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Abstract: Cervical cancer is one of the most prevalent gynecologic malignancies, posing a significant threat to wom-
en’s health and survival. Despite advancements in early screening and diagnosis, which have led to cervical cancer 
being termed a “preventable” cancer, treatment options for advanced and recurrent cervical cancer remain limited. 
Consequently, identifying new therapeutic targets and treatments is crucial for advancing the research and manage-
ment of cervical cancer. In recent years, targeted therapy and immunotherapy have become focal points in oncology 
research, offering new avenues and directions for the treatment of cancer. Preclinical studies have demonstrated 
that targeting BMI1 can inhibit cervical cancer progression, while immunotherapy has advanced to phase III clinical 
trials, showing promising results. To date, there have been no reports on the combination of BMI1-targeted therapy 
and immunotherapy in cervical cancer. This review, therefore, elucidates the current state of research and explores 
the potential and perspectives of combining targeted therapy with immunotherapy for cervical cancer.
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Introduction

Cervical cancer, the most common malignant 
gynaecological cancer, is a major global health 
problem and a major cause of disability adjust-
ed life years [1]. It mainly affects women in 
developing countries, and studies have found it 
to be associated with persistent infections with 
high-risk human papillomavirus (HPV) types. 
The prevention and early diagnosis and treat-
ment of cervical cancer has developed rapidly 
due to the popularity of cervical cancer screen-
ing technology and the attention paid to the  
disease and the use of HPV vaccine nowadays 
[2]. The stage of cervical cancer at diagnosis 
strongly influences treatment approaches and 
outcomes for cervical cancer patients. Accor- 
ding to statistics, the 5-year overall survival 
rate for all stages combined is 67%: 91% for 
early stage, 60% for locally advanced disease, 
and 19% for metastatic disease [3]. Therefore, 
the treatment of advanced cervical cancer and 
recurrent and metastatic cervical cancer has 

become a key and difficult issue in the treat-
ment of cervical cancer.

With the recent approval of a PD-1 blocking 
antibody for recurrent or metastatic disease, 
immunotherapy offers a new method for cancer 
treatment. Clinical studies on cervical cancer 
have been conducted since 2015. The notable 
KEYNOTE-158 phase II clinical trial investigated 
the use of pembrolizumab as a monotherapy in 
cervical cancer [4]. Based on the results of this 
study, the FDA approved pembrolizumab for  
the treatment of cervical cancer [4]. With more 
and more in-depth research on immunotherapy 
for cervical cancer, immunotherapy has also 
become a second-line treatment strategy for 
replaced cervical cancer.

Recent years, more and more researches dem-
onstrated that BMI1 significantly overexpressed 
in many cancers including cervical cancer. 
Targeting BMI1 in a variety of ways, including 
induction of autophagy-mediated necrosis, inhi-

http://www.ajcr.us
https://doi.org/10.62347/QTWJ8918


BMI1-targeted therapy and immunotherapy in cervical cancer

218 Am J Cancer Res 2025;15(1):217-232

bition of epithelial-mesenchymal transition and 
regulation of tumor immunoenvironment, dra-
matically reduces cancer proliferation and 
metastasis [5]. BMI1 expression levels are 
closely correlated with the histological grading 
of cervical cancer, and the inhibition of cervical 
cancer cell proliferation, colony formation, and 
lymph node metastasis [6]. And in other cancer 
research, BMI1 can enhance the infiltration 
and activity of CD8+ T cells in the tumor micro-
environment, and improve the immunothera-
peutic efficacy of PD-1 inhibitors, thereby pre-
venting immune escape [7].

This review explores the potential synergistic 
effects of BMI1 inhibition and immunotherapy, 
with the goal of addressing existing therapeu- 
tic limitations. Addressing the intricate tumor 
microenvironment and resistance mechanisms 
of cervical cancer, this combined approach 
could provide more effective and sustainable 
treatment solutions for patients.

Current status of cervical cancer

Cervical cancer is the most prevalent gyneco-
logic malignancy, ranking fourth among all 
female cancers, posing a significant threat to 

women’s health and lives [8]. Over 500,000 
women are diagnosed with cervical cancer 
annually, with over 300,000 deaths occurring 
globally each year [9]. Most cervical cancers 
are linked to persistent infections with high-risk 
HPV types, such as 16 and 18. HPV screening 
and vaccination programs have become effec-
tive strategies for cervical cancer prevention 
[10]. Persistent high-risk HPV infection causes 
cervical epithelial cells to overexpress the 
oncoproteins E6 and E7, which inhibit the tumor 
suppressors p53 and Rb, respectively, leading 
to the malignant transformation of cervical  
epithelium [11] (Figure 1). These oncoproteins 
also inhibit apoptosis, destabilize the genome, 
prevent telomere shortening, promote angio-
genesis, and facilitate the invasion and metas-
tasis of cervical cancer [12]. Squamous cell 
carcinoma and adenocarcinoma are the most 
common histological subtypes of cervical can-
cer, comprising approximately 70% and 25%  
of cases, respectively [13]. Despite advances 
in prevention, screening, diagnosis, and treat-
ment over the past decade, significant regional 
and global disparities persist in cervical can- 
cer treatment outcomes. These disparities 
prompted the International Gynecologic Cancer 

Figure 1. Schematic diagram of the pathogenesis of cervical cancer. Persistent infection of normal cervical epi-
thelium with HPV causes the cervical epithelium to overexpress HPV oncoproteins E6 and E7, gradually leading to 
malignant transformation of the cervical epithelium.
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Society to publish evidence-based manage-
ment guidelines aimed at improving patient 
care quality [14]. The treatment of advanced 
and recurrent cervical cancer remains clinically 
challenging, prompting researchers to explore 
new therapeutic approaches.

Association between BMI1 and cervical can-
cer

Overview of BMI1

The B lymphoma Mo-MLV insertion region 1 
homolog (BMI1) gene was first identified in 
1991 by the Netherlands Cancer Institute in 
lymphoma cells. It is a core member of the 
Polycomb gene family (PcG) with oncogenic 
properties and is considered a proto-oncogene 
that collaborates with c-myc to drive cell trans-
formation and tumor formation [15]. Research 
indicates that PcG proteins are pivotal in the 
epigenetic modification of chromatin and stem 
cell self-renewal, governing cell fate decisions, 
cancer development, and acting as crucial tran-
scriptional repressors [16]. BMI1, a member of 
the Polycomb repressive complex 1 (PRC1) 
[17], has recently been recognized as a survival 

factor for tissue and cancer stem cells [18], 
influencing the expression of genes involved  
in cell growth, proliferation, apoptosis, senes-
cence, and DNA repair [19-21].

Relationship between BMI1 and cervical 
cancer

BMI1 is reported to be highly expressed in vari-
ous cancers, including glioma [22], head and 
neck tumors [23], non-small cell lung cancer 
[24], gastric cancer [25], prostate cancer [26], 
ovarian cancer [27] and cervical cancer [28]. 
Analysis of BMI1 expression in paired samples 
of cervical tissue from public databases (TCGA 
and GTEx) indicated that BMI1 expression lev-
els were significantly higher in tumor tissue 
than in normal tissue (Figure 2). Although the 
expression level of BMI1 is not the highest in 
cervical cancer, it is higher than the most other 
tumors (Figure 2). High levels of BMI1 have 
been shown to promote cervical cancer devel-
opment by binding to the E-Box region of the 
Sox2 promoter, leading to upregulation of Sox2, 
a tumor stem cell-associated transcription fac-
tor [28]. BMI1 expression levels are closely cor-
related with the histological grading of cervical 

Figure 2. The expression of BMI1 in paired samples of cervical tissue from public databases (TCGA and GTEx).
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cancer, and the inhibition of cervical cancer cell 
proliferation, colony formation, and lymph node 
metastasis [6]. With the down-regulation of 
BMI1 expression level, the expression level of 
STAT3 and pSTAT3 was significantly decreased, 
which in turn reduced the expression of 
N-cadherin and Vimentin, leading to a reduc-
tion in the occurrence of epithelial mesenchy-
mal transition in cervical cells from the tran-
scriptional level [29]. Targeting BMI1-positive 
squamous cell carcinoma tumor stem cells has 
been shown to improve tumor resistance and 
inhibit tumor growth [23], suggesting that BMI1 
could serve as a potential therapeutic target for 
cervical cancer treatment [30].

BMI1 inhibitor

There are several BMI1 inhibitors used in many 
rsearches, such as PTC209, PTC-209 HBr, 
PTC208 and PTC596. PTC-209 is a first-gener-
ation BMI1 inhibitor and is widely used in many 
oncology studies. PTC-209 HBr is the hydrobro-
mide salt of PTC-209, a potent and selective 
BMI-1 inhibitor [31], and its function is same to 
PTC209. PTC-028 is a biologically orally active 
compound capable of reducing BMI1 levels 
through post-translational modification. Treat- 
ment with PTC-028 selectively inhibited cancer 
cells without affecting normal cells in clonogen-
ic growth assays and cell viability assays. PTC-
028 removes intracellular highly phosphorylat-
ed BMI-1 and leads to a transient decrease in 
ATP levels and impaired mitochondrial redox 
homeostasis, which further strengthens the 
caspase-dependent apoptotic response [32]. 
PTC596, also called unesbulin, is a second-
generation BMI-1 inhibitor that accelerates the 
degradation of BMI-1. PTC596 is now in Phase 
II clinical trials as it is more biologically safe. In 
this review, we focus on the PTC209 and 
PTC596.

PTC209 is shown in Figure 3A). PTC-209 inhib-
its UTR-mediated expression of reporter genes 
and endogenous BMI-1 in human colorectal 
HCT116 and human fibrosarcoma HT1080 
tumor cells. And PTC-209 reduces the growth 
of rectal tumor cells dependent on BMI-1. In 
addition, PTC-209 damages tumor initiating 
cells by inhibiting their irreversible growth [19]. 
Subsequent studies have reported that PTC209 
was effective in preclinical trials against vari-
ous tumors, including colorectal cancer [33], 
breast cancer, bile duct cancer [34], glioma 
[35], prostate cancer [26], lung cancer [36], 
head and neck tumors [23], and cervical can-
cer [37]. Additionally, evidence suggests that 
PTC209 induces cell cycle arrest and apoptosis 
in cervical cancer cell lines [37].

PTC596

Compared to PTC209, PTC596, a second-gen-
eration BMI1 inhibitor (Figure 3B), is cell-per-
meable and promotes the degradation of BMI1 
protein at nanomolar concentrations (as oppo- 
sed to micromolar concentrations for PTC209) 
[38]. Furthermore, PTC209 has not yet entered 
clinical trials due to limited efficacy and poor 
pharmacokinetic properties, whereas PTC596, 
with a promising safety profile, has advanced  
to early clinical trials [39] (ClinicalTrials.gov 
Identifiers: NCT02404480, NCT03206645, 
NCT03605550, NCT03761095) (Table 1). 
Therefore, PTC596 shows greater effective-
ness than PTC209 in cancer treatment.

PTC596 is a novel small-molecule inhibitor of 
BMI1, and recent studies have demonstrated 
its ability to inhibit cancer cell proliferation and 
promote apoptosis both in vivo and in vitro [40]. 
PTC596 effectively reduces the function, activ-
ity, and quantity of BMI1 through phosphoryla-
tion, accelerates BMI1 protein degradation, 
and subsequently inhibits BMI1-mediated sig-

PTC209

In 2013, a research team 
developed the first-genera-
tion BMI1-selective inhibitor, 
PTC209, using high-through-
put screening through a pro-
prietary drug discovery plat-
form technology called Gene 
Expression Modulation by 
Small-Molecules (GEMS) [19] 
(The molecular structure of 

Figure 3. Molecular structure diagrams of BMI1 inhibitors. A. Molecular struc-
ture diagram of the first-generation inhibitor PTC209; B. Molecular structure 
diagram of the second generation inhibitor PTC596.
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naling pathways to reduce tumor growth in 
vitro, PTC596 preferentially targets chemother-
apy-resistant tumor stem cells [38]. Studies on 
PTC596’s inhibition of BMI1 function have so 
far been limited to lymphoma, acute leukemia, 
ovarian cancer, and glioma, but it has entered 
clinical trials for the treatment of advanced 
solid tumors, including advanced ovarian can-
cer. In phase I clinical trials, PTC596 was well 
tolerated by patients, with manageable gastro-
intestinal side effects (ClinicalTrials.gov Iden- 
tifiers: NCT03206645). Recent studies report 
that PTC596 inhibits BMI1 expression in cervi-
cal cancer and promotes Mcl-1 degradation 
and apoptosis in HeLa (cervical cancer) and 
Caki (kidney cancer) cells by downregulating 
DUB3 levels, thereby inhibiting tumor progres-
sion [41].

BMI1 and tumor microenvironment

Tumor microenvironment

Definition and components of tumor microenvi-
ronment: The tumor microenvironment (TME) is 
a critical component of tumor development. 
The tumor microenvironment consists of not 
only the tumor cells but also the surrounding 
components, such as stromal cells, vascular 
endothelial cells, and associated immune cells, 
including tumor-associated fibroblasts, T cells, 
NK cells, macrophages, and B cells [42] (Figure 
4).

Despite the complexity of the tumor immune 
microenvironment, the advent of single-cell 
sequencing technology has enabled a detailed 
dissection of its nature [43]. Understanding the 

fundamental role of the tumor microenviron-
ment in cancer evolution has shifted the per-
spective from a tumor cell-centered view to the 
concept of a complex tumor ecosystem that 
supports tumor growth and metastasis [44].

Immune cells in the tumor microenvironment: 
Tumor-associated immune cells are generally 
classified into two categories: anti-tumor im- 
mune cells and pro-tumor immune cells, each 
playing distinct roles at various stages of tumor 
progression.

Anti-tumor immune cells primarily include 
effector T cells (CD8+ cytotoxic T cells and 
CD4+ effector T cells), Natural Killer (NK) cells, 
Dendritic cells (DCs), M1-polarized macro-
phages, and N1-polarized neutrophils, while 
tumor-promoting immune cells mainly comprise 
regulatory T cells (Tregs) and myeloid-derived 
suppressor cells (MDSCs) [45]. This discussion 
focuses on CD8+ cytotoxic T cells (CTLs). CD8+ 
CTLs have long been recognized as the primary 
lymphocyte subpopulation responsible for kill-
ing cancer cells presenting Major Histocom- 
patibility Complex Class I (MHC-I) molecules 
[46]. Upon antigen presentation by DCs, CD8+ 
T cells can be induced to differentiate into cyto-
toxic effector CD8+ T cells [47]. Guided by che-
mokines secreted by DCs, such as CXCL9 and 
CXCL10, activated CTLs migrate into the inflam-
matory environment through the expression  
of CXCR3 [48, 49]. The interaction between 
ligands on DCs (CD70 and CD80-CD86) and 
receptors on CD8+ T cells (CD27 and CD28) is 
considered a critical step in CD8+ T cell activa-
tion [47].

Table 1. Ongoing clinical trials of PTC596

Clinical Trial Title ClinicalTrials.gov 
Identifiers Study population Number of 

participants
Clinical Trial 

Phase Treatment options

PTC596 in combination with 
dacarbazine for advanced 
smooth muscle sarcoma (LMS) 
participant study

NCT03761095 Locally recurrent, unresectable, 
or metastatic recurrent/refrac-
tory smooth muscle sarcoma

41 Phase 1B PTC596 + Dacarbazine

Phase 1b study of PTC596 in 
children with newly diagnosed 
diffuse pontine glioma and 
high-grade glioma

NCT03605550 Diffuse pontine glioma and 
high-grade glioma

54 Phase 1B PTC596 + Radiotherapy

Study of PTC596 in patients 
with advanced smooth muscle 
sarcoma

NCT05269355 Advanced smooth muscle 
sarcoma

345 Phase 2/3 PTC596 + Dacarbazine

PTC596 for patients with 
advanced solid tumors

NCT02404480 Advanced solid tumors 31 Phase 1 PTC596

PTC596 for women with ovarian 
cancer receiving neoadjuvant 
chemotherapy

NCT03206645 High-grade plasmacytoid ovar-
ian cancer

27 Phase 1B PTC596 + Carboplatin + 
Paclitaxel
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Immune checkpoints: The activation and regu-
lation of CTLs require two signals: one from the 
T-cell receptor (TCR) and the other from recep-
tors known as immune checkpoints (ICs) [50]. 
Immune checkpoints are categorized into two 
types: suppressive checkpoints (e.g., CTLA-4 
[51], PD-1 [52], TIM-3 [53], LAG-3 [54], TIGIT 
[55] and CD96 [56]) and stimulatory immune 
checkpoints (e.g., ICOS [57], OX-40 [58], 4-1BB 
[59], GITR [60], CD27 [61], HVEM [62], CD40L 
[63]).

Further research has revealed that in certain 
tumors, cancer cells inhibit CTLs by expressing 
programmed death-ligand 1 (PD-L1), which 
interacts with the inhibitory checkpoint recep-
tor programmed death receptor 1 (PD-1), a key 
mechanism of immune escape in cancer [64]. 
Additionally, within the tumor microenviron-
ment (TME), persistent antigenic and inflamma-
tory responses can drive CTLs into a state of 
“exhaustion”, resulting in T-cell dysfunction and 
promoting tumor development [65].

Programmed death receptors and programmed 
death ligands: Programmed cell death protein 
1 (PD-1; also known as CD279) is a co-suppres-
sor receptor expressed on the surface of acti-

cell carcinoma (RCC), Hodgkin’s lymphoma, 
bladder cancer, head and neck squamous cell 
carcinoma (HNSCC), Merkel cell carcinoma, 
and microsatellite instability-high (MSI-H) or 
mismatch repair-deficient (dMMR) solid tumors 
[68].

BMI1 and tumor immune microenvironment

With in-depth studies of the tumor microenvi-
ronment, BMI1 has been found to regulate the 
immune microenvironment of tumors and play 
a significant role, and involved in the regula-
tions of many immune cells, such as T cell. In 
multiple myeloma (MM), BMI1 regulates the 
pro-myeloma characteristics of tumor-associat-
ed macrophages (TAMs) [69]. BMI1 has also 
been reported to inhibit IL-10 expression in 
macrophages during the acute phase response 
induced by lipopolysaccharide (LPS) [70]. In 
pancreatic cancer, BMI1 inhibits antitumor 
immunity by reducing NK cell-mediated killing 
through the suppression of MHC class I chain-
related protein A/B (MICA/B) expression. 
Additionally, the study showed that BMI1 sup-
presses GATA2 in pancreatic cancer cells, lead-
ing to the downregulation of MICA/B expression 
and ultimately promoting immune escape [71].

Figure 4. Tumor microenvironment pattern map. TAA: Tumor Associated An-
tigens; DCs: Dendritic cells; NK: Natural Killer. The tumor microenvironment 
includes immune cells, stromal cells, endothelial cells, and tumor-associated 
fibroblasts in addition to tumor cells.

vated T cells following anti-
gen stimulation [66]. PD-1 
interacts with two ligands: 
programmed death-ligand 1 
(PD-L1; also known as CD- 
274) and programmed death-
ligand 2 (PD-L2; also known 
as CD273). PD-L1 is typical- 
ly found in tumor cells and 
tumor stroma, where it is 
highly expressed. Its bind- 
ing to PD-1 alters T cell acti- 
vity through multiple path-
ways, inhibiting T cell prolifer-
ation, survival, cytokine pro- 
duction, and other effector 
functions [67], thereby sup-
pressing antitumor immunity. 
Currently, antibodies target-
ing the PD-L1-PD-1 axis are 
under evaluation in over 
1000 clinical trials and ha- 
ve been approved by the 
Food and Drug Administration 
(FDA) for the treatment of 
melanoma, non-small cell 
lung cancer (NSCLC), renal 
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BMI1 is known to mediate gene silencing via 
H2AUb and to repress the expression of genes 
[72]. As the Figure 5 showed that a research 
indicated that BMI1 inhibitors reduced the 
expression of H2AUb, thereby decreasing the 
transcriptional levels of CCL5 and CXCL9, fur-
ther reducing the recruitment process of CD8+ 
T lymphocytes in cholangiocarcinoma (CCA) 
[73]. Furthermore, BMI1 maintains antigen-
specific CD8+ T-cell clonal expansion during 
chronic viral infection, and BMI1 deficiency pro-
motes senescence [74]. And another research 
indicated that BMI1 regulates the clonal expan-
sion of T cells in the hepatocellular carcinoma 
(HCC) microenvironment by proteomic analysis 
of TIL fractions in two murine HCC models, fol-
lowed by flow cytometry analysis [75]. In head 
and neck tumors, BMI1 inhibitors can target 
cancer stem cells (CSCs), enhance the infiltra-
tion and activity of CD8+ T cells in the tumor 
microenvironment, and improve the immuno-
therapeutic efficacy of PD-1 inhibitors, thereby 
preventing immune escape [7]. In addition, 
BMI1 induces ubiquitination and protein degra-
dation of NLRC5 and suppresses HLA class I 
expression, and consequently inhibit T cell  
activation and increased PD-1/PD-L1 levels in 
the co-culture system, which potentially helps 
immune escape in non-small cell lung cancer 
(NSCLC) [76]. Therefore, BMI1 plays a regula-

rupt natural immune responses, including 
interferon production and the cGAS/STING 
pathway, and inhibit HPV antigen presentation 
via MHC class I molecules [80]. Additionally, 
HPV oncoproteins prevent regulatory transcrip-
tion factor 9 (IRF9) from binding to phosphory-
lated STAT1 and STAT2, and inhibit STAT1 and 
STAT2 phosphorylation by interacting with tyro-
sine kinase 2 (TYK2), which in turn inhibits the 
IFN-α/β receptor (IFNAR) pathway, disrupting 
the positive feedback loop in virus-infected 
cells [81].

Intensive research on the immune system has 
identified the Jak/STAT signaling pathway as a 
critical communication hub [82], playing a piv-
otal role in cancer progression. In June 2018, 
the US FDA approved pembrolizumab, the first 
immunotherapy drug for the treatment of 
advanced and recurrent cervical cancer, based 
on the findings of the KEYNOTE-158 phase II 
clinical trial [4], marking significant progress in 
cervical cancer immunotherapy. In acquired 
immunity, signaling pathways such as Jak/
STAT, PI3K, MAPK, and NF-κB are reported to 
be involved in the induction of PD-L1 expres-
sion by IFN-γ [83, 84]. The Jak/STAT signaling 
pathway is essential for PD-L1 expression and 
contributes to drug resistance [85] and as 
reported, it not only upregulates PD-L1 but also 

Figure 5. The diagram related to the potential mechanism of BMI1 regulating 
T cell function.

tory role in the tumor immune 
microenvironment and con-
tributes to tumorigenesis.

Current status of immune 
microenvironment and im-
munotherapy for cervical 
cancer

Characteristics of the im-
mune microenvironment in 
cervical cancer

Cervical cancer cells evade 
the immune system by induc-
ing an immunosuppressive 
state within their microenvi-
ronment [77, 78]. High-risk 
subtypes of human papillo-
mavirus (hr-HPV), such as 
types 16 and 18, are more 
likely to persist and integrate 
into the host genome, result-
ing in the overexpression of 
oncoproteins E6 and E7 [79]. 
These oncoproteins downreg-
ulate key pathways that dis-
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influences tumor antigen expression [86]. Jak1 
is crucial for IFN-γ-mediated immune respons-
es and MHC class I/II expression, while Jak2 
promotes IFN-γ-induced STAT5 phosphoryla-
tion and PD-L1 expression, thereby suppress-
ing antitumor immunity [86]. In pancreatic can-
cer, gemcitabine upregulates PD-L1 expression 
via the Jak/STAT signaling pathway, leading to 
chemoresistance [87].

Tumor immunotherapy

Tumor immunotherapy treats cancer by enhanc-
ing the body’s immune capacity to eliminate 
malignant cells, representing a major break-
through in tumor research. Currently, immuno-
therapy is clinically employed to treat various 
cancers, including melanoma [88], non-small 
cell lung cancer [89], renal cell carcinoma [90] 
and triple-negative breast cancer [91], with 
notable efficacy, though the precise mechanis- 
ms remain unclear. Historically, immunothera-
py has encompassed lysovirus therapy [92], 
cancer vaccine therapy [93], cytokine therapy 
[94], relay immune cell therapy [95] and immu- 
ne checkpoint inhibitor therapy [96]. Adoptive 
cell transfer therapy and immune checkpoint 
inhibitor therapy have gained prominence in 
immunotherapy due to their superior clinical 
efficacy [43], with their success demonstrating 
that immune cells, particularly T cells, can 
effectively eliminate tumor cells. Immune cells 
form the cellular foundation of immunotherapy, 
making the understanding of immune infiltra-
tion in the tumor microenvironment crucial for 
enhancing immunotherapy responsiveness 
and developing new therapeutic strategies 
[97]. T cells have emerged as the focus of tumor 
immunotherapy research due to their potent 
tumor-killing capabilities [98]. T cell function is 
initiated by the binding of the T cell receptor 
(TCR) to major histocompatibility complex 
(MHC) molecules or human leukocyte antigens 
(HLAs) presenting tumor antigen peptides [99].

Immune checkpoints are molecules within co-
suppressive signaling pathways between im- 
mune cells and target cells that maintain 
immune tolerance, but cancer cells often 
exploit these pathways to evade immune sur-
veillance [88, 100]. The interaction between 
PD-1 and PD-L1 is the co-suppressive mecha-
nism most commonly responsible for immune 

escape [101]. PD-1/PD-L1-based immune 
checkpoint blockade therapies have demon-
strated significant efficacy across various 
tumors, but the emergence of drug resistance 
has posed a major challenge in immunothera-
py, attributed to T cell dysfunction, impaired 
antigen recognition, and T cell exhaustion 
[102]. Consequently, many researchers have 
proposed combination strategies in immuno-
therapy to address these challenges. The com-
bined application of radiotherapy and immuno-
therapy has demonstrated significant advan- 
tages in the clinical treatment of tumors. 
Immunotherapy can reduce radiotherapy resis-
tance in non-small cell tumors, while radiother-
apy can enhance immune infiltration and sig-
nificantly improve patient prognosis [103].

Current status of research on immunotherapy 
for cervical cancer

Clinical studies on cervical cancer have been 
conducted since 2015. The notable KEYNOTE- 
158 phase II clinical trial investigated the use 
of pembrolizumab as a monotherapy in cervical 
cancer [4]. Based on the results of this study, 
the FDA approved pembrolizumab for the treat-
ment of cervical cancer [4]. Another notable 
study is CheckMate-358, which investigated 
the use of nivolumab as monotherapy in cervi-
cal cancer patients [104]. These studies dem-
onstrated that pembrolizumab and nivolumab 
exhibit antitumor activity in advanced/recur-
rent cervical cancer. Pembrolizumab’s efficacy 
may be associated with PD-L1 expression as  
a potential predictive marker, whereas for 
nivolumab, positive PD-L1 expression was not 
a predictor of efficacy. Further studies with larg-
er sample sizes are needed to validate these 
findings [105].

To expand and advance the indications, the  
pivotal phase III clinical trial KEYNOTE-826 
evaluated the efficacy of pembrolizumab in 
combination with chemotherapy, with or with-
out bevacizumab, for the first-line treatment of 
cervical cancer, regardless of PD-L1 expression 
status [106] (Table 2). The results, presented 
at the European Society of Medical Oncology 
(ESMO) Congress in 2021, marked the first 
phase III trial with positive outcomes for both 
progression-free survival (PFS) and overall sur-
vival (OS) as dual endpoints in first-line PD-1/
PD-L1 treatment for cervical cancer, indepen-
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Table 2. Ongoing phase III clinical trials with immune checkpoint inhibitors for the treatment of cervical cancer

Clinical Trial Title ClinicalTrials.gov 
Identifiers Study population Number of 

participants 
Clinical Trial 

Phase Treatment options 

Efficacy and safety of BCD-100 (anti-PD-1) in 
combination with platinum-based chemotherapy 
with or without bevacizumab as first-line treat-
ment in subjects with advanced cervical cancer 
(FERMATA) 

NCT03912415 Advanced cervical 
cancer 

316 Phase III Paclitaxel + cisplatin (or carboplatin)/
bevacizumab/BCD-100 (anti-PD1) 

Efficacy and safety study of pablizumab (MK-
3475) in combination with chemotherapy versus 
placebo in the first-line treatment of women 
with persistent, recurrent or metastatic cervical 
cancer (MK-3475- 826/KEYNOTE-826) 

NCT03635567 Recurrent or 
metastatic cervical 
cancer 

600 Phase III Paclitaxel + Cisplatin (or Carboplatin)/
Bevacizumab/Pembrolizumab 

Platinum chemotherapy plus paclitaxel with 
bevacizumab and atezumab for metastatic carci-
noma of the cervix 

NCT03556839 Recurrent or 
metastatic cervical 
cancer 

404 Phase III Paclitaxel + cisplatin/bevacizumab/
atezumab 
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dent of PD-L1 expression status [106]. The 
KEYNOTE-826 study demonstrated that pem-
brolizumab combined with chemotherapy, with 
or without bevacizumab, significantly improved 
OS and PFS in first-line patients with advanced 
metastatic cervical cancer, offering a reliable 
safety profile compared to placebo, regardless 
of PD-L1 status [106]. This regimen is antici-
pated to become a new standard of care for the 
first-line treatment of advanced recurrent and 
metastatic cervical cancer, marking a new 
chapter in the clinical management of this 
patient population.

Summary and outlook

Cervical cancer is the most common malig- 
nant tumor of the female reproductive system, 
with an increasing incidence rate, particularly 
among younger women, posing a significant 
threat to women’s health and life. Clinically, 
managing advanced and recurrent cervical 
cancer remains challenging, as conventional 
treatments like surgery, radiotherapy, and che-
motherapy are often ineffective. Thus, explor-

renal cell carcinoma, ovarian cancer, and cervi-
cal cancer [108]. Targeting the BMI1 protein 
has been shown to inhibit the progression of 
cervical cancer, and immunotherapy for cervi-
cal cancer has also entered phase III clinical tri-
als with promising results. And some research-
es showed that BMI1 inhibitor can influence the 
Jak/STAT signing pathway, which is critical 
pathway in cervical cancer immunoenviron-
ment (Figure 6). Therefore, researching target-
ed therapy and immunotherapy methods can 
provide valuable data and insights for treating 
cervical cancer, particularly advanced and 
recurrent cases, and offer practical opportuni-
ties for prolonging patient survival and improv-
ing quality of life.
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Figure 6. The diagram related to the potential mechanism of BMI1 inhibitor 
combining immunotherapy in cervical cancer.

ing new therapeutic targets 
and treatments for cervical 
cancer is crucial.

With advancements in molec-
ular biology and genomics, 
targeted therapies and im- 
munotherapies have become 
prominent research areas in 
cervical cancer treatment. 
Targeted therapy, often refer- 
red to as a “biological mis-
sile”, specifically binds to 
defined oncogenic sites at  
the molecular level, killing 
tumor cells while sparing nor-
mal tissues, thereby improv-
ing efficacy and reducing 
toxic side effects [107]. Im- 
munotherapy is a therapeutic 
approach that stimulates the 
host’s immune system to 
actively or passively produce 
anti-tumor immunity through 
in vitro intervention. It has 
been used with remarkable 
success to treat various 
tumors, including melanoma, 
non-small cell lung cancer, 
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