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Abstract: Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an 
incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 
2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, 
mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only 
one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utiliza-
tion is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly 
and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by 
four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular 
systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in 
various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hear-
ing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the 
other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts 
the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity 
in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from 
damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influ-
ences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target 
of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel 
strategies and methods showing promise on the horizon.
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Introduction

Antineoplastic or chemotherapeutic drugs for 
cancer treatment can also harm normal tissues 
and cells, leading to various adverse effects 
[1]. Ototoxicity is a notable sequala of cancer 
treatment, impacting hearing and balance with 
symptoms including hearing loss, vertigo, dizzi-
ness, and tinnitus [2-5]. The severity of these 
symptoms varies and is influenced by factors 
including the age of the patient, the specific 
chemotherapeutic agent used, dosage, and 
administration method [1, 4, 5]. Although oto-
toxicity in chemotherapy is not life-threatening, 
its consequences, such as communication dif-

ficulties, social isolation, depression, and fa- 
tigue, can significantly impair the quality of life 
[6, 7]. Furthermore, hearing loss has been sug-
gested as a significant modifiable risk factor for 
dementia [8]. In pediatric patients, hearing loss 
is even more devastating as it can delay the 
development of speech and language abilities, 
communication skills, and impede cognitive 
maturation [9].

To determine the ototoxic potential and mecha-
nisms of chemotherapeutic drugs and shed 
light on emerging treatment compounds and 
approaches, we performed a comprehensive 
review of literature and databases on cancer 
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Table 1. Ototoxic chemotherapeutic drugs and their incidence of symptoms
Drug name Cisplatin Carboplatin Vinblastine Vincristine Dasatinib isotretinoin Tretinoin
Drug Class Alkylating agent Plant alkaloid Vinca alkaloid Tyrosine kinase 

inhibitor
Retinoid Retinoid

Antineoplastic Mechanism DNA binding and cross-linking
Protein cross-linking

microtubule inhibitor Src kinase 
inhibitor

microtubule inhibitor

Ototoxic Mechanism ROS overload, proinflammatory 
cytokine production

Possible synergy 
with other drugs

Unclear. Possibly associated with their antitumor activity

Incidence rate Hearing loss 31% 12% 10-29% No data 0.1-1% No data 6%

Tinnitus 31% 12% No data No data 1-10% No data No data

Dizziness No data No data Rare No data 1-10% No data 20%

Vertigo No data No data Rare No data 0.1-1% No data No data

treatment drugs. A PubMed search revealed 
nearly 2,000 publications on chemotherapy-
associated ototoxicity in the last decade. Am- 
ong these publications, two-thirds are related 
to platinum-based agents used in 10-20% of 
the chemotherapy regimens. However, the 
mechanisms underlying the ototoxicity of che-
motherapeutic drugs remain unclear, and ef- 
fective strategies to mitigate this side effect 
are still in development. This review discusses 
the tentative mechanisms for ototoxicity and 
advances in hearing protection during cancer 
treatment, highlighting promising drugs and 
methodologies recently developed. Our objec-
tive is to provide clinicians who treat cancer 
with a foundational understanding of ototoxici-
ty in chemotherapy. We also offer researchers 
insight into in-depth mechanisms and poten- 
tial innovative protective strategies against it. 
Currently, sodium thiosulfate (STS) is the only 
FDA-approved drug to mitigate hearing loss 
during cancer treatment in pediatric patients 
[10].

Chemotherapeutic drugs affecting the inner 
ear

To identify compounds/drugs with potentially 
damaging effects on the inner ear during can-
cer therapy, we searched the online databases 
from the websites of the National Cancer 
Institute (NCI) [2], Chemocare [3], and Beau- 
mont [4] using the search terms hearing loss, 
tinnitus, dizziness, and vertigo. Out of the 
approximately 700 compounds used in cancer 
treatment, only seven have listed hearing loss 
as a side effect (Table 1) [2-4].

Ninety-seven drugs reported dizziness as a 
side effect but not hearing loss or tinnitus 
(Table 2). While dizziness may originate from 

the inner ear, it can also have other origins, 
such as the central nervous system. Since the 
mechanisms underlying dizziness are multifac-
torial, and our primary focus is on hearing loss, 
drugs causing only dizziness but not any other 
symptoms of ototoxicity are not further explor- 
ed in this review. Some other drugs, such as 
doxorubicin (showing ototoxic effects in animal 
studies [11], but clinical evidence is missing) 
and nitrogen mustard (strongly restricted use 
as a chemical weapon), are also excluded.

Platinum-based drugs. The two platinum-based 
alkylating agents, cisplatin (also referred to as 
cis-diamminedichloroplatinum (II), CDDP, and 
platinol) and carboplatin (paraplatin), are the 
most commonly reported compounds that ca- 
use hearing loss. According to the National 
Cancer Institute (NCI), cisplatin or similar plati-
num-based drugs are used in 10-20% of can- 
cer chemotherapy regimens [12]. The most 
common indications include testicular, ovarian, 
cervical, bladder, and head and neck cancers. 
Multiple well-documented significant sequelae 
are nausea, vomiting, liver damage, kidney fail-
ure, hearing loss, tinnitus, and vertigo [13-17]. 
The prevalence of hearing loss during chemo-
therapy with cisplatin can be as high as 60-80% 
[14, 18]. Based on the NCI estimated cancer 
patients of 2018, cisplatin may cause approxi-
mately 100-300 thousand new cases of ototox-
icity annually in the United States. Oxaliplatin,  
a third-generation platinum-based chemother-
apy drug, has not been considered ototoxic 
based on a clinical trial with 18 patients [19]. 
However, case reports showed that the drug 
might cause hearing loss [20-23].

Vinblastine (velban, alkaban-AQ) and Vincris- 
tine are plant alkaloids listed as ototoxic drugs, 
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Table 2. Chemotherapeutic drugs causing only dizziness but not other symptoms of ototoxicity
Dizziness (incidence rate > 30%)
Generic/Other Name Brand Name Mechanism of Action
Axicabtagene Ciloleucel Yescarta chimeric antigen receptor T-cell immunotherapy agent, binds CD19 B-lymphocyte antigen
Entrectinib Rozlytrek protein-tyrosine kinase inhibitor, inhibits tropomyosin receptor tyrosine kinases - inhibits high affinity 

nerve growth factor receptor, BDNF/NT-3 growth factor receptors, NT-3 growth factor receptor, proto-
oncogene tyrosine-protein kinase ROS, tyrosine-protein kinase JAK2

Tisagenlecleucel Kymriah chimeric antigen receptor T-cell immunotherapy agent, binds CD19-expressing cells and promotes 
T-cell expansion, activation, target cell elimination

Larotrectinib Vitrakvi tropomyosin receptor kinase (TRK) inhibitor, inhibits TRKA, TRKB, TRKC preventing neurotrophin-Trk 
interaction and Trk activation inducing apoptosis and inhibition of cell growth

Dizziness (incidence rate 10-29%)
Generic/Other Name Brand Name Mechanism of Action
13-cis-Retinoic Acid Accutane, Isotretinoin retinoid, acts on nuclear receptors RAR or RXR
5-Azacitidine, Azacitidine Vidaza, Onureg antimetabolite and demethylating agent
Abemaciclib Verzenio cyclin-dependent kinase inhibitor (CDK4 and CDK6), arrests G1 to S phase
Brentuximab vedotin Adcetris CD30-direct antibody drug conjugate (monoclonal antibody that disrupts microtubules)
Ado-Trastuzumab Emtansin Kadcyla Anti-HER2 monoclonal antibody combined with microtubule inhibitor DM1 (maytansine derivative)
Anagrelide Agrylin phospholipase A2 inhibitor (prevents maturation of megakaryocytes)
Hydrocortisone, Hydrocortone Phosphate, 
Ala-Cort, Cortisone, Hydrocortisone Sodium 
Succinate, Hydrocortisone Sodium Phosphate

Solu-Cortef, Hydrocort 
Acetate, Lanacort

glucocorticosteroid

Aldesleukin, Interleukin-2, IL-2 Proleukin cytokine, increases production of T lymphocytes and NK cells and improves function of lymphokine-
activated killer cells and tumor-infiltrating lymphocytes

Alemtuzumab Campath CD52 monoclonal antibody
All-Trans Retinoic Acid, Tretinoin Vesanoid Retinoid, acts on nuclear receptors RAR or RXR
Interferon Alfa, alpha interferon, IFN-alpha Intron A, Roferon-A cytokine and biologic response modifier
Altretamine, Hexamethylmelamine, HMM Hexalen alkylating agent, hydrazine and triazine
Amifostine Ethyol chemoprotective agent, deactivates harmful components of chemotherapy drugs; scavenger, binds 

free radicals produced by cisplatin or radiation therapy
Aminoglutethimide Cytadren adrenal cortex corticosteroid production inhibitor, decreases production of estrogens and androgens
Nilutamide Nilandron, Anandron antiandrogen, blocks androgen/testosterone receptors
Apalutamide Erleada antiandrogen, blocks androgen/testosterone receptors
Arabinosylcytosine, Cytarabine, Ara-C Cytosar-U antimetabolite, inhibits DNA polymerase beta; cross-linking/alkylation of DNA, blocks G1/S
Nelarabine Arranon antimetabolite, adenosine deaminase inhibitor, incorporates into and destabilizes DNA, inhibits DNA 

polymerase alpha catalytic subunit; S phase-specific arrest
Arsenic Trioxide Trisenox not well understood, DNA fragmentation in leukemia cells; also damages or degrades the fusion 

protein PML-RAR
Avapritinib Ayvakit tyrosine kinase inhibitor, small molecule inhibitor of platelet-derived growth factor receptor alpha 

(PDGFR-A), targets PDGFRA and PDGFRA D842 mutants as well as multiple KIT mutations
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Bevacizumab Avastin, Mvasi, Zirabrev targets and inhibits VEGF preventing angiogenesis 
Belinostat Beleodaq histone deacetylase inhibitor
Carmustine, BCNU BiCNU, Gliadel wafer alkylating agent, nitrosurea, cross-links DNA and RNA
Binimetinib Mektovi oral MEK inhibitor, targets MEK1 and MEK2 protein kinase; usually given with a BRAF kinase inhibitor 
Blinatumomab Blincyto bispecific T-cell engager monoclonal antibody, induces T-cells to bind CD19 on surface of B-cell  

leukemia or lymphoma cells
Bortezomib Velcade proteasome inhibitor, inhibits 26S proteasome, inhibits proteasome subunit beta type-5 and type-1; 

cell arrest in G2-M phase; in multiple myeloma, works by blocking adhesion molecule activation 
Bosutinib Bosulif kinase inhibitor, targets ABL and SRC kinases
Encorafenib Braftovi BRAF kinase inhibitor
Busulfan Busulfex, Myleran alkylating agent, alkylsulfonate
Cabozantinib Cometriq, Cabometyx oral receptor tyrosine kinase inhibitor (RET, MET, VEGF), blocks cell division pathways
Carfilzomib Kyprolis tetrapeptide epoxyketone proteasome inhibitor, irreversibly binds to N-terminal threonine-containing 

active sites of 20S proteasome 
Crizotinib Xalkori capsules oral receptor tyrosine kinase inhibitor, inhibits ALK, hepatocyte growth factor receptor (HGFR, c-Met) 

and receptor d’origine natais (RON); blocks cell division pathway
Decitabine Dacogen antimetabolite and demethylating agent, restores function of tumor suppressor genes and cytotoxic 

effect on rapidly dividing cells
Daratumumab and Hyaluronidase Darzalex Faspro CD38 monoclonal antibody (present on myeloma cells), IgG1k human monoclonal antibody binds 

CD38 and induces apoptosis through mediated cross linking and immune mediated tumor cell lysis 
through complement dependent cytotoxicity, antibody mediated cytotoxicity, and antibody dependent 
cellular phagocytosis; hyaluronidase helps with absorption into blood

Daunorubicin and Cytarabine (Liposomal) Vyxeos Daunorubicin is an anthracycline, intercalates between DNA base pairs inhibiting DNA synthesis and 
DNA-dependent RNA synthesis; Cytarabine is an antimetabolite (S phase); liposome helps with drug 
distribution and lengthens time of effect of the drug allowing for extended treatment effect

Glasdegib Daurismo hedgehog pathway inhibitor, inhibits increases in tumor size and decrease the amount of CD45+/
CD33+ cells in the bone marrow; binds and inhibits Smoothened (SMO) receptor

Dexamethasone, Dexamethasone Sodium 
Phosphate, Dexamethasone Acetate

Decadron, Dexasone,  
Diodex, Hexadrol, Maxidex

glucocorticosteroid 

Prednisolone Delta-Cortef, Orapred, 
Pediapred, Prelone

glucocorticosteroid 

Prednisone Deltasone, Liquid Pred, 
Meticorten, Orasone

glucocorticosteroid 

Denileukin Diftitox Ontak biologic response modifier agent, a fusion protein (combination of diphtheria toxin and IL-2),  
selectively delivers the cell-killing activity of diphtheria toxin to targeted cells; binds to lymphoma cells 
that express high affinity IL-2 receptor (IL-2 part of fusion protein binds cell surface) and halts protein 
synthesis

Dexrazoxane Zinecard chemoprotectant agent, binds free radicals formed by doxorubicin; extravasation antidote, binds 
chemotherapy drug that leaked from vein preventing damage to surrounding tissue



Hearing loss during chemotherapy

4601 Am J Cancer Res 2024;14(9):4597-4632

Methylprednisolone Duralone, Medrol,  
Medralone, M-Prednisol, 
Solu-Medrol

glucocorticosteroid 

Eculizumab Soliris monoclonal antibody, binds C5 complement protein preventing formation of MAC, prevents hemolysis 
and stabilizes hemoglobin

Eltrombopag Promacta colony stimulating factor, thrombopoietic agent, growth factor that stimulates platelet production by 
binding to and activating the thrombopoietin (TPO) receptor; a thrombopoietin nonpeptide agonist 

Tagraxofusp-erzs Elzonris biologic response modulator and cytokine, combination of recombinant human IL-3 and truncated 
diphtheria toxin, binds CD123 (alpha chain of IL-3 receptor) and delivers diphtheria toxin to cells, 
blocks protein synthesis; binds ADP-ribosylation factor-like protein 2 

Fam-trastuzumab deruxtecan-nxki Enhertu anti-HER2 monoclonal antibody (anti-HER2 IgG1) combined with a topoisomerase I inhibitor; antibody 
attached to chemotherapy, allows selective delivery into HER2 overexpressing cells, DNA damage

Enzalutamide Xtandi antiandrogen (second generation), blocks androgen/testosterone receptors 
Toremifene Fareston anti-estrogen, estrogen receptor antagonist, blocks estrogen binding and uptake into cells
Gilteritinib Xospata protein-tyrosine kinase inhibitor, inhibits FLT3 receptor, serotonin receptors, TPKR UFO, and ALK 

tyrosine kinase receptor
Trastuzumab Herceptin (Biosimilars: 

Herzuma, Kanjinti, Ogivri, 
Ontruzant)

HER2/neu receptor monoclonal antibody 

Ibritumomab, Ibritumomab Tiuxetan Zevalin CD20 monoclonal antibody linked with Yttrium-90 (radioactive substance), directly delivers radiation 
to CD20+ cells 

Ibrutinib Imbruvica binds to and inhibits the bruton’s tyrosine kinase (BTK) signaling molecule of the B-cell receptor 
signaling complex

Ponatinib Iclusig tyrosine kinase inhibitor
IL-11, Oprelvekin, Interleukin-11 Neumega biologic response modifier and cytokine, stimulates production, maturation and activation of platelets 
Talimogene Laherparepvec, T-VEC Imlygic genetically modified weakened form of live HSV (oncolytic), replicates within tumors and produces 

GM-CSF to promote anti-tumor immune response
Interferon Alfa-2b (PEG Conjugate), PEG 
Interferon

PEG-Intron biologic response modifier and cytokine, activates human type 1 interferon causing them to dimerize 
which activates JAK/STAT pathway

Ruxolitinib Jakafi oral receptor tyrosine kinase inhibitor, inhibits JAK1 and JAK2 
Pembrolizumab Keytruda highly selective humanized monoclonal IgG4 antibody directed against the PD-1 receptor on cell 

surface, prevents binding and activation of PD-L1 and PD-L2 which activates T-cell mediated immune 
response against tumor cells

Lenalidomide Revlimid immunomodulatory agent and antiangiogenic agent, inhibits protein cereblon and TNF ligand super-
family member 11, antagonizes cadherin-5, negative modulator of prostaglandin G/H synthase 2

Lenvatinib Lenvima oral receptor tyrosine kinase inhibitor, inhibits VEGF, VEGFR, FGF, PDGFR alpha, KIT and RET
Lorlatinib Lorbrena reversible tyrosine kinase inhibitor, blocks abnormal ALK protein
Luspatercept Reblozyl recombinant fusion protein, hematopoiesis agent (contains modified form of the extracellular domain 

of human activin receptor), binds and inhibits transforming growth factor beta super family molecules 
increasing expression of blood cell precursors
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Olaparib Lynparza poly (ADP-ribose) polymerase (PARP) enzyme inhibitor (PARP1, PARP2, PARP3), induces synthetic 
lethality in BRCA1/2 deficient tumor cells through formation of double-strand DNA breaks

Procarbazine Matulane alkylating agent, hydrazine and triazine
Midostaurin Rydapt tyrosine kinase inhibitor, inhibits FLT3 inhibiting leukemic cell production
Niraparib Zejula PARP inhibitor, highly selective for PARP1 and PARP2 resulting in DNA damage and apoptosis, induces 

cytotoxicity in tumor cell lines w/ and w/o BRCA1/2 deficiencies
Romiplostim Nplate biologic response modifier, colony stimulating factor, promotes platelet production via the thrombopoi-

etin receptor
Pertuzumab Perjeta HER2 monoclonal antibody (binds different area of HER2 protein than trastuzumab)
Pomalidomide Pomalyst thalidomide analogue, inhibits protein cereblon, TNF and prostaglandin G/H synthase 2
Sipuleucel-T Provenge autologous cellular immunotherapy, selectively targets prostatic acid phosphatase (PAP), a PSA
Rucaparib Rubraca PARP inhibitor (PARP1, PARP2, PARP3), increases formation of PARP-DNA complexes; cytotoxicity in 

BRCA1/2 deficient tumor cell lines and other DNA repair genes
Sacituzumab Govitecan-hziy Trodelvy trop-2-directed antibody-drug conjugate combined with a topoisomerase I inhibitor (SN-38) attached 

by a linker, binds trop-2-expressing cancer cells and is internalized, SN-38 is released in cancer cell by 
breaking the linker

Sunitinib, SU11248 Sutent receptor protein-tyrosine kinase inhibitor, inhibits VEGF
Talazoparib Talzenna PARP inhibitor (PARP1, PARP2), strong catalytic inhibition and a PARP-trapping potential
Temozolomide Temodar alkylating agent, hydrazine and triazine (similar to dacarbazine, acts as a pro-drug)
Vorinostat Zolinza not fully understood, histone deacetylase inhibitor, inhibits HDAC2, HDAC2, HDAC3, HDAC6
Zoledronic Acid Zometa bisphosphonate, decreases osteoclast actions on bone
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Inner ear structures targeted by cisplatin

Structural and functional features of the 
cochlea: The cochlea comprises three fluid-
filled tubes, scala tympani, scala media, and 
scala vestibuli (Figure 1). Scala vestibuli and 
scala media are separated by Reissner’s mem-
brane, while scala media and scala tympani by 
the basilar membrane and reticular lamina. The 
organ of Corti is located on the basilar mem-
brane. It contains two types of hair cells: the 
inner hair cells (IHCs) and outer hair cells 
(OHCs). IHCs and OHCs have hair bundles, or 
stereocilia, with ion channels responsible for 
transforming sound-induced vibrations of soft 
tissue structures of the inner ear into action 
potentials. The channels are named mechano-
electrical transduction (MET) channels, of whi- 
ch the core domain is recently identified as 
transmembrane channel-like protein 1 [37]. 
Opening of MET channels in OHCs results in a 
depolarizing current enhancing the sound-
induced vibrations of soft tissue structures by 
changing the stiffness and length of the OHCs. 
In IHCs, the opening of the MET channels 
releases neurotransmitters and generates ac- 
tion potentials. The MET current is primarily 
carried by calcium and potassium ions [38]. 
Please refer to [39-41] for recent reviews on 
the MET channels.

The driving force for the MET current is the volt-
age difference between the endocochlear po- 
tential (EP) of about 80 mV [42, 43] and the 
resting potential of the hair cells. Intracochlear 
ion homeostasis, combined with the selec- 
tive permeability for different ions across the 
boundaries of the scalae and active ion trans-
port across stria vascularis, generates the EP. 
The perilymphatic ion concentration, high in 
sodium (~150 mM) and low in potassium (~5 
mM), is similar to the ion concentration of the 
extracellular fluids. This differs from the endo-
lymphatic ion concentration, low in sodium 
(~15 mM) and high in potassium (~140 mM), 
which is comparable with the ion composition 
of the cytoplasm [44]. The ion homeostasis of 
the endolymph is primarily controlled by the 
stria vascularis (SV), a structure lining the lat-
eral wall of the scala media. The marginal cells 
in the SV regulate the potassium concentra- 
tion [45], and the intermediate cells form tight 
junctions with basal cells to separate the en- 

albeit with little evidence in the literature. As a 
microtubule inhibitor, vinblastine-induced hear-
ing loss was observed in two case reports of 
patients with Hodgkin’s lymphoma who under-
went combined chemotherapy, including doxo-
rubicin, bleomycin, vinblastine, and dacarba-
zine (ABVD) [24, 25]. In one published case, 
vinblastine was given in a combination treat-
ment with vincristine. It has been discussed 
that the observed cochlear damage [24] origi-
nated from vinblastine. However, it is also pos-
sible that the damage might have been caused 
by vincristine, a commonly used vinca alkaloid 
similar to vinblastine [26-28]. 

Dasatinib (Sprycel), a tyrosine kinase inhibitor 
targeting multiple cancer cells, is also reported 
to cause hearing loss in case reports but the 
incidence is rare (0.1-1%). Instead, more fre-
quent side effects of dasatinib are tinnitus and 
dizziness.

Isotretinoin (cis-retinoic acid) and tretinoin (all-
trans retinoic acid) are retinoids that can slow 
down the growth of cancer cells. Occasional 
case reports indicate that both can induce 
hearing loss [29, 30], while detailed studies on 
isotretinoin’s and tretinoin’s ototoxicity are still 
missing. Furthermore, isotretinoin is mainly 
used to treat severe acne. In two clinic studies 
with cohorts of acne patients, isotretinoin treat-
ment leads to transient hearing improvement 
instead [31, 32]. These controversial results 
suggest their influence on the auditory system, 
while more studies are needed to determine 
the mechanisms.

Mechanisms of hearing loss in chemotherapy

The working theory for the mechanism of plati-
num-based drugs is related to the generation of 
reactive oxygen species (ROS) and DNA dam-
age. However, their ototoxicity is mainly associ-
ated with excessive ROS generation [33, 34], 
while DNA damage [35, 36] likely plays a minor 
role. However, the mechanisms of other oto- 
toxic chemotherapeutic drugs listed in Table 1 
remain largely unclear because the studies are 
rare. Some studies have speculated that it is 
associated with their antitumor activity [24]. 
Due to the availability of literature, this review 
focuses mainly on the ototoxicity of platinum 
compounds, particularly cisplatin.
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Figure 1. Schematic image showing the basic cochlear structures and the targets of cisplatin ototoxicity. Cochlear 
duct forms three scalae, scala vestibuli, scala media, and scala tympani, separated by the basilar membrane (BM) 
and Reissner’s membrane (RM), respectively. Cells affected by cisplatin include the outer hair cells (OHC) and in-
ner hair cells (IHC) in the organ of Corti (OC), basal cells (BC), intermedial cells (IC), and marginal cells (MC) in the 
stria vascularis (SV), and the spiral ganglion neurons (SGN) in the modiolus. Whether OHC loss is initiated directly 
through cisplatin uptake or indirectly through the drop of endocochlear potential (EP) following SV damage is still 
debating. Refer to the text for more details. TM: tectorial membrane; RM: Reissner’s membrane. All images are cre-
ated with BioRender.com.

dolymph from the surrounding perilymph 
(Figure 1, for recent reviews, see [46, 47]).

This blood-labyrinthine barrier (BLB) is similar 
to the blood-brain barrier (BBB) in terms of cel-
lular and molecular basis [48], which is only 
permeable to some small molecules (up to 500 
KDa) [49]. Unfortunately, this permeability to 
the BLB includes most ototoxic drugs, while it 
excludes most otoprotective agents proven 
effective in vitro [50, 51]. Furthermore, once 
inside the cochlea, the outflow of the ototoxic 
drugs is also difficult.

Path to hearing loss in chemotherapy: Cisplatin 
ototoxicity leads to structural changes, includ-
ing shrinkage and inflammation of SV, loss of 

OHCs and IHCs, morphological changes of the 
stereocilia bundles, IHC synaptopathy, changes 
of supporting cells, and loss of spiral ganglion 
neurons (SGNs) (for reviews, see [15, 52-56]). 
Recent cellular and molecular biology studies 
also revealed additional cells and structures 
affected by cisplatin ototoxicity, such as the spi-
ral ligament [57, 58], spiral limbus, spiral modi-
olar veins and lacunae [15, 59], and pericytes 
in the SV [49, 60]. Functional changes include 
decreased EP, threshold elevation of distortion 
product otoacoustic emissions (DPOAEs), audi-
tory brainstem responses (ABRs), and com-
pound action potentials (CAPs) [61-63]. DPOAE 
magnitudes and ABR wave-I amplitudes are 
also decreased. These changes are closely re- 
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lated to the cellular processes, including ROS 
generation, inflammation, and apoptosis [64]. 
Meanwhile, the inflammatory and apoptotic 
mechanisms of cisplatin ototoxicity are highly 
interconnected, which leads to a vicious cycle 
of inflammation, ROS production, nuclear and 
mitochondrial DNA damage, ER stress, and cell 
death, which will be discussed later.

Following cisplatin therapy, OHC loss is usually 
the most prominent and severe cochlear dam-
age [46] and is likely the cause of permanent 
hearing loss. How OHCs are affected by cispla-
tin remains unclear (Figure 1). While early stud-
ies suggest direct damage of the OHCs follow-
ing the uptake of cisplatin via different ion 
channels [65] or transporters [66, 67], conclu-
sive experimental evidence of whether plati-
num exists in the hair cells is still missing. OHC 
loss might also originate from changes in the 
EP resulting from compromised SV function 
[46, 68]. This view is further supported by the 
following findings: (1) The highest platinum 
accumulation is found in the SV [20, 68, 69]. 
Solid evidence comes from Cunningham’s 
group, which showed that platinum mainly 
accumulates in SV after chemotherapy, using 
the inductively coupled plasma mass spec-
trometry visualization technique [68]. (2) The 
immediate decrease of the EP after cisplatin 
treatment suggests the involvement of the  
stria vascularis in cisplatin ototoxicity [46]. (3) 
Platinum-DNA adduct was observed in SV mar-
ginal cells as early as 8 hours after cisplatin 
treatment, while ROS accumulation was not 
shown even after 48 hours [69]. This finding 
suggests that ROS accumulation might be a 
secondary effect of SV damage. (4) A recent 
study shows in cell culture that the pericytes in 
SV, which are also critical for EP, are the targets 
of cisplatin and may account for BLB break-
down in CIHL [60].

Cisplatin uptake by cochlear cells 

The first step for cisplatin ototoxicity is its 
uptake by cochlear cells, which may occur, like 
in other tissues, through the organic cation 
transporter 2 (OCT2) [67], copper transporter 1 
(CTR1) [66, 70], and LDL receptor-related pro-
tein 2 (LRP2) [71]. The high expression of CTR1 
and OCT2 in IHCs, OHCs, spiral ganglion neu-
rons (SGN), and SV [66] supports this view (for 
review, see [56, 66, 72]). The interaction and 

uptake of cisplatin via mechano-transducer 
(MET) channels of the hair cells have also  
been studied [65, 73]. One early study shows 
that cisplatin blocks MET channels in chicken 
cochlear hair cells as an acute effect [73]. 
However, the paper has not demonstrated 
whether cisplatin could pass the MET chan-
nels. A study on the zebrafish lateral line organ 
shows that functionally intact MET channels 
are required for the toxicity of cisplatin to the 
hair cells. Hair cell death is prevented when the 
MET channels are non-functional through che- 
mical blockage or mutation [65]. Interestingly, 
the same publication also suggests that the 
roles of OCT2 and CTR1 for cisplatin uptake are 
insignificant in these cells [65]. A more recent 
study on murine cochlear hair cell explants, 
however, shows that both MET channel and 
OCT are involved in the uptake of fluorescent 
dye-conjugated cisplatin [74]. In addition to 
transporters and MET channels, cisplatin may 
also enter cells through passive diffusion [75], 
as shown in the digestive system of rats [76] 
and a cochlear-derived cell line OC-k3 [77]. In 
the in vitro studies on OC-k3 cells, cisplatin 
enters the cells via first-order kinetics without 
saturation before the induction of cell death. 
Once inside the cell, cisplatin undergoes an 
aquation reaction and hydrolyzes as water 
ligands displace chloride ligands [75]. The abil-
ity of this activated and positively charged 
aqua-cisplatin compound to passively diffuse 
back across the plasma membrane is signifi-
cantly decreased. The drug is then trapped 
intracellularly, leading to unimpeded damage 
[72, 78, 79].

ROS generation and its central role in cisplatin 
ototoxicity

Platinum has a high affinity for sulfur ligands 
[80]. Once it enters the cochlea, the highly 
reactive aquated form of cisplatin binds to both 
DNA and proteins [79], which triggers a series 
of signaling pathways (Figure 2). Cisplatin may 
induce NADPH oxidase 3 (NOX3) directly [81] 
and/or via cisplatin activated transient recep-
tor potential cation channel subfamily V mem-
ber 1 (TRPV1) channel, followed by calcium 
influx [82]. Cisplatin-activated NOX3 leads to 
the generation of ROS, specifically superoxide 
(O2

-.) [81]. O2
-. can induce mitochondrial translo-

cation of the B-cell lymphoma 2 gene (Bcl2) 
associated X (Bax), leading to mitochondrial-
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Figure 2. Schematic image showing intracellular signaling pathways associated with cisplatin ototoxicity in the co-
chlea. Different cell death pathways, including apoptosis (either mitochondria dependent or independent) and non-
apoptotic cell death pathways are involved and interconnected. Refer to the text for details.

dependent apoptosis (further discussed be- 
low) [72, 83]. Another study demonstrates that 
NOX3-dependent ROS generation, rather than 
cisplatin itself, activates TRPV1 channels [84] 
(for review, see [72, 85]). Nevertheless, both 
NOX3 induction and TRPV1 activation by cispla-
tin can result in ROS generation and calcium 
influx. In addition, reducing TRPV1 expression 
[84] and knockout of NOX3 [82] both attenuate 
cisplatin-induced hearing loss (CIHL), during 
which both SGNs and OHCs are protected [82]. 
ROS is also a potent inducer of NOX3, which is 
over 50 times more abundant in the inner ear 
compared to other tissues [81] (for review, see 
[79]). It leads to a vicious cycle of ROS-induced 
TRPV1 and NOX3 activation, causing further 
calcium influx, ROS production, and TRPV1 and 
NOX3 activation [84].

ROS is detoxified by an intracellular antio- 
xidant defense system composed of antioxi-
dant enzymes, including superoxide dismutase 
(SOD), catalase (CAT), glutathione peroxidase 
(GSH.Px), and glutathione reductase (GR) [13, 
56, 72]. This antioxidant defense system can 
be rapidly overwhelmed by cisplatin [80, 86]. 

The reactive platinum moiety of aqua-cisplatin 
reacts with intracellular oxygen molecules, gen-
erating O2

-. [56]. SOD converts O2
-. to hydrogen 

peroxide (H2O2), which CAT further catalyzes to 
produce water and oxygen [56, 72]. In this pro-
cess, GSH.Px converts glutathione from the 
reduced form (GSH) to the oxidized form (GSSG) 
during the conversion of H2O2 to water. GR cata-
lyzes the conversion of GSSG back to GSH 
using NADPH as a cofactor [56, 72]. Cisplatin 
can covalently bind to the thiol group of these 
antioxidant enzymes, leading to their inactiva-
tion [56]. This reactive cisplatin compound also 
directly binds to GSH, leading to its excretion or 
conversion back to GSSG [55]. NADPH deple-
tion downregulates GR antioxidant activity, 
which further decreases GSH levels. Depletion 
of GSH downregulates GSH.Px activity [56]. 
Most experimental evidence shows that anti-
oxidant enzymes are reduced by cisplatin, 
some to the extent of 50-70% [55, 86, 87]  
(for reviews, see [56, 72, 88, 89]). However, 
other studies indicate that SOD and CAT activi-
ties can be increased instead [55, 79, 90]. 
Together, antioxidant depletion and ROS over-
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load trigger a series of interconnected cell 
death pathways involving DNA damage, lipid 
peroxidation, protein oxidation and enzyme 
inactivation, ion channel expression changes, 
endoplasmic reticulum (ER) stress, and inflam-
mation [56, 59, 72, 83]. The cascade of ROS 
signaling involves processes in different com-
partments of the cells, including the cyto- 
plasm, nucleus, and mitochondria (Figure 2). 
Different cell death processes are involved, 
including mitochondrial-dependent and mito-
chondrial-independent apoptosis, necroptosis, 
autophagy, ferroptosis, etc. (Figure 2).

Mitochondrial-dependent apoptosis associated 
with cisplatin ototoxicity

Mitochondrial-dependent apoptosis is charac-
terized by releasing pro-apoptotic factors from 
the mitochondria to cytosol. This process can 
be triggered by, and is associated with, dif- 
ferent factors and pathways during cisplatin 
treatment, including lipid peroxidation, DNA 
damage, signal transducer and activator of 
transcription 1 (STAT1), p53 activation, Bcl2/
Bax activation, cyclin/cyclin-dependent kinase 
(CDK) activation, Cytochrome C, Caspases, etc. 
In the cochlea, mitochondrial dysfunction and 
apoptosis due to ROS overload and disruption 
of intracellular redox homeostasis result in the 
loss of OHCs and other cells [91, 92] (for review, 
see [13]) (Figure 2). Most of the factors and 
pathways related to mitochondrial-dependent 
apoptosis have been studied. They are shown 
to be involved in cisplatin ototoxicity. First, cis-
platin can integrate into DNA in the nucleus via 
adduct formation [13, 16, 69, 93], leading to 
cross-linking and damage [93]. DNA damage 
activates p53, initiating the intrinsic mitochon-
drial apoptosis pathway [94]. P53 increases 
the expression of the pro-apoptotic molecule 
Bax [78], which is translocated to the mito-
chondria, where it permeates the outer mito-
chondrial membrane. Mitochondrial membrane 
permeabilization leads to the loss of the mito-
chondrial membrane potential, mitochondrial 
ROS (mtROS) production, and release of Cy- 
tochrome C and mtROS from the mitochond- 
ria into the cytoplasm [95, 96]. Second, both 
NOX3-dependent ROS production [57, 79, 85, 
88, 97] and ROS-mediated activation of extra-
cellular signal-regulated kinases 1 (ERK1) [59, 
64] activate STAT1 signaling. STAT1 triggers 
p53 activation, leading to the above-described 

mitochondrial translocation of Bax and down-
stream mitochondrial-dependent apoptosis in 
the cochlea [57, 85]. STAT1 activity also links 
the apoptotic and inflammatory pathways in- 
volved in cisplatin ototoxicity [64], which will be 
discussed later. Third, multiple factors, includ-
ing cisplatin itself, ROS, lipid peroxidation, cal-
cium influx, and CDKs, can act directly on  
mitochondria, causing an increase in its per-
meabilization and deterioration of its function. 
Cisplatin can also form mitochondrial DNA 
(mtDNA) adducts [98-101], which is likely the 
main factor in cisplatin-induced ototoxicity [15]. 
The platination of mtDNA leads to mtROS pro-
duction and accumulation, and in turn, the 
damage of mtDNA, proteins, and lipids within 
the mitochondrial membrane. Cyclin A is anoth-
er critical player in mtROS production, which 
can be upregulated by cisplatin and activates 
CDK2 kinase, consequently facilitating mtROS 
production [102]. Fourth, cytochrome C release 
and the activation of caspase-9 and caspase-3 
mark the final stage of mitochondrial-depen-
dent apoptosis, which is also observed in the 
cochlea [72] (Figure 2). As an essential compo-
nent of the mitochondrial electron transport 
chain, cytochrome C is one of the apoptotic 
protease-activating factors, which activate cas-
pase 9. Caspase 9 activation subsequently 
activates caspase 3, causing the fragmenta-
tion of chromosomal DNA through the cleavage 
of its substrates [103].

Mitochondrial-independent apoptosis path-
ways in cisplatin ototoxicity

Apoptosis can also be induced in the cytoplasm 
through ROS overload, ER stress [104], inflam-
mation, and lipid peroxidation [79].

ER stress: ER stress results from oxidative 
damage, intracellular calcium imbalance, and 
protein damage [83]. It is involved in cisplatin 
ototoxicity through caspase-12 activation, lo- 
cated on the ER plasma membrane, and auto-
cleaves in response to ER stress. Caspase-12 
then activates caspase-9, which activates cas-
pase-3, leading to apoptosis in a mitochond- 
rial-independent manner [97, 98, 105]. This 
ER-specific apoptosis pathway is also closely 
linked to the mitochondrial-dependent path 
due to the simultaneous activation of C/EBP 
homologous protein (CHOP) [104]. CHOP plays 
an important role in ER stress-induced apopto-
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sis while regulating Bcl2 family expression. 
Decreased Bcl2 enables increased Bax activity, 
leading to the release of apoptotic active sub-
stances from mitochondria to the cytoplasm 
[106], i.e., mitochondrial-dependent apoptosis 
[79, 104] (Figure 2).

Inflammation: Inflammation is the body’s 
defense mechanism in response to harmful 
stimuli, such as damaged cells, which also 
plays a vital role in inducing apoptosis. 
Inflammatory signaling pathways, most com-
monly the nuclear-factor kappa B (NF-κB), mito-
gen-activated protein kinases (MAPKs), and 
JAK-STAT pathways, are also involved in cispla-
tin ototoxicity. NF-κB is a transcription factor 
mediating inflammatory responses by regulat-
ing the expression of various pro-inflammatory 
genes, such as tumor necrosis factor-α (TNF-α). 
In cisplatin ototoxicity, NF-κB can be activated 
directly by ROS [107] or toll-like receptor 4 
(TLR4) [108], leading to its translocation to the 
nucleus and production of inflammatory cyto-
kines [80, 92]. TLR4 is a transmembrane pro-
tein that plays a fundamental role in pathogen 
recognition and activation of innate immunity. 
TLR4 can also be activated by cisplatin, which 
triggers the activation of proinflammatory cyto-
kines such as interleukin-6 (IL-6), interleukin-8 
(IL-8), TNF-α, and NF-κB [108]. Translocation of 
NF-κB to the nucleus, mediated by TNF-α and 
IL-6, further induces the de novo synthesis of 
TNF-α, IL-6, IL-1β, and inducible nitric oxide syn-
thase (iNOS), and activates caspase-3 in a 
mitochondrial-independent manner [78, 79]. 
Nevertheless, NF-κB translocation can occur 
much earlier (1-2 hours) than maximal ROS 
generation (1 day), suggesting an early involve-
ment of the inflammatory pathways or even an 
upstream event of ROS formation [15, 59, 79, 
109, 110]. NF-κB [111] (and also STAT1 [85]) 
induces an increased expression of iNOS, 
which produces nitric oxide (NO) (for reviews, 
see [78, 79]). NO reacts with O2

-. to form per-
oxynitrite (ONOO-), a highly reactive oxidizing 
molecule that damages proteins [112]. 
Peroxynitrite induces protein peroxidation via 
nitration of tyrosine residues (nitrotyrosine) 
[112, 113], which alters protein configuration 
and function (for reviews, see [13, 15, 72]). In 
addition, expression of TNF-α also further acti-
vate NF-κB [80, 92] as well as the extrinsic 
apoptosis pathway by binding to TNF receptors 
(TNFR). It leads to caspase-8 activation, which 

in turn activates caspase-3, leading to mito-
chondrial-independent apoptosis (Figure 2) 
[71, 93], which is also known as the death 
receptor pathway [42] or extrinsic apoptosis 
[94]. 

Other than the NF-κB pathways, early phos-
phorylation of two well-characterized MAPK 
families, ERKs and the c-Jun N-terminal kinas-
es (JNKs), is activated by cisplatin treatment in 
two cochlear-derived cell lines - House Ear 
Institute-Organ of Corti 1 (HEI-OC1) cells [109] 
and OC-k3 cells [77] (Figure 1). Early activation 
of JNK may play a minor role in cisplatin-
induced ototoxicity [109] or may assist in DNA 
repair in response to cisplatin-DNA adducts 
[114]. The activation of MAPK/ERK also facili-
tates secretion of the pre-existing TNF-α, IL-1β, 
and IL-6 [77] (Figure 2), which in turn activates 
the translocation of NF-κB to the nucleus [109]. 
Nevertheless, most of the studies mentioned 
above are performed on cell cultures, although 
the role of the MAPK family in cisplatin toxicity 
is well documented [115]. It is also worth noting 
that most of the research on the molecular 
mechanism of cisplatin ototoxicity included in 
this review has been conducted using in vitro 
cell cultures or ex vivo cochlear explants. A 
recent study has highlighted that the molecular 
pathways implicated in cisplatin ototoxicity may 
differ between the in vitro/ex vivo and the in 
vivo settings [116].

JAK-STAT pathway activation allows the transfer 
of signals from the receptors to the nucleus. It 
thus involves a repertoire of processes, such 
as apoptosis and tissue repair, through a cyto-
kine-membrane receptor-JAK-STAT cascade 
[117]. In CIHL, the JAK-STAT pathway regulates 
cell death and inflammatory responses by acti-
vating the expression of inflammatory cyto-
kines such as cyclooxygenase-2 (Cox-2) and 
TNF-α. Suppression of the JAK-STAT pathway 
with an adenosine A1 receptor (A1AR) agonist 
decreases cisplatin-induced apoptosis of OHCs 
[118]. Among STAT proteins (STAT1-6), STAT1 is 
likely the most relevant to CIHL because it is 
known to directly induce apoptosis and 
p53-mediated apoptosis [64, 85]. In rat mod-
els, STAT1 signaling is linked with ROS, causing 
cisplatin-induced cochlear cell apoptosis [85]. 
Pre-treatment with STAT1 siRNA (48 hours 
before) [85] or oral uptake of an inhibitor of 
STAT1 signaling (45 minutes before) [64] both 
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protect against CIHL. STAT3 and STAT6 are also 
important players in CIHL [119]. STAT6 works 
through inflammatory cytokines IL-4 and IL-13, 
and knockout of STAT6 protects against CIHL 
[119]. 

Lipid peroxidation: Downstream effects of O2
-. 

can also cause lipid peroxidation. Catalyzed by 
SOD, O2

-. is converted to hydrogen peroxide, 
which is catalyzed by iron to form hydroxyl free 
radicals [15]. These highly reactive ROS react 
with polyunsaturated fatty acids in cellular 
membranes, producing the highly toxic alde-
hydes, 4-hydroxynonenal (4-HNE) and malon- 
dialdehyde (MDA) [72]. Antioxidant enzyme 
depletion has been linked to increased levels  
of MDA, indicating high lipid peroxidation [80]. 
This inverse relationship between glutathione 
and MDA activity (low glutathione levels and 
high MDA levels) has been shown in vivo using 
cisplatin-treated rats [86]. Lipid peroxidation, 
especially the production of 4-HNE, induces 
calcium influx into the cells [15, 88]. ROS fur-
ther enhances calcium influx. An early study 
found that O2

-., but not H2O2, increases the 
intracellular calcium concentration via trans-
membrane influx in OHCs of guinea pig cochle-
ae. Researchers suggested that O2

-. stimulates 
voltage-sensitive calcium channels. However, 
they did not rule out the possibility of increased 
calcium permeability caused by lipid peroxida-
tion [120]. According to a review article, ROS 
can open the ER calcium channel, ryanodine 
receptor, L-type, T-type, and the TRPV1 plasma 
membrane calcium channels [79]. A study by 
Yoshida et al. found that intracellular NO and 
H2O2 open TRPV1 channels and facilitate calci-
um influx [121]. In an earlier study, inhibition of 
T-type calcium channels did not inhibit ROS 
generation. Still, it significantly inhibited lipid 
peroxidation, mitochondrial membrane perme-
abilization, and cytochrome c release in HEI-
OC1 cells and rat organ of Corti explants treat-
ed with cisplatin [96]. The findings suggest that 
calcium influx via T-type calcium channels oc- 
curs downstream of ROS and plays a major role 
in intrinsic apoptosis of cochlear cells under 
cisplatin-induced stress conditions. Neverthe- 
less, increased cytosolic calcium causes mito-
chondrial membrane permeabilization and loss 
of membrane potential, initiating the intrinsic 
mitochondrial-dependent apoptosis pathway 
[122].

Other cell death pathways

Necroptosis: In addition to activation of the 
extrinsic apoptosis pathways, TNF-α induces 
cell death via necroptosis pathway activation  
in cisplatin-induced ototoxicity [116, 123] (for 
reviews, see [59, 124]). Studies indicate a 
dose-dependent effect on cisplatin-induced 
cell death using HEI-OC1 cells [103] and OC- 
k3 cells [77]. Specifically, apoptosis occurs at 
lower doses, while necroptosis occurs at higher 
doses. As opposed to the organized breakdown 
of cells during apoptotic cell death, necroptosis 
results from cellular and organelle membrane 
permeation, releasing intracellular substances 
and exacerbating inflammation [122]. Activa- 
tion of caspase-8 inactivates receptor-interact-
ing serine/threonine-protein kinase 1 (RIPK1) 
and RIPK3, which induce activation of the 
extrinsic mitochondrial-independent apoptosis 
pathway as described above. Inactivation of 
caspase-8 leads to RIPK3 activation, shifting 
death receptor-mediated cell death from apop-
totic to necroptotic pathways [124]. In necrop-
tosis, TNF-α binds its receptor 1 (TNFR1) and, 
without caspase-8, leads to the formation of 
the RIPK1/RIPK3 complex, also known as ne- 
crosome [123, 124]. Downstream effects of 
necrosomes involve the activation of Mixed 
Lineage Kinase Domain-Like Pseudokinase 
(MLKL), which induces calcium influx via Tran- 
sient Receptor Potential Cation channel, sub-
family M, member 7 (TRPM7) channels. It cre-
ates pores in the plasma membrane, leading  
to leakage of substances, cell lysis, and cell 
death [125].

Autophagy: As a protective mechanism of cells, 
autophagy removes specific cellular structures 
or components, such as damaged organelles. 
Under stress conditions such as cisplatin treat-
ment, autophagy can also lead to cell death 
[126]. The interest in the involvement of 
autophagy in CIHL has increased rapidly in 
recent years. Increased expression of three 
autophagic mediators has been observed in 
CIHL, including Beclin-1 (the initial autophagy 
promoter), microtubule-associated protein light 
chain 3 II (LC3-II), and mitochondrial-bound 
[127] nucleotide-binding domain and leucine-
rich-repeat-containing family member X1 (NL- 
RX1) [59]. Autophagy signaling involves speci- 
fic factors and interconnections with other cell 
death pathways. First, intracellular organelle or 
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protein damage leads to the activation of AMP-
activated protein kinase, which inhibits the 
mammalian target of rapamycin (mTOR), lead-
ing to autophagy [128] and to the activation  
of phosphoinositide 3-kinase (PI3K), inducing 
Beclin-1 formation of the phagosome [129]. 
Second, beclin-1 activates the conversion of 
unlipidated LC3-I to lipidated LC3-II, which is 
required for complete autophagosome for- 
mation and autophagosome-lysosome fusion 
[126, 129]. Third, overexpression of NLRX1 cor-
relates with the accumulation of autophago-
somes and acceleration of autophagic cell 
death [83, 126]. In addition, NLRX1 overex-
pression also accelerates mitochondrial-de- 
pendent apoptosis in cisplatin treatment, evi-
denced by increased Bax, caspase-3, and ROS 
levels [127]. The interactions between autoph-
agy and apoptosis pathways are also shown in 
mitochondrial autophagy or mitophagy. Acti- 
vation of mitophagy can negatively regulate 
cisplatin-induced apoptosis in hair cells and 
SGNs [130] and vice versa [131], suggesting a 
protective role of mitophagy in CIHL. Never- 
theless, questions still exist about whether 
autophagy plays a protective role or induces 
cell death in CIHL, and the arguments are far 
from settled (for reviews, see [59, 132, 133]).

Ferroptosis: Ferroptosis is another form of non-
apoptotic programmed cell death, which re- 
quires irons generated by processes such as 
lipid peroxidation and autophagy in response  
to stress [134, 135]. Hallmarks of ferroptosis, 
such as lipid peroxidation and impaired antioxi-
dant capacity, have been observed in cochleae 
in mice after cisplatin treatment, suggesting its 
potential roles in CIHL [135]. A recent study 
showed that transferrin 1, a marker of ferropto-
sis, is increased in OHCs but not IHCs, SV, or 
supporting cells after cisplatin treatment. RNA 
sequencing completed in the same study 
showed that the expression of the ferroptosis-
related gene is upregulated in CIHL [136]. 
Suppressing ferroptosis using ferrostatin-1 re- 
duces CIHL by protecting cochlear hair cells 
[135, 137, 138] while facilitating ferroptosis by 
blocking lipid repair function leads to an exac-
erbated breakdown of mitochondrial mem-
brane potential in cultured HEI-OC1 cells. Fe- 
rrostatin-1 also protects hearing against CIHL 
in mice and rescues OHCs in a knockout mouse 
model lacking a key regulator for ferroptosis 
[136]. However, ferroptosis is highly dependent 

on mitochondrial function and interconnected 
with other signaling pathways, including lipid 
peroxidation and autophagy. Further studies 
are needed to address the potential interfer-
ence of ferroptosis with the antitumor effects in 
chemotherapy involving cisplatin. More discus-
sion regarding the roles of ferroptosis in CIHL 
and the underlying mechanism can be found in 
some recent studies [139, 140] and reviews 
[89].

Hearing protection in chemotherapy

Current studies on hearing protection in che-
motherapy are mainly focused on cisplatin oto-
toxicity. Among the four ototoxic chemothera-
peutic drugs listed in Table 1, vinblastine and 
dasatinib have rarely been studied in hearing 
protection, while the studies on carboplatin are 
almost all associated with cisplatin [141, 142]. 
Since the damage to the cochlea is largely irre-
versible and regeneration has not been suc-
cessful yet, intervention before and during che-
motherapy to protect hearing is critical. How- 
ever, preventing cisplatin ototoxicity using drug 
therapies is facing severe challenges, including 
interference with the therapeutic effects of cis-
platin, bioavailability, and side effects. Con- 
cerns regarding interference with the antitumor 
effects of cisplatin lie in the fact that interven-
tions with antioxidants that reduce cisplatin 
ototoxicity may also affect the outcomes of the 
cancer therapy by deactivating cisplatin [78, 
143, 144] and by protecting tumor cells [145] 
(for review, see [78, 146]). Challenges to bio-
availability include the permeability of otopro-
tective drugs through BLB [50, 51] and cell 
membranes. Side effects are manifested by 
the toxicity of hearing protective drugs to other 
tissues. An example is amifostine [147], for 
which high drug doses are required for treat-
ment because of the drug’s impermeability of 
the BLB in vivo.

Drug delivery strategies

Local drug administration: The challenges men-
tioned above can be addressed through trans-
tympanic delivery [148], which has proven to be 
successful for some candidate drugs for hear-
ing protection. Local drug administration th- 
rough trans-tympanic injection has been devel-
oped in early studies to treat inner ear disor-
ders such as Ménière’s disease and sudden 



Hearing loss during chemotherapy

4611 Am J Cancer Res 2024;14(9):4597-4632

hearing loss using steroids (for review, see 
[149]). It is also adopted to treat cisplatin oto-
toxicity with antioxidants to avoid interfering 
with the antitumor effects [143, 148, 150, 
151]. Depending on the site, two types of local 
drug administration are usually used: intra- 
tympanic (middle ear and round window) and 
intra-cochlear/labyrinthine (perilymph). Intra-
tympanic injection, sometimes combined with 
a small tube through tympanic annulus for mul-
tiple doses, allows localized and high-dose 
treatment, as shown in some clinical trials 
treating cisplatin ototoxicity [152]. Intra-co- 
chlear/labyrinthine delivery further renders the 
benefits of passing through the BLB, sustained 
treatment, and (semi-) dose control when com-
bined with chronic implantation of an osmotic 
pump [153]. Local administration is shown to 
be effective for many drugs without interfering 
with the antitumor effect of cisplatin [154-156]. 
Concerns for local drug administration include 
potential pain during myringotomy and damage 
to the tympanic membrane, middle ear struc-
tures, and round window. Intra-cochlear/laby-
rinthine injection may even cause permanent 
damage to the inner ear, which may prevent its 
potential application in clinics. A more detailed 
introduction of the local delivery techniques 
and their application in cisplatin ototoxicity [79] 
can be found in research papers and reviews 
[157-161].

Other drug administration: Some other strate-
gies have been developed to increase the effi-
ciency of hearing protection and reduce the 
side effects and risk of counteracting the anti-
tumor effect of cisplatin. Hydrogel has been 
used for intra-tympanic drug delivery to improve 
drug sustainability on the round window by 
reducing drainage through the eustachian tube 
[162-164]. However, subsequent conductive 
hearing loss posed by the residue on the round 
window and middle ear ossicles might be a  
concern. Nanoparticles, with a diameter of less 
than 1 μm, are another strategy to increase the 
efficacy of local drug delivery for treating cispla-
tin ototoxicity [165]. A few groups have studied 
the influence of particle size and various trans-
portation vehicles [166]. The paper by Yu et al. 
details various nanoparticles and hydrogel 
preparations for improved drug delivery to the 
inner ear and cochlea manipulations [79]. As 
stated in the paper, inadequate cellular uptake 
of nanoparticles limits its use. However, it can 

be reduced with various endogenous (pH, 
redox, and enzymes) and exogenous (heat, 
ultrasound, light, and magnetic field) mea-
sures. Delayed or staggered drug delivery is 
also used to reduce the possibility of interfer-
ence with the antitumor effect of cisplatin. 
Nevertheless, showing accurate drug concen-
tration in the cochlea will help to determine the 
mechanism and effective doses of the drugs. In 
this regard, proof of the existence of the drugs 
in the cochlea by measuring the concentration 
from the extraction of cochlear fluids is a gold 
standard for candidates claiming hearing pro-
tection [167-169].

Antioxidants as traditional candidates for hear-
ing protection against cisplatin ototoxicity

Since ROS plays a central role in cisplatin oto-
toxicity, various exogenous antioxidants that 
work as free radical scavengers have been 
tested for hearing protection in chemotherapy 
in early studies [51, 170-172]. A common fea-
ture of antioxidants is the presence of a thiol, 
which can act as a substrate for redox reac-
tions. Some antioxidants have been tested in 
clinical practice, such as N-acetyl-L-cysteine 
(NAC) [172], D-methionine [173, 174], STS [155, 
163], and amifostine [147, 175] (for reviews, 
see [13, 72, 78, 142, 147, 176]). A list of anti-
oxidants tested for their hearing protective 
effects against cisplatin ototoxicity is present-
ed in Table 3. Some well-known and promising 
candidates and their roles are shown in Figure 
3 and described below.

STS: STS has been traditionally used to treat 
metal poisoning. It can form strong complexes 
with metal ions, including platinum, thus deac-
tivating cisplatin. Its antioxidant property com- 
es from a reduced sulfur residue. The hearing 
protective effect of STS has been proven in 
both animal studies [172, 177] and clinical tri-
als [178, 179]. Local delivery through intra-
cochlear injection [148, 152] or delayed admin-
istration [177] is required to treat cisplatin 
ototoxicity. Although the effect of local delivery 
is controversial [148, 152], delayed administra-
tion of STS by 4-8 hours is proven to be protec-
tive to hearing [178, 179], while it does not 
interfere with the therapeutic effect of cisplatin 
[180]. In these clinical studies, the incidence of 
cisplatin ototoxicity decreased by about half, 
and no significant difference in overall or event-
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Table 3. Antioxidant drug candidates for protection against CIHL

Drug Main mechanism of  
oto-protection Experiment model Drug dose Route Outcome

STS (sodium thiosulfate)
Branded as Nithiodote & 
PedMark

By forming complexes with 
platinum & antioxidant 
activity (PMID: 25994788)

Phase III clinical trial on hepatoblastoma 
in children (n = 109) (PMID: 29924955)

Cisplatin (80 mg/m2) per dose over 6 
doses

IV Reduction in hearing loss grade 1-4 by 
48%.

STS (20 g/m2) 6 hours after each  
cisplatin treatment

IV

Phase III Clinical trial on children (n = 104) 
with cancers (PMID: 27914822)

Cisplatin (totaling 200 mg/m2) IV Reduction in hearing loss grade 1-4 (OR = 
0.31; 95% CI 0.13-0.73; P = 0.0036).STS (16 g/m2) 6 hours after each  

cisplatin treatment
IV

NAC (N-acetyl-L-cysteine)
Branded as Acetadote, 
Fluimucil & Mucomyst

Antioxidant with a thiol 
donating hydrogen (PMID: 
29429900)

Rat cochlea cell culture treated with NAC 
(PMID: 35346799)

Cisplatin (50 uM) treatment to cell 
cultures in the background of NAC at 
37°C for 48 hours

Cell culture Hair cell loss prevented, seen through Ab 
staining.

NAC (20 mM)

Rat treated with NAC (PMID: 15219317) Cisplatin (6 mg/kg) IA Hearing protected at 4 kHz (~10 dB), 8 kHz 
(~20 dB), 12 kHz (~22 dB), 16 kHz (~18 
dB) by change in threshold.

NAC (400 mg/kg) 15 minutes before 
cisplatin

IV

Phase I clinical trial on children (n = 52) 
with cancers (PMID: 37134194)

Cisplatin (totaling 200 mg/m2) IV Reduction in the risk of SIOP ≥ 2 hearing 
loss post-chemotherapy (OR = 0.13, CI 
0.021-0.847, P = 0.033).

NAC (6 g) 4 hours after each cisplatin 
treatment

IV

Double blind clinical trial on cancer pa-
tients (n = 114) (PMID:29993216)

Cisplatin (not stated) Not stated No significant changes in auditory thresh-
olds.0.4-0.8 ml NAC (10%) Intratympanic

D-methionine (D-met) D-methionine can donate 
a cysteine which can act 
as an antioxidant (PMID: 
16366723)

Mice treated with D-methionine (PMID: 
8951454)

Cisplatin (16 mg/kg) IP Hearing protected at 1, 4, 8, 14 kHz.

D-met (300 mg/kg) IP

Chinchilla treated with D-met (PMID: 
12087338)

Cisplatin (125 µg) Intracochlear Hearing protected at 8, 16 kHz.

D-met (4 µg) 30 minutes before  
cisplatin treatment

Intracochlear

Rats with MTLn3 breast cancer cells 
(PMID: 11405249)

Cisplatin (5 mg/kg) per dose for 3 doses 
with 72 hours interval

IP Hearing protected at 1, 2, 4, 8, 16, 18 kHz. 
OHC protected.

L-met (300 mg/kg) 30 minutes before 
each cisplatin injection

IP

Phase II clinical trial in cancer patients (n 
= 27) (PMID: 34622731)

Cisplatin totaling (264 mg/m2) IV Hearing protected in the left ear only at 
11.2 kHz by a mean difference of 22.97 
dB.

D-met (100 mg/kg) oral dose 1 hour 
before cisplatin injection

Oral
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Amifostine (WR-2771)
Branded as Ethyol

Antioxidant activity 
through WR-1065 (PMID: 
11201306)

Scid mice model of human ovarian 
cancer with implanted tumor cells (PMID: 
9389935)

Paclitaxel (27 mg/kg) over 5 doses IP Amifostine improved animal survival. In 
cell cultures, amifostine protected normal 
cells from paclitaxel, while cytotoxicity was 
increased in malignant cells.

Amifostine (200 mg/kg) over 5 doses IP

Hamsters treated with amifostine (PMID: 
15185124)

Cisplatin (15 mg/kg) over 5 doses IP Protected hearing at 8 kHz (~15 db), 16 
kHz (~20 db), 20 kHz (~18 db) by ABR 
threshold shift.

Amifostine (40 mg/kg) over 5 doses 30 
minutes before cisplatin injection

IP

Non-randomized clinical study with cancer 
patients (n = 62) (PMID: 18669462)

Cisplatin (300 mg/m2) over 4 doses IV Amifostine caused ~22% reduction in 
the probability of requiring hearing aid. 
Amifostine related adverse reaction in 19% 
patients.

Amifostine (600 mg/m2) 3 hours before 
and immediately before cisplatin 
injection

IV

A randomized clinical study (n = 25) 
investigating medulloblastoma in children 
(PMID: 15999362)

Cisplatin (40 mg/m2) per day for 5 days IV Amifostine did not offer otoprotection 
against cisplatin combined with etoposide 
and bleomycin.

Amifostine (825 mg/m2) per day for 5 
days 30 minutes before cisplatin

IV

Etoposide (100 mg/m2) per day for 5 
days

IV

Bleomycin (15 IU/m2) per day for 5 days IV

Taurourso-deoxycholic 
acid (TUDCA)

HO1 and SOD2 mediated 
antioxidant activity (PMID: 
32061715)

Rats treated with TUDCA (PMID: 
32061715)

Cisplatin (5 mg/kg) per day for 3 days IP Protected hearing at 4, 8, 16, 32, 40 kHz.

TUDCA (100 mg/mL) 1 hour before 
cisplatin treatment

IP

TUDCA HO1 and SOD2 medi-
ated antioxidant activity of 
TUDCA (PMID: 32061715)

Rats treated with TUDCA (PMID: 
33631298)

Cisplatin (4.6 mg/kg) per day for 3 days IP Protected hearing at 8, 16, 24, 32, 40 kHz.

TUDCA (500 mg/kg) 1 day before  
cisplatin treatment

Subcutaneous

Ebselen Antioxidant activity acting 
as a GPx mimic

Mice treated with ebselen (PMID: 
19286452)

Cisplatin (16 mg/kg) IP Protected hearing at 4, 8, 16, 32 kHz.

Ebselen (16 mg/kg) IP

Rat treated with ebselen (PMID: 
21804453)

Cisplatin (14 mg/kg) IV Did not protect hearing.

Ebselen (12 mg/kg) 1 hour before 
cisplatin treatment

IP

Rat treated with ebselen and allopurinol 
(PMID: 15721563)

Cisplatin (16 mg/kg) IP IP ebselen + allopurinol protected hearing 
at 8, 16, 24 kHz.Ebselen (8 mg/kg) 1 hour before  

cisplatin treatment
IP/oral gavage

Allopurinol (8 mg/kg) 1 hour before 
cisplatin treatment

IP/oral gavage
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Figure 3. Schematic image showing key targeting cellular factors and signaling steps for preventative strategies 
against cisplatin ototoxicity. Cisplatin induces DNA damage and ROS generation. Multiple processes and cytokines 
also contribute to ROS generation along the apoptosis and other (such as inflammation) signaling pathways. Pro-
posed agents (in purple) target different sites in these processes. Refer to the text for details and abbreviations.

free survival was observed between the treat-
ed group and the cisplatin-alone group [178, 
179]. In 2022, the FDA approved STS for pro-
tective treatment against cisplatin ototoxicity in 
pediatric patients with localized, non-metastat-
ic solid tumors. It is the first and the only 
approved drug to treat cisplatin ototoxicity in 
clinics.

NAC: NAC is a precursor to GSH, a ubiquitous 
thiol-containing antioxidant and a widely used 
cytoprotectant with a promising hearing protec-
tive effect [181-184]. As a weak free radical 
scavenger, NAC may protect against cisplatin 
ototoxicity by induction of endogenous GSH 
and blocking apoptosis through the caspase 
signaling pathway [181, 185]. Pre-treatment of 
NAC (400 mg/kg) improves cisplatin-induced 
hearing threshold shift in rats [186], although 
the results are slightly inconsistent with an 
organo-culture study [185]. Nevertheless, sin- 
ce NAC also protects against cisplatin cytotox-
icity [181], a local or staggered administration 
is required for its otoprotection [186, 187]. In 
clinical studies using intra-tympanic injection, 
NAC failed to prevent hearing loss during cispla-
tin treatment, although it was suggested for 

some patients [154, 184]. In a recent phase I 
clinical study with children and adolescents 
newly diagnosed with nonmetastatic tumors 
delayed NAC application through intravenous 
(i.v.) injection (4 hours after cisplatin injection, 
peak concentration of NAC up to 450 mg/kg) 
was effective for preventing CIHL without ad- 
verse events [188]. These studies indicate that 
NAC might be another promising drug for treat-
ing cisplatin ototoxicity in clinics.

D-methionine: D-methionine is the enantiomer-
ic counterpart of L-methionine, a naturally 
occurring L-alpha-amino acid. The antioxidant 
property of methionine is due to methionine 
being oxidized into methionine sulfoxide, which 
inhibits ROS. It also deactivates cisplatin by 
forming an inactive complex with it [78]. 
D-methionine is one of the earliest antioxi- 
dants tested in the protection against CIHL 
[189] and has proven to be effective both in 
animal studies [152, 189, 190] and in humans 
[174]. Since it is known that D-methionine inter-
feres with the therapeutic effects of cisplatin, 
local, delayed, or staggered delivery should  
be considered in clinical trials. The in-human 
study, completed in India in 2022, used oral 
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uptake of D-methionine (100 mg/kg) one hour 
before cisplatin treatment. The study did not 
show adverse events significantly different 
from the placebo group [174]. However, the 
study analyzed data from only 27 of the 50 
enrolled participants. Furthermore, the study 
did not gather data on whether D-methionine 
affected cisplatin cytotoxicity in tumors. Over- 
all, more careful examinations of the research 
and further larger scale clinical trials might be 
necessary to assess the influence of D-me- 
thionine on the antitumor efficacy of cisplatin.

Amifostine: Amifostine is used in chemothera-
py and radiotherapy as a cytoprotective adju-
vant for reducing renal toxicity [191]. Alkaline 
phosphatase can dephosphorylate it into an 
active free thiol metabolite that functions as an 
antioxidant [192]. Its cytoprotective action is 
believed to be achieved through scavenging 
free radicals, stabilizing DNA, and upregulating 
p53 [176], thereby selectively protecting nor-
mal tissues due to their high alkaline phospha-
tase levels [193]. Moreover, amifostine does 
not affect the antitumor activity of platinum 
drugs [192]. In animal research, multiple high 
doses of amifostine, given before cisplatin,  
protect hearing in hamsters (40 mg/kg/day) 
[194] and guinea pigs (100 mg/kg/day) [195]. 
However, lower doses (18 mg/kg/day) fail to 
achieve this effect [196]. Clinical studies on 
amifostine’s ability to protect against cisplatin 
ototoxicity have yielded mixed results. For in- 
stance, one study with 97 pediatric patients 
with medulloblastoma indicates a reduced 
need for hearing aids following amifostine  
treatment (600 mg/m2) [147]. In contrast, 
another study with 11 patients shows no pro-
tective effect (1000 mg/m2) [197]. A follow-up 
clinical trial with 379 patients reveals that ami-
fostine protects from cisplatin ototoxicity only 
in average-risk but not in high-risk medulloblas-
toma patients [198]. In another study with 25 
cases of pediatric germ cell tumor, amifostine 
treatment (825 mg/m2) does not confer otopro-
tection compared to historical controls [175]. 
These varying outcomes may be attributed to 
differences in treatment regimens, sample 
sizes, age groups, and cancer types across 
studies. As a note, two retrospective evalua-
tions of the efficacy of amifostine in prevent- 
ing cisplatin ototoxicity have been either incon-
clusive [199] or insignificant [200], possibly 
due to similar complexities. While high doses of 

amifostine are crucial for the treatment, they 
are associated with adverse events, including 
neurotoxicity (in animal studies) [194], hypocal-
cemia, hypotension, and nausea and vomiting 
(in clinical settings) [147]. Complex administra-
tion protocols, careful medical attention, and 
sustained monitoring of vital signs are requir- 
ed to ensure patient safety during amifostine 
treatment [201]. A more detailed review can be 
found in [78].

Coenzyme Q10: Coenzyme Q10 is a crucial 
enzyme for electron transport in the mitochon-
drial respiratory chain. It also works as an anti-
inflammatory and antioxidant agent in dietary 
supplements [202]. Co-application of coen-
zyme Q10 and multivitamins was tested for  
protection against CO in both an animal model 
[203] and a pilot case-control clinical trial  
[204]. In the animal study, Q10 terclatrate (500 
mg/kg) and vitamin supplements (vitamin  
E and B12) given before cisplatin (4.6 mg/kg/
day for three days) treatment protected against 
CIHL in rats. In the pilot study on cancer 
patients treated with a coenzyme Q10 plus 
dietary multivitamin, the incidence of hearing 
disorders and tinnitus induced by cisplatin was 
reduced significantly. A significant difference  
in threshold shift only occurred at 8 kHz [204]. 
However, a fully powered clinical study has not 
been completed, even six years after the pre-
clinical animal study.

Candidates/approaches targeting specific 
pathways/factors

Candidates targeting more specific cell signal-
ing pathways in cisplatin ototoxicity are also 
often proposed and tested for their hearing  
protective effects. An early attempt is dexa-
methasone, a glucocorticosteroid that can 
downregulate proinflammatory cytokines, inhib-
it apoptosis, and upregulate antioxidant en- 
zymes [78]. While animal studies yielded prom-
ising results [150, 151, 162], dexamethasone 
failed in most clinical trials [154, 156], although 
attempts were made using nanoparticles [205] 
or poloxamer hydrogels [162] to increase local 
drug concentration in the cochlea. A detailed 
review regarding the protective effect of dexa-
methasone against cisplatin ototoxicity can be 
found in [78], with no further discussion in this 
review. As the understanding of cisplatin oto-
toxicity signaling pathways grows, more spe- 
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cific targets on factors/cytokines in metabolic 
[203, 204], inflammatory [206, 207], or apop-
tosis signaling pathways [102, 208, 209] have 
been identified with promising results. Some 
novel candidates that have been tested are 
listed in Table 4, and their potential mecha-
nism is shown in Figure 3. These candidates 
include neurotrophins [210], hormones [154], 
molecules involved in endogenous metabolism 
[204], modulators of cell signaling pathways 
[102], etc.

Epigenetic modulators: The significance of epi-
genetic modulation in inner ear development, 
damage, and protection was noticed over a 
decade ago [211-213], while it has garnered 
more attention only in recent years [214-216]. 
Histone deacetylases (HDACs) and their inhibi-
tors (HDACis) regulate transcription and control 
cell cycle through modulation of histone acety-
lation. HDACis, such as sodium butyrate [212] 
and sulforaphane [215], are protective against 
cisplatin ototoxicity in animal models (guinea 
pigs and rats). The mechanism might be relat-
ed to the pro-survival pathway activation, as 
shown in the study on HDAC inhibition against 
kanamycin and furosemide-induced hearing 
loss [214]. In addition, both sodium butyrate 
[217] and sulforaphane [218] can induce the 
expression of an antioxidant-responsive gene, 
Nrf2, which may also account for their hearing 
protective effects [219]. HDACs have antitumor 
activity and are well tolerated. They are ideal 
candidates for treating cisplatin ototoxicity. 
However, their mechanisms of action are not 
fully understood, and explanations rely on indi-
rect evidence only. More studies regarding their 
specificity are needed before testing them in 
clinical trials.

Other promising epigenetic modifications have 
been reported recently. They are still conduct-
ed in cell cultures and animals. A recent study 
showed that a DNA methyltransferase inhibi- 
tor, RG108, alleviates CIHL in a mouse model 
[216]. Inhibition of DNA methylation by RG108 
upregulates BCL-2 and downregulates mito-
chondrial-dependent apoptosis pathway fac-
tors BAX and BCL2 Associated Agonist of Cell 
Death (BAD) in HEI-OC1 cell cultures. Another 
histone methyltransferase inhibitor, BIX01294, 
has been shown to protect against CIHL in a 
mouse model established through the combi-
nation of i.p. furosemide and subcutaneous cis-

platin delivery [220]. The mechanism, verified 
primarily on cell cultures, is associated with 
activating the autophagy pathway through the 
Forkhead box G1 gene, a critical regulator for 
morphogenesis of the mammalian inner ear 
during development. Nevertheless, further stu- 
dies to verify these results and mechanisms 
are necessary, and their interference with the 
antitumor effects of cisplatin and other adverse 
effects are still unclear.

Statins: Statins are widely used as anti-inflam-
matory agents to control lipid peroxidation. 
They are proposed to protect hearing against 
various insults (noise [221], drug [222], and 
age [223]. For a review, see [224]). Statins are 
also used in an ongoing clinical trial against 
sudden hearing loss (ClinicalTrials.gov ID: 
NCT04826237). Two recent studies showed 
that statins protect against CIHL in animals 
(lovastatin [206]) and humans (atorvastatin 
[207]). The non-randomized, retrospective clini-
cal study executed by Cunningham’s group 
showed that atorvastatin (with unknown doses) 
decreased the incidence of CIHL by 53% with-
out affecting the three-year survival rates  
in head and neck cancer patients [207]. The 
same group will perform a randomized phase  
III clinical study (NCT04915183) on atorvas-
tatin (20 mg) against CIHL. In this clinical trial, 
186 patients with squamous cell carcinoma of 
the head and neck will be involved. The study 
aims to assess hearing using audiograms be- 
fore and 2-4 months after cisplatin treatment 
and compare outcomes between atorvastatin 
users and controls. CTCAE criteria will be used 
for data analysis, and reduced bias will be 
expected. Although it might not be a major con-
cern, sequelae of statins include muscle pain, 
liver damage, increased blood sugar, and mem-
ory loss.

Protein kinase inhibitors: Protein kinase phos-
phorylation cascades regulate multiple signal 
transduction pathways, including inflammation, 
apoptosis, and proliferation. Cytokine inhibitors 
can reduce cytokine synthesis and concentra-
tion and interfere with the interaction between 
cytokines and their receptors. Certain kinase 
inhibitors have been studied for their potential 
to protect against CIHL. Flunarizine, known  
initially as a calcium channel blocker, could 
reduce cisplatin-induced inflammatory cyto-
kines (TNF-α, IL-1β, NF-κB seen through IHC) in 
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Table 4. Non-antioxidant drug candidates for protection against CIHL

Drug Main mechanism of  
oto-protection Experiment model Drug dose Route Outcome

Dexa-methasone
Branded as DexPak & 
Decadron

Inhibiting inflammatory 
cytokines (PMID: 9486420)

Mice treated with dexamethasone 
(PMC2720789)

Cisplatin (14 mg/kg) treatment after the first  
dexamethasone injection

IP Protected hearing at 16 kHz.

Dexamethasone (24 mg/ml) per day over 5 days Intratympanic

Guinea pigs treated with dexametha-
sone (PMID: 21521888)

Cisplatin (12 mg/kg) IP Not protective.

Dexamethasone (6 mg) treatment on the day before and 
on the day of cisplatin treatment

Intratympanic

Clinical trial on cancer patients (n = 26) 
on dexamethasone (PMID: 24618499)

Cisplatin (total 400 mg) IP Protected hearing at 4-8 kHz.

Dexamethasone (~8.5 mg) Intratympanic

Coenzyme Q10
Branded as ubiquinone 
& CoQ10

Anti-inflammatory dietary 
supplements (PMID: 
35326965)

Rats treated with Coenzyme Q10 and 
vitamins (PMID: 27632426)

Cisplatin (4.6 mg/kg) per day for 3 days IP Protected hearing at 2, 4, 8, 16, 
32 kHz.Q10 terclatrate (500 mg/kg) Oral

Acuval 400 (100 mg/kg) Oral

Clinical trial on cancer patients (n = 26) 
being treated with Coenzyme Q10 and 
vitamins (PMID: 28239674)

Cisplatin (100 mg/m2) every 21 days IV Protected hearing at 8 kHz.

Acuval Audio (1.8 g) per day starting 7 days before the 
first cisplatin treatment

Oral

Statins
Branded as Lipitor & 
Mevacor

Inhibiting inflammatory  
cytokines (PMID: 
35125240).

Mice treated with lovastatin (PMID: 
32062294)

Cisplatin (3 mg/kg) per day for 4 days, followed by 10 
days of recovery. 3 cycles (total 36 mg/kg)

IP Protected hearing at 20, 40 
kHz.

Lovastatin (40 mg/kg) daily from 3 days before cisplatin 
treatment

Oral gavage

Clinical trial on head and neck cancer 
patients (n = 277) on atorvastatin 
(PMID: 33393488)

Cisplatin (~80 mg/m2) every 3 weeks. Median cumulative 
cisplatin was 200 mg/m2.

Not stated Protected hearing at 4, 6, 8, 
12.5 kHz.

Atorvastatin (10~80 mg) Oral

HDACi
Branded as Buphenyl & 
Avmacol

Epigenetically  
downregulating genes 
linked to apoptosis (PMID: 
23558232)

Guinea pigs treated with sodium butyr-
ate (PMID: 16467722)

Cisplatin (14 mg/kg) IP Protected hearing at 3.5~20 
kHz, statistical significance not 
shown.

Sodium butyrate (1.2 mg/kg) per day for 7 days before 
and 5 days after cisplatin treatment

IP

Rats treated with sulforaphane (PMID: 
34344210)

Cisplatin (7 mg/kg) twice a day for 7 days IP Protected hearing at 4, 8, 
16, 24, 32 kHz. OHC partially 
protected.

SFN (30 mg/kg) per day for 7 days IP

Mice treated with RG108 (PMID: 
35530135)

Cisplatin (30 umol/L) IP Protected hearing at 8, 16, 24, 
32 kHz. OHC protected seen 
through IHC.

RG108 (100 umol/L) 2 hours before cisplatin treatment IP

STAT inhibitors
Branded as  
Nifuroxazide etc

Anti-inflammatory and  
anti-apoptosis

Rats treated with STAT1 siRNA (PMID: 
21776018)

Cisplatin (11 mg/kg) IP Protected hearing at 8, 16, 
32 kHz. OHC protected seen 
through electron microscopy.

STAT1 siRNA (0.g µg) 48 hours before cisplatin treatment Intratympanic

Rats treated with STAT1 inhibitor EGCG 
(PMID: 28703809)

Cisplatin (11 mg/kg) IP Protected hearing at 8, 16, 32 
kHz. OHC protected.EGCG (100 mg/kg) 45 minutes before cisplatin + 3 more 

post-cisplatin treatments
Oral

STAT6 -/- mice (PMID: 21321603) Cisplatin (4 mg/kg) per day for 4 days IP Hearing protection at 4, 16, and 
32 kHz.
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Cytokine inhibitors
Branded as Basiliximab, 
daclizumab

Inhibiting inflammatory 
cytokines

Mice treated with flunarizine (PMID: 
18584244)

Cisplatin (4 mg/kg) IP Reduction of cochlear TNF-a 
and IL-1b.No ABR recording.Sibelium (143 ug/kg) Oral

Rats treated with etanercept (PMID: 
28730299)

Cisplatin (16 mg/kg) IP Protected hearing at 4.5, 6, 8, 
10 kHz on day 3.Etanercept (6 mg/kg) 24 hours before cisplatin treatment IP

Honokiol
Branded as Honobsolute

SIRT3-mediated antioxidant 
activity (PMID: 21172655)  

Mice treated with honokiol (PMID: 
33415008)  

Cisplatin (20 mg/kg) IP Protected hearing at 4-32 
kHz. Cisplatin cytotoxicity not 
affected.

Honokiol (20 mg/kg) treatment 1 hour before cisplatin 
treatment 
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mouse cochleae [110]. The reduction of cyto-
kines was through the activation of Nrf2/HO-1 
signaling. However, no results on ABR thresh-
old changes were shown in the paper. Multiple 
inhibitors for CDK2 (kenpaullone and two unre-
vealed compounds) protect hearing against 
CIHL and noise-induced hearing loss [102, 
208, 225], suggesting that CDK2 is an impor-
tant target for hearing protection. Dabrafenib, a 
BRAF (a member of Raf family kinases) inhibi-
tor, is also protective against CIHL and noise-
induced hearing loss when combined with the 
CDK2 inhibitor AZD5438 [209]. However, the 
influence of cisplatin on the antitumor effect 
must be verified in tumor-bearing mice before 
its potential application in clinical practice. 

Polyphenols: Polyphenols are a diverse group 
of naturally occurring compounds abundant in 
plants. Many polyphenols are natural antioxi-
dants and anti-inflammatory agents that pro-
tect against various stress conditions such as 
UV light radiation and microbial infections. The 
roles of polyphenols in hearing protection 
against different insults are recognized, and 
the mechanisms studied most recently (for 
review, see [47, 226]). Epicatechin protected 
hearing in rats against CIHL by inhibiting ERK 
signaling in an early study [227, 228]. However, 
the protective effect of epicatechin needs fur-
ther verification with cochlear whole-mount 
samples and frequency-specific ABR data. Re- 
sveratrol, a polyphenol abundant in fruits and 
red wine, was also shown to protect against 
CIHL in guinea pigs [229] and rats [230] at 10 
and 0.1-0.5 mg/kg/day, respectively. In con-
trast, high doses (50, 10, and 1 mg/kg/day) 
were toxic to the cochlea in rats [230, 231]. The 
hearing protection mechanism is associated 
with activating the anti-oxidative response and 
reducing inflammatory responses mediated by 
NF-kB, IL6, and IL1β [231]. Curcumin, a bright 
yellow pigment extracted from the plant turmer-
ic, is also shown to protect against CIHL in rats 
at 200 mg/kg [232, 233]. The mechanism is 
associated with decreased lipid peroxidation, 
potentially through the Nrf2 pathway [232]. 
Although arguably [234], curcumin is reactive, 
unstable, and non-bioavailable, which has sh- 
own to be unsuccessful in any clinical trial 
[235]. In addition, the interaction with the anti-
tumor function of cisplatin is yet to be investi-
gated. Luteolin is a flavone derived from celery, 
green pepper, and chamomile with anti-inflam-

matory, antioxidant, and anticarcinogenic prop-
erties. In a recent study, luteolin showed prom-
ising protection against CIHL by inhibiting fe- 
rroptosis [136]. The authors comprehensively 
studied the involvement of Gpx4, the key regu-
lator for ferroptosis in CIHL. Luteolin protection 
through alleviation of ferroptosis was proven in 
cell cultures, cochlear explants cultures, and in 
vivo Gpx4 knockout mice levels [136]. Honokiol, 
a lignan extracted from the plant Magnolia, is  
a multifunctional small polyphenol with both 
antitumor effects that synergize with cisplatin 
[236-238] and protective effect to various tis-
sues and organs against oxidative stress, in- 
cluding the brain [239-241], heart [242-244], 
kidney [245], liver [246], etc. In a recent study 
from our lab, honokiol has shown strong hear-
ing protective effects against cisplatin ototoxic-
ity in tumor-bearing mice undergoing chemo-
therapy [247]. Honokiol also increases animal 
survival without interfering with cisplatin’s anti-
tumor effects. The mechanism is associated 
with activating sirtuin 3 (SIRT3), a member of 
the sirtuin NAD+-dependent deacetylase fa- 
mily, critical regulators of the intrinsic anti-ROS 
systems.

Sirtuins comprise a highly conserved NAD+-
dependent deacetylase family, all key regula-
tors of the intrinsic anti-ROS systems [248-
251]. Seven members (SIRT1-7) of the sir- 
tuin family are expressed in the cytoplasm 
(SIRT1&2), mitochondria (SIRT3-5), and the 
nucleus (SIRT1, 2, 6, 7). The involvement of sir-
tuins (mostly SIRT3) in hearing protection has 
been shown in noise-induced [252, 253], drug-
induced [254], and age-related hearing loss 
[255, 256]. Activation of sirtuins (mostly SIRT1) 
by polyphenols has also been reported in res-
veratrol [257], curcumin [258], and epicatechin 
[259]. Sirtuins might represent novel targets for 
hearing protection against cisplatin ototoxicity, 
and polyphenols are promising candidates. For 
example, honokiol does not interfere with the 
therapeutic effects of cisplatin, as shown in our 
study [247] and other publications [237, 238, 
260, 261]. It can pass the BBB [262, 263] and 
diffuse across plasma and mitochondrial mem-
branes in vivo [243, 263]. Although bioavail-
ability is still a concern for most polyphenols 
because of their insolubility and instability, dif-
ferent ways for assisting the delivery of poly-
phenols, such as liposomal [264-266], amor-
phous solid dispersion [267, 268], and bio- 
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degradable microsphere [269], have made sig-
nificant progress in recent years.

Summary and outlook

This paper sought to comprehensively review 
the current understanding and research on oto-
toxicity in chemotherapy (particularly with cis-
platin) and explore strategies and compounds 
for hearing protection. Using symptoms includ-
ing hearing loss, tinnitus, vertigo, and dizzi-
ness, we identified potential ototoxic drugs, 
among which four are specifically causing hear-
ing loss. While the ototoxic mechanisms of cis-
platin are extensively studied, other agents like 
isotretinoin, vinblastine, and dasatinib remain 
less understood.

The primary target of cisplatin in the cochlea is 
still debatable, although OHC loss is the most 
commonly observed change in cisplatin ototox-
icity. Damage of the SV might be the leading 
cause, which affects the EP and may result in 
cisplatin influx into the scala media. These 
changes induce a series cascade of cellular 
processes, eventually leading to cell death. 
ROS generation is the predominant factor in 
this process, and its subsequent signaling 
pathways are discussed. 

The review emphasizes the urgent need for 
effective otoprotective strategies that can miti-
gate the adverse effects of chemotherapy on 
hearing without compromising its anticancer 
efficacy. Various antioxidants, such as STS, 
NAC, and D-methionine, have been explored for 
their potential to counteract the ROS-mediated 
ototoxicity of cisplatin. STS, in particular, has 
gained FDA approval for reducing hearing loss 
in pediatric cancer patients receiving cisplatin. 
However, the challenge of ensuring that these 
agents do not interfere with the chemothera-
peutic efficacy of cisplatin remains a critical 
consideration in their clinical application.

Emerging research has focused on more spe-
cific molecular targets and pathways involved 
in cisplatin-induced hearing loss. The review 
highlights the exploration of various compo- 
unds, including statins, protein kinase inhibi-
tors, and polyphenols like epicatechin, resvera-
trol, curcumin, luteolin, and honokiol, for their 
protective effects against CIHL. These agents, 
often possessing antioxidant and anti-inflam-
matory properties, offer new avenues for oto-

protection, with some showing promise in pre-
clinical and clinical studies. Particularly, ho- 
nokiol has been noted for its synergistic antitu-
mor effects with cisplatin and its ability to pro-
tect against ototoxicity, potentially through acti-
vating the sirtuin pathway.

The review also discusses innovative drug de- 
livery methods, such as local administration via 
trans-tympanic injection and advanced formu-
lations like nanoparticles and hydrogels, to 
enhance the efficacy of otoprotective agents 
and minimize their systemic side effects. These 
strategies aim to improve the bioavailability of 
protective agents in the cochlea and reduce 
the risk of interfering with the systemic antican-
cer activity of chemotherapeutic drugs.

In conclusion, while significant advances have 
been made in understanding the mechanisms 
of chemotherapy-induced ototoxicity and iden-
tifying potential otoprotective strategies, fur-
ther research is needed to develop safe and 
effective treatments that can be integrated into 
standard oncology care. The balance between 
preserving hearing and maintaining the anti-
neoplastic effectiveness of chemotherapy pre- 
sents a complex challenge that future studies 
must address to improve the quality of life for 
cancer patients undergoing treatment.
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