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Abstract: Objective: To investigate the ability of intra- and peritumoral radiomics based on three-phase computed 
tomography (CT) to distinguish between malignant and benign parotid tumors. Methods: We conducted a retrospec-
tive analysis of data from 374 patients with parotid gland tumors, all confirmed by histopathology. A total of 321 
patients from Center 1 (January 2014 to January 2023) were randomly divided into the training set and internal 
testing set at a ratio of 7:3, whereas 53 patients from Center 2 (January 2020 to June 2022) constituted the exter-
nal testing set. CT images of both the tumor and surrounding areas (2 mm and 5 mm areas surrounding the tumor) 
were reviewed, and their radiomic features were extracted for the construction of different radiomic models. In addi-
tion, a combined clinical-radiomic model was developed using multivariate logistic regression analysis. The model’s 
predictive performance was evaluated using decision curve analysis (DCA) and receiver operating characteristic 
(ROC) curves. Results: Among the models evaluated, Tumor + External2 model demonstrated superior predictive 
performance. The areas under the curve (AUCs) of this model were 0.986 in the training set, 0.827 in the internal 
test set, and 0.749 in the external test set. For the clinical model, independent predictive factors included symp-
toms, boundaries, and lymph node swelling. The combined clinical-radiomic model achieved AUCs of 0.981, 0.842, 
and 0.749 in the three cohorts, outperforming both the Tumor model and the clinical model individually. Conclu-
sion: The CT-based radiomic models incorporating intratumoral and peritumoral radiomic features can effectively 
distinguish malignant from benign parotid tumors, and the predictive accuracy is further improved by incorporating 
clinically independent predictors.
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Introduction

Among salivary gland tumors, parotid gland 
tumors have a higher incidence, with a benign-
to-malignant ratio of approximately 4:1 [1]. 
While surgical treatment is commonly employ- 
ed for patients with parotid gland tumors, it is 
important to note that different surgical app- 
roaches are selected based on whether the 
tumor is benign or malignant. For benign parot-
id tumors (BPTs), the preferred surgical option 
is superficial or local parotidectomy, whereas 
for malignant parotid tumors (MPTs), more inva-

sive procedures are required, such as partial  
or total parotidectomy, postoperative chemora-
diation, and facial nerve excision [2]. Thus,  
the selection of appropriate treatment heavily 
relies on accurate preoperative identification, 
which is crucial for patient prognosis.

Given that these tumors often lack distinct  
clinical manifestations, imaging analysis and 
fine needle aspiration biopsy (FNAB) are crucial 
for preoperative differentiation of benign and 
malignant parotid gland tumors. Although FNAB 
has been regarded as a routine clinical tech-
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nique for the preoperative classification of 
parotid tumors, it is associated with severe  
surgical complications [3, 4]. Moreover, due to 
the overlapping radiological characteristics of 
malignant and benign parotid tumors, imaging 
results can sometimes be inconclusive, de- 
pending on the radiologist’s expertise for inter-
pretation [5]. Therefore, there is an urgent need 
to develop more efficient and non-invasive 
assessments to improve the preoperative dis-
crimination of parotid tumors.

Radiomics offers a promising noninvasive 
approach for characterizing tumors and their 
adjacent microenvironments. This method con-
verts traditional medical images into high-
throughput quantitative imaging signals that 
beyond human vision scope, revealing inherent 
tumor heterogeneity and phenotypes [6, 7]. 
Prior research has underscored the robust dif-
ferentiation capability of computed tomogra- 
phy (CT) radiomics in distinguishing lymphoma-
associated malignant from benign ones in pa- 
rotid glands and benign parotid tumors [8, 9]. In 
the context of parotid tumors, radiomics mod-
els offer non-invasive and objective assess-
ments, aiding clinical decision-making. By ex- 
tracting features from both the tumor and its 
surrounding tissue, radiomics models can cap-
ture the intricate interplay between the tumor 
and its microenvironment, which is crucial for 
understanding tumor biology and predicting 
clinical outcomes. Most previous radiomics 
studies have focused on distinguishing between 
specific subtypes of benign tumors or differen-
tiating potential malignancies from benign tu- 
mors, predominantly focusing on the primary 
tumor area [10-12]. Nevertheless, recent inves-
tigations have revealed that the surrounding 
area may contain supplementary information 
regarding tumor heterogeneity across various 
cancer types [13]. Thus, the immediate peritu-
moral regions may present promising diagnos-
tic value for extracting imaging biomarkers. 
Evidence suggests that radiomics features 
from the immediate surrounding areas adja-
cent to the tumor are valuable in distinguish- 
ing disease subtypes in breast cancer, lung 
cancer, and hepatocellular carcinoma [14, 15]. 
To our knowledge, no studies have utilized 
radiomics of the peritumoral regions to differ-
entiate malignant from benign parotid tumors.

Therefore, we hypothesized that radiomics an- 
alysis of intratumoral regions would be helpful 

for clinical diagnosis. To test this, we construct-
ed CT radiomics models based on the features 
extracted from different regions both around 
and within the tumor and evaluated the predic-
tive performance of these models.

Materials and methods

Patients

The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013) 
and was approved by the Institutional Re- 
view Board of the First Affiliated Hospital of 
Chongqing Medical University (No. K2023-
414). The requirement for informed consent 
was waived in this study due to its retrospec- 
tive nature.

We retrospectively collected data from 374 
patients who were histopathologically diag-
nosed with benign parotid tumors (BPTs) or 
malignant parotid tumors (MPTs) at two centers 
(Figure S1). The inclusion criteria for this study: 
(1) patients had not received radiotherapy or 
chemotherapy and had no history of FNAB; (2) 
complete imaging and clinical data; and (3)  
all patients underwent dual-phase enhanced 
scanning and CT plain scan before surgery. The 
exclusion criteria: (1) CT images with obvious 
artifacts or noise; (2) tumor maximum diameter 
not exceeding 10 mm; and (3) presence of 
other types of tumors.

A total of 321 patients from Center 1 (January 
2014 to January 2023) were randomly divided 
into a training set and an internal testing set at 
a ratio of 7:3, whereas 53 patients from Center 
2 (January 2020 to June 2022) were regarded 
as the external testing set. The distribution of 
parotid tumors is presented in Table S1.

Image acquisition

Each patient underwent axial multi-phase scan-
ning using multi-slice spiral CT equipment, 
including plain scanning, arterial phase, and 
venous phase imaging. Detailed information 
regarding the imaging protocols used in both 
centers is presented in Table S2.

Radiological and clinical data analysis

Patient imaging and clinical data were collect-
ed from the case management system, image 
archives, and other sources. A retrospective 
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analysis was conducted on clinical data, includ-
ing variables such as smoking status and age. 
CT images were evaluated independently by 
two radiologists with extensive diagnostic expe-
rience, who were blinded to the pathological 
diagnoses of the parotid tumors. The two radi-
ologists discussed and reached a consensus 
on different opinions. The radiological features 
assessed included tumor location, shape, num-
ber, maximum diameter, distribution, boundary, 
calcification, density, cystic areas, uniformity 
and degree of enhancement, peak enhance-
ment phase, and presence of enlarged lymph 
nodes. Definitions for each of these radiologi-
cal features are provided in Supplementary 
Appendix 1.

Image segmentation

Figure 1 provides an overview of the study 
workflow. The CT images of patients were 
stored in DICOM format using standard soft  
tissue settings. For evaluating histopathologi-
cal results, two radiologists independently per-
formed a blind evaluation, meaning they had  
no knowledge of the relevant tissue content. 
During the analysis, the radiologists manually 
segmented the region of interest (ROI). When 
analyzing axial multiphase CT images, they 
carefully delineated the edge of the tumor layer 
by layer, removing normal tissues, blood ves-
sels, and other non-tumor areas. Inter-observer 
and intra-observer reproducibility were asse- 
ssed using intragroup correlation coefficient 
(ICC). Forty samples were randomly selected, 
including 20 malignant and 20 benign tumor 
samples, and ROI segmentation was performed 
on these images by two radiologists. Both radi-
ologists independently performed segmenta-
tion on the image, allowing for the evaluation of 
the consistency of radiological features identi-
fied by different observers. This segmentation 
process was repeated one month later, and the 
ICC values were found to be greater than 0.9, 
indicating excellent consistency.

After manual tumor segmentation, 2-mm and 
5-mm peritumoral regions were automatically 
segmented using Python (version 3.7.12; 
http://www.python.org) (Figure 2). Next, the 
bone and air were filtered from the delineation 
by setting the maximum and minimum thresh-
olds, and the final ROI borders (peritumoral 

regions) were manually adjusted to ensure 
accuracy [16, 17].

Radiomics feature extraction and selection

PyRadiomics in Python was used for feature 
extraction. Standardization and resampling 
techniques were applied to preprocess the 
images and data to ensure the consistency of 
the CT images across patients.

Features were extracted from five different 
ROIs-Tumor, External2, External5, Tumor + 
External2, and Tumor + External5- for each 
patient using the PyRadiomics Radiomics Fea- 
ture Extractor toolbox. A total of 1688 radiolo- 
gical features were obtained for each segmen-
tation, including 252 grayscale dependency 
matrices, 432 grayscale co-occurrence matri-
ces, 90 adjacent grayscale difference matri-
ces, 288 grayscale size region matrices, 288 
grayscale run length matrices, among others. 
Subsequently, the extracted features were ana-
lyzed for both the tumor and its surrounding 
areas. The least absolute shrinkage and selec-
tion operator (LASSO) algorithm was used to 
select radiomic features. When optimizing the 
target, a loss function was used. To obtain 
accurate experimental results, the penalty term 
(λ) was added to the function; At the optimal  
λ, features with non-zero coefficients were 
retained, and their coefficients were ordered by 
magnitude. To avoid overfitting during the anal-
ysis process, each feature corresponded to 10 
samples based on empirical rules, ultimately 
leading to the selection of the top 20 features. 
These algorithms for extracting radiomics fea-
tures adhered to the Image Biomarker Stan- 
dardization Initiative (IBSI) guidelines.

Before further analysis, the data of patients 
from Center 1 were randomized into the train-
ing and internal testing sets in a 7:3 ratio, 
whereas those from Center 2 were regarded as 
an independent external validation set. This 
cohort was collected from a different hospital 
to ensure that the model’s performance could 
generalize to different populations. The extract-
ed radiomics features were normalized using 
Z-scores to address the differences in the value 
scales of the feature. All feature selection pro-
cesses were executed in the training dataset, 
and the intraclass correlation coefficients 
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Figure 1. Workflow of this study.
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(ICCs) between the features extracted by the 
two radiologists were calculated. Radiomics 
features with ICC value < 0.9 were eliminated. 
Among the remaining features, those repre-
senting significant differences between the 
BPT and MPT groups were identified using the 
student’s t-test. And then, Spearman’s correla-
tion test was employed, and features with coef-
ficients greater than 0.95 were removed to 
address redundancy. Finally, the top 20 dis-
criminative radiomics features were selected 
using the LASSO algorithm.

Model construction and evaluation

The tumor model was constructed using ra- 
diomics features extracted from the tumor re- 
gion [18]. The radiomics features were extract-
ed from the tumor ROI across all three phases 
of CT scans: plain, arterial, and venous, using 
the PyRadiomics library. The LASSO algorithm 
was used to select the most discriminative fea-
tures from the tumor ROI, resulting in a refined 
subset of features. These features were then 
used to construct the tumor model. Besides, a 
clinical model was developed based on inde-
pendent clinical predictors identified through 
multivariate logistic regression analysis. These 
predictors were chosen based on their statisti-
cal significance in differentiating between be- 
nign and malignant parotid tumors. The clinical 
model was constructed using these predictors 
to assess their predictive power in the discrimi-
nation of tumor types.

Previous studies confirmed that CT image-
based machine learning, support vector ma- 
chine (SVM) classifiers, have high accuracy for 
discriminating MPTs from BPTs [18]. Therefore, 

we used the CT radiomics features to establish 
the SVM model as the baseline model.

In the training set, the synthetic minority overs-
ampling technique (SMOTE) was used to bal-
ance the minority samples in a 1:1 ratio. 
Radiomics feature fusion was performed by 
combining the top 20 features from each 
region, resulting in a total of 40 features (Tumor 
+ External2, and Tumor + External5). Sub- 
sequently, Principal Component Analysis (PCA) 
was used to determine the optimal number of 
retained features, aiming to preserve 95% of 
the total variance in the data. The PCA method 
is described in Supplementary Appendix 2. The 
receiver operating characteristic (ROC) curves 
of the radiomics models across the five cohorts 
were plotted, and the sensitivity and specificity 
as well as the area under the curve (AUC) was 
calculated. Calibration curves were plotted to 
evaluate the predicted probability of the mod-
els in the testing sets, with calibration perfor-
mance quantified using Brier scores; a Brier 
score closer to zero indicates better calibration 
performance. The diagnostic confusion matrix 
of the radiologists was calculated and com-
pared with that of the five radiomics signature 
models. Moreover, six different machine-learn-
ing algorithms were employed to identify the 
optimal classifier.

Machine learning is known to provide highly 
reliable, accurate, and objective models to as- 
sist in clinical decision-making [19]. The best 
radiomics signature model was selected to 
develop a combined model incorporating inde-
pendent predictors. To evaluate the clinical effi-
ciency of the model for tumor categorization, 
we quantified the net benefits of different 

Figure 2. Contrast-enhanced CT image from a pleomorphic adenoma patient, highlighted regions represent the 
primary tumor (A) and peritumoral region of 2 mm (B) and 5 mm (C).
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Table 1. Clinical and CT morphological characteristics of patients in the training and two validation cohorts

Variables
Training set Internal-testing set External-testing set

BPTs (n=166) MPTs (n=59) P value BPTs (n=47) MPTs (n=26) P value BPTs (n=39) MPTs (n=14) P value
Ageb (years) 50.475 (15.518) 52.307 (14.539) 0.495 44.692 (17.211) 52.100 (14.539) 0.045* 55.857 (17.347) 58.231 (12.854) 0.694

Max-diameterb (cm) 2.429 (0.775) 2.201 (0.718) 0.039* 2.265 (1.064) 2.061 (0.746) 0.635 2.729 (1.013) 2.467 (0.810) 0.289

Sexa (F/M) 99/67 31/28 0.361 29/41 7/19 0.097 24/15 10/4 0.746

Smokinga (Yes/No) 75/91 19/40 0.092 75/91 19/40 0.092 17/22 4/10 0.362

Alcohol consumptiona (Yes/No) 59/107 14/45 0.107 31/39 5/21 0.107 13/16 3/11 0.510

Number of nodulesa (Single/Multiple) 178/12 59/0 0.075 64/6 26/0 0.186 31/8 11/3 1.000

Symptoma (With/Without) 15/151 20/39 < 0.001* 5/65 10/16 0.001* 10/29 6/8 0.311

Shapea (Round/Non-round) 129/37 49/10 0.458 51/19 24/2 0.052 30/9 12/2 0.706

Margina (Clear/Unclear) 159/7 37/22 < 0.001* 65/5 12/14 < 0.001* 34/5 6/8 0.002*

Locationa (Superficial/Deep/Both) 134/2/30 17/13/29 0.216 62/0/8 17/0/9 0.635 33/0/5 11/1/2 0.246

Distributiona (left/right/both) 86/70/8 28/29/1 0.425 32/36/2 14/12/0 0.574 13/21/5 8/6/0 0.173

Densitya (Homogeneous/Heterogeneous) 66/100 29/30 0.223 21/49 13/13 0.093 17/22 5/9 0.755

Calcificationa (With/Without) 4/162 19/40 0.654 2/68 1/25 1.000 0/39 0/14 1.000

Cystic areas (With/Without) 47/119 19/40 0.619 16/54 8/18 0.437 19/20 6/8 0.763

Enhanced-peak phasea (Arterial/Venous) 68/98 21/38 < 0.001* 38/32 16/10 0.645 27/12 11/3 0.732

Enhancement degreea (Slight/Moderate/Obvious) 13/44/109 8/19/32 0.230 5/18/9 3/9/14 0.005* 5/11/23 1/6/7 0.569

Enhanced uniformitya (Yes/No) 70/96 18/41 0.123 38/32 16/10 0.645 54/93 20/34 0.569

Enlarged lymph nodesa (With/Without) 1/165 15/44 < 0.001* 1/69 5/21 0.005* 7/32 4/10 0.001*

*Represents P < 0.05. aCategorical data are presented as numbers (n). bQuantitative data are presented as means (standard deviations) or medians (quartiles), p value was calculated using the independent samples t-test or Mann-Whitney U 
test. p-value was calculated with the χ2 or Fisher’s exact test. BPTs, benign parotid tumors; MPTs, malignant tumors; F, female; M, male.
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Table 2. Univariable and multivariable logistic regression analysis of factors in the training cohort

Variable
Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value
Age (years) 1.000 (0.969-1.031) 0.975
Max-diameter (cm) 1.487 (0.692-3.092) 0.309
Sex 0.485 (0.132-1.779) 0.275
Smoking 0.474 (0.116-1.934) 0.298
Alcohol consumption 1.355 (0.372-4.934) 0.645
Number of nodules 0.025 (0.001-0.736) 0.033* 0.144 (0.012-1.747) 0.128
Symptom 6.901 (2.271-20.974) 0.001* 5.707 (2.205-14.770) < 0.001*

Shape 0.432 (0.136-1.377) 0.156
Margin 30.316 (7.567-121.454) < 0.001* 15.167 (5.116-44.968) < 0.001*

Location 0.489 (0.228-1.052 0.067
Distribution 2.000 (0.867-4.613) 0.104
Density 0.750 (0.185-3.046) 0.688
Calcification 0.089 (0.003-2.866) 0.172
Cystic areas 1.347 (0.361-5.026) 0.658
Enhanced peak phase 0.829 (0.300-2.294) 0.718
Enhancement degree 0.728 (0.382-1.387) 0.334
Enhanced uniformity 1.571 (0.485-5.086) 0.451
Enlarged lymph nodes 806.789 (34.818-18694.732) < 0.001* 131.615 (11.699-1480.670) < 0.001*

*Represents P < 0.05. OR, odds ratio; CI, confidence interval.

threshold probabilities in the testing set using 
decision curve analysis (DCA).

Statistical analyses

All statistical analyses were performed using 
PyRadiomics in Python (version 3.7.12; http://
www.python.org), R (version 3.6.3; https://
www.r-project.org), and SPSS (version 26.0; 
IBM, Armonk, NY, USA) software. Categorical 
variables were presented as [n (%)] and ana-
lyzed using Chi-square test. Continuous vari-
ables were tested for normal distribution using 
the Shapiro-Wilk method. Normally distributed 
continuous variables were expressed as (Mean 
± SD) and analyzed using the t-test with adjust-
ed variance. Non-normally distributed continu-
ous variables were presented as median (25th 
percentile, 75th percentile) and analyzed using 
the Wilcoxon rank-sum test. Two-sided P < 0.05 
was deemed statistically significant for all sta-
tistical tests. Correlation analysis was perfor- 
med using Spearman’s correlation test. Mul- 
tivariate logistic regression analysis was used 
to identify independent clinical predictors of 
malignancy. A clinical model was constructed 
using the identified predictors. The model was 
validated using the same internal and external 

validation strategies as the radiomics models. 
The “sklearn” and “RMDA” packages were used 
for plotting the curves of the ROC and the DCA, 
respectively.

Results

Population and radiological features of pa-
tients

Details of the patient’s clinical and radiological 
features are presented in Table 1. There were 
no significant differences in the maximum 
diameter, age, sex, smoking, alcohol consump-
tion, shape, location, distribution, calcification, 
enhancement degree, cystic areas, enhanced 
peak phase, density, and enhanced uniformity 
between malignant and benign parotid tumor 
cohorts (all P > 0.05) (Table 2). In addition, 
symptoms, boundaries, and enlarged lymph 
nodes were identified as independent predic-
tors of malignant tumors through multivariate 
logistic regression analysis (P < 0.05). Based 
on these predictors, a clinical model was 
developed.

Radiomic signature models and performances

The selected features demonstrated high re- 
producibility, with ICCs exceeding 0.9, indicat-
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ing that none were excluded during the reliabil-
ity screening process. A total of 1688 radiomic 
features were extracted from each single ROI, 
resulting in 5064 features (Tumor, External2, 
External5) extracted from the images in the 
three scanning phases. Subsequently, the 
LASSO algorithm identified 20 discriminative 
radiomics characteristics for each intra- or peri-
tumoral region (Figure S2).

The ROC curves of the five radiomics models in 
the training and testing sets are shown in 
Figure 3. In the internal and external testing 
sets, the Tumor + External2 model achieved 
AUCs of 0.827 and 0.745, which were higher 
than those of the Tumor (AUCs of 0.800 and 
0.741), External2 (AUCs of 0.779 and 0.612), 
External5 (AUCs of 0.765 and 0.625), and 
Tumor + External5 (AUCs of 0.818 and 0.742) 
models. Furthermore, we comprehensively as- 
sessed the specificity, accuracy, sensitivity, 
negative predictive value (NPV), and positive 
predictive value (PPV) of the radiomics models, 
and the Tumor + External2 model displayed  
the best performance among the five models 
(Table 3).

The calibration curves, along with Brier scores, 
demonstrated good calibration for all five ra- 
diomics models in the testing sets (Figure 4), 
with the Tumor + External2 model showed the 
best calibration performance with the lowest 
Brier scores. The diagnostic confusion matrix 
for the radiologists was calculated and com-
pared with those of the five radiomic signatures 
(Figure S3). This comparison revealed that the 
Tumor + External2 model surpassed both the 
other four models and the radiologists in terms 
of total diagnostic accuracy. Consequently, the 
Tumor + External2 model was selected as the 
best radiomic model for constructing a com-
bined model.

Compared to other common machine learning 
algorithms, SVM algorithm achieved the high-
est AUC value based on the Tumor + External2 
model. The results are presented in Table S3.

Combined model construction and validation

We established a combined model by incorpo-
rating the Tumor + External2 radiomics model 
with clinical predictors, including symptoms, 
enlarged lymph nodes, and borders. The com-
bined clinical and radiomics model was con-

structed using SVM to evaluate and validate 
the diagnostic effectiveness of the different 
models. As shown in Figure 5 and Table 4, the 
combined model had significantly better diag-
nostic performance compared to the other two 
models, with an ACU of 0.981. Analysis of the 
test set indicated that the combined model had 
better predictive performance than the tumor 
model alone. In addition, Figure S4 shows the 
DCA for the different models. The analysis 
reveals that, in the testing set, the combined 
model had a more significant net benefit in the 
classification of parotid gland tumors.

Discussion

Our study builds upon previous research in 
radiomics for differentiating between benign 
and malignant parotid tumors. Most prior stud-
ies have primarily focused on the use of intra- 
tumoral radiomics features [20], with limited 
attention given to the peritumoral region. For 
instance, Piludu et al. utilized radiomics fea-
tures extracted from the tumor region to differ-
entiate benign from malignant parotid tumors 
[21]. Similarly, Yu. et al. reported a radiomics 
model based solely on intratumoral features 
[22]. In this study, we evaluated the potential of 
intra-and peritumoral radiomics features to dis-
criminate between malignant and benign parot-
id tumors. We found that the peritumoral paren-
chyma may contain some useful information for 
discriminating malignant from benign parotid 
tumors. The inclusion of intrinsic radiological 
features from the peritumoral region, irrespec-
tive of its size, resulted in more accurate indica-
tors for discrimination. Specifically, the Tumor + 
External2 radiomics model demonstrated the 
best performance among the five models, bo- 
th in the external (AUC=0.818) and internal 
(AUC=0.827) validation sets. Furthermore, 
compared with other machine learning algo-
rithms, models based on SVM classifiers sh- 
owed significantly better performance. There- 
fore, when clinical staff conducted preopera-
tive evaluations, using a combination model of 
Tumor + External2 radiomics features and clini-
cal predictive factors can achieve better evalu-
ation results.

Previous radiomics research on parotid tumors 
mostly focused on the tumor parenchyma, with-
out considering the tumor-surrounding tissue. 
However, surrounding tumor environment may 
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Figure 3. ROC curves of five radiomics signatures in the training (A), the internal-testing, (B) and the External-testing (C) sets.

Table 3. Prediction performance of five radiomics models (Tumor, External2, External5, Tumor + External2, and Tumor + External5) in three 
cohorts
Model Cohort AUC [95% CI] Accuracy Sensitivity Specificity PPV NPV
Tumor Training 0.975 [0.963-0.987] 0.963 0.957 0.969 0.969 0.958

Internal-testing 0.800 [0.769-0.831] 0.791 0.871 0.576 0.847 0.625
External-testing 0.741 [0.686-0.796] 0.716 0.743 0.642 0.852 0.473

External2 Training 0.949 [0.937-0.961] 0.897 0.873 0.921 0.917 0.879
Internal-testing 0.779 [0.750-0.809] 0.739 0.828 0.500 0.816 0.520
External-testing 0.612 [0.551-0.673] 0.679 0.794 0.357 0.775 0.384

External5 Training 0.947 [0.932-0.961] 0.879 0.909 0.849 0.857 0.903
Internal-testing 0.765 [0.737-0.794] 0.729 0.800 0.538 0.823 0.500
External-testing 0.625 [0.562-0.688] 0.679 0.743 0.500 0.805 0.411

Tumor + External2 Training 0.971 [0.962-0.981] 0.954 0.927 0.981 0.980 0.931
Internal-testing 0.827 [0.799-0.855] 0.822 0.871 0.692 0.884 0.666
External-testing 0.745 [0.699-0.791] 0.773 0.794 0.714 0.885 0.555

Tumor + External5 Training 0.968 [0.958-0.979] 0.936 0.903 0.969 0.967 0.909
Internal-testing 0.818 [0.794-0.843] 0.770 0.828 0.615 0.852 0.571
External-testing 0.742 [0.699-0.785] 0.773 0.820 0.642 0.864 0.562
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Figure 4. Calibration curves with Brier scores of five radiomics models in internal (A) and external testing (B) sets.

Figure 5. ROC curves for the radiomics, clinical, and combined models in predicting malignancy in the training (A), internal-testing (B), and External-testing (C) sets.
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Table 4. Diagnostic performance of the clinical, radiomics, and com-
bined models
Model AUC [95% CI] Accuracy Sensitivity Specificity
Training cohort
    Clinical model 0.743 (0.681-0.805) 0.840 0.951 0.525
    Radiomics model 0.971 (0.962-0.981) 0.954 0.927 0.981
    Combined model 0.981 (0.974-0.989) 0.960 0.927 0.981
Internal-testing cohort
    Clinical model 0.759 (0.733-0.743) 0.833 0.928 0.576
    Radiomics model 0.827 (0.799-0.855) 0.822 0.871 0.692
    Combined model 0.842 (0.817-0.866) 0.822 0.885 0.653
External-testing cohort
    Clinical model 0.686 (0.682-0.709) 0.735 0.743 0.714
    Radiomics model 0.745 (0.699-0.791) 0.773 0.794 0.714
    Combined model 0.749 (0.705-0.793) 0.773 0.794 0.714
AUC, area under curve; CI, confidence interval.

contain important biological information such 
as tumor invasion, tumor immune microenvi-
ronment, and neovascularization [23, 24]. Fur- 
thermore, recent studies have demonstrated 
that tumor-adjacent tissues may provide addi-
tional insights into the heterogeneity of tumors 
in various cancers. Beig et al. reported that 
radiomics features from the intranodular and 
perinodular regions can differentiate benign 
granulomas from non-small-cell lung cancer 
adenocarcinomas [16]. Braman et al. reported 
that the microenvironment surrounding breast 
cancer is related to its aggressiveness [25]. 
Chen et al. pointed out that combining radiomic 
characteristics from both the tumor and its sur-
rounding area can enhance the evaluation of 
the immune core [26]. In this study, we con-
structed a model by extracting features from 
both the peritumoral and intratumoral regions 
to clarify whether the model can effectively dis-
criminate benign and malignant parotid gland 
tumors.

Unlike previous studies on parotid tumors that 
mainly concentrated on intratumoral features 
and evaluated radiomic signatures alone, we 
established five radiomic models to compare 
their performance. The Tumor + External2 mo- 
del exhibited the highest efficacy in differentiat-
ing malignant from benign parotid tumors. The 
tumor model (AUCs of 0.975, 95% CI, 0.963-
0.987) and External2 model (AUCs of 0.949, 
95% CI, 0.937-0.961) also showed good perfor-
mance in the training set. Nevertheless, the 
performance on both the internal and external 

testing sets was unsatis-
factory, and incorporating 
the two ROIs effectively 
enhanced the overall per-
formance. Research has 
shown through numerous 
experiments that the ra- 
diomic characteristics of 
tumor surrounding tissues 
have certain value in clini-
cal work. The features of 
different regions not only 
complement each other but 
also exhibit unique differ-
ences. By combining these 
features, the discrimination 
efficiency can be greatly 
improved [27]. Our findings 
indicate that wavelet fea-

tures have the highest weight among the 
remaining features, aligning with the results of 
other studies [28, 29]. This consistency further 
proves the multi-scale spatial heterogeneity 
both around and within the tumor. Consequently, 
radiomic features could provide more valuable 
information on the tumor microenvironment as 
well as tumor biology, which are complementa-
ry to visual features.

In addition, we established a clinical-radiomic 
model that combined the independent predic-
tors (symptom, boundary, and enlarged lymph 
nodes) and Tumor + External2 radiomic fea-
tures. The results showed that the discrimina-
tion efficiencies of the radiomic models (AUCs 
of 0.827 and 0.745) in the internal and external 
testing sets were higher than those of the clini-
cal models (AUCs of 0.759 and 0.686). The 
combined model showed excellent predictive 
performance for both the internal and external 
testing sets (AUCs of 0.842 and 0.749). These 
findings suggest that while radiomic models 
have superior predictive performance com-
pared to clinical features, clinical features still 
play a significant role, which is consistent with 
previous studies [30]. Therefore, combining 
these clinical and radiomic features could more 
accurately discriminate between malignant and 
benign parotid tumors.

The differences in performance between our 
study and previous studies can be attributed to 
several factors. First, the inclusion of peritu-
moral features captures the biological interac-
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tions between the tumor and its microenviron-
ment, which are critical for understanding tu- 
mor behavior and predicting clinical outcomes. 
The peritumoral region provides valuable infor-
mation about tumor invasion, immune infiltra-
tion, and angiogenesis, which are not captured 
by intratumoral features alone. Second, our 
study utilized data from two different centers, 
enhancing the generalizability of the findings. 
The diversity in patient populations and imag-
ing protocols across centers contributes to the 
robustness of our radiomic models. Moreover, 
we employed advanced machine learning tech-
niques, such as the LASSO algorithm for fea-
ture selection and support vector machines 
(SVM) for model construction, which optimized 
the models and enhanced their predictive per-
formance. Our rigorous validation strategy, in- 
cluding internal and external testing sets, 
ensures the reliability and robustness of the 
radiomic models. This comprehensive valida-
tion approach is essential for clinical transla-
tion. Finally, the development of a combined 
model that integrates radiomic features with 
clinical predictors represents a novel approa- 
ch to improving the accuracy of preoperative 
diagnosis. This combined model demonstrat- 
es improved performance compared to either 
radiomic or clinical models alone.

However, our study still has certain limitations. 
First, there may be some bias and interference 
in this study due to its retrospective nature and 
use of CT images obtained from various types 
of CT scanners. Second, although the reliability 
and reproducibility of radiomic feature extrac-
tion were satisfactory between the two observ-
ers, the segmentation of intratumoral regions 
was performed manually. Despite using an au- 
tomatic technique for peritumoral region seg-
mentation, a fully automatic segmentation me- 
thod could improve stability and should be con-
sidered for future studies. Finally, due to the 
small sample sizes in this study, the prediction 
performance of the external testing set may be 
affected, and future validation with larger sam-
ple sizes are necessary.

Conclusion

In conclusion, CT-based radiomic models in- 
corporating both intratumoral and peritumoral 
radiomic features can effectively distinguish 
malignant from benign parotid tumors. The pre-

dictive accuracy is further improved by com- 
bining clinically independent predictors, poten-
tially providing an effective and non-invasive 
approach for clinical decision-making for pa- 
tients with parotid tumors.
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Supplementary Appendix 1. CT morphological characteristics

Max-diameter: The sizes of the tumors were measured by determining the maximal cross-sectional 
diameter.

Number: We observed the lesions of parotid tumor patients on the picture archiving and communication 
systems (PACS) of our hospital. If there was only one lesion, it was considered single, and if there were 
two or more lesions, it was multiple.

Symptoms (with or without): We assessed the symptoms based on the clinical record, including pain/
tenderness or facial nerve palsy.

Location: superficial or deep lobe, defined by a dashed line delineated from the lateral edge of the man-
dible to the lateral border of the digastric muscle’s posterior belly and retromandibular vein.

Density: The homogeneous or heterogeneous density of the lesion was assessed on the non-contrast 
CT.

Calcification: Calcification was defined as the CT value of the foci within the tumor is higher than 100Hu.

Cystic areas: cystic area was defined as having a CT scan attenuation of 20 HU or less.

Enhanced-peak phase: We measured CT values (in HU) on non-enhanced, arterial and venous CT scans 
by placing the largest possible circular region of interest within the solid portion of the lesion with cau-
tion to avoid the cystic area. The phase of the highest CT values was defined as enhanced-peak phase.

Enhancement degree: Obvious enhancement was defined as the CT value of tumor enhancement on 
postcontrast CT is 40Hu higher than it on non-enhanced CT scan. Slight enhancement was defined as 
the CT value of tumor enhancement on postcontrast CT below 20 Hu on the basis of non-enhanced CT 
value. Moderate enhanced CT values fell somewhere in between.

Enlarged lymph nodes (with or without): We evaluated ipsilateral lymph node metastases based on 
imaging features and intraoperative records. The maximal axial dimension criteria for metastatic lymph 
nodes on imaging were >15 mm for level I and II nodes, 8 mm for retropharyngeal nodes and 10 mm for 
all other node levels.

Supplementary Appendix 2. Principal Component Analysis (PCA) method

PCA is a statistical and data science technique designed to simplify the complexity inherent in high-
dimensional data while retaining essential trends and patterns. The main idea behind PCA is to identify 
the directions in which the data varies the most. The first principal component accounts for the most 
variance in the data, the second principal component (uncorrelated with the first) accounts for the sec-
ond most, and so on.
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Figure S1. Flowchart for selecting the study population.

Table S1. Histopathological types and numbers of parotid tumors

BPT Number  
(Center 1/Center 2) MPT Number  

(Center 1/Center 2)
Pleomorphic adenoma 128 (113/15) Mucoepidermoid carcinoma 38 (30/8)
Warthin tumor 100 (82/18) Adenoid cystic carcinoma 6 (4/2)
Basal cell adenoma 33 (28/5) Acinic cell carcinoma 18 (15/3)
Myoepithelial tumor 3 (3/0) Squamous cell carcinoma 5 (5/0)
Oncocytoma 4 (3/1) Lymphoepithelial carcinoma 2 (2/0)
Ductal papillomas 2 (2/0) Basal cell adenocarcinoma 2(2/0)
Lipoma 4 (4/0) Myoepithelial carcinoma 7 (7/0)

Salivary ductal carcinoma 9 (9/0)
Lymphoma 6 (5/1)
Secretory carcinoma 1 (1/0)
Carcinoma in pleomorphic adenoma 1 (1/0)
Undifferentiated carcinoma 3 (3/0)
Eosinophilic cell carcinoma 2 (2/0)

Center 1, The First Affiliated Hospital of Chongqing Medical University; Center 2, The Affiliated Hospital of Southwest Medical 
University.
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Table S2. CT protocols of the two centers
Parameters Center 1 Center 2
CT scanners Discovery CT750 HD SOMATOM Definition Flash SOMATOM Definition Force Philips iCT 256 United imaging uCT 550

Tube voltage 100-120 kV 100-120 kV 100 kV 100-120 kV 120 kV

Tube current Automatic tube-current Automatic tube-current Automatic tube-current Automatic tube-current Automatic tube-current

Gantry rotation time 0.6 s 0.5 s 0.28 s 0.5 s 0.8 s

Detector collimation 64×0.625 mm 128×0.6 mm 128×0.6 mm 128×0.625 mm 64×0.6 mm

Section thickness 5 mm 5 mm 5 mm 5mm 5 mm

Section interval 5 mm 5 mm 5 mm 5 mm 5 mm

Image matrix 512×512 512×512 512×512 512×512 512×512

Contrast agent type Omnipaque Ioversol Ioversol Ioversol Ioversol

Contrast agent concentration 300 mgI/mL 320 mgI/mL 320 mgI/mL 350 mgI/mL 350 mgI/mL

Contrast agent dosage 1.5 mL/kg 1.2 mL/kg 1.2 mL/kg 1.2 mL/kg 1.2 mL/kg

Contrast agent infused rate 3.0-4.0 mL/s 3.0-4.0 mL/s 3.0-4.0 mL/s 2.0-3.0 mL/s 2.0-3.0 mL/s

Arterial phase scan 30 s after the contrast injection 25 s after the contrast injection 25 s after the contrast injection 28 s after the contrast injection 25 s after the contrast injection

Venous phase scan 65 s after the contrast injection 60 s after the contrast injection 60 s after the contrast injection 65 s after the contrast injection 60 s after the contrast injection
Center 1, The First Affiliated Hospital of Chongqing Medical University; Center 2, The Affiliated Hospital of Southwest Medical University. CT: computed tomography.
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Figure S2. Radiomic feature selection results of Tumor, External2, External5, respectively.
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Table S3. The performance of Tumor + External2 radiomics using six machine learning methods
Model AUC [95% CI] Accuracy Sensitivity Specificity
Training set
    SVM 0.971 (0.962-0.981) 0.954 0.927 0.981
    RF 0.965 (0.950-0.980) 0.930 0.921 0.939
    LR 0.959 (0.952-0.966) 0.906 0.903 0.909
    XGboost 0.988 (0.977-0.996) 1.000 1.000 1.000
    DT 0.869 (0.826-0.912) 0.885 0.927 0.843
    KNN 0.947 (0.927-0.967) 0.864 0.740 0.987
Internal-testing set
    SVM 0.827 (0.799-0.855) 0.822 0.871 0.692
    RF 0.781 (0.747-0.815) 0.739 0.728 0.769
    LR 0.801 (0.781-0.822) 0.822 0.857 0.730
    XGboost 0.780 (0.748-0.813) 0.760 0.771 0.576
    DT 0.728 (0.659-0.797) 0.750 0.771 0.692
    KNN 0.761 (0.712-0.810) 0.677 0.642 0.769
External-testing set
    SVM 0.745 (0.701-0.785) 0.773 0.794 0.714
    RF 0.721 (0.661-0.782) 0.622 0.666 0.500
    LR 0.673 (0.613-0.732) 0.679 0.769 0.428
    XGboost 0.684 (0.620-0.747) 0.716 0.794 0.5
    DT 0.608 (0.467-0.750) 0.660 0.743 0.428
    KNN 0.644 (0.554-0.733) 0.547 0.512 0.642
SVM: Support Vector Machine; RF: Random Forest; LR: Logistic Regression; DT: Decision Tree; KNN: k-Nearest Neighbor.

Figure S3. The 2×2 diagnostic confusion matrix analysis for different radiomic models, and the radiologist.
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Figure S4. DCA to evaluate the clinical usefulness of the radiomic model, clinical model and combine model in clas-
sifying parotid gland tumors.


