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Abstract: Colorectal cancer (CRC) is a lethal malignancy and a leading cause of cancer-related mortality worldwide. 
Chromosomal instability (CIN) is a key driver of genomic instability in CRC and is characterized by aneuploidy and 
somatic copy-number alterations. This study aimed to predict CIN in CRC using histological data from whole slide 
images (WSIs). CRC samples from TCGA were analyzed, with tumor regions segmented into tiles and nuclei for 
feature extraction using convolutional neural network (CNN) and morphologic analysis. Binary classification models 
were developed to distinguish high and low aneuploidy scores (AS) based on slide-level features. The analysis in-
cluded 313 patients with 315 WSIs, resulting in over 350,000 tumor tiles and nearly 2.7 million tumor cell nuclei. 
The ResNet18-SSL model, pre-trained on histopathological images, demonstrated superior accuracy in tile-based 
AS prediction, while DenseNet121 excelled in nucleus-based prediction. Combining CNN-based and morphological 
features enhanced the classification accuracy of nucleus-based predictions. Additionally, significant correlations 
were observed between morphological features and copy-number signatures. Unsupervised clustering of nuclear 
features revealed that distinct groups are significantly correlated with CIN and TP53 mutations. This study under-
scores the potential of histological features from WSIs to predict CIN in CRC samples. Nuclear feature analysis, 
combined with deep-learning techniques, offers a robust method for CIN prediction, highlighting the importance of 
further research into the relationships between histological and molecular phenotypes.
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Introduction

Colorectal cancer (CRC) is the second leading 
cause of cancer-related deaths globally, and its 
incidence in young patients is rising [1, 2]. 
Traditionally, pathologic diagnoses of CRC, con-
ducted via biopsy or resection specimens, have 
relied on hematoxylin and eosin (H&E) stained 
slides, which are essential for tumor staging 
and guiding therapeutic decisions. In recent 
years, molecular characteristics such as micro-
satellite instability (MSI), tumor mutation bur-
den (TMB), CpG island methylator phenotype 
(CIMP), and chromosomal instability (CIN) have 
emerged as critical prognostic indicators and 

therapeutic targets [3-6]. Among the molecular 
phenotypes, CIN is characterized by persistent 
loss and gain of chromosomes at high grades 
[7]. CIN in CRC is marked by pronounced aneu-
ploidy and frequent somatic copy-number alter-
ations (SCNA) [8]. Notably, mutations in genes 
such as APC, TP53, KRAS, SMAD4, SOX9, and 
FBXW7 significantly contribute to CIN in CRC 
[8].

CIN is a hallmark of various human malignan-
cies, and is often associated with tumor initia-
tion, progression, metastasis, prognosis, and 
therapeutic resistance [7]. Therefore, predict-
ing CIN enables the identification of tumors 
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with aggressive features, including those that 
exhibit resistance to standard and immune-
based therapies. This approach can guide 
treatment decisions, enabling more personal-
ized and potentially effective therapeutic 
approaches. Furthermore, this approach can 
help to select more intensive treatments or 
explore novel targeted therapies. Nevertheless, 
the patterns of SCNA associated with CIN vary 
across different tumor types, including CRC, 
posing challenges in analyzing CIN across dif-
ferent molecular subtypes within CRC and other 
types of carcinomas. To address these chal-
lenges, Taylor et al. proposed a pan-cancer 
chromosome arm-level scoring system that 
applicable to 33 cancer types within in The 
Cancer Genome Atlas (TCGA) [9]. Similarly, 
Drews et al. developed a copy-number signa-
ture system that considers diverse causes of 
CIN, such as mitotic errors, replication stress, 
homologous recombination deficiency, telo-
mere crisis, and breakage fusion bridge cycles, 
as well as its consequences across a broad 
spectrum of cancers [10]. Despite these 
advancements, a comprehensive model inte-
grating histological data and CIN measure-
ments in CRC is still lacking.

Recent progress in digital pathology and artifi-
cial intelligence have revealed previously elu-
sive relationships between histological images, 
molecular phenotypes, and patient outcome 
[11]. These techniques facilitate the prediction 
of molecular features from whole slide images 
(WSIs) of malignancies with far greater accura-
cy than tranditional visual assessment [12].

There are largely two methods for feature 
extraction and biomarker prediction from WSIs 
[13]. The first approach involves segmenting 
WSIs into small patches, extracting features 
from each patch, and aggregating them later. 
For example, previous studies have success-
fully employed histological models, based on 
segmented tiles, to predict molecular features 
of CRC, including MSI status [12, 14-18]. The 
tile-based prediction of CIN has also been 
explored in breast cancer [19]. The second 
approach is focusing on single-cell analysis, 
where individual cells are segmented, classi-
fied, and analyzed for feature extraction. This 
method has been used to predict CIN in pros-
tate, lung, and head and neck cancers [13, 20]. 
In the this study, we aimed to use TCGA data of 
CRC (TCGA-CRC) to predict diverse aspects of 

CIN based on histology, applying both tile-
based and nuclear-based methods to deter-
mine the optimal model for predicting CIN in 
CRC.

Material and methods

Datasets

Images of formalin-fixed paraffin-embedded 
H&E stained CRC samples were obtained from 
TCGA database. WSIs of colon adenocarci- 
noma (TCGA-COAD) and rectal adenocarcino-
ma (TCGA-READ) at 40× magnification were 
selected. The aneuploidy score (AS), deter-
mined by the number of arms altered (either 
amplified or deleted) in each sample, and 
whole-genome doubling (WGD) were obtained 
from Taylor et al. [9]. Detectable CIN and copy-
number signatures were obtained from Drews 
et al. [10]. We used survival data adopted from 
Liu et al. [21]. Clinical, mutation, and fraction 
genome altered data were obtained from cBio-
Portal for Cancer Genomics [22].

Tumor tile selection, nuclear segmentation, 
and nuclear extraction

Tumor regions within the WSIs were identified 
using manual annotations by Loeffler and 
Kather (available at dx.doi.org/10.5281/zeno-
do.5320076). The tumor areas were segment-
ed into non-overlapping 512 × 512-pixel tiles, 
each with a spatial resolution of 1.0 μm/pixel. 
The tiles were normalized using the Macenko 
method [23]. A pathologist (YK) reviewed the 
non-tumorous tiles. To extract tumor cell nuclei, 
the tumor areas were manually annotated into 
small clusters to minimize the inclusion of 
endothelial cells, fibroblasts, and immune cells. 
Annotation was performed in QuPath v0.4.3 
[24]. The StarDist model, which is compatible 
with QuPath, was used to detect cell nuclei 
within the annotated areas [25]. Tumor and 
non-tumor cells were classified using a random 
tree classifier built into QuPath. After non-tumor 
cells were removed, we generated 100 × 100-
pixel images with a single central nucleus to 
extract features from each nucleus.

Convolutional neural network (CNN)-based and 
morphological feature extraction

Deep features from tumor patches were 
extracted using pre-trained CNNs. We employed 
DenseNet121 [26], ResNet18 [27], and VGG11 
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[28] models, pre-trained on ImageNet [29], as 
well as ResNet18 model pre-trained on histo-
pathological images using self-supervised 
learning (SSL) techniques [30], trained on 
400,000 histopathological tiles of various 
organs from public databases. The feature 
dimensions were 1,000 for ImageNet-
pretrained features and 512 for SSL-based 
features.

In addition to deep features, 15 morphological 
features associated with size, shape, and inten-
sity were detected for each tumor nucleus, as 
described by Abel et al. [20]. These features 
included measurements of area, major and 
minor axis lengths, perimeter, circularity, eccen-
tricity, solidity, and the mean and standard 
deviation (SD) of the pixel grayscale intensity, 
pixel saturation, and pixel A and B channels in 
the LAB color space.

Feature aggregation for tiles and nuclei

Tile-level features were aggregated into slide-
level features using max pooling [19]. The slide-
level tile deep feature was derived from the 
maximum value within each feature. Therefore, 
slide-level tile deep features have the same 
dimensions as tile-level deep features, enabling 
the derivation of model prediction scores at the 
tile-level. Once the AS prediction model has 
been trained using slide-level tile deep fea-
tures, the prediction scores for individual tiles 
were derived by feeding the tile-level deep fea-
tures into the trained model.

To transform the nuclei-level features into slide-
level features, the mean and SD of each fea-
ture were calculated from all nuclei on a single 
slide. This processes yielded 30 slide-level 
nuclear morphological features, such as the 
mean major axis length and SD of circularity. 
Similarly, the mean and SD of the deep features 
of the cell nuclei were calculated, resulting in 
either 1,024 or 2,000 slide-level nuclear deep 
features, depending on whether the feature 
extractor was based on SSL or was pre-trained 
on ImageNet.

AS prediction models

We developed binary classification models to 
distinguish between high (AS-H, AS > 10) and 
low (AS-L, AS ≤ 10) in WSIs using different slide-
level features, including those derived from tile-

level or nuclei-level feature extractors. The 
classification models are built on multi-layer 
perceptrons (MLPs) with four layers: an input 
layer, two hidden layers, and an output layer. 
The number of nodes in the input layer was 
determined by the slide-level features. Each of 
the two hidden layers contained 512 nodes, fol-
lowed by 100 nodes in the output layer and a 
single node for the final output.

Each model was trained and evaluated using a 
five-fold cross-validation approach. We used 
the StratifiedKFold function in scikit-learn to 
randomly divide the dataset into five stratified 
folds. One of the folds was assigned as the test 
set, while the remaining four folds were used 
for training (80%) and validation (20%). The pro-
cess was iterated for each of the five folds, 
resulting in five outcomes per model. The aver-
age and SD of the results were used to deter-
mine the overall cross-validation performance.

The models were trained to minimize the binary 
cross-entropy loss function. The weights of the 
MLP were initialized using the He initialization 
method [31]. Stochastic gradient descent 
(SGD) optimizer was used to train network 
weights with a learning rate of 0.00005. The 
training was stopped early if the validation loss 
did not decrease within 200 epochs. Other 
parameter settings in the training process were 
as follows: maximum epochs, 2,000; batch 
size, 8; momentum, 0.9; and activation func-
tion, rectified linear unit (RELU) function. All 
experiments were conducted using Python  
language (v.3.8) and an NVIDIA A6000 GPU. 
The models were implemented using PyTorch 
v.1.12 [32].

Nuclear classification in tumor tiles

Cell components within tiles were classified 
using Hover-Net on the PanNuke dataset [33] 
which categorized the cells into five groups: 
neoplastic, connective, non-neoplastic epithe-
lia, necrotic, and inflammatory [34]. AS predic-
tion scores were predicted at the tile-level by 
feeding individual tile features into trained MLP 
models, as mentioned previously. The density 
of tumor cells within each slide was calculated 
as the number of neoplastic cells divided by the 
number of tiles. The tumor-to-immune cell ratio 
was calculated by dividing the number of neo-
plastic cells by the number of inflammatory 
cells.
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Unsupervised clustering

The clustering induced by morphological fea-
tures was investigated by using the uniform 
manifold approximation and projection (UMAP) 
method to map the slide-level nuclei morpho-
logical features onto a 2D space [35]. In the 
UMAP space, the hierarchical density-based 
clustering of applications with noise (HDBSCAN) 
was applied to obtain cluster labels, with the 
minimum cluster size set to 10 [36].

Statistical analysis

Spearman’s rank correlation was used to exam-
ine the relationship between morphological 
features and the activities of copy-number sig-
natures (CX1-CX17). The correlation between 
clusters and clinical and molecular features 
was evaluated using Pearson’s chi-square test. 
Kaplan-Meier analysis with a log-rank test was 
used to calculate overall and disease-free sur-
vival. p values < 0.05 were considered as sta-
tistically significant.

Results

Tissue annotation, segmentation, and nuclear 
extraction

An overview of tumor annotation, segmenta-
tion, and model development process is sum-
marized in Figure 1. Slides that StarDist failed 
to properly detect the nuclei were excluded 
from the anlaysis. In cases of mucinous adeno-

carcinoma with signet ring cell component, 
StarDist annotated entire cells instead of just 
the nuclei. After excluding inadequate cases 
and slides, the final cohort comprised 313 
patients with 315 WSIs, yielding 353,712 tumor 
tiles and 2,693,097 cell nuclei. On average, 
this corresponded to approximately 1,000 tiles 
and 8,500 cell nuclei per slide.

Model comparisons and predictions

The performance of various pre-trained models 
was evaluated (Table 1). The ResNet18-SSL 
model exhibited superior accuracy and area 
under the receiver operating characteristic 
curve (AUROC) in tile-based AS prediction, while 
DenseNet121 performed optimally in nucleus-
based prediction. However, ResNet18-SSL out-
performed DenseNet121 in terms of AUROC 
(Supplementary Figure 1). When deep and mor-
phological features were combined in nucleus-
based models, the classification accuracy 
improved compared to using either feature 
alone (Table 2). Models predicting WGD and 
fraction genome altered using combined fea-
tures achieved modest accuracy (Supple- 
mentary Table 1).

Impact of MSI on model performance

MSI is a critical molecular feature associated 
with CRC histology [14-18]. Among 42 MSI-high 
CRC cases, AS 0 was most common (17 cases, 
40.5%), accounting for 68% of AS 0 cases ana-
lyzed (17 out of 25). Therefore, the effect of 

Figure 1. Overview of workflow for tile-based (upper portion) and nucleus-based (lower portion) aneuploidy score 
(AS) prediction model development from whole-slide images (WSIs). CNN, convolutional neural network; MLP, multi-
layer perceptron; SSL, self-supervised learning.
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MSI-high cases on AS prediction was investi-
gated by comparing models that included and 
excluded AS 0 cases for both tile- and nucleus-
based predictions (Table 3). Tile-based models 
exhibited a steep decline in accuracy and 
AUROC, whereas the nucleus-based models 
showed limited changes. Both tile- and nucle-
us-based models were affected when all MSI-

employed to label the cell components within 
the tiles. AS prediction scores at the tile-level 
were generated by feeding individual tile fea-
tures into trained MLP models. Consistent with 
the hypothesis, cases incorrectly predicted as 
AS-L exhibited significantly lower tumor cell 
densities than those of both misclassified and 
accurately predicted AS-H cases (Figure 2A; 

Table 1. Comparison of deep learning models for predicting AS
Source Backbone Accuracy (SD) AUROC (SD) F1 (SD)
Tile ResNet18 - ImageNet 0.638 (0.034) 0.661 (0.033) 0.720 (0.042)
Tile ResNet18 - SSL 0.686 (0.038) 0.742 (0.023) 0.735 (0.040)
Tile Vgg11 - ImageNet 0.590 (0.017) 0.629 (0.043) 0.686 (0.030)
Tile DenseNet121 - ImageNet 0.670 (0.063) 0.717 (0.061) 0.738 (0.051)
Nucleus Resnet18 - ImageNet 0.667 (0.039) 0.752 (0.058) 0.720 (0.048)
Nucleus Resnet18 - SSL 0.673 (0.051) 0.736 (0.060) 0.730 (0.058)
Nucleus Vgg11 - ImageNet 0.670 (0.031) 0.714 (0.043) 0.734 (0.045)
Nucleus DenseNet121 - ImageNet 0.717 (0.059) 0.740 (0.060) 0.758 (0.053)

Table 2. Nucleus-based model with and without feature integration
Accuracy (SD) AUROC (SD) F1 (SD)

Morphological features (M) 0.689 (0.048) 0.737 (0.072) 0.741 (0.054)
Deep features (D) 0.717 (0.059) 0.740 (0.060) 0.758 (0.053)
M+D 0.721 (0.053) 0.750 (0.054) 0.766 (0.050)

Table 3. Prediction of AS with and without AS 0 cases
AS 0 cases Accuracy (SD) AUROC (SD) F1 (SD)

Tile-based Model Include 0.686 (0.038) 0.742 (0.023) 0.735 (0.040)
Exclude 0.628 (0.040) 0.651 (0.085) 0.734 (0.043)

Nuclei-based Model Include 0.721 (0.053) 0.750 (0.054) 0.766 (0.050)
Exclude 0.714 (0.045) 0.732 (0.082) 0.787 (0.037)

Figure 2. Influence of tumor cell density and tumor cell to immune cell ratio 
in tile-level AS prediction. A: Tumor cell density of three cases represent-
ing AS-H (green line), AS-L incorrectly predicted as AS-H (red line), and AS-H 
incorrectly predicted as AS-L (blue line), each aligned with the prediction 
scores of their respective tiles (0-80%). B: Ratio between tumor cells and 
immune cells. Three cases are displayed according to tile-level prediction 
scores. AS-H, high aneuploidy score; AS-L, low aneuploidy score.

high cases were excluded, li- 
kely due to severe class imbal-
ance (Supplementary Tables 2 
and 3).

Effect of tumor cell density 
and tumor-to-immune cell ra-
tio on tile-based prediction

In analyzing mislabeled cases 
in tile-based models, we 
hypothesized that AS-H cases 
misclassified as AS-L would 
exhibit lower tumor cellularity, 
while mislabeled AS-L cases 
predicted as AS-H would dis-
play higher tumor cellularity. 
To assess this, Hover-Net was 
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Supplementary Table 4). Interestingly, tiles with 
a higher probability of AS had a higher tumor 
cell density than those with a lower probability 
of AS (Figure 2A). Another potential confound-
ing factor we considered was the tumor-to-
immune cell ratio. However, this ratio did not 
show a marked difference between the incor-
rectly predicted AS-H and AS-L cases (Figure 
2B).

Key parameters in morphological features

To determine the most important morphologi-
cal parameters for predicting AS, feature impor-
tance was extracted using a random forest 
model. Out of the 30 evaluated parameters, 
the SD of the tumor nuclear area ranked high-
est (Figure 3A) and showed a significant corre-
lation with AS (Spearman r = 0.419, P < 0.001, 

Figure 3B). Other parameters with high impor-
tance included SD of the minor axis length, SD 
of the major axis length, and SD of the peri- 
meter, all of which reflect variability in nuclear 
size. Additionally, we explored the relationship 
between morphological features and patient 
survival. Univariate Cox proportional hazard 
models fitted to each morphological feature 
revealed that the mean SD of B channel inten-
sity in the LAB color space was strongly associ-
ated with both overall and disease-free survival 
(Supplementary Table 5). Patients were strati-
fied into two groups based on the median value 
of the feature, and Kaplan-Meier analysis indi-
cated that a lower mean SD of B channel inten-
sity significantly correlated with improved over-
all survival (Figure 3C). However, the SD of the 
area, despite being the most important feature 
for predicting AS, was not a prognostic factor 

Figure 3. Nuclear morphology with feature importance and its correlation with survival. A: Nuclear morphological 
features with top feature importance. B: Correlation between SD of tumor cell area and AS. C: Overall survival ac-
cording to mean SD of B intensity. D: Overall survival according to SD of tumor cell area.
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(Figure 3D). Notably, AS showed no association 
with survival in this cohort of 313 cases (P = 
0.149).

Nuclear morphology and copy-number signa-
tures

Among the 315 analyzed slides, 220 had 
detectable CIN and were assigned activity 
value for 17 copy-number signatures (CX1-
CX17). Among them, AS exhibited the strongest 
correlation with, CX6 (Spearman’s r = 0.420, P 
< 0.001), which is characterized by whole-arm 
and chromosomal changes potentially result- 
ing from chromosome missegregation due to 
defective mitosis, followed by CX8 and CX4 
(Table 4). An inverse correlation with CX11 and 
CX12. Various other copy-number signatures 
were also significantly correlated with diverse 
morphological features of the tumor nuclei, 
suggesting that differences in nuclear morphol-
ogy may reflect specific pattern of change with-
in CIN (Supplementary Table 6).

Clustering of nuclear features

Unsupervised clustering of morphological fea-
tures revealed two clusters in UMAP (Figure 
4A). Cluster 1 comprised predominantly of 
AS-H/microsatellite stable (MSS) cases, while 

cluster 2 included most AS-L and MSI-high 
cases (Figure 4B and 4C). However, clustering 
did not have significant prognostic implications 
for overall survival (P = 0.809). A notable cor-
relation was observed between the clusters 
and clinical and molecular features, particularly 
with MSI status (P = 0.002) and AS (P < 0.001). 
No significant associations were found with 
other clinical parameters, such as pTNM, pT, 
pN, pM stages, or sex (Supplementary Table 7). 
Notably, while BRAF mutations, which are often 
associated with MSI, exhibited no significant 
association with the clusters (P = 0.136), TP53 
mutations, which are related to CIN, demon-
strated a significant correlation (P = 0.047).

Discussion

Tumor aneuploidy, a nearly universal feature of 
human malignancies [9], can predict poor prog-
nosis following immunotherapy across multiple 
cancer types [37]. Additionally, AS-H tumors 
can be used to stratify patients with worse sur-
vival in samples with a low tumor mutational 
burden. However, CIN is not limited to aneuploi-
dy alone; it encompasses a broader range of 
genomic alterations [38]. Copy-number signa-
tures account for various causes and changes 
in patterns associated with CIN [10]. These sig-
natures have predicted platinum sensitivity in 

Table 4. Correlation between AS and copy-number signatures
Signature Spearman’s r P value Putative cause according to Drews et al. [10]
CX4 0.254 < 0.001 PI3K-AKT-mediated toleration of whole-genome duplication
CX6 0.420 < 0.001 Chromosome missegregation via defective mitosis
CX8 0.348 < 0.001 Replication stress
CX11 -0.168 0.012 Replication stress
CX12 -0.153 0.023 Unknown

Figure 4. Unsupervised clustering based on nuclear morphology. (A) Clustering of nuclear morphological features. 
Clusters are depicted according to AS (B) or MSI status (C). MSI, microsatellite instability; MSS, microsatellite stable.
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ovarian, esophageal, and breast cancer. 
Therefore, our prediction of CIN using AS and 
copy-number signatures based on histology 
could inform the development of personalized 
treatment plans for patients with CRC.

In breast cancer and CRC, CIN has been pre-
dicted using tile-based models [12, 19]. 
Notably, tiles predictive of high CIN tend to have 
larger neoplastic cell nuclei than those of the 
tiles predictive of low CIN, highlighting the  
ongoing importance of nuclear components in 
predicting CIN. This supports our approach of 
using nuclear features as a more effective 
method for predicting CIN compared to tile 
images alone. Previous studies have predicted 
MSI-high with great accuracy using tile-based 
models [12, 14, 39, 40]. Tiles that predict MSI-
high have been associated with tumor-infiltrat-
ing lymphocytes and poorly differentiated mor-
phology, whereas tiles that predict MSS show 
well-differentiated tumor morphology. These 
findings align with our current results, demon-
strating the effectiveness of tile-based models 
for predicting molecular features influenced by 
tumor cell density, including MSI.

Due to the large number of cell nuclei in the 
WSIs, significant storage and computing 
resources are required to segment all nuclei 
and extract features. Abel et al. extracted every 
nucleus from each WSI to investigate genomic 
instability [20]. Although capturing all cell nuclei 
may provide a more precise representation of 
tumor microenvironments than sampling re- 
gions of interest (ROIs), it can also lead to over-
exposure to unwanted tissue regions, such as 
normal mucosa and stroma without malignan-
cy. Instead, we opted to select tumor nucleus-
rich ROIs, extracting approximately 8,000 cell 
nuclei per slide, focusing on specific cell types 
in clinical settings for future deployment.

Our analysis revealed that the ResNet18-SSL 
model, pre-trained using histopathological 
images, outperformed models using the 
ImageNet features in the tile-based prediction. 
However, there was no similar improvement in 
the nucleus-based model, suggesting that pre-
training on histological image may not provide 
an optimal representation for smaller nucleus 
images. Therefore, future studies should focus 
on developing SSL techniques on large-scale 
nuclear images to generate nucleus-specific 
models that could facilitate single-cell analysis. 

Furthermore, deep features exhibited better 
performance than that of morphological fea-
tures; however, morphological features were 
more interpretable than “black-box” deep fea-
tures in the nucleus-based model. Future 
research should aim to enhance the perfor-
mance of deep features by leveraging ad- 
vanced SSL techniques and minimizing perfor-
mance discrepancies between deep and mor-
phological features by identifying and incorpo-
rating additional interpretable morphological 
features.

This study has certain limitations as well as 
advantages over previous studies. First, while 
we used only 15 morphological features from 
the nucleus, other methods, such as CellProfiler, 
extract over 100 morphological features [41]. 
Xia et al. conducted a prognostic prediction 
study for CRC using morphological features of 
nucleus extracted from WSIs using CellProfiler 
[42]. Their approach of using the Lasso-Cox 
model identified seemingly obscure factors 
such as ‘Median_Identifyeosinpromarycytop- 
lasm_Texture_Entropy_maskosingray_3_01_ 
256’ as a significant predictor of survival. This 
might be due to a lack of pipeline to exclude 
tumor-infiltrating lymphocytes and tumor-asso-
ciated macrophages within the tumor area. 
Meanwhile, another study suggested that varia-
tions in nuclear shape and intensity - indicators 
of nuclear pleomorphism - are independent 
prognostic factors in squamous cell carcinoma 
and adenocarcinoma of the lung [43]. The 
results of the present study also indicate that 
nuclear anisokaryosis, a clearly interpretable 
factor, is correlated with CIN, and that variation 
in nuclear intensity could be a putative prog-
nostic marker.

Second, this study did not include an external 
validation set. This is due to the lack of avail-
able AS data in the external CRC WSI cohort 
datasets. Future studies are needed to ex- 
plore the generalizability of the trained model. 
Nonetheless, a recent study has shown a simi-
lar pattern between SD of the tumor nuclei area 
and AS in breast cancer, lung adenocarcinoma, 
and prostate adenocarcinoma [20], indicating 
that our findings represent a common phenom-
enon across multiple cancer types. In another 
study using WSI of CRC, CIN and genomic sta-
bility were predicted using tiles with a higher 
AUROC (0.83) than that in the present study 
[12]. However, this dichotomous category spe-
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cific to TCGA-CRC do not directly match with AS; 
suggesting that our methods may have broader 
applicability.

Conclusion

In conclusion, the present study used diverse 
histological features to predict CIN in patients 
with CRC. The nuclear features of CRC tumor 
cells demonstrate a robust association with 
CIN, along with its putative initiator TP53 muta-
tion. Our study has highlighted various direc-
tions for future research into the molecular 
relationships in CRC and development of tar-
geted treatments and personalized manage-
ment strategies.
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Supplementary Figure 1. AUROC for tile-based and nucleus-based models. A: Comparing AUROC for each model in 
tile-based predictions. B: Comparing AUROC for each model in nucleus-based predictions.

Supplementary Table 1. Prediction of binarized FGA and WGD
Accuracy (SD) AUROC (SD) F1 (SD)

WGD 0.673 (0.046) 0.750 (0.053) 0.632 (0.055)
FGA (threshold 0.2) 0.679 (0.038) 0.695 (0.039) 0.749 (0.032)

Supplementary Table 2. Prediction of AS with and without MSI-high cases
MSI cases Accuracy (SD) AUROC (SD) F1 (SD) Sensitivity (SD) Specificity (SD)

Tile-based Model Include 0.686 (0.038) 0.742 (0.023) 0.735 (0.040) 0.754 (0.069) 0.592 (0.066)

Exclude 0.667 (0.020) 0.635 (0.076) 0.782 (0.012) 0.906 (0.025) 0.203 (0.084)
Nuclei-based Model (M+D) Include 0.721 (0.053) 0.750 (0.054) 0.766 (0.050) 0.792 (0.071) 0.622 (0.087)

Exclude 0.696 (0.061) 0.731 (0.076) 0.786 (0.051) 0.856 (0.091) 0.387 (0.097)

Supplementary Table 3. Distribution of AS-H and AS-L with or without MSI-high cases
Include MSI Exclude MSI

AS-H 183 cases (58%) 180 cases (66%)
AS-L 132 cases (42%) 93 cases (34%)
Total 315 cases (100%) 273 cases (100%)
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Supplementary Table 4. Tumor cellularity and tumor cell to immune cell ratio in representative slides 
for correctly predicted AS-H, falsely predicted AS-H, and falsely predicted AS-L cases in tile-based 
models (TCGA-CM-4752, TCGA-A6-6653, and TCGA-F5-6464, respectively)
TCGA-CM-4752-01Z-00-DX1
AS-H prediction score (%) 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No of tiles 48 107 137 169 151 100 39 6
Tumor cells 8391 21317 29867 38968 37304 26068 10072 1748
Immune cells 523 634 818 789 535 291 87 5
Tumor cells ratio 174.81 199.22 218.01 230.58 247.05 260.68 258.26 291.33
Immune cell ratio 10.90 5.93 5.97 4.67 3.54 2.91 2.23 0.83 
Tumor cell/immune cell 16.04 33.62 36.51 49.39 69.73 89.58 115.77 349.60
TCGA-A6-6653-01Z-00-DX1
AS-H prediction score (%) 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No of tiles 2 15 35 27 45 41 35 5
Tumor cells 447 2973 7028 5887 11953 12209 11019 1873
Immune cells 6 68 230 172 293 272 229 8
Tumor cells ratio 223.50 198.20 200.80 218.04 265.62 297.78 314.83 374.60
Immune cell ratio 3.00 4.53 6.57 6.37 6.51 6.63 6.54 1.60 
Tumor cell/immune cell 74.50 43.72 30.56 34.23 40.80 44.89 48.12 234.13 
TCGA-F5-6464-01Z-00-DX1
AS-H prediction score (%) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
No of tiles 15 123 234 132 52 24 3 1
Tumor cells 3005 19675 31582 17176 7122 4034 841 292
Immune cells 180 1011 1521 1052 453 151 5 0
Tumor cells ratio 200.33 159.96 134.97 130.12 136.96 168.08 280.33 292.00
Immune cell ratio 12.00 8.22 6.50 7.97 8.71 6.29 1.67 0.00 
Tumor cell/immune cell 16.69 19.46 20.76 16.33 15.72 26.72 168.20 inf

Supplementary Table 5. The 10 morphologic features with a high c-index of univariate Cox propro-
tional hazard models for overall survival (OS) and disease-free survival (DFS)
OS c-index DFS c-index
Std major axis length 0.607814 Mean intensity B sd 0.688108
Mean intensity B sd 0.593903 Std minor axis length 0.682124
Mean intensity A sd 0.590499 Mean intensity gray mean 0.673897
Mean intensity gray sd 0.587243 Std area 0.65445
Std intensity A sd 0.579621 Mean intensity B mean 0.650711
Std intensity S sd 0.579029 Std perimeter 0.646971
Std intensity A mean 0.576883 Std intensity A sd 0.635752
Std intensity gray sd 0.571333 Mean intensity A mean 0.622289
Std intensity gray mean 0.566894 Mean intensity S mean 0.606582
Mean circularity 0.563046 Mean intensity gray sd 0.600598
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Supplementary Table 7. Correlation between clusters and clinical and molecular features
Cluster 1 (%) Cluster 2 (%) P value

Age < 65 48 (14.4%) 103 (33.1%) 0.56
≥ 65 46 (14.8%) 114 (36.7%)

Sex Female 48 (15.4%) 107 (34.4%) 0.776
Male 46 (14.8%) 110 (35.4%)

pTNM I/II 41 (14.0%) 114 (39.0%) 0.085
III/IV 49 (16.8%) 88 (30.1%)

pT stage pT1-2 15 (4.8%) 42 (13.5%) 0.488
pT3-4 79 (25.3%) 176 (56.4%)

pN stage pN0 44 (14.1%) 126 (40.4%) 0.074
pN1-2 50 (16.0%) 92 (29.5%)

pM stage pM0 63 (24.5%) 152 (59.1%) 0.259
pM1 16 (6.2%) 26 (10.1%)

MSI Stable/low 91 (29.1%) 181 (57.8%) 0.002*
High 4 (1.3%) 37 (11.8%)

CIMP Negative/low 73 (25.4%) 174 (60.6%) 0.009*
High 4 (1.4%) 36 (12.5%)

BRAF Wildtype 85 (27.5%) 184 (59.5%) 0.136
Mutant 8 (2.6%) 32 (10.4%)

KRAS Wildtype 53 (17.2%) 122 (39.5%) 0.934
Mutant 40 (12.9%) 94 (30.4%)

TP53 Wildtype 24 (7.8%) 81 (26.2%) 0.047*
Mutant 69 (22.3%) 135 (43.7%)

AS Low 22 (7.0%) 109 (34.8%) < 0.001**
High 73 (23.3%) 109 (34.8%)

*P < 0.05, **P < 0.001.

Supplementary Table 6. Morphologic features of tumor nuclei significantly correlated with copy num-
ber signatures (P < 0.05)
Signature Morphology
CX1 Mean eccentricity, std intensity A mean
CX2 Mean area, mean major axis length, mean minor axis length, mean perimeter, mean intensity 

B mean, std area, std minor axis length, std perimeter, std intensity gray sd
CX3 Std minor axis length
CX4 Mean area, mean major axis length, mean minor axis length, mean perimeter
CX6 Mean major axis length, mean circularity, mean eccentricity, mean intensity gray mean, mean 

intensity S mean, mean intensity B mean, std area, std major axis length, std minor axis 
length, std perimeter, std intensity A mean, std intensity A sd, std intensity B mean

CX8 Mean area, mean major axis length, mean minor axis length, mean perimeter, std area, std 
minor axis length

CX9 Std intensity A mean
CX10 Mean intensity gray mean, mean intensity gray sd, mean intensity A sd, mean intensity B 

mean, mean intensity B sd, std intensity A mean, std intensity A sd
CX11 Mean solidity, mean intensity S sd, std area, std minor axis length, std perimeter, std intensity 

gray sd, std intensity S mean, std intensity S sd, std intensity B sd
CX16 Mean intensity B sd
CX17 Std area, std major axis length, std minor axis length, std perimeter


