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Abstract: Pancreatic ductal adenocarcinoma (PDAC) has an immunosuppressed, apoptosis-resistant phenotype. 
TLY012 is pegylated recombinant Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL), an orphan drug 
for chronic pancreatitis and systemic sclerosis. Innate immune TRAIL signaling suppresses cancer. We hypothesized 
that the combination of immune checkpoint-blocking anti-PD-1 antibody and TLY012 would have synergistic anti-
tumor efficacy in immune-competent PDAC-bearing mice. PDAC tumor-bearing C57Bl/6 mice treated with 10 mg/
kg anti-mouse PD-1 antibody twice weekly and 10 mg/kg TLY012 three times weekly had reduced tumor growth 
and tumor volume at 70 days compared to either drug alone (all P < 0.005). B-cell activating factor (BAFF), which 
promotes PDAC tumors, decreased to 44% of control mice with dual treatment at 7 days and remained decreased 
at 3 months. Long-term dual treatment showed the highest plasma levels of proinflammatory cytokines interferon-
gamma (average 5.6 times control level, P=0.046), CCL5 (average 14.1 times control level, P=0.048), and interleu-
kin-3 (IL-3, average 71.1 times control level, P=0.0053). Flow cytometry showed trends toward decreased circulating 
regulatory T cells, increased NK cells, and a higher proportion of CD8+ T cells within tumors in the dual treatment 
group. In summary, the combination of anti-PD-1 and TLY012 prevented the growth of PDAC in an immunocom-
petent mouse model while increasing tumor-infiltrating CD8+ T cells, decreasing circulating T-regulatory cells and 
altering plasma cytokine expression of CCL5, interferon-gamma, and IL-3 to promote proinflammatory, antitumor 
effects. Combining TLY012 and anti-mouse PD-1 modifies immune cell and cytokine levels to induce a more proin-
flammatory immune environment that contributes to decreased PDAC tumor growth.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) re- 
mains a deadly disease with little progress in 
long-term survival over the last several decades 
[1-5]. Much work has been done to characterize 
molecular alterations and drivers in pancreatic 
cancer including among different ethnic groups, 
early onset pancreatic cancer, and treatment 

effects on the genomic landscape [6-13]. Some 
of the key driver alterations include mutations 
in KRAS, p53, p16, SMAD4, KDM6A, ARID1A, 
and BRCA2, signatures of DNA damage and 
repair deficiency, mismatch repair deficiency as 
well as amplified genes such as ERBB2, MET, 
PIK3CA among others [6, 7, 11, 12]. While much 
progress has been made with immunotherapy 
across tumor types, and much understanding 
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of the biology of pancreatic cancer, there has 
been little impactful progress on advanced 
PDAC in part due to an immunosuppressed, 
apoptosis-resistant phenotype [14-23].

The TNF-Related Apoptosis-Inducing Ligand 
(TRAIL) is part of the host immune system that 
suppresses transformed cells, virally infected 
cells as well as cancer and its metastases [24-
35]. Nearly 3 decades ago, the discovery of 
pro-apoptotic TRAIL Death Receptor DR5 as a 
direct transcriptional target of the p53 tumor 
suppressor gene directly linked the innate im- 
mune system to the host response to suppress 
tumorigenesis [36-42]. Deletion of TRAIL recep-
tor DR5 in mice led to apoptotic resistance in 
vivo as well as tumorigenesis [43, 44]. It was 
later recognized that the TRAIL gene is also a 
p53 target gene and subsequent work identi-
fied TRAIL-inducing compound #10 (TIC10; also 
known as ONC201) [45, 46]. We previously 
reported that the combination of TRAIL or TRAIL 
receptor DR5 agonist antibodies and ONC201 
has particularly potent anti-tumor effects in 
vivo across cancer types including pancreatic 
cancer [47-50]. We have also previously report-
ed a TRAIL-inducing micro-RNA that we have 
not, as of the date of publication of this manu-
script, translated to in vivo studies or to the 
treatment of patients [51].

The TRAIL pathway influences both inflamma-
tion and tumorigenesis as well as fibrosis, all 
relevant to PDAC and its potential novel thera-
peutics [44, 52-55]. TLY012 is pegylated re- 
combinant Tumor necrosis factor-Related Apo- 
ptosis-Inducing Ligand (TRAIL) [55, 56].

In the present studies, we explore the hypothe-
sis that TLY012’s modulation of the tumor 
microenvironment has the potential for syner-
gistic effects when combined with immune 
checkpoint blockade. We demonstrate potent 
anti-tumor effects of TLY012 combined with 
anti-mouse PD-1 and show immune alterations 
including in B- and T-cell immunity as well as 
tumor-promoting cytokines. Our results prompt 
further preclinical and clinical studies evaluat-
ing the novel treatment combination of TLY012 
and anti-PD1.

Materials and methods

Cell culture

Cell lines used for this study were acquired 
from the American Type Culture Collection 

(ATCC), unless otherwise indicated. All pancre-
atic cancer cells were grown in Dulbecco’s 
Modified Eagle Medium (DMEM) with 10% Fetal 
Bovine Serum (FBS). Human Foreskin Fibro- 
blasts (HFF) were grown in DMEM with 15% 
FBS. rhTRAIL was generated in-house using a 
protocol previously developed by our lab and 
detailed in Kim et al. TLY012 was provided by 
Theraly Fibrosis, Inc. TLY012 was diluted in 
sterile phosphate buffered saline (PBS) for in 
vitro experiments.

Cell viability assay

To assess cell viability, cells were plated over-
night in 96-well plates at a density of 1.0 × 104 
cells/well. All cells were plated in triplicates. 
After 72 hours, the media in the wells was 
replaced with either fresh media (controls) or 
with media containing various doses of rhTRAIL 
or TLY012. After 4 hours of incubation, cells 
were treated with Cell-Titer Glo (Promega) and 
imaged to assess cell viability. Synergy and 
combination indices were determined using 
Compusyn, which uses the Chou-Talalay meth-
od for determining synergy.

Cytokine profiling

Murine plasma samples were collected at 7 
days and 3 months post-treatment with vehicle 
control, anti-PD-1, TLY012, or the combination 
of anti-PD-1 + TLY012. Samples were analyzed 
using an R&D systems Murine Premixed Multi-
Analyte Kit (R&D Systems, Inc., Minneapolis, 
MN, USA) and a Luminex 200 Instrument 
(LX200-XPON-RUO, Luminex Corporation, Aus- 
tin, TX, USA) according to the manufacturer’s 
instructions. Samples were analyzed in dupli-
cate and average sample values are reported in 
pg/mL.

Flow cytometric analysis

Murine spleens and tumors were collected 3 
months post-treatment. Flow cytometry viabili-
ty staining was conducted by suspending mu- 
rine spleen and tumor single cell suspensions 
in Zombie Violet solution (BioLegend, San 
Diego, CA, USA) according to manufacturer 
instructions for 30 minutes at room tempera-
ture. Staining for membrane surface proteins 
was conducted using conjugated primary anti-
bodies for 1 hour on ice, according to manufac-
turer instructions. The following antibodies 
were used for the described T cell profiling 
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experiments: CD45 Monoclonal Antibody (30-
F11), eVolve™ 605, eBioscience™, Catalog # 
83-0451-42; BD Pharmingen™ APC-Cy™7 Rat 
Anti-Mouse CD3 Molecular Complex, Clone 
17A2 (RUO), Catalog # 560590; CD4 Mono- 
clonal Antibody (RM4-5), PE-Cyanine7, eBiosci-
ence™, Catalog # 25-0042-82; BD Pharmin- 
gen™ PE Rat Anti-Mouse CD8a, Clone 53-6.7 
(RUO), Catalog # 553032; Invitrogen CD69 
Monoclonal Antibody (H1.2F3), FITC, eBiosci-
ence™, Catalog # 11-0691-81; Invitrogen 
FOXP3 Monoclonal Antibody (FJK-16s), APC, 
eBioscience™, Catalog # 17-5773-82. The  
following antibodies were used for the descri- 
bed NK cell profiling experiments: CD45 Mo- 
noclonal Antibody (30-F11), eVolve™ 605, eBio-
science™, Catalog # 83-0451-42; BD Phar- 
mingen™ PE Rat Anti-Mouse CD3 Molecular 
Complex, Clone 17A2 (RUO), Catalog # 555275; 
Invitrogen NK1.1 Monoclonal Antibody (PK136), 
APC, eBioscience™, Catalog # 17-5941-82; 
APC/Cyanine7 anti-mouse/human CD11b Anti- 
body, Clone M1/70, Catalog # 101226; Invitro- 
gen CD27 Monoclonal Antibody (LG.7F9), FITC, 
eBioscience™, Catalog # 11-0271-82; Invitro- 
gen KLRG1 Monoclonal Antibody (2F1), PE-Cya- 
nine7, eBioscience™, Catalog # 25-5893-82. 
Cells were fixed using IC Fixation Buffer (eBio-
science™, San Diego, CA, USA) for 30 minutes 
according to manufacturer instructions. Cells 
were resuspended in Flow Cytometry Staining 
Buffer (R&D Systems, Minneapolis, MN, USA) 
and were analyzed using a BD Biosciences LSR 
II and FlowJo version 10.1 (FlowJo, Ashland, OR, 
USA).

Natural killer cell immunophenotyping

The NK cell flow cytometry panel included  
the following directly-conjugated primary anti-
bodies: CD45 Monoclonal Antibody (30-F11), 
eVolve™ 605, eBioscience™, Catalog # 
83-0451-42; BD Pharmingen™ PE Rat Anti-
Mouse CD3 Molecular Complex, Clone 17A2 
(RUO), Catalog # 555275; Invitrogen NK1.1 
Monoclonal Antibody (PK136), APC, eBiosci-
ence™, Catalog # 17-5941-82; APC/Cyanine7 
anti-mouse/human CD11b Antibody, Clone 
M1/70, Catalog # 101226; Invitrogen CD27 
Monoclonal Antibody (LG.7F9), FITC, eBiosci-
ence™, Catalog # 11-0271-82; Invitrogen KL- 
RG1 Monoclonal Antibody (2F1), PE-Cyanine7, 
eBioscience™, Catalog # 25-5893-82. Gating 
strategies are as follows: NK cell: live/CD45/

CD3-/NK1.1+; Mature NK cell: live/CD45/
CD3-/NK1.1+/KRLG1+; Activated NK cell: live/
CD45/CD3-/NK1.1+/CD11b+; NK cell subset 
1: live/CD45/CD3-/NK1.1+/CD11blowCD27low; 
NK cell subset 2: live/CD45/CD3-/NK1.1+/
CD11blowCD27high; NK cell subset 3: live/
CD45/CD3-/NK1.1+/CD11bhighCD27high; NK 
cell subset 4: live/CD45/CD3-/NK1.1+/CD11- 
bhighCD27low.

T cell immunophenotyping

The T cell flow cytometry panel included the fol-
lowing directly-conjugated primary antibodies: 
CD45 Monoclonal Antibody (30-F11), eVolve™ 
605, eBioscience™, Catalog # 83-0451-42;  
BD Pharmingen™ APC-Cy™7 Rat Anti-Mouse 
CD3 Molecular Complex, Clone 17A2 (RUO), 
Catalog # 560590; CD4 Monoclonal Antibody 
(RM4-5), PE-Cyanine7, eBioscience™, Catalog 
# 25-0042-82; BD Pharmingen™ PE Rat Anti-
Mouse CD8a, Clone 53-6.7 (RUO), Catalog # 
553032; Invitrogen CD69 Monoclonal Anti- 
body (H1.2F3), FITC, eBioscience™, Catalog # 
11-0691-81; Invitrogen FOXP3 Monoclonal 
Antibody (FJK-16s), APC, eBioscience™, Cata- 
log # 17-5773-82. Gating strategies are as fol-
lows: CD4+ T cell: live/CD45+/CD3+/CD4+/
FOXP3-; CD8+ T cell: live/CD45+/CD3+/CD8+; 
Treg: live/CD45+/CD3+/CD4+/FOXP3+; Activa- 
ted CD8+ T cell: live/CD45+/CD3+/CD8+/
CD69+.

In vivo tumor xenograft studies

All in vivo studies conducted for this manuscript 
were approved by the Brown University IACUC. 
For in vivo tumor xenograft studies, we used 
female C57Bl/6 mice. Mice were aged 5-8 
weeks at the time of tumor inoculation. Cells 
were mixed in a 50:50 Matrigel (Corning): PBS 
solution and mixed at various dilutions. The 
total inoculation volume was 200 µL, irrespec-
tive of the tumor model or the number of cells 
inoculated. The vehicle is a solution of 20% 
Cremophor EL (Sigma-Aldrich), 70% PBS, and 
10% DMSO. rhTRAIL was administered through 
intravenous tail vein injections. TLY012 was 
administered via intraperitoneal injections.

Tumor volume calculations

Measurements were taken using Vernier cali-
pers. The equation we employed for calculating 
tumor volume is: Volume = (Width2 * Length)/2. 
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Treatment was initiated once the tumors rea- 
ched an optimal volume between 100-150 
mm3.

Statistical analysis

The statistical significance of differences bet- 
ween pairs was determined using unpaired 
Student’s t-tests. The statistical significance 
between groups was determined using a One-
way ANOVA followed by a post-hoc Tukey’s mul-
tiple comparisons test. The minimal level of 
significance was P < 0.05. Following symbols * 
and ** represent, P < 0.05 and P < 0.01, 
respectively.

Results

Potent anti-tumor effects in PDAC-implanted 
syngeneic C57Bl/6 mice treated with anti-
mouse PD-1 and TLY012

TLY012, a novel TRAIL formulation, activates 
the host innate immune system through the 
TRAIL pathway and targets fibrosis within the 
tumor microenvironment. These properties 
including removal of an immune suppressive 
microenvironment are well suited for synergy 
with other agents such as immune checkpoint 
therapy that may have improved penetration 
and efficacy in the tumor microenvironment.

We set up a mouse model treatment scheme 
(Figure 1A) to test the hypothesis that combi-
nation of immune checkpoint-blocking anti-
PD-1 antibody and TLY012 would have syner-
gistic anti-tumor efficacy in immune-competent 
PDAC-bearing mice.

We used immune competent C57/Bl6 mice as 
the host for our experiments where 50,000 
KPC-Luc PDAC cells were implanted subcutane-
ously. As shown in Figure 1A, we included 
cohorts of mice for short-term analysis includ-
ing analysis of tumor-infiltrating lymphocytes 
(TIL) as well as systemic immune analysis, cyto-
kine analysis, immunohistochemical biomarker 
analysis and toxicity analysis. Cohort sizes are 
indicated in Figure 1A. In addition, there were 
mice allocated to a long-term cohort for similar 
analyses. Treatments included “adjuvant con-
trol” (6 mice for short-term and 9 mice for long-
term), TLY012 at 10 mg/kg 3 times per week by 
intraperitoneal (IP) injection (4 mice for short-
term and 6 mice for long term), anti-mouse PD1 
at 10 mg/kg 2 times per week by IP injection (4 

mice for short-term and 6 mice for long term), 
and the combination of TLY012 plus anti-PD1 
therapy (4 mice for short-term and 6 mice for 
long term).

The result of the long-term in vivo study demon-
strates potent anti-tumor effects in PDAC-
implanted syngeneic C57Bl/6 mice treated 
with anti-mouse PD-1 and TLY012 (Figure 1B). 
KPC-Luc tumors grew over 20 days at which 
point treatments were initiated as indicated in 
Figure 1A. Short-term analysis of immune cells 
(TILs and systemically), cytokines and immuno-
histochemistry as well as toxicity analysis were 
performed at 7 days after treatment initiation 
for the different cohorts of mice. Long-term 
analysis was performed as indicated after con-
tinued treatments of the long-term treatment 
cohorts as indicated in Figure 1A. The results 
demonstrate statistically significant reduction 
in tumor volumes and tumor weights in the 
monotherapy cohorts (TLY012 at 10 mg/kg 3 
times per week IP or anti-mouse PD1 at 10 mg/
kg 2 times per week by IP injection) and potent 
suppression of tumors with combination thera-
py with TLY012 plus anti-PD1 therapy over the 
course of the experiment as shown in Figure 
1B.

Available tumors at the end of the experiment 
were photographed (Figure 1C) and correspond 
to the results shown in Figure 1B. The mice tol-
erated the treatments well with no reduction in 
mouse weights (Figure 1D).

Decreased circulating regulatory T-cells, in-
creased NK-cells, and a higher proportion of 
CD8+ T cells within tumors after dual treat-
ment with anti-mouse PD-1 and TLY012

We performed flow cytometric analyses of 
spleen and tumor T-cells and NK-cells to exam-
ine the effects of individual anti-mouse PD-1 or 
TLY012, as well as the dual anti-mouse PD-1 
and TLY012 treatment group in treated synge-
neic C57Bl/6 KPC-Luc PDAC tumor-bearing 
mice (Figure 2).

We observed a reduction in splenic T-regulatory 
as cytotoxic CD8+ T-cells (Figure 2A) along with 
a relative enrichment in analyzed tumors of 
cytotoxic CD8+ T-cells in combination anti-
mouse PD-1 and TLY012-treated tumors (Figure 
2B) in the syngeneic KPC PDAC model. We 
observed enrichment of immature NK cells in 
the spleen of combo treated mice (Figure 2C) 
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Figure 1. Syngeneic mice with PDAC treated with anti-mouse PD-1 and TLY012 have delayed tumor growth and 
reduced tumor volume. A. In vivo PDAC mouse model and treatment schema for anti-tumor efficacy, biomarker, 
and immune analysis. The number of mice used for short-term as well as long-term treatments is as indicated for 
each cohort. B. Syngeneic mice with PDAC treated with both anti-mouse PD-1 and TLY012 resulted in slower tumor 
growth and reduced tumor volume at 70 days compared to either drug alone (all P < 0.005). Tumor weights are 
shown in the graph in the lower right for the respective treatment groups. C. Images of available tumors at the end 
of the experiment are shown. D. Weights of mice in different treatment groups over the course of the experiment.



TLY012 plus anti-PD1 in PDAC

292 Am J Cancer Res 2025;15(1):286-298

Figure 2. Decreased circulating regulatory T-cells, increased NK-cells, and a higher proportion of CD8+ T cells within 
tumors after dual treatment with anti-mouse PD-1 and TLY012. A. Flow cytometric immune analysis of spleen T 
cells following 3 month treatment with TLY012, anti-PD1 or the combination of TLY012 and anti-PD1 in a syngeneic 
pancreatic cancer mouse model (KPC-Luc). B. Flow cytometric immune analysis of tumor T following treatment 
with TLY012, anti-PD1 or the combination of TLY012 and anti-PD1 in a syngeneic pancreatic cancer mouse model 
(KPC-Luc). C. Flow cytometric immune analysis of spleen NK cells following treatment with TLY012, anti-PD1 or the 
combination of TLY012 and anti-PD1 in a syngeneic pancreatic cancer mouse model (KPC-Luc). D. Flow cytometric 
immune analysis of tumor NK cells following treatment with TLY012, anti-PD1 or the combination of TLY012 and 
anti-PD1 in a syngeneic pancreatic cancer mouse model (KPC-Luc).
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Figure 3. Reduced tumor-promoting B-cell activating factor (BAFF) levels in anti-PD1 treated and dual TLY012 plus 
anti-PD1 treated mice at 7 days and in single and dual treated groups at three months. Day 7 murine plasma cyto-
kine levels are in the left panel and the levels at 3 months are shown in the right panel for the different treatment 
groups as indicated. The numbers shown for plasma BAFF levels on the X-axes are in pg/mL.

and similarly the tumors of dual anti-mouse 
PD-1 and TLY012 treated PDAC tumor-bearing 
C57Bl/6 mice showed enrichment with imma-
ture NK cells (Figure 2D). Thus, the combina-
tion of TLY012 plus anti-PD1 enriches treated 
tumors with cytotoxic CD8+ T-cells as well as 
immature NK cells. These findings are consis-
tent with the observed synergistic anti-tumor 
efficacy of the combination therapy in vivo.

B-cell activating factor (BAFF), which correlates 
with tumor progression in PDAC, was reduced 
in treatment groups at 7 days and 3 months

B-cell activating factor (BAFF) correlates with 
tumor progression in PDAC [57]. Plasma BAFF 
concentrations were reduced in anti-PD1-treat-
ed and dual TLY012 plus anti-PD1-treated mice 
at 7 days and was reduced in single and dual-
treated groups after three months (Figure 3). 
Reduced BAFF levels are consistent with the 
observed anti-PDAC effects of treatment with 
TLY012 plus anti-PD1.

Long-term plasma cytokine analysis following 
treatment with TLY012, anti-PD1 or the com-
bination of TLY012 and anti-PD1 in syngeneic 
KPC PDAC mouse model

We assessed plasma cytokine levels at 3 mon- 
ths in the TLY012, anti-PD1 or combination 

treatment groups versus control mice (Figure 
4). A few proinflammatory cytokines includ- 
ing interferon-gamma and CCL5 were elevated 
while VEGFR2 trended towards reduction in the 
long-term dual treatment group (Figures 4, 5). 
These results are consistent with the observed 
anti-PDAC effects of treatment with TLY012 
plus anti-PD1.

Discussion

We report potent anti-tumor effects following 
long-term treatment for 3 months with the com-
bination of innate immune anti-fibrotic TLY012 
and immune checkpoint blocker anti-mouse 
PD-1 in a KPC PDAC syngeneic C57Bl/6 mouse 
model. The treatments were associated with 
changes in immune cell populations in spleens 
and tumors and plasma cytokine levels to 
induce a more proinflammatory immune envi-
ronment that correlates to decreased PDAC 
tumor growth.

A limitation of our study is that the tumors were 
implanted subcutaneously and not orthotopi-
cally which could influence the results due to 
differences in the local microenvironment. 
Clearly, this would need to be further addressed 
in future studies.
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Figure 4. Long-term cytokine levels in KPC PDAC tumor-bearing C57Bl/6 
mice for control, TLY012, anti-PD1, or dual therapy with TLY012 plus anti-
PD1 as indicated. Three-month murine plasma cytokine levels are shown for 
the different treatment groups as indicated. Cytokine concentrations were 
normalized to the control group. Fold change is over control is represented 
by circle diameter.

Another limitation is that while we performed 
flow cytometric analysis of tumor tissue and 
spleens, as well as plasma cytokine profiling, 
we did not carry out immunohistochemical 
staining of tumors at early or late time points to 
provide further evidence of altered biomarkers 
and proposed mechanisms. We also did not 
test the requirement of NK- or T-cell alterations 
or cytokine alterations with regard to the ob- 
served anti-PDAC effects in vivo. We also did 
not evaluate the anti-fibrotic effects of TLY- 
012 as monotherapy or in combination with 
anti-PD1 in vivo.

It is noteworthy that IFNγ and CCL5 were 
increased in the combined treatment group 
(TLY012 + anti-PD1). However, how these 
changes may directly contribute to decreased 
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tumor growth remains an open 
question for future research. 
The observed changes in T 
cells and NK cell populations 
mentioned above have not 
been tested as far as their 
requirement for tumor growth 
suppression. In addition future 
studies will need to unravel  
the importance of Tregs altera-
tions such as their decrease in 
the spleen, but not in the tumor 
tissues.

Despite the limitations, our 
results provide a novel precli- 
nical combination therapy of 
innate immune TLY012 and 
immune checkpoint blocker 
anti-mouse PD-1 that has 
potent efficacy in a KPC PDAC 
syngeneic C57Bl/6 mouse mo- 
del and without evidence of 
toxicity. The results support 
the further exploration and 
clinical testing of TLY012 alone 
and in combination with anti-
PD1 therapy in pancreatic can-
cer as well as other malignan- 
cies.
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Figure 5. Alterations in selected cytokines at 3 months in KPC PDAC tumor-bearing C57Bl/6 mice for control, TLY012, anti-PD1, or dual therapy with TLY012 plus 
anti-PD1 as indicated. A. Plasma IFN-gamma levels at 3 months in pg/mL for control, TLY012, anti-PD1, or dual therapy with TLY012 plus anti-PD1 as indicated. B. 
CCL5 levels at 3 months in pg/mL for control, TLY012, anti-PD1, or dual therapy with TLY012 plus anti-PD1 as indicated. C. VEGFR2 levels at 3 months in pg/mL for 
control, TLY012, anti-PD1, or dual therapy with TLY012 plus anti-PD1 as indicated.
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