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Abstract: The treatment for liver cancer has transitioned from traditional surgical resection to interventional thera-
pies, which have become increasingly popular among patients due to their minimally invasive nature and significant 
local efficacy. However, with advancements in treatment technologies, accurately assessing patient response and 
predicting long-term survival has become a crucial research topic. Over the past decade, machine algorithms have 
made remarkable progress in the medical field, particularly in hepatology and prognosis studies of hepatocellu-
lar carcinoma (HCC). Machine algorithms, including deep learning and machine learning, can identify prognostic 
patterns and trends by analyzing vast amounts of clinical data. Despite significant advancements, several issues 
remain unresolved in the prognosis prediction of liver cancer using machine algorithms. Key challenges and main 
controversies include effectively integrating multi-source clinical data to improve prediction accuracy, addressing 
data privacy and ethical concerns, and enhancing the transparency and interpretability of machine algorithm deci-
sion-making processes. This paper aims to systematically review and analyze the current applications and potential 
of machine algorithms in predicting the prognosis of patients undergoing interventional therapy for liver cancer, 
providing theoretical and empirical support for future research and clinical practice.
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Introduction

Liver cancer is one of the most common malig-
nant tumors worldwide and ranks third among 
the leading causes of cancer-related deaths in 
humans [1]. According to estimates from the 
International Agency for Research on Cancer 
(IARC), there were approximately 870,000 new 
liver cancer cases and 760,000 deaths glo- 
bally in 2022 [2]. Hepatocellular carcinoma 
(HCC) is the most common type of liver cancer, 
accounting for about 80% of all liver cancer 
cases, followed by intrahepatic cholangiocarci-
noma (ICC), which accounts for approximately 
15%, with other rare types of liver cancer mak-
ing up around 5% [2, 3]. This review primarily 
focuses on HCC due to its predominant role in 
liver cancer; however, we also address ICC and 

other less common types to provide a compre-
hensive overview of the current state of prog-
nostic prediction models for liver cancer pa- 
tients undergoing interventional treatments.

Interventional therapy for liver cancer, such  
as transcatheter arterial chemoembolization 
(TACE), is a crucial treatment method that can 
effectively control tumor growth and extend 
patient survival across early, intermediate, and 
advanced stages [4, 5]. Interventional treat-
ment strategies for liver cancer are either vas-
cular or non-vascular (Figure 1). Non-vascular 
interventional techniques include various abla-
tion methods, such as microwave ablation 
(MWA), radiofrequency ablation (RFA), irrevers-
ible electroporation (IRE), cryoablation (CRA), 
high-intensity focused ultrasound (HIFU), and 
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laser ablation (LSA) [6]. Additionally, radiothe- 
rapy, including stereotactic body radiotherapy 
(SBRT) and iodine-125 seed implantation bra- 
chytherapy, is also part of non-vascular inter-
ventional therapy. In the vascular interventional 
treatment domain, transhepatic arterial inter-
ventions, particularly TACE and hepatic arterial 
infusion chemotherapy (HAIC), are mainstream 
clinical choices due to their significant efficacy. 
However, patients’ responses and prognoses  
to interventional treatments vary significantly, 
with objective response rates (ORRs) ranging 
from 40% to 80% and overall survival (OS) time 
varying from 13 to 48 months [7, 8] (Figure 1).

In recent years, with the development of artifi-
cial intelligence (AI) technology, machine learn-
ing (ML) has been increasingly applied in the 
medical field, providing new approaches for 
predicting the prognosis of liver cancer. ML pro-
cesses large amounts of clinical and imaging 
data, allowing for advanced feature generation 
and quantitative radiomics parameter analysis, 
thus helping to identify hidden patterns in the 
data [9, 10]. Compared to traditional statisti- 
cal methods, ML algorithms can detect com-
plex patterns in liver cancer treatment data 
more clearly. These algorithms simulate human 

Interventional therapy plays a crucial role in 
managing intermediate and advanced HCC 
patients, especially for those who are ineligi- 
ble for surgery or transplantation. Since early-
stage HCC often lacks obvious symptoms, most 
patients are diagnosed at an advanced stage 
[13]. In the Chinese Guidelines for the Diagnosis 
and Treatment of Primary Liver Cancer (2022 
Edition) [14], interventional therapy is recom-
mended as a treatment strategy spanning from 
early to late-stage liver cancer, with TACE recog-
nized as one of the most commonly used non-
surgical treatments for liver cancer. Similarly, in 
the internationally recognized Barcelona Clinic 
Liver Cancer (BCLC) Staging System and Treat- 
ment Strategy [15], interventional therapy, par-
ticularly ablation therapy, is recommended as 
the first-line treatment for very early-stage liver 
cancer (single tumor ≤ 2 cm) in patients not 
suitable for liver transplantation.

Ablation therapy has been shown to provide 
efficacy comparable to surgical resection in 
early-stage liver cancer patients [16]. For inter-
mediate and advanced liver cancer, downstag-
ing conversion therapy strategies, especially 
local interventional therapy, have played a key 
role in converting initially unresectable liver 

Figure 1. Main interventional treatment methods.

learning process, effectively 
extracting and analyzing key 
features from multi-source da- 
ta, such as tumor growth dy- 
namics, changes in imaging 
performance, and post-treat-
ment response [11, 12]. This 
review aims to explore the lat-
est research advancements of 
ML algorithms in predicting the 
prognosis of patients undergo-
ing interventional therapy for 
liver cancer by summarizing 
recent key clinical data on 
interventional treatment out-
comes, and discussing how 
these algorithms can optimize 
clinical decision-making proce- 
sses, so as to improve treat-
ment personalization and pre-
cision. Flowchart of the study 
is shown in Figure 2.

Overview of liver cancer inter-
ventional therapies
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cancer into a resectable state [17]. After years 
of in-depth research, the combination of local 
interventional therapy and systemic targeted 
immunotherapy has been proven to significant-
ly improve tumor response rates and conver-
sion resection possibilities, becoming a cru- 
cial strategy for downstaging intermediate and 
advanced liver cancers [18]. A prospective 
phase II study in China (DoHAICs study, 
NCT05166772) evaluated the efficacy of HAIC 
combined with donafenib and sintilimab as a 
first-line treatment for unresectable liver can-
cer [19]. The results showed that the ORR of 
the combined treatment was 78.3%, with a 
conversion success rate of 65.2%. Recent 
studies have reported better tumor response 
rates at 1 month, 3 months, and 6 months fol-
lowing TACE combined with MWA treatment [7].

Although interventional therapy offers diverse 
treatment options and demonstrates good effi-
cacy for HCC patients, challenges remain in 
predicting treatment response due to biologi- 
cal heterogeneity of tumors and complications, 
such as bleeding, liver and kidney function im- 
pairment, and ectopic embolization of embolic 
agents, which are crucial for ensuring patient 
safety and treatment efficacy [7, 20]. These 

pport vector machines (SVM) are powerful clas-
sification algorithms that find optimal hyper-
planes in the feature space to differentiate 
between categories. In medical image process-
ing, SVMs are often combined with feature 
extraction techniques [23]. Random forest (RF) 
algorithms improve classification accuracy and 
evaluate the importance of different clinical 
features by constructing multiple decision tree 
models [24]. Although the k-nearest neighbors 
(KNN) algorithm has limitations in computa-
tional efficiency, its simplicity and intuitive 
nature still make it suitable for classification 
tasks in small patient datasets [25]. Naive 
Bayes simplifies computation by assuming fea-
ture independence, making it useful for han-
dling gene expression data with many features 
and helping identify relevant genetic markers 
[26]. Gradient boosting decision trees (GBDT) 
construct models through iterative optimiza-
tion, accurately evaluating and guiding the lat-
est model with annotations generated from 
privileged information [27].

Deep learning algorithms, such as convolution-
al neural networks (CNN), recurrent neural net-
works (RNN), and deep neural networks (DNN), 
automatically extract features in medical image 

Figure 2. Flowchart of the study.

challenges highlight the impor-
tance of accurately predicting 
patient prognosis.

Overview of machine algo-
rithms

Machine algorithms, such as 
ML and deep learning, have sh- 
own significant achievements 
and application potential in 
medical prognosis prediction. 
ML technology can automati-
cally learn and identify pat-
terns from historical data, whi- 
le deep learning simulates the 
human brain’s working mecha-
nisms, using complex algori- 
thms to process and analyze 
data.

Logistic regression (LR), known 
for its simple model and high 
computational efficiency, is wi- 
dely used in liver cancer diag-
nosis, prediction, and progno-
sis assessment [21, 22]. Su- 
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analysis, improving the accuracy of liver cancer 
diagnosis and metastasis prediction [28, 29]. 
Wu et al. [30] proposed a phase difference  
network (PDN), utilizing phase difference and 
multi-head self-attention mechanisms to distin-
guish HCC and ICC from four-phase CT images, 
showing better performance than traditional 
deep learning methods. The Transformer, a 
neural network model based on self-attention 
mechanisms, consists of multiple encoders 
and decoders. Tang et al. [31] developed a 
hybrid model combining graph neural networks 
and Transformer, which effectively utilized glob-
al context information from whole-slide images, 
significantly improving the accuracy and clinical 
value of HCC prognosis assessment.

Generative adversarial networks (GANs) dem-
onstrate significant potential in medical image 
enhancement and data generation. The 2021 
AI data challenge successfully showcased 
GANs’ ability to generate numerous rare malig-
nant tumor MRI images from a few real MRI 
samples, with qualitative and quantitative eval-
uations confirming its effectiveness [32]. Ba- 
yesian networks, with their advantages in han-
dling uncertainty and causal relationship mod-
eling, provide deeper insights into liver cancer 
prediction and treatment. Cai et al. [33] identi-
fied portal vein tumor thrombus as the most 
important predictor of survival time in HCC 
patients after liver resection using Bayesian 
networks and importance measurement me- 
thods.

The clinical application process of ML includes 
clinical data acquisition and preprocessing, 
feature selection, model training and tuning, 
model diagnosis, multi-model fusion, and de- 
ploying validated models into clinical practice 
to assist in diagnosis and treatment decisions 
(Figure 3). In clinical applications, the ML pro-
cess must particularly focus on data represen-
tativeness and diversity, ensuring the model 
generalizability to different patient groups while 
considering interpretability, allowing doctors to 
understand and trust its outputs.

Application of ML algorithms in predicting 
prognosis for liver cancer patients undergoing 
interventional therapies

TACE

Many HCC patients are diagnosed at intermedi-
ate or advanced stages, missing the optimal 

treatment window. TACE is the gold-standard 
treatment for intermediate HCC patients [34, 
35], but patients’ responses to TACE vary sig-
nificantly, and not all benefit from it [36]. 
Therefore, developing models to predict the 
efficacy of TACE is crucial.

Previous studies have constructed various ML 
models using clinical and radiological variables 
to predict outcomes for HCC patients post-
TACE. Spleen volume (SV) is an undervalued, 
automatically retrievable imaging biomarker. 
Muller et al. [37] used CNN algorithms to auto-
matically assess SV and found that high SV cor-
related significantly with reduced survival in 
liver cancer patients. SV is also a strong pre- 
dictor of hepatic decompensation post-TACE. 
Bartnik et al. [38] analyzed radiomics features 
from multiple organs of interest in liver cancer 
patients using deep learning, showing that their 
radiomics model outperformed traditional clini-
cal models in predicting progression-free sur-
vival (PFS) after TACE. These studies highlight 
the importance of non-tumor regional features 
in clinical prediction. Bernatz et al. [39] ana-
lyzed CT images after three consecutive TACE 
procedures, combining radiomics features with 
clinical mHAP-II scores. Their RF model achie- 
ved an AUC of 0.70 and an accuracy of 0.72 at 
the lesion level, an AUC of 0.62 at the patient 
level, and a C-index of 0.67 for OS prediction, 
demonstrating potential in improving TACE 
response prediction. Dong et al. [40] selected 
clinical data from patients receiving their first 
TACE for unresectable liver cancer, identified 
three features (portal vein tumor thrombus 
type, albumin level, and intrahepatic tumor dis-
tribution) using the LASSO algorithm, and built 
various prognostic models (XGBoost, decision 
tree, SVM, RF, KNN, and ANN). Among them, 
the RF model performed best, with an AUC of 
0.802, accuracy of 0.784, sensitivity of 0.904, 
and specificity of 0.480. Ma et al. [41] com-
pared different machine algorithms for predict-
ing responses in unresectable HCC patients 
receiving lenvatinib combined with TACE, find-
ing that SVM and RF models performed best in 
accuracy and AUC. The RF model reached an 
AUC of 0.91, indicating high predictive accura-
cy. Peng et al. [42] emphasized the high accu-
racy of radiomics conventional ML and deep 
learning models in preoperative TACE response 
prediction (deep learning model AUC = 0.972, 
integrated model AUC = 0.994). Combining 
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Figure 3. Flow of the machine learning algorithm. LR: Logistic Regression; SVM: Support Vector Machine; RF: Ran-
dom Forest; KNN: K-Nearest Neighbors; XGBoost: eXtreme Gradient Boosting; GBDT: Gradient Boosting Decision 
Tree; CNN: Convolutional Neural Network; RNN: Recurrent Neural Network; RFE: Recursive Feature Elimination; 
PCA: Principal Component Analysis; AUC-ROC: Area Under the Receiver Operating Characteristic Curve; MSE: Mean 
Squared Error; RMSE: Root Mean Squared Error.

these models with clinical variables offers a 
novel and accurate method for predicting treat-
ment responses in intermediate-stage liver 
cancer patients. Zhang et al. [43] developed 
and validated a fully automated deep learning 
framework to predict TACE response in real 
time for HCC patients. Overall, these studies 
demonstrate the potential of ML models in pre-
dicting TACE response and the importance of 
non-tumor regional features and automated 
imaging analysis. Relevant studies are summa-
rized in Table 1.

TACE models typically combine clinical, radio-
logical, and radiomics features, with non-tumor 
regional features (such as spleen volume) ser- 
ving as important predictors. These models 
employ deep learning and conventional ML 
algorithms, with RF models showing excellent 
performance in several studies. AUC values 
range from 0.62 to 0.994, with most studies 

reporting AUCs above 0.8. Key predictive fea-
tures include portal vein tumor thrombus, albu-
min levels, and intrahepatic tumor distribution. 
Automated imaging analysis and deep learning 
frameworks demonstrate significant potential, 
offering new perspectives for predicting TACE 
efficacy.

HAIC

HAIC involves catheterizing the hepatic artery 
supplying the tumor and continuously infusing 
chemotherapeutic agents. It is advantageous 
for advanced liver cancer with portal vein tumor 
thrombus, arterio-venous fistula, and poorly 
vascularized liver metastases [35].

Recent advances show that combining deep 
learning with radiomics features significantly 
improves the predicted accuracy of HAIC tre- 
atment response. Xu et al. [44] developed  
the DLRN model, integrating deep learning, 
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Table 1. ML-based prognostic model characteristics of HCC patients after TACE

Author ML Algorithms Prediction Targets Key Predictors Main Results/Performance 
Indicators

Model Validation and 
Interpretability Other Important Findings

Muller 2022 
[32]

CNN OS, PFS, TTUP SV Significant correlation between SV 
and survival rates

Internal validation, S⊘rensen 
Dice score, Bland-Altman plot

Spleen volume significantly correlates with 
risk of liver dysfunction after TACE

Bartnik 
2024 [33]

DL, RSF, COX OS, PFS Tumor VOI and non-tumor 
VOI

OS: C-index range 0.616 to 0.640. 
PFS: C-index 0.713

Cross-validation, XAI Multiple VOI features extracted from CT 
images, overcoming manual segmentation 
limitations

Bernatz 
2023 [34]

RF TACE response, OS Radiomic features and clini-
cal mHAP-II score

Lesion-level AUC 0.70, Accuracy 0.72; 
Patient-level AUC 0.62; C-index 0.67

Reliability and redundancy 
analysis

Supports the potential of lipid deposition as 
an imaging biomarker

Dong 2021 
[35]

XGBoost, Decision 
Tree, SVM, RF, 
KNN, ANN

Early treatment 
response post first 
cTACE

Portal vein tumor thrombus 
type, Albumin level, Tumor 
distribution in liver

RF model performed best, AUC 
0.802, Accuracy 0.784, Sensitivity 
0.904, Specificity 0.480

5-fold cross-validation Portal vein tumor thrombus type is the most 
important factor for predicting response to 
first cTACE treatment

Ma 2023 
[36]

CART, AdaBoost, 
XGBoost, RF, SVM

Response to 
combination therapy 
(lenvatinib + TACE)

K, LDL, D-D, Red blood 
cells, ALT, ALB, Mono, Tumor 
size, TG, and Age

RF model AUC 0.91, SVM and RF 
performed best

SHAP algorithm enhanced 
model interpretability

Lower serum K, older age, higher BMI, and 
larger tumor size correlate with better ef-
ficacy of combination therapy

Peng 2021 
[37]

Linear model, LR, 
SVM, GBM, RF, DL

TACE treatment 
response

Tumor size DL model AUC 0.972, Integrated 
model AUC 0.994

Multicenter data validated 
model robustness

Tumor size significantly correlates with initial 
treatment response, while AFP levels do not

Zhang 2022 
[38]

ResNet18 and Mul-
tilayer Perceptron

TACE treatment 
response

DSA video information, 
Demographics, and liver 
function parameters

Accuracy rates on internal and exter-
nal validation sets were 78.2% and 
75.1% respectively

Internal and external valida-
tion

Predictive model performance using seg-
mentation results as input is slightly lower 
than using true segmentation results, but not 
significantly

ML: Machine Learning; CNN: Convolutional Neural Network; OS: Overall Survival; PFS: Progression-Free Survival; TTUP: Time to Tumor Progression; SV: Segmentation Volume; TACE: Transarterial Chemoembolization; VOI: Volume of Interest; 
DL: Deep Learning; RSF: Random Survival Forest; COX: Cox Proportional Hazards Model; RF: Random Forest; AUC: Area Under the Curve; mHAP-II: Modified Hepatoma Arterial Embolization Prognostic Score; SVM: Support Vector Machine; 
KNN: k-Nearest Neighbors; GBM: Gradient Boosting Machine; LR: Logistic Regression; DL: Deep Learning (used in the context of the algorithm name); AFP: Alpha-Fetoprotein; ALT: Alanine Aminotransferase; ALB: Albumin; Mono: Monocytes; 
TG: Triglyceride; BMI: Body Mass Index; DSA: Digital Subtraction Angiography; AUC: Area Under the Receiver Operating Characteristic Curve; XAI: Explainable Artificial Intelligence; SHAP: SHapley Additive exPlanations.
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model successfully distinguished high-risk from 
low-risk patients, with an AUC of 0.75, providing 
a new prognostic assessment tool. Ince et al. 
[49] found that ML models (SVM, LR, RF, 
LightGBM) combining radiomics features from 
pre-treatment contrast-enhanced MRI and clin-
ical data significantly improved TARE response 
prediction. Kobe et al. [50] used features from 
pre-TARE CBCT images, achieving high sensitiv-
ity (94.2%) and moderate specificity (67.7%) 
with a multi-layer perceptron ANN in an exter-
nal test set. Marinelli et al. [51] collected base-
line and early post-TARE MRI of HCC patients, 
using semi-automatic segmentation to extract 
radiomics features. Their XGBoost model sh- 
owed high accuracy (AUC = 0.89) in an indepen-
dent validation cohort, particularly outperform-
ing models using only clinical parameters and 
conventional imaging features in predicting 
complete response. Balli et al. [52] combined 
dynamic MRI radiomics scores with clinical fea-
tures using LASSO feature selection and LR to 
build a radiomics model. Triple cross-validation 
optimized parameters, with the model predict-
ing response to 90Y TARE in intrahepatic chol-
angiocarcinoma patients, showing that res- 
ponders had significantly lower radiomics 
scores. Axial T2W with fat suppression se- 
quence achieved an AUC of 0.839, indicating 
high predictive accuracy. Aujay et al. [53] com-
pared the European Association for the Study 
of the Liver (EASL) criteria, using radiomics 
combined with MRI data to assess treatment 
response in patients with locally advanced HCC 
undergoing TARE. They found that long empha-
sis, short axis length, surface area, and gray-
scale non-uniformity in arterial phase images 
could accurately predict early treatment res- 
ponse, demonstrating the potential of radio- 
mics combined with LR in predicting TARE effi-
cacy. Relevant studies are summarized in Table 
3.

TARE models utilize pre-treatment imaging (CT, 
MRI, CBCT) for radiomics feature extraction, 
with the combination of radiomics features and 
clinical data significantly improving prediction 
accuracy. These models employ various ML 
algorithms, including SVM, LR, RF, LightGBM, 
and XGBoost, with AUC values ranging from 
0.75 to 0.89. The models can predict both over-
all response and complete response, with key 
radiomics features reflecting tumor heteroge-
neity. These models offer new perspectives for 

radiomics features, and key clinical variables, 
achieving high accuracy in training, internal, 
and external validation cohorts (AUCs of 0.988, 
0.915, and 0.896, respectively). The model 
also predicted survival based on treatment 
response, with the median OS in the response 
group significantly higher than in the non-
response group. Quan et al. [45] used the 
InceptionV4 CNN model with preoperative MRI 
data and clinical factors (HAIC cycle count, 
tumor thrombus, neutrophil-lymphocyte ratio, 
and gamma-glutamyltransferase), achieving an 
AUC of 0.871 in the training cohort and 0.826 
in the internal validation cohort. Another retro-
spective study used a combination model of 
MRI radiomics and ALBI score to predict HAIC 
treatment response, providing a nomogram to 
assess PFS [46]. Patients with high scores had 
a median PFS of 6.0 months, significantly 
shorter than 9.0 months in low-score pa- 
tients. He et al. [47] further explored radiomics 
features extracted from dual-phase contrast-
enhanced CT (CECT), combined with clinical 
variables and MTM subtypes, and established 
a multi-task deep learning radiomics (MDLR) 
model to provide accurate HAIC prognostic risk 
stratification for HCC patients. Relevant studies 
are summarized in Table 2.

HAIC models often integrate deep learning, 
radiomics features, and clinical variables, com-
monly using pre-treatment MRI and CT images 
for feature extraction. These models achieve 
AUC values ranging from 0.826 to 0.988, with 
key predictive features including HAIC cycle 
count, tumor thrombus, neutrophil-lymphocyte 
ratio, and gamma-glutamyltransferase. MDLR 
models exhibit high accuracy, capable of pre-
dicting both treatment response and survival 
outcomes, providing personalized prognostic 
assessment tools for HAIC treatment.

TARE

Transarterial radioembolization (TARE), also 
known as selective internal radiation therapy 
(SIRT), involves injecting the radioactive iso-
tope yttrium-90 (90Y) to treat liver cancer.

Roll et al. [48] extracted and analyzed radio- 
mics features from pre-TARE CT images of 
patients with colorectal cancer liver metasta-
ses. Two independent radiomics features (ener-
gy and maximum correlation coefficient) reflect-
ed tumor heterogeneity. Their multivariate LR 
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Table 3. ML-based prognostic model characteristics of HCC patients after TARE

Author ML  
Algorithms Prediction Target Key Predictive Factors

Main Results/
Performance 
Metrics

Model Validation 
& Interpretability Other Important Findings

Roll 2024 
[43]

Multivariate 
LR

Treatment Response 
and Survival Outcome

Energy, Maximal Correlation 
Coefficient

AUC: 0.75 Feature  
selection with 
Boruta algorithm

Radiomic analysis can quantify tumor heterogeneity, 
including blood supply, cellular vitality, density, and 
fibrosis

Ince 2023 
[44]

SVM, LR, RF, 
LightGBM

Treatment Response 8 Radiomic features, 4 Clinical 
features

AUC: 0.88-0.94 5-fold  
cross-validation

Age and preoperative total bilirubin level significantly 
correlate with TARE treatment response

Kobe 2021 
[45]

Multilayer 
Perceptron, 
ANN

Disease Control (PR/
SD) and PD

104 Texture Analysis Features 
from CBCT, 15 features after 
selection

AUC: 0.85, Sen-
sitivity 94.2%, 
Specificity 67.7%

10-fold  
cross-validation

NA

Marinelli 
2023 [46]

XGBoost Treatment Response 
at 4-6 Months  
Post-Treatment

Radiomic features from base-
line and early post-treatment 
(1-2 months) MRI images

AUC: 0.89 NA Combined baseline and early follow-up MRI radiomic 
data better predict patient treatment response

Balli 2024 
[47]

LASSO, LR Radiological Response 
at 6 Months  
Post-Treatment

Rad-score, Bifurcation Lesions AUC: 0.696-
0.880

DeLong test, NRI, 
IDI

First study to use MRI radiomics to predict TARE  
treatment response in ICC patients

Aujay 2022 
[48]

LR Treatment Response Longitudinal Emphasis, Minor 
Axis Length, Surface Area, and 
Gray Level Non-uniformity

AUC: 1 Cross-validation Heterogeneity parameters in arterial and portal venous 
phase images before and after treatment not significant-
ly different between responders and non-responders

LightGBM: A gradient boosting framework that uses tree-based learning; ANN: Artificial Neural Network; PR: Partial Response; SD: Stable Disease; PD: Progressive Disease; CBCT: Cone Beam Computed 
Tomography; ICC: Intrahepatic Cholangiocarcinoma; TARE: Transarterial Radioembolization; NRI: Net Reclassification Improvement; IDI: Integrated Discrimination Improvement.

Table 2. ML-based prognostic model characteristics of HCC patients after HAIC

Author ML  
Algorithms 

Prediction 
Target Key Predictive Factors Main Results/Performance Metrics Model Validation &  

Interpretability Other Important Findings

Xu 2022 
[39]

DL,  
XGBoost

OR APE, RVI, R score, DL score AUC in training set = 0.988, internal  
validation set AUC = 0.915, external  
validation set AUC = 0.896

Internal and external 
validation

Radiological parameters (APE and 
RVI) may predict the efficacy of HAIC 
better than clinical characteristics

Quan 
2024 [40]

Incep-
tionV4-CNN

HAIC 
response

MRI data, HAIC cycles,  
cancer thrombus, NLR

AUC in training cohort = 0.871, internal 
validation cohort AUC = 0.826

Cross-validation and  
independent validation, 
CAM used for visualization

Age, HAIC cycle number, tumor  
thrombus, extrahepatic spread, and 
AST level are independent predictors

Zhao 2023 
[41]

LR PFS Radiomic score (Radscore) 
and ALBI score

Combined model AUC in training and valida-
tion sets are 0.79 and 0.75, respectively

Internal validation NA

He 2023 
[42]

MDLR Post-HAIC 
patient 
prognosis

CECT radiomic features, por-
tal vein cancer thrombus, 
HAIC response, HAIC cycles

AUC for survival prediction model in internal 
and external validation sets are 0.87 and 
0.83

Internal and external 
validation

Tumor burden and distribution as well 
as tumor microenvironment features 
are associated with prognosis

XGBoost: Extreme Gradient Boosting; OR: Objective Response; APE: Asymmetry of Parenchymal Enhancement; RVI: Reduction in Viable Tumor on Initial; R score: Radiographic Response Score; DL score: 
Deep Learning Score; HAIC: Hepatic Arterial Infusion Chemotherapy; MRI: Magnetic Resonance Imaging; NLR: Neutrophil-to-Lymphocyte Ratio; CAM: Class Activation Mapping; PFS: Progression-Free Survival; 
Radscore: Radiomic Score; ALBI: Albumin-Bilirubin Grade; MDLR: Multitask Deep Learning Radiomics; CECT: Contrast-Enhanced Computed Tomography; AST: Aspartate Aminotransferase; NA: Not Available.
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predicting TARE treatment efficacy, aiding in 
personalized treatment decisions.

RFA

Treatment guidelines from BCLC, CNLC, and 
NCCN emphasize RFA as the preferred method 
for early HCC with small tumors. Studies indi-
cate that the five-year survival rate for RFA-
treated patients ranges from 26% to 56.7%, 
and the five-year disease-free survival rate is 
between 15% and 28.7% [54-56]. However, the 
high recurrence rate, rapid tumor growth, and 
invasiveness post-recurrence remain to be clin-
ical concerns [57].

Recent research explores ML in predicting out-
comes for HCC patients undergoing RFA. One 
study used the XGBoost algorithm on multidi-
mensional data from patients receiving local-
ized RFA between 2018 and 2022 [58]. Their 
model achieved an accuracy of 78.9% and an 
AUC of 0.80 in an independent validation set. 
Tong et al. [59] compared five algorithms (LR, 
decision tree, GBDT, RF, GBM) in predicting 
overall mortality post-RFA, and identified plate-
let count, Alpha-Fetoprotein (AFP), age, tumor 
size, and total bilirubin as key prognostic fac-
tors. GBM was found to have the highest accu-
racy (0.681), indicating the potential and differ-
ences of various algorithms in predicting HCC 
patient prognosis. Sato et al. [60] developed a 
transformer-based ML model analyzing data 
from 1778 treatment-naïve HCC patients un- 
dergoing RFA, aiming to improve the prediction 
of OS. This model used clinical and pathologi-
cal features, evaluated by Harrel’s c-index, 
showing superior discrimination compared to 
traditional deep learning models. Results indi-
cated the transformer’s high discriminative 
ability in external validation cohorts and its 
capacity to provide personalized cumulative 
recurrence prediction curves. Another study 
analyzed 898 early-stage HCC patients using 
Lasso and Cox regression analysis to identify 
independent risk factors like age, gender, BCLC 
stage, tumor size, globulin, and γ-glutamyl 
transpeptidase [61]. The nomogram, validated 
by C-index, ROC, calibration, and decision curve 
analysis (DCA), showed excellent discrimina-
tion, consistency, and clinical utility. RFA treat-
ment showed potential in improving long-term 
survival for solitary HCC patients with tumor 
diameters ≤ 5 cm. He et al. [62] revealed the 

effectiveness of RFA in improving 5-year OS 
and cancer-specific survival (CSS) rates com-
pared to radiotherapy, chemotherapy, and bl- 
ank control groups by analyzing data from the 
SEER database. Further Cox regression analy-
sis and the development of the XGBoost model 
identified key prognostic factors such as age, 
race, marital status, grade, cirrhosis, tumor 
size, and AFP level, and constructed a valid pre-
dictive model. The XGBoost model demonstrat-
ed good predictive performance in the valida-
tion cohort through ROC curve, calibration plot, 
and DCA, providing a personalized CSS predic-
tive tool for patients with isolated HCC with a 
diameter of less than 5 cm. The relevant stud-
ies are listed in Table 4.

RFA models utilize multidimensional clinical 
and pathological data, comparing various algo-
rithms including XGBoost, LR, decision tree, 
GBDT, RF, and GBM. AUC values range from 
0.68 to 0.80, with key prognostic factors includ-
ing platelet count, AFP, age, tumor size, and 
total bilirubin. Transformer-based models show 
promise in predicting OS. These models can 
predict both overall mortality and cancer-spe-
cific survival, providing powerful tools for prog-
nostic assessment following RFA treatment.

MWA

MWA is a commonly used ablation method,  
particularly for tumors with diameters ranging 
from 3 to 5 cm. It has been shown to have high 
efficacy and ablation efficiency. Compared to 
radiofrequency ablation (RFA), MWA significant-
ly shortens the procedure time and is less sen-
sitive to the heat-sink effect of blood flow, 
thereby reducing the risk of incomplete abla-
tion in the treatment of larger tumors [55]. 
However, despite its advantages in ablation 
efficiency, MWA does not show significant dif-
ferences in local efficacy, complication rates, or 
long-term survival outcomes compared to RFA 
[63].

In a study predicting local tumor progression 
(LTP) in early-stage HCC patients post-MWA, 
Ren et al. [64] analyzed the clinicopathological 
data and ablation parameters of 607 untreated 
early HCC patients. They developed predictive 
models using four ML algorithms, including 
CatBoost, RF, XGBoost, and LR. Among these 
models, the CatBoost algorithm, which com-
bined nine key variables - tumor number, albu-
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Table 4. ML-based prognostic model characteristics of HCC patients after RFA

Author ML Algorithms Prediction 
Target Key Predictive Factors Main Results/Performance 

Metrics
Model Validation 
& Interpretability Other Important Findings

Hamed 
2024 [53]

XGBoost Disease control 
at 12 months

Child-Pugh score, WBC count, Heparan 
concentration, Diabetes, Hypertension, 
Tumor size, AFP

Accuracy and AUC are 78.9% and 
0.80, respectively

Internal validation 1-year survival and local control rates are 
94.6% and 61.3%, respectively

Tong 2021 
[54]

RF, LR, LightGBM, 
GBDT, Decision Tree

Total mortality PLT, AFP, Age, Tumor size, Total bilirubin GBDT has the highest accuracy 
(0.681), precision (0.721), AUC: 0.714

Internal validation NA

Sato 2024 
[55]

Transformer-based ML 
model (SurvTRACE)

OS Age, Gender, Number and size of tu-
mors, Liver function indicators (Albumin, 
Total bilirubin, AST, ALT), Tumor markers 
(AFP, DCP), Hepatitis virus infection sta-
tus, Platelet count, Prothrombin time

C-index of 0.69 Internal and  
external validation

5-year and 10-year survival rates are 63.7% 
and 30.4%, respectively. 1-year, 3-year, and 
5-year local tumor recurrence rates are 1.7%, 
5.3%, and 6.5%, respectively

Zhang 
2024 [56]

Lasso regression 
and Cox regression 
analysis

RFS Age, Gender, BCLC stage, Tumor size, 
Glob, γ-GT

AUC for 1-year, 3-year, and 5-year 
RFS are 0.721, 0.756, and 0.779, 
respectively

Internal validation NA

He 2023 
[57]

LR, SVM, RF, KNN, 
XGBoost

CSS Liver cirrhosis, Tumor size, AFP level, 
Age, Marital status

XGBoost model’s AUC for predicting 
1-year, 3-year, and 5-year CSS are 
0.88, 0.81, and 0.79, respectively

Internal validation Compared to other treatment modalities, RFA 
shows better performance in improving OS and 
CSS for patients with single HCC ≤ 5 cm, but 
still lower than hepatectomy

RFA: Radiofrequency Ablation; RF: Random Forest; PLT: Platelet Count; DCP: Des gamma Carboxyprothrombin; RFS: Recurrence-Free Survival; BCLC: Barcelona Clinic Liver Cancer; Glob: Globulin; γ-GT: γ-Glutamyl Transpeptidase; CSS: Cancer-
Specific Survival; c-index: Concordance Index; AFP: Alpha-Fetoprotein.

Table 5. ML-based prognostic model characteristics of HCC patients after MWA

Author ML  
Algorithms

Prediction 
Target Key Predictive Factors Main Results/Performance 

Metrics
Model Validation &  
Interpretability Other Important Findings

Ren 2023 
[59]

CatBoost, 
SVM, RF, LR

LTP Number of tumors, Albumin, 
AFP, Tumor size, Age, INR

Best performance by CatBoost model, 
AUC of 0.898

Internal and external validation NA

An 2022 [60] LR, RF, SVM, 
XGBoost

ER Tumor number, Platelets, AFP, 
Comorbidity score, WBC, ChE, 
PT, Neutrophils, Etiology

Best performance by XGBoost model, 
AUC 0.74 (internal) and 0.76 (external)

Internal and external  
validation, SHAP and LIME  
algorithms for model explanation

NA

Shahveranova 
2023 [61]

LR LTP Preoperative extrahepatic  
metastasis, Tumor size, CA 
19-9

Combined Model 2 (clinical data and 
Phase 2 radiomic features) has the 
highest discriminative performance 
for LTP prediction (AUC 0.981)

NA LTP group patients have 
significantly higher radiomic 
scores in both MRI phases 
(Phase 1 and Phase 2)

CatBoost: A machine learning algorithm based on decision trees; LTP: Local Tumor Progression; INR: International Normalized Ratio; ER: Early Recurrence; ChE: Cholinesterase; PT: Prothrombin Time; WBC: 
White Blood Cell Count; CRLM: Colorectal Liver Metastasis; CA 19-9: A tumor marker for gastrointestinal malignancies; LIME: Local Interpretable Model-agnostic Explanations; AFP: Alpha-Fetoprotein.
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min and alpha-fetoprotein levels, tumor size, 
age, and international normalized ratio - ex- 
hibited the highest predictive accuracy (AUC: 
0.898). The study suggested that precise ab- 
lation planning and personalized treatment 
based on these predictive factors could signifi-
cantly reduce the risk of LTP, thereby improving 
the success rate of MWA in treating early-stage 
HCC.

Another study [65] employed ML techniques to 
predict early recurrence (ER) risk by analyzing 
the clinical data of 1,574 early HCC patients 
who underwent MWA. This study constructed 
ML models, including RF, support vector 
machine (SVM), and XGBoost, and enhanced 
their interpretability using SHAP and LIME algo-
rithms. The XGBoost model performed best in 
predicting ER, accurately identifying key risk 
factors such as tumor number, platelet count, 
and alpha-fetoprotein level. Their XGBoost-
based prediction system is available online, 
providing clinicians with a practical tool 
(http://114.251.235.51:8001/).

In the study on the predictability of LTP after 
MWA in colorectal cancer liver metastases, 
clinical data and MRI radiomic features were 
analyzed to develop two combined models [66]. 
Model 2, which incorporated T2 fat-suppressed 
and early arterial phase T1 fat-suppressed fea-
tures, showed better performance in predicting 
LTP, with an AUC of 0.981. These highly accu-
rate models offer new perspectives for clinical 
practice, but the studies also emphasize the 
need for further large-scale research to vali-
date the generalizability and reliability of these 
models. Related research is summarized in 
Table 5.

MWA models focus primarily on predicting LTP 
and ER, utilizing various ML algorithms includ-
ing CatBoost, RF, XGBoost, and LR. AUC values 
range from 0.898 to 0.981, with key predictive 
features including tumor number, albumin lev-
els, AFP, tumor size, and platelet count. These 
models combine clinical data with MRI ra- 
diomics features, with some studies providing 
online prediction tools for clinical use, offering 
important references for prognostic assess-
ment and personalized treatment following 
MWA.

Overall, these ML-based prognostic models for 
HCC patients undergoing interventional thera-

pies share common characteristics. They typi-
cally combine clinical, radiological, and radio- 
mics features to improve prediction accuracy. 
Various ML algorithms are applied, with RF  
and XGBoost frequently performing well. Pre-
treatment imaging (CT, MRI) is commonly used 
for feature extraction. These models can pre-
dict various outcomes, including treatment 
response, survival, and recurrence. AUC values 
generally range from 0.7 to 0.9, indicating good 
to excellent predictive performance. Further- 
more, there is an increasing trend towards 
using deep learning and multi-task learning 
approaches, providing more precise and per-
sonalized tools for prognostic assessment fol-
lowing HCC interventional treatments.

In summary, DL and ML models have demon-
strated high accuracy in predicting outcomes 
for various liver cancer treatments. For in- 
stance, in PFS prediction, models by Bartnik  
et al. [38] and Quan et al. [45] outperformed 
traditional clinical models. In predicting treat-
ment response, studies by Muller et al. [37] and 
Peng et al. [42] highlighted the advantages of 
radiomics combined with deep learning. For OS 
prediction, models by Ma et al. [41] and Sato et 
al. [60] showed strong predictive capabilities. 
Additionally, in LTP prediction, the models by 
Ren et al. [64] and those incorporating MRI 
radiomics features [66] demonstrated excep-
tionally high accuracy (Table 6).

Conclusion

Currently, the application of ML algorithms in 
predicting the prognosis of interventional ther-
apy for liver cancer focuses on two main areas. 
The first is the prognostic evaluation based on 
imaging features, such as analyzing CT and MRI 
imaging data to identify tumor size, morpholo-
gy, and vascular characteristics, thereby pre-
dicting treatment efficacy and recurrence risk 
[67]. For instance, deep learning algorithms 
have demonstrated remarkable ability in ana-
lyzing liver cancer CT images, accurately identi-
fying tumor boundaries and vascular invasion 
[68-70]. The second area involves integrat- 
ing multidimensional clinical information of 
patients, including age, gender, tumor stage, 
and liver function, to construct complex prog-
nostic models that help determine the optimal 
treatment plan.
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Table 6. Predictive accuracy of machine algorithm models for liver cancer outcomes
Prediction Target Author Machine algorithm AUC/C-index
PFS Bartnik [38] Deep Learning -
PFS Quan [45] Deep Learning 0.826
Treatment Response Muller [37] CNN -
Treatment Response Peng [42] Deep Learning 0.994
Treatment Response Xu [39] DLRN 0.988
CR Prediction Marinelli [46] XGBoost 0.89
OS Ma [41] RF 0.91
OS Sato [60] Transformer Model -
LTP Ren [64] CatBoost 0.898
LTP Shahveranova [66] - 0.981
PFS: Progression-Free Survival; LTP: Local Tumor Progression; CNN: Convolutional Neural Network.

We found that models integrating clinical, imag-
ing, and radiomics features exhibit superior 
predictive accuracy. Although RF and XGBoost 
algorithms perform well in many cases, re- 
searchers are exploring a range of algorithms 
from traditional ML to advanced deep learning 
methods. Imaging, particularly pre-treatment 
CT and MRI, plays a crucial role in feature 
extraction across most models. These models 
predict not only treatment response but also 
survival and recurrence risk, demonstrating 
good to excellent predictive capabilities, with 
AUC values typically ranging from 0.7 to 0.9. As 
deep learning and multi-task learning approach-
es become more prevalent, prediction accuracy 
and personalization are continually improving.

However, despite the significant advances in 
applying ML to HCC and ICC interventional 
treatments, there are areas needing further 
investigation. For instance, many studies rely 
on single-center data, so multi-center, large-
scale studies are necessary to validate mo- 
dels across different patient populations. 
Additionally, while certain features (e.g., tumor 
characteristics, liver function markers) consis-
tently emerge as important predictors across 
various interventions, a deeper understanding 
of their biological basis is needed.

With increasing model complexity, ensuring 
interpretability is crucial for clinical adoption. 
Techniques such as SHAP and LIME, used in 
some studies, should be more widely imple-
mented. Moreover, despite promising results, 
integrating these models into clinical decision-
making remains a challenge. Future research 
should focus on developing user-friendly inter-
faces and decision support tools.

Most current models emphasize short-term 
outcomes, so developing models that can pre-
dict long-term outcomes and account for ch- 
anges in patient status over time is a crucial 
next step. With the growing use of combination 
therapies, models capable of predicting out-
comes for these complex treatment regimens 
will be increasingly valuable.

Furthermore, the high accuracy of personaliz- 
ed treatment plans highlights the potential for 
highly individualized therapy. Future research 
should concentrate on developing dynamic 
models that can adapt recommendations as 
patient conditions evolve. For example, Zhang 
et al.’s [43] automated deep learning frame-
work for TACE response prediction points to the 
possibility of real-time treatment outcome pre-
diction, potentially allowing immediate adjust-
ments during the procedure.

In the realm of liver cancer prognosis predic-
tion, ML algorithms face core challenges includ-
ing algorithm bias, data quality, and ethical 
considerations (Figure 4). Algorithm bias pri-
marily manifests as models potentially overfit-
ting specific datasets, impacting their applica-
bility across diverse patient populations [71]. 
Addressing this issue requires rigorous cross-
validation and generalization capability asse- 
ssments to ensure model robustness. On the 
data front, diversity and consistency of data are 
crucial for enhancing model performance [72]. 
Promoting multicenter studies and establishing 
unified data standards can help expand datas-
et scope and improve model generalizability. 
Additionally, algorithm transparency and fair-
ness are critical ethical considerations, neces-
sitating that model decision processes be inter-
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Figure 4. Summary of current evidence and future 
challenges for prognostic indicators in interventional 
therapy for liver cancer. AFP: Alpha-Fetoprotein; ALB: 
Albumin; INR: International Normalized Ratio; BCLC: 
Barcelona Clinic Liver Cancer.

pretable and unbiased, with effective oversight 
mechanisms in place [71, 73-75].

Looking ahead, liver cancer treatment will 
become more personalized and precise. The 
integration of high-resolution imaging techno- 
logies and advanced ML algorithms will foster 
the development of intelligent decision support 
systems based on imaging features. Further- 
more, emerging therapies such as targeted 
therapies and immunotherapies, along with in-
depth research into biomarkers and molecular 
mechanisms, will drive the optimization of liver 
cancer treatment strategies, improving treat-
ment outcomes and patient quality of life. 
Interdisciplinary collaboration and in-depth re- 
search are essential for continued progress in 
this field.
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