]. In conditions of zinc deficiency, 
overexpressed ZIP4 exacerbates pancreatic 
cancer cell proliferation. Knockdown of ZIP4 
significantly decreases tumor weight and vol-
ume in both subcutaneous and in situ models 
of the ASPC-1 pancreatic cancer cell line [25]. 
Zhang Y et al. using gene microarray, Reverse 
Transcription Quantitative Polymerase Chain 
Reaction, and western blot analysis, unraveled 
the signaling mechanism underlying ZIP4-
mediated pancreatic cancer growth and prolif-
eration [25]. They found that ZIP4 overexpres-



The molecular mechanisms ZIP4 participates in pancreatic cancer progression

4654 Am J Cancer Res 2024;14(9):4652-4664

Table 1. The role of ZIP4 in varies tumors

Cancer Expression 
of ZIP4 Signal pathway Outcome Reference

Hepatocellular 
carcinoma

↑ ZIP4 regulates the expression of MMP2 and MMP9; 
down-regulates the expression of pro-apoptotic genes 
such as cystatinase-3, cystatinase-9, Bax; promotes the 
expression of Bcl-2.

ZIP4 promotes migration, invasion and inhibits apoptosis in hepatocel-
lular carcinoma; and may promote re-entry of hepatocellular carcinoma 
cells into the cell cycle after release from G0/G1 blockade.

[76]

Ocarian cancer ↑ ZIP4 is involved in cellular activities related to HGSOC 
cancer stem cells through the ZIP4-HDAC4-VEGFA/ZIP4-
NOTCH3-Jag-1 axis.

ZIP4 is functionally involved in CSC-associated cellular activities, includ-
ing loss-of-nest resistance, colony formation, sphere formation, drug 
resistance, and LPA-induced EOC side populations in HGSOC cells.

[77, 78]

Glioma ↑ ZIP4 levels are significantly associated with key genes 
for cell growth and angiogenesis in gliomas, such as 
VEGFA, MMP9, PDGFA, IGFBP2, IL-6 and IL-8.

High ZIP4 expression is significantly associated with higher glioma grade 
and shorter overall survival.

[79]

Gallbladder cancer ↑ ZIP4 up-regulate CDK4 and c-MET. ZIP4 promotes Gallbladder cancer cell proliferation and migration and 
inhibits apoptosis.

[80]

Nasopharyngeal 
carcinma

↑ ZIP4 activates PI3K/Akt signaling pathway in Nasopha-
ryngeal carcinma.

ZIP4 induces the EMT and promotes migration and invasion. [81]

Non-small cell lung 
cancer

↑ ZIP4 activates the Snail-N-cadherin signaling pathway 
and promoting the EMT process.

ZIP4 promoted cell migration, invasion, and metastasis, and its  
expression level was negatively correlated with overall survival and 
progression-free survival in NSCLC patients.

[82]

Prostate cancer ↓ NA ZIP4 has an inhibitory effect on the proliferation and invasion of prostate 
cancer.

[83]

Breast cancer ↑ NA ZIP4 promotes tumorigenicity of breast cancer stem cells. [84]
MMP, matrix metalloproteinase; Bcl-2, B-cell lymphoma-2; HGSOC, High-Grade Serous Ovarian Cancer; HDAC4, Histone Deacetylase 4; VEGFA, Vascular Endothelial Growth Factor A; NOTCH3, Notch homolog 
3; Jag-1, Jagged-1; CSC, Cancer Stem Cells; LPA, Lysophosphatidic Acid; EOC, Epithelial Ovarian Cancer; IGFBP2, Insulin-Like Growth Factor Binding Protein 2; IL-6, Interleukin-6; IL-8, Interleukin-8; CDK4, 
Cyclin-Dependent Kinase 4; c-MET, cellular-mesenchymal to epithelial transition factor; PI3K, Phosphatidylinositol 3-Kinase; EMT, Epithelial-Mesenchymal Transition; NSCLC, Non-Small Cell Lung Cancer; NA, 
Not Applicable.
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sion leads to elevated cyclin D1 levels, a critical 
regulator of the G1 to S-phase cell cycle transi-
tion, thereby promoting cell proliferation. ZIP4 
overexpression also upregulates IL-6 expres-
sion via CREB activation, subsequently activat-
ing signal transducer and activator of transcrip-
tion 3 (STAT3), leading to cyclin D1 elevating, 
and promoting pancreatic cancer cell prolifera-
tion and tumor progression. Additionally, ZIP4 
overexpression significantly boosts microR-
NA-373 (miR-373) expression (by 6- to over 
200-fold), which suppresses tumor-suppressor 
molecules like CD44, large tumor suppressor 
homologue 2 (LATS2), and TP53-inducible nu- 
clear protein 1 (TP53INP1), further driving can-
cer cell proliferation [26]. Silencing CD44, 
LATS2, and TP53INP1 resulted in severe asci-
tes, increased tumor weight and metastasis to 
the peritoneum, liver, spleen, and colon. Most 
tumors showed poor differentiation with tumor 
areas exceeding 80% compared to controls. PH 
domain leucine-rich repeat protein phospha-
tase 2 (PHLPP2), a phosphatase involved in 
AKT signaling, is a target gene of miR-373 in 
pancreatic cancer. It inhibits CREB phosphory-
lation, establishing a CREB-miR-373-PHLPP2 
feed-forward loop that activates the miR-373-
PHLPP2-AKT-CyclinD1 signaling axis, driving 
pancreatic cancer growth [27]. Silencing miR-
373 or blocking ZIP4 resulted in G0/G1 phase 
arrest, a decrease in the S-phase cell popula-
tion, and significant reductions in tumor weight 
and size. Beyond promoting proliferation, ZIP4 
also inhibits apoptosis. Under zinc-deficient 
conditions, ZIP4 knockdown increases suscep-
tibility to apoptosis, as shown by flow cytometry 
analysis. ZIP4 overexpression prevents apopto-
sis by inhibiting the cleavage of caspase-7, cas-
pase-9, and poly ADP-ribose polymerase, which 
are key components of apoptotic signaling. This 
resistance is partially mediated by the cas-
pase-9 activator cytochrome C and the mito-
chondrial pathway pro-apoptotic protein Bax 
[28]. ZIP4 may also interfere with other apop-
totic pathways, including the tumor necrosis 
factor (TNF) pathway via caspase-8 and the 
caspase-independent pathway managed by 
apoptosis-inducing factor. Impaired apoptosis 
contributes to both tumor progression and che-
moresistance [29, 30]. Defective apoptosis can 
lead to tumor progression and chemoresis-
tance [31]. Given the reduced zinc levels in the 
serum and tumor tissues of pancreatic cancer 
patients, overexpressed ZIP4 enables pancre-

atic cancer cells to extract zinc from limited 
sources, supporting excessive proliferation and 
inhibiting apoptosis [32]. By balancing pro- 
liferation and apoptosis, ZIP4 plays a pivotal 
role in pancreatic cancer growth, highlighting 
the importance of zinc transport proteins in 
cancer cells (Figure 1).

ZIP4 promotes pancreatic cancer cell invasion 
and migration

Distant metastasis within 24 months post-sur-
gery occurs in approximately 60% of pancreatic 
cancer patients [33, 34], and is a major cause 
of death [35]. ZIP4 has been demonstrated as 
a crucial regulator of pancreatic cancer inva-
sion and migration. Silencing ZIP4 in the ASPC-
1 pancreatic cancer cell line notably reduced 
migration (~68%) and invasion (~81%), as con-
firmed by cell migration and invasion assays 
[25].

The degradation of the basement membrane is 
a key step in facilitating tumor cell migration 
and invasion, which begins with the breakdown 
of tight junctions between cells [36]. In normal 
epithelial cells, peripheral proteins like Zonula 
Occludens-1 (ZO-1) and transmembrane pro-
teins like claudin-1 maintain cell-to-cell adhe-
sion, preventing cancer cell migration [37]. Zinc 
has been shown to regulate the integrity of 
these tight junction proteins [38]. IHC staining 
analysis reveals that Zinc Finger E-Box Binding 
Homeobox 1 (ZEB1), a major transcription fac-
tor driving epithelial-mesenchymal transition 
(EMT), is overexpressed in pancreatic cancer 
tissues, while ZO-1 and claudin-1 levels are 
reduced compared to benign tissues [39]. 
Further studies indicate that overexpression of 
ZIP4 in pancreatic cancer cell lines upregulates 
the mesenchymal marker ZEB1 and reduces 
the epithelial markers ZO-1 and claudin-1. 
Through a ZEB1-dependent mechanism, ZIP4 
amplifies downstream targets such as Focal 
Adhesion Kinase (an intracellular non-receptor 
tyrosine kinase associated with adhesion, mi- 
gration and invasion) and Paxillin phosphory-
late by downregulating claudin-1 and ZO-1, 
enhancing tumor invasion and metastasis in- 
dependently of CREB [39].

EMT is a critical process for tumor metastasis, 
as it induces phenotypic changes that enable 
cancer cells to migrate, invade the basement 
membrane, and acquire stem cell-like charac-
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Figure 1. The molecular signaling mechanisms and pathways of ZIP4 promoting pancreatic cancer cell proliferation, 
migration and drug resistance. (1) ZIP4 exerts a pro-muscle atrophic effect by phosphorylating STAT5 through the 
miR373-PHLPP2-AKT signaling axis to promote the expression of TGF-β. (2) ZIP4 increases the release of pancreatic 
cancer extracellular vesicles through the CREB-regulated RAB27B HSP70 and HSP90 stimulated the p38 MAPK 
signaling pathway and induced the expression of F-box protein and UBR2 in myotubes, leading to myofibrillar myosin 
heavy chain loss and myotube thinning. Meanwhile, ZIP4 activation of SDC1 and DNM2 via CREB and TRAIL secre-
tion mediated through GSK3b could provide the required amino acid supply for tumor cell growth. (3) ZIP4 promotes 
the binding of RANKL to RANK on osteoclast membranes and facilitates bone resorption through activation of the 
NF-κB pathway, leading to decreased mineral density of bone tissue, increased bone crystallinity and bone strength 
loss.

teristics [40, 41]. ZEB1, apart from its role as  
a transcriptional repressor, can transition to a 
transcriptional activator by interacting with 
coactivators (Lef1, YAP1, P300, and Smad) reg-
ulating tumor progression via pathways like 
Hippo and Wnt [42-44]. The Hippo pathway 
plays an essential role in regulating cell shape, 
organ size, EMT, and tumorigenesis. YAP1, the 
major downstream effector of the Hippo path-
way, has been shown to promote tumor growth 
in various cancers, including pancreatic, lung, 
and colon cancers. LATS2 can directly phos-
phorylate YAP1, inhibiting its activity through 
protein degradation. ZIP4 upregulates YAP1 
expression by inhibiting LATS2 via miR-373, 
thereby activating downstream oncogenes [45-
47]. YAP1 also acts as a co-activator by forming 

a complex with ZEB1, binding to the ITGA3 pro-
moter region to enhance EMT plasticity, cellular 
adhesion, sphere formation, and tumor sphere 
formation [48]. ZEB1’s dual role - lower expres-
sion contributing to tumorigenesis and higher 
expression promoting metastasis - suggests its 
potential as a marker to distinguish between 
tumorigenesis and the EMT/metastasis stage 
[49]. Moreover, ZIP4 overexpression significant-
ly elevates the Vascular Endothelial Growth 
Factor (VEGF), Neuropilin-1 (NRP-1, a receptor 
or co-receptor for specific isoforms of VEGF), 
matrix metalloproteinase (MMP)-9 and MMP-2 
expression, which are critical molecules in 
angiogenesis, invasion, and metastasis within 
the ZIP4-initiated signaling cascade [50]. The 
specific regulatory mechanisms for NRP-1, 
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VEGF, MMP-9, and MMP-2 in response to ZIP4 
necessitate further investigation to compre-
hensively understand their role in ZIP4-me- 
diated pancreatic cancer cell invasion and 
migration.

ZIP4 and drug resistance

Breakthroughs in pancreatic cancer treatment 
remain elusive, with gemcitabine-based mono-
therapy or combinations serving as the stan-
dard for advanced cases. Despite extensive 
exploration, no combination therapy has signifi-
cantly outperformed gemcitabine alone [51]. 
Disease progression often leads to gemcita- 
bine resistance, culminating in cancer recur-
rence [52]. Liu M et al. demonstrated that ZIP4 
expression influences both the growth and che-
moresistance of pancreatic cancer using a 
three-dimensional tumor culture model based 
on spheroids. When ZIP4 was overexpressed, 
MIA-PaCa-2 cell line enhanced resistance to 
cisplatin, 5-Fluorouracil (5-FU), and gemcita- 
bine. suggesting ZIP4 as a potential predictor 
of chemoresistance in pancreatic cancer pa- 
tients [51]. Their subsequent investigation 
delineated the regulatory cascade through whi- 
ch ZIP4 modulates drug resistance: ZIP4 phos-
phorylates STAT3, which subsequently upregu-
lates ZEB1. ZEB1 increases the expression of 
integrin subunits ITGA1 and ITGB3, leading to 
the formation of integrin α3β1. This integrin 
complex downregulates equilibrium transporter 
protein 1 (ENT1) via c-Jun N-terminal Kinase 
mitogen-activated protein kinase (JNK MAPK) 
activation [51], reducing cellular uptake of gem-
citabine and contributing to drug resistance 
[53]. Elevated ENT1 expression in pancreatic 
cancer typically indicates responsiveness to 
gemcitabine therapy, but ENT1 downregulation 
or deletion leads to gemcitabine resistance 
[54, 55]. Additionally, ZEB1 inhibits miR-203, 
further contributing to drug resistance in pan-
creatic cancer [56].

Beyond integrin α3β1, integrin α2β1 enhances 
pancreatic cancer cell resistance to 5-FU 
through B-cell lymphoma 2 (Bcl-2) upregula-
tion. ITGB1 promotes gemcitabine tolerance by 
activating Cdc42, while collagen/ITGA1 signal-
ing plays a crucial role in gemcitabine tolerance 
[57, 58] (Figure 2). These findings reveal uncon-
ventional pathways regulating metastasis and 
chemoresistance in pancreatic cancer and 

offer potential targets for future therapeutic 
strategies.

ZIP4 and cancer cachexia

Cachexia, characterized by progressive muscle 
wasting, fat loss, reduced appetite, and weight 
loss [59-61], affects over 80% of pancreatic 
cancer patients and is resistant to refractory to 
conventional nutritional support [62, 63]. This 
significant increase in muscle protein catabo-
lism not only compromises patients’ quality of 
life but also impairs their tolerance and respon-
siveness to chemotherapy, thus contributing to 
tumor progression [64, 65]. ZIP4, along with its 
upstream and downstream regulatory mole-
cules, plays a crucial role in pancreatic cancer 
malignancy. Studies have shown that ZIP4 en- 
hances muscle proteolysis, evidenced by sig-
nificantly reduced tibialis anterior muscle mass 
and cross-sectional area in animal models with 
high ZIP4 expression compared to ZIP4 knock-
down groups [27, 66]. ZIP’s pro-muscle atrophy 
effect is mediated through the phosphorylation 
of STAT5 via the miR373-PHLPP2-AKT signaling 
axis, which promotes the expression of the sol-
uble malignant plasma factor Transforming 
Growth Factor-β (TGF-β) [27]. CircANAPC7, a 
ZIP4-induced miR373 sponge, not only sup-
presses ZIP4-mediated cell proliferation throu- 
gh the miR373-PHLPP2-AKT-CyclinD1 signaling 
axis but also effectively ameliorates muscle 
atrophy in pancreatic cancer by inhibiting  
the miR373-PHLPP2-AKT-STAT5-TGF-β signal-
ing axis. Mice with high circANAPC7 expression 
exhibited increased levels of myofibrillar pro-
tein and myosin heavy chain, alongside reduced 
expression of muscle atrophy markers such  
as Ubiquitin Protein Ligase E3 Component 
N-Recognin 2 (UBR2) protein, Muscle Atrophy 
F-box protein-1, and Muscle RING-finger pro-
tein-1. These mice also demonstrated improv- 
ed grip strength, increased muscle weight, and 
enhanced cross-sectional area of muscle fibers 
[27]. This was supported by Kaplan-Meier sur-
vival curves, wherein circANAPC7 significantly 
increased median survival in pancreatic cancer 
xenograft mice compared to controls, under-
scoring the role of circANAPPC7 and ZIP4 in 
pancreatic cancer growth and malignancy.

Additionally, Yang J et al. demonstrated that 
ZIP4 enhances the release of heat shock pro-
teins (HSP) HSP70 and HSP90 from pancreatic 
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Figure 2. ZIP4 accelerates the cancer cachexia of pancreatic cancer patients. ZIP4 activates downstream signal-
ing pathways through zinc finger transcription factors CREB, STAT3, and ZEB1 leading to cyclinD1 up-regulate and 
through miR-373 negatively regulating tumor suppressor molecules TP53INP1, LATS2 and CD44 to promote pan-
creatic cancer proliferation and migration. And ZIP4 promotes the activation of MAP kinase JNK by integrin α3β1 
through ZEB1 down-regulation of ENT1 leading to gemcitabine resistance.

cancer extracellular vesicles (EVs) through 
CREB-regulated RAB27B, a GTPase necessary 
for controlling EV release [66]. These EV-as- 
sociated proteins act as danger-associated 
molecular patterns, activating toll-like receptor 
4 and stimulating the p38 MAPK pathway as 
well as the expression of F-box and UBR2 pro-
tein in myotubes, leading to thinning of myo-
tubes and loss of myofibrillar myosin heavy 
chain [66]. Moreover, acetyl coenzyme A syn-
thetase short-chain family member 2 (ACSS2), 

an enzyme involved in lipid synthesis, is overex-
pressed in pancreatic intraepithelial neoplasia 
lesions and pancreatic cancer tissues. ACSS2 
promotes ZIP4 transcription by modifying the 
Ets Variant 4 promoter with H3K27ac histones. 
ZIP4, in turn, induces macropinocytosis through 
CREB-activated macropinocytosis catabolism-
associated genes like Dynamin-2 (DNM2) and 
Syndecan-1 (SDC1), facilitating amino acids 
supply for tumor cell growth under metabolic 
stress states [67]. Notably, the downregulation 
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of ZIP4 had a less pronounced effect on mac-
ropinocytosis compared to ACSS2 downregula-
tion, suggesting that additional downstream 
signals of ACSS2, independent of ZIP4, may 
play a role in this process. ZIP4 also contribut- 
es to pancreatic cancer cachexia by secreting 
tumor necrosis factor-related apoptosis-induc-
ing ligand (TRAIL) 10 through the glycogen syn-
thase kinase-b (GSK3b) pathway, leading to 
muscular atrophy [67].

In addition to its role in cachexia, ZIP4 has been 
implicated in bone loss associated with malig-
nancy. ZIP4 promotes bone resorption by bind-
ing to Receptor Activator of Nuclear Factor 
Kappa-Β Ligand (RANKL), a member of the TNF 
superfamily, which interacts with RANK on 
osteoclast membranes. This activates osteo-
clasts, and initiates the NF-κB pathway, result-
ing in reducing bone mineral density, increas- 
ing bone crystallinity, and compromising bone 
strength in situ xenograft mouse models [68].

Zinc and ZIP4 as therapeutic targets

Studies have shown that serum zinc levels  
are significantly reduced in pancreatic cancer 
patients, and zinc content in pancreatic tumor 
tissue is lower compared to adjacent normal 
tissue [32]. Furthermore, monitoring changes 
in trace element concentrations during pancre-
atic cancer treatment revealed that patients 
with decreasing zinc levels had higher mortality 
rates than those whose levels remained stable 
or increased [69]. Patients with larger reduc-
tions in zinc levels during treatment exhibited 
higher mortality rates compared to those with 
smaller reductions, and individuals whose zinc 
status shifted from normal to deficient had an 
increased risk of death [69]. The decline in zinc 
levels has been associated with cancer pro-
gression and poor outcomes, aligning with the 
overexpression of ZIP4 in human pancreatic 
cancer.

Numerous studies have highlighted the inhibi-
tory impact of ZIP4 silencing on pancreatic can-
cer growth in subcutaneous and in situ xeno-
graft models in nude mice [25, 39, 51]. ZIP4 
silencing significantly reduced primary tumor 
weights, jaundice, peritoneal dissemination, 
hepatic and lung metastases, colon/intestinal 
obstruction, ascites, and weight loss, while also 
improving survival in in situ xenograft nude 
mice [25]. Histological analyses also indicated 

a reduction in tumor grade following ZIP4 si- 
lencing, potentially increasing tumor respon-
siveness to subsequent treatments. Conse- 
quently, combining ZIP4 short hairpin RNA with 
chemotherapy or radiotherapy may enhance 
the effectiveness of tailored therapies. Addi- 
tionally, identifying ZIP4 expression profiles 
before and after pancreatic cancer treatment 
could guide the selection of initial and sequen-
tial ZIP4 therapies [25]. Tan X et al. were the 
first to demonstrat the utility of exosomal ZIP4 
as a novel biomarker for pancreatic cancer 
diagnosis, leveraging clinical blood samples 
from healthy individuals and patients with 
malignant pancreatic cancer, benign pancreat-
ic disease, or biliary tract disease. ZIP4 effec-
tively distinguished malignant pancreatic can-
cer patients from both healthy controls (AUC= 
0.8931) and patients with benign pancreatic 
diseases (AUC=0.89) [8], highlighting ZIP4’s 
potential as a valuable diagnostic marker for 
pancreatic cancer.

Conclusion and perspectives

Pancreatic cancer is diagnosed late in over 
80% of cases, hindering timely intervention due 
to the absence of distinct symptoms, render- 
ing surgery unfeasible in most instances [70]. 
Approximately 15% of newly diagnosed cases 
present with non-metastatic and resectable 
tumors, with recurrence occurring within a year 
for most patients [71, 72]. This highlights the 
urgent need for novel biomarkers that facilitate 
early diagnosis and treatment of pancreatic 
cancer. This review outlines various mecha-
nisms wherein ZIP4 contributes to pancreatic 
cancer development and proposes avenues for 
further exploration. (1) We have summarized 
how ZIP4 promotes pancreatic cancer growth, 
proliferation, migration, chemoresistance, and 
cachexia. Some of its tumor-promoting effects 
are attributed to the disruption of tight junc-
tions, promotion of EMT, and resistance to 
gemcitabine chemotherapy. However, studies 
have shown that ZIP4 also regulates the ex- 
pression of MMP and increases resistance to 
other chemotherapeutic agents, such as 5-FU 
and cisplatin, although the exact mechanisms 
remain unclear. Therefore, further investigation 
is needed, such as how ZIP4 regulates MMP to 
promote tumor metastasis and the ZIP4’s syn-
ergistic or inhibitory effects in combination with 
gemcitabine-based therapies; (2) ZIP4’s biolog-
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ical effects are mediated through major tran-
scriptional activators including CREB, STAT3, 
and ZEB1, making them potential therapeutic 
targets. However, effective methods for pre-
cisely targeting ZIP4 or its downstream tran-
scriptional activators and delivering such thera-
pies need further development; (3) Given that 
zinc levels in ZIP4-overexpressing tumor cells 
remain lower than those in surrounding normal 
pancreatic tissue, we hypothesize that this may 
be due to excessive zinc consumption required 
for tumor survival and growth. However, the 
exact reasons for this phenomenon remain to 
be explored. It’s generally believed that zinc 
can exert anti-tumor activity by improving im- 
mune function, reducing oxidative stress, and 
promoting DNA damage repair [73, 74]. Thus, 
exploring strategies to harness high levels of 
zinc in pancreatic cancer to induce anti-tumor 
activity might be more beneficial than directly 
silencing ZIP4; (4) Given ZIP4’s role in zinc 
uptake, heavy meat diets, particularly red and 
double-cooked meat, cause excessive zinc ab- 
sorption in humans, which a recognized risk 
factor for pancreatic cancer development [75]. 
This suggests that dietary recommendations 
could be valuable for pancreatic cancer pa- 
tients. Carefully designed, large-scale cohort 
studies are necessary to evaluate zinc status 
and its implications for early diagnosis and 
prognosis in patients with pancreatic cancer. In 
conclusion, Zinc and ZIP4 may serve as promis-
ing diagnostic, therapeutic, and prognostic bio-
markers for pancreatic cancer. Targeting ZIP4 
with innovative treatments may offer promising 
treatment strategies for not only pancreatic 
cancer but also other malignancies displaying 
elevated ZIP4 expression.
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