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Abstract: Tumor drug resistance is a major factor in cancer treatment failure. SLC7A11 is characterized as a light-
chain subunit antiporter of the Xc- system, responsible for exchanging extracellular cystine with intracellular gluta-
mate. SLC7A11 has been shown to critically modulate tumor progression through regulation of intracellular cysteine 
homeostasis and redox balance, thereby governing ferroptosis and disulfidptosis. Ferroptosis and disulfidptosis are 
closely associated with tumor drug resistance, and SLC7A11 demonstrates a dual regulatory role in this process. 
This review summarized the structure and function of SLC7A11 and the mechanisms underlying tumor drug resis-
tance. It then analyzed the potential regulatory effects of SLC7A11 on ferroptosis, disulfidptosis, and autophagy in 
the context of tumor chemotherapy, targeted therapy, immunotherapy resistance, and prognosis. Finally, this review 
delineated the therapeutic opportunities and translational challenges in targeting SLC7A11 to overcome tumor 
drug resistance, serving as a foundation for future mechanistic exploration and clinical development.
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Introduction

In the 21st century, cancer continues to be 
among the predominant causes of premature 
mortality [1]. Recent statistical data indicate 
that roughly 20 million new cases of cancer 
were recorded globally in 2022, resulting in 
approximately 9.7 million deaths. By 2050, this 
number is anticipated to rise to 35 million [2]. 
Present cancer therapies primarily include sur-
gery, radiation treatment, chemotherapy, tar-
geted molecular therapies, hormone therapies, 
and immunotherapies. Nevertheless, approxi-
mately 90% of cancer-related mortalities are 

significantly associated with drug resistance 
exhibited by tumors [3, 4]. This resistance aris-
es from multiple mechanisms, including gene- 
tic mutations, activation of efflux pumps, dys-
regulation of signaling pathways, and tumor 
heterogeneity [5]. It constitutes a critical chal-
lenge in oncology, and thus far, there remains 
no highly effective therapeutic strategy to sur-
mount this obstacle.

The cystine/glutamate antiporter SLC7A11 is a 
pivotal regulator in the processes of ferropto-
sis, disulfidptosis, and autophagy [6-9]. Ex- 
tensive research has demonstrated that pro-
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moting ferroptosis through modulation of the 
SLC7A11-SLC3A2-GPX4 signaling pathway, al- 
ong with iron and lipid metabolism, notably 
enhances therapeutic efficacy against cancer 
and potentially reverses resistance [10]. It is 
noteworthy that SLC7A11 utilizes nicotinamide 
adenine dinucleotide phosphate (NADPH) to 
catalyze the intracellular conversion of cystine 
to cysteine, thereby preventing ferroptosis. 
Conversely, aberrant accumulation of cystine 
can trigger disulfide stress, resulting in disul-
fidptosis [9, 11]. Furthermore, genes associat-
ed with disulfidptosis, including SLC7A11, are 
correlated with tumor prognosis and drug resis-
tance, positioning them as prospective thera-
peutic targets [12, 13]. Additionally, SLC7A11 is 
identified as an autophagy-associated gene, 
implicated in suppressing paclitaxel resistance 
in ovarian cancer (OC) through regulation of the 
autophagic pathway as a competing endoge-
nous RNA (ceRNA) [6].

Thus, this paper systematically reviews recent 
progress concerning SLC7A11’s involvement  
in tumor drug resistance. Specifically, the re- 
view addresses the structural and functional 
aspects of SLC7A11, underlying mechanisms 
of resistance in tumors, and the contributions 
of SLC7A11 to resistance against chemothera-
py, targeted therapy, and immunotherapy, as 
well as its prognostic significance via potential 
modulation of ferroptosis, disulfidptosis, and 
autophagy. Finally, the paper discusses cu- 
rrent opportunities and challenges in targeting 
SLC7A11 therapeutically. This review aims to 
provide novel perspectives to facilitate further 
investigation into the role of SLC7A11 in tumor 
drug resistance.

Structure and basic function of the SLC7A11 
gene and its encoded protein

The human SLC7A11 gene is located on chro-
mosome 4, comprises 14 exons, and encodes 
the solute carrier family 7 member 11 protein 
(also known as xCT). This protein consists of 
501 amino acids and is characterized by 12 
strongly hydrophobic transmembrane domains, 
with both amino and carboxyl termini posi-
tioned within the cytoplasm [14, 15] (Figure 1).

The Xc- system is formed by SLC7A11, the  
light-chain subunit, and SLC3A2 (also termed 
4F2hc or CD98), the heavy-chain subunit. This 

complex facilitates the equimolar exchange of 
extracellular cystine and intracellular glutama- 
te. Specifically, SLC7A11 functions as a multi-
channel transmembrane protein that directly 
mediates transport activity, while SLC3A2, a 
single-transmembrane protein, primarily func-
tions as a chaperone to stabilize SLC7A11’s 
membrane localization and transport efficiency 
[16, 17]. Thus, extracellular cystine enters the 
cytoplasm as intracellular glutamate is simulta-
neously exported [18]. Cytoplasmic cystine is 
subsequently reduced to cysteine through 
NADPH and then combined with glycine and 
glutamate to synthesize glutathione (GSH) [18] 
(Figure 1). As a critical antioxidant, GSH serves 
as an essential cofactor for glutathione peroxi-
dase 4 (GPX4), which reduces lipid peroxides 
into lipid alcohols, thus preserving cellular 
redox homeostasis and inhibiting ferroptotic 
cell death [16, 19] (Figure 1).

Nevertheless, this antioxidant mechanism de- 
pends heavily on NADPH availability. Under  
conditions of NADPH depletion or dysfunction, 
elevated SLC7A11 expression results in cystine 
accumulation, leading to aberrant disulfide 
bond formation within the actin cytoskeleton 
and consequently inducing disulfidptosis [18, 
21] (Figure 1). Consequently, SLC7A11 oper-
ates as a “double-edged sword” in the regula-
tion of cellular demise. On one hand, SLC7A11 
inhibits ferroptosis by balancing intracellular 
cystine/glutamate homeostasis and enhancing 
antioxidant activity; on the other hand, exces-
sive expression in the context of NADPH insuf-
ficiency induces cystine accumulation and trig-
gers disulfide stress-dependent disulfidptosis 
(Figure 1).

Diverse regulatory mechanisms of tumor drug 
resistance

Tumor drug resistance is mediated by a com-
plex network of molecular pathways, genetic 
alterations, cellular processes, and regulatory 
mechanisms. Specifically, these mechanisms 
encompass diminished drug uptake, height-
ened intracellular drug efflux, drug neutraliza-
tion mediated by GSH, nuclear pore complex 
alterations, enhanced DNA repair capabilities, 
modifications of β-tubulin as drug target mole-
cules during mitosis, altered expression of 
apoptosis-regulatory proteins, epithelial-mes-
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Figure 1. Structure and basic functions of the SLC7A11 gene and its encoded protein. Cytoplasmic cystine is re-
duced to cysteine by NADPH, serving as a precursor for GSH synthesis alongside glutamate and glycine. GSH acts as 
a cofactor for GPX4, reducing lipid peroxides to lipid alcohols. This process maintains intracellular redox homeosta-
sis and inhibits ferroptosis. The antioxidant activity mediated by SLC7A11 requires NADPH consumption. If NADPH 
is deficient or impaired, cystine accumulates in cells overexpressing SLC7A11, causing abnormal disulfide bond 
formation in the actin cytoskeleton and inducing disulfidptosis.

enchymal transition (EMT), induction of tumor 
cell dormancy, and dynamic interplay between 
tumor cells and components of the tumor 
microenvironment (TME) [21-24] (Figure 2).

Water-soluble therapeutic agents gain entry 
into cells predominantly through active trans-
port processes facilitated by sodium-depen-
dent transporters, copper transport proteins, 
and organic cation transporters localized at  
cellular or plasma membranes [21, 25]. Intra- 
cellular drug efflux is primarily regulated by six 
subgroups of the ABC transporter family (ABCA-
ABCE, ABCG), among which ABCB1, ABCC1, 
and ABCG2 are recognized as key mediators  
of enhanced drug efflux [21, 26]. GSH shows  
a high affinity for cisplatin, competitively inhi- 
biting cisplatin’s binding to DNA. Additionally, 
blocking the passage of platinum agents 

through nuclear pore complexes attenuates 
their ability to induce DNA double-strand  
breaks [21, 22]. Taxanes exert anticancer 
effects by modulating the assembly and depo-
lymerization of α-tubulin and β-tubulin su- 
bunits forming microtubules [23]. EMT, a trans-
differentiation process, provides cancer cells 
with survival signals, potentially activating  
ABC transporters, decreasing cell proliferation, 
and promoting anti-apoptotic pathways [24, 
27]. Tumor cell dormancy, characterized by 
halted cell division, enhances drug resistance 
by reducing metabolic activity and mRNA syn-
thesis efficiency [21]. The TME provides a 
microenvironment for direct and indirect inter-
actions, significantly impacting the develop-
ment of anticancer therapy resistance [21,  
28]. These biological processes promote  
multidrug resistance in chemotherapy by acti-
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Figure 2. Mechanisms of tumor drug resistance. The regulatory network of tumor drug resistance involves complex, 
multifaceted, multi-level, and multi-gene biological processes. Key mechanisms include reduced cellular drug up-
take, increased intracellular drug efflux, GSH-mediated drug neutralization, nuclear pore closure, enhanced DNA 
repair, tubulin alterations, EMT, increased tumor cell dormancy, and complex interactions between tumor cells and 
the TME.

vating apoptosis, cell cycle, autophagy, ferrop-
tosis, and other related signaling pathways [10, 
26].

The dual regulatory role of SLC7A11 in tumor 
drug resistance: definition and molecular 
basis

Pathways through which SLC7A11 promotes 
tumor drug resistance

SLC7A11 promotes tumor resistance by inhibit-
ing ferroptosis: Ferroptosis is an iron-depen-

dent cell death modality, clearly distinct from 
apoptosis, necrosis, and autophagy, and has 
recently gained attention as a potential strate-
gy to overcome tumor drug resistance [10]. 
Ferroptosis initiation pathways mainly involve 
GPX4 regulation, iron metabolism, and lipid 
metabolism, with SLC7A11 functioning as the 
critical transporter of the Xc- system within the 
GPX4 regulatory pathway [10]. Under regulation 
by the chaperone protein SLC3A2 (4F2hc/
CD98), SLC7A11 translocates to the cell mem-
brane, facilitating cystine transport, glutathi-
one synthesis, GPX4 activity enhancement, and 
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lipid peroxide reduction, thus preventing ferr- 
optosis through the SLC7A11-SLC3A2-GPX4 
pathway [16, 19]. Consequently, many studies 
have focused on the ferroptosis signaling  
pathway to elucidate SLC7A11’s role in chemo-
therapy, targeted therapy, and immunotherapy 
resistance.

In paclitaxel-resistant endometrial cancer (EC) 
and docetaxel-resistant prostate cancer (PC) 
cells, SLC7A11 knockdown significantly increa- 
sed ROS, MDA, and Fe2+ levels, inducing ferrop-
tosis and enhancing chemotherapy sensitivity 
[44, 45]. Additionally, SLC7A11 expression was 
elevated in cisplatin-resistant tissues, cells, or 
organoids from gastric, bladder, ovarian, and 
oral squamous cell carcinoma, inhibiting lipid 
peroxide accumulation and promoting drug 
resistance [31, 32, 36-39, 65]. Furthermore, 
baicalin improved oxaliplatin sensitivity in resis-
tant gastric cancer (GC) cells by disrupting iron 
homeostasis, enhancing antioxidant defense, 
and activating the p53-mediated SLC7A11/
GPX4/ROS ferroptosis pathway [41]. In 5- 
fluorouracil-resistant GC cells, STAT3 inhibi- 
tion downregulated ferroptosis-related genes 
(SLC7A11, GPX4, and FTH1), restoring chemo-
therapy sensitivity [52].

Ferroptosis is also closely related to resistan- 
ce in targeted therapy and immunotherapy. In 
gefitinib- and sorafenib-resistant cells, target-
ing ABCC5, the NRF2-SLC7A11 axis, FASN/
HIF1α/SLC7A11, or SOCE-CaN-NFAT signaling 
pathways activated ferroptosis, thereby re- 
versing drug resistance [54, 55, 57, 60, 62]. 
SLC7A11 knockdown or ferroptosis induction 
by erastin increased MDA, reduced tumor 
growth, and reversed TKI resistance induced  
by IL-6-mediated SLC7A11 upregulation via the 
JAK2/STAT3 pathway in renal cell carcinoma 
cells [66]. Persistent mTOR/4EBP1/SLC7A11 
activity contributed to ferroptosis resistance 
against MEK inhibitors, which was reversed by 
AKT-mediated inhibition of SLC7A11 protein 
synthesis [66]. Additionally, SLC7A11 knock-
down in immunotherapy-resistant cells in- 
creased ferroptosis sensitivity, decreased 
myeloid-derived suppressor cell (MDSC)-media- 
ted CD8+ T-cell suppression, and enhanced 
anti-PD-L1 efficacy, indicating that SLC7A11 
regulates immunotherapy resistance via ferrop-
tosis [64] (Figure 3).

Regulation of classical multidrug resistance 
(MDR) pathways: Beyond ferroptosis suppres-

sion, SLC7A11 critically modulates classical 
MDR pathways through interconnected mecha-
nisms, including the synergistic regulation of 
drug efflux pumps, DNA damage repair, and 
apoptosis resistance.

The role of synergistic regulation of drug efflux 
pumps is reflected in the fact that SLC7A11 
modulates the thiolation status of P-glycopro- 
tein (P-gp) by sustaining intracellular GSH lev-
els, thereby stabilizing P-gp membrane localiza-
tion and enhancing its drug efflux function [21, 
26]. Concurrently, SLC7A11 supplies GSH as a 
co-transport substrate for multidrug resistan- 
ce-associated protein 1 (MRP1/ABCC1), indi- 
rectly potentiating the activity of ABC transport-
er family members and augmenting drug ex- 
trusion capacity [21, 26]. Clinical correlative 
studies demonstrate significantly positive 
associations between SLC7A11 expression  
levels and ABC transporter activity in malignan-
cies such as breast and OC [23, 25]. This  
synergistic interaction may constitute a critical 
factor underlying the failure of conventional 
chemotherapy.

SLC7A11 also promotes tumor drug resistance 
by enhancing DNA damage repair. Recent stud-
ies have shown that SLC7A11 can regulate the 
DNA damage repair system through several 
mechanisms [21, 22]. At the metabolic regula-
tion level, SLC7A11-mediated cystine uptake 
provides key raw materials for DNA synthesis 
and repair. Cysteine produced by cystine me- 
tabolism is an essential precursor for dCTP syn-
thesis and maintains nucleotide pool balance 
to ensure the supply of materials required for 
DNA damage repair. In cisplatin-resistant cells, 
SLC7A11 knockdown reduced dCTP levels [22]. 
In terms of oxidative damage protection, the 
SLC7A11-GSH system plays an important role: 
it clears therapy-induced ROS to protect nucle-
ar genome stability and maintains the reduced 
state of repair enzymes (e.g., PARP1, XRCC1)  
to ensure their catalytic activity [21, 22, 27]. 
Regarding repair complex formation, co-immu-
noprecipitation confirmed a direct interaction 
between SLC7A11 and XRCC1, promoted the 
recruitment of repair complexes to damage sit- 
es, and enhanced base excision repair and 
nucleotide excision repair pathway activities. 
Clinical sample analysis shows elevated expres-
sion levels of DNA damage repair markers in 
SLC7A11-high tumors [22, 27].
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Figure 3. Current status of SLC7A11 in regulating tumor drug resistance. In chemoresistance, SLC7A11 positively 
regulates platinum resistance. It is highly expressed in platinum-resistant ovarian cancer, bladder cancer, Non-
small cell lung cancer, and oral squamous cell carcinoma. It promotes resistance through mechanisms. In taxane 
resistance, SLC7A11 plays a dual regulatory role. High expression of SLC7A11 in docetaxel-resistant endometrial 
and prostate cancers enhances resistance by inhibiting ferroptosis. Conversely, low SLC7A11 expression occurs in 
paclitaxel-resistant ovarian cancer, where overexpression of SLC7A11 suppresses drug resistance. In doxorubicin 
resistance, low SLC7A11 expression in BC increases ROS levels and enhances P-gp-mediated drug efflux, thus 
promoting resistance. SLC7A11 positively regulates 5-fluorouracil resistance in gastric cancer; inhibiting the STAT3 
signaling pathway decreases SLC7A11 expression, enhancing chemosensitivity. In targeted therapy resistance, 
SLC7A11 enhances resistance to gefitinib or osimertinib in lung cancer and is positively regulated by AKR1B1 and 
negatively by manolide. In trastuzumab-resistant bladder cancer, circ-BGN binds SLC7A11 and OTUB1 proteins, 
facilitating OTUB1-mediated SLC7A11 deubiquitination, thus enhancing resistance. In liver cancer and nasopharyn-
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SLC7A11 promotes tumor drug resistance th- 
rough apoptosis resistance mechanisms: SLC- 
7A11 enhances tumor cell resistance to apop-
tosis through multiple molecular mechanisms, 
involving three key regulatory levels. Firstly,  
at the mitochondrial level, SLC7A11 stabilizes 
mitochondrial membrane potential and reduc-
es mitochondrial permeability transition pore 
opening, effectively inhibiting cytochrome C 
release from mitochondria to the cytoplasm, 
thereby blocking initiation of the mitochondrial 
apoptosis pathway [21]. Secondly, at the apop-
tosis-related protein regulation level, SLC7A11 
upregulates anti-apoptotic proteins Bcl-2 and 
Bcl-xL while downregulating pro-apoptotic pro-
teins Bax and Bak, leading to an increased 
Bcl-2/Bax ratio and further reinforcing mito-
chondrial outer membrane stability [21, 26]. 
Finally, at the apoptosis execution stage, 
SLC7A11 inhibits caspase-9 activation, blocks 
downstream cleavage activation of caspase- 
3/7, and ultimately suppresses characteristic 
apoptotic events such as PARP cleavage [21, 
24]. These synergistic mechanisms collectively 
constitute the SLC7A11-mediated apoptosis 
resistance network, providing tumor cells with 
a robust survival advantage [21].

Analysis of clinical samples has demonstrat- 
ed an inverse correlation between SLC7A11 
expression and the apoptosis marker cleaved 
caspase-3, underscoring its critical role in clini-
cal drug resistance [21, 24, 33, 40]. These  
findings provide a theoretical foundation for 
developing combination therapeutic strategies 
targeting the SLC7A11-apoptosis regulatory 
axis [21, 27].

SLC7A11-mediated tumor microenvironment 
remodeling mechanisms: SLC7A11 plays a piv-
otal role in constructing a tumor-promoting  
ecosystem by regulating metabolic interac- 
tions between tumor cells and the microen- 
vironment.

In metabolic reprogramming, glutamate efflux 
mediated by SLC7A11 is taken up by cancer-
associated fibroblasts (CAFs), where it under-
goes transamination to generate α-ketogluta- 

rate. This process enhances CAF energy metab-
olism and cytokine secretion capabilities, 
thereby establishing a “tumor cell-CAF” meta-
bolic symbiosis network [16, 19]. Such meta-
bolic crosstalk significantly alters the phy- 
sicochemical properties of the tumor microen-
vironment, manifesting as decreased extracel-
lular pH and lactate accumulation [16, 19, 28].

Regarding immune microenvironment regula-
tion, SLC7A11 establishes an immunosuppres-
sive barrier through multiple mechanisms [17, 
19, 79]: it depletes microenvironmental GSH, 
reducing natural killer cell cytotoxicity; induces 
M2-type macrophage polarization [17, 19]; sup-
presses CD8+ T-cell infiltration [17, 79]; and 
upregulates PD-L1 expression via the ROS-NF-
κB signaling pathway [17]. Single-cell transcrip-
tomic analysis revealed increased proportions 
of immunosuppressive cells (e.g., MDSCs, 
Tregs) in SLC7A11-high regions, forming a char-
acteristic “immune desert” phenotype [17].

Additionally, SLC7A11 promotes angiogenesis: 
effluxed glutamate directly stimulates endo- 
thelial cell migration [16, 18], and SLC7A11 
upregulates VEGF expression by stabilizing  
HIF-1α protein, leading to increased microvas-
cular density [16]. Preclinical studies have  
confirmed that targeted inhibition of SLC7A11 
normalizes tumor vasculature and enhances 
chemotherapeutic drug delivery efficiency [16, 
81].

SLC7A11-enhanced pathways for tumor drug 
sensitization

Although SLC7A11 generally promotes drug 
resistance, its overexpression can paradoxi- 
cally enhance tumor cell sensitivity to therapy 
under specific conditions. This sensitization 
effect is primarily manifested in:

SLC7A11 may inhibit paclitaxel resistance in 
OC by promoting autophagy: Autophagy repre-
sents a cellular self-degradation mechanism 
responsible for recycling intracellular mate- 
rials. This biological process involves sequen-
tial steps: phagophore nucleation, autophago-
some formation, fusion of autophagosomes 

geal carcinoma, resistance to sorafenib, SLC7A11 expression is positively regulated by FASN1, ABCC5, and other 
genes, promoting drug resistance through ferroptosis inhibition. However, in sorafenib-resistant hepatocellular car-
cinoma cells (HCCLM3R and HepG2R), SLC7A11 expression is reduced, suggesting its potential involvement in 
suppressing resistance via disulfidptosis. In immunotherapy resistance, MerTK impairs PD-L1 blockade efficacy by 
recruiting MDSCs and upregulating SLC7A11, thereby inhibiting ferroptosis.
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with lysosomes, and subsequent degradation 
within autolysosomes [67]. During tumor de- 
velopment, autophagy exhibits context-depen-
dent dual functionality, described as a “double-
edged sword”, since it can either promote cell 
survival or contribute to cell death in drug-resis-
tant tumors [68, 69]. For example, circMAPK-
BP1 expression is elevated in oral squamous 
cell carcinoma resistant to cisplatin and aug-
ments autophagy, subsequently activating the 
miR-17-3p/TGFβ2 pathway and leading to in- 
creased cisplatin resistance [70]. Conversely, 
autophagy has been shown to counteract pa- 
clitaxel resistance [6, 71]. In nasopharyngeal 
carcinoma, high levels of CENPN positively  
correlate with resistance to paclitaxel and 
inversely correlate with autophagic activity and 
VAMP8 expression [70]. Silencing CENPN sig-
nificantly enhances sensitivity to paclitaxel via 
activation of the CREB-VAMP8 signaling cas-
cade, thereby inducing autophagy [71]. Si- 
milarly, a recent study identified SLC7A11 as an 
autophagy-related gene based on three autoph-
agy-related datasets [6]. This gene is signifi-
cantly downregulated in paclitaxel-resistant OC 
tissues and cells and interacts with multiple 
resistance-related proteins [6]. Furthermore, 
pan-cancer analysis across 32 tumor types has 
demonstrated that SLC7A11 positively regu-
lates autophagy pathway proteins STX17, 
RAB33B, and UVRAG through a ceRNA mecha-
nism [6]. Overexpression of SLC7A11 signifi-
cantly induces the expression of STX17, 
RAB33B, and other autophagy-related proteins 
such as LC3, Atg16L1, and Atg7, which further 
increase under paclitaxel treatment [6]. These 
findings suggest that SLC7A11 potentially pro-
motes autophagy to suppress paclitaxel resis-
tance in OC (Figure 3).

Triggering disulfidptosis: Under NADPH-deplet- 
ed conditions, SLC7A11-mediated excessive 
cystine uptake induces intracellular disulfide 
stress, leading to aberrant crosslinking of the 
actin cytoskeleton and consequent cell death 
[9, 11, 18, 20, 75]. For instance, in sora- 
fenib-resistant hepatocellular carcinoma (HCC) 
cells, inhibiting NADPH generation converted 
SLC7A11 from a “pro-survival molecule” to an 
“executioner of death”, thereby restoring drug 
sensitivity through disulfidptosis [12].

Paradoxically, in doxorubicin-resistant breast 
cancer, low SLC7A11 expression causes ROS 

accumulation that activates P-gp-mediated 
drug efflux [50]. Conversely, SLC7A11 overex-
pression reverses resistance by maintaining 
redox homeostasis to suppress P-gp function 
[16, 19, 50].

Dynamic regulation and microenvironment 
dependency of dual functions

The dual roles of SLC7A11 are not contradicto-
ry but reflect its dynamic responsiveness to the 
tumor microenvironment [9, 18, 20]. The redox 
status of NADPH serves as a critical determi-
nant for SLC7A11’s functional switch [9, 20]. In 
reduced microenvironments with high NADPH, 
SLC7A11 primarily exerts antioxidant effects 
that promote drug resistance [9, 16, 20]. Under 
oxidative stress conditions with NADPH deple-
tion, SLC7A11-mediated cystine accumulation 
triggers disulfidptosis, enhancing therapeutic 
sensitivity [9, 11, 18, 20, 75]. Notably, tissue-
specific regulatory networks - such as the 
antagonism between autophagy and ferropto-
sis pathways in OC - further amplify the func-
tional complexity of SLC7A11 [9, 20].

Correlation between SLC7A11 and chemore-
sistance

SLC7A11 positively regulates platinum-based 
chemotherapy resistance

Platinum-based chemotherapeutics, such as 
carboplatin, cisplatin, oxaliplatin, nedaplatin, 
and lobaplatin, constitute a category of cell 
cycle non-specific drugs. They primarily exert 
anti-cancer effects by binding DNA, thereby 
obstructing processes of replication and tran-
scription essential for cancer cell proliferation 
[29]. Nevertheless, the clinical efficacy of these 
platinum agents is severely hindered by persis-
tent issues of chemoresistance [29].

Notably, elevated expression of SLC7A11 is 
identified in platinum-resistant OC tissues and 
corresponding cellular models, marking it as  
a potential indicator of chemoresistance [30, 
31]. A retrospective analysis conducted on 192 
epithelial OC specimens revealed substantially 
increased levels of SLC7A11 and GPX4 in plati-
num-resistant cases [30]. Simultaneously, ele-
vated expression of these two proteins was 
strongly associated with a 60-fold greater like- 
lihood of resistance to platinum chemotherapy 
(P < 0.001) [30]. Additionally, experiments 
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involving the silencing of SLC7A11 or GPX4 
expression in cisplatin-resistant OC cell lines 
(A2780/CisR and SKOV3/CisR) demonstrated a 
reversal of resistance phenotypes [30]. A sub-
sequent investigation provided evidence that 
miR-194-5p directly targets SLC7A11 tran-
scripts in cisplatin-resistant OC cells, while 
enforced SLC7A11 overexpression counteract-
ed the enhanced cisplatin sensitivity mediated 
by miR-194-5p [31].

SLC7A11 expression increases significantly  
in cisplatin-resistant bladder cancer cells or 
organoids via ceRNA or N6-methylade-nosine 
(m6A) mechanisms, potentially enhancing cis-
platin resistance by elevating GSH levels [32, 
33]. SLC7A11 is highly expressed in cisplatin-
resistant bladder cancer tissues as a down-
stream target of microRNA-27a, promoting 
resistance by regulating glutathione biosynthe-
sis [33]. m6A, an RNA modification, dynamically 
regulates mRNA splicing, transport, stability, 
and translation via methyltransferases, deme- 
thylases, and methylation-reading proteins [34, 
35]. In cisplatin-resistant bladder cancer cells, 
decreased m6A levels on SLC7A11 mRNA 
reduced binding with the m6A reader YTHDF3, 
increasing mRNA stability and SLC7A11 pro- 
tein expression [32]. Knockdown of SLC7A11 
enhanced cisplatin sensitivity in bladder can-
cer organoids [32].

In non-small cell lung cancer (NSCLC), SLC7A11 
positively regulates cisplatin resistance [36-
38]. LncRNA ITGB2-AS1 expression significant-
ly increases in cisplatin-resistant NSCLC cells. 
Knockdown of ITGB2-AS1 reduced SLC7A11 
expression and inhibited NSCLC cell prolifera-
tion and cisplatin resistance [36]. Further- 
more, both α-Hederin and Dihydroisotansh- 
inone I reversed cisplatin resistance by reduc-
ing SLC7A11 protein levels in resistant NSCLC 
cells [37, 38].

SLC7A11 expression also correlates positively 
with cisplatin or oxaliplatin resistance in GC 
[39-41]. SLC7A11 and FAM120A are upregulat-
ed, whereas SLC7A11-AS1 is downregulated  
in cisplatin-resistant GC tissues [39, 40]. 
SLC7A11-AS1 reduces intracellular GSH and 
elevates ROS levels by interacting with miR-
33a-5p or directly inhibiting SLC7A11 expres-
sion [39]. FAM120A stabilizes SLC7A11 mRNA, 
enhancing cisplatin resistance [40]. One study 

reported increased SLC7A11 expression in 
oxaliplatin-resistant GC cells, indicating that 
Baicalin improves chemosensitivity by activat-
ing the p53-mediated SLC7A11/GPX4/ROS 
pathway [41] (Figure 3).

SLC7A11 plays a dual role in taxane chemore-
sistance

Taxanes, including paclitaxel, docetaxel, and 
their derivatives, are anticancer substances 
derived from the bark or needles of Taxus chi-
nensis. These compounds have potent cytotox-
ic effects and are widely used for targeting 
tumor microtubules in cancer therapy. However, 
their effectiveness is limited by chemotherapy 
resistance [42].

SLC7A11 is identified as a beneficial factor in 
overcoming paclitaxel resistance in OC [6, 43]. 
One study demonstrated that SLC7A11 expres-
sion was significantly downregulated by 16-fold 
in paclitaxel-resistant OC cells compared to 
parental cells, based on microarray analysis 
[43]. Although it was initially proposed that 
SLC7A11 had opposite roles in paclitaxel and 
cisplatin resistance, a detailed investigation 
was not performed. Moreover, another investi-
gation employed extensive bioinformatic and 
experimental validation approaches to reveal 
substantially diminished SLC7A11 mRNA and 
protein levels in paclitaxel-resistant OC tissu- 
es and resistant cell variants (HeyA8-R and 
SKOV3-R) [6]. Forced expression of SLC7A11  
in paclitaxel-resistant HeyA8-R cells led to 
reduced cell viability, impaired colony formation 
capacity, cell cycle arrest, increased apoptosis, 
and significant restoration of sensitivity to 
paclitaxel, effectively reversing resistance [6].

Conversely, three studies indicated that SLC- 
7A11 functions as an adverse regulator of 
paclitaxel resistance in EC and docetaxel resis-
tance in PC [44-46]. Lin et al. found that 
Fanconi anemia complementation group D2 
(Fancd2) and SLC7A11 were significantly ele-
vated in paclitaxel-resistant EC cells (Ishikawa/
TAX). Knockdown of Fancd2 enhanced pacli-
taxel sensitivity and markedly reduced SLC7A11  
protein levels in Ishikawa/TAX cells [44]. In PC, 
docetaxel-resistant cells exhibited increased 
resistance to ferroptosis with elevated expres-
sion of PCAT1 and SLC7A11 [45, 46]. More- 
over, SLC7A11 expression is positively regulat-
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ed by PCAT1, and inhibition of SLC7A11 re- 
verses resistance to docetaxel and ferroptosis 
inducers in PCAT1-overexpressing PC cells [45, 
46] (Figure 3).

SLC7A11 negatively regulates doxorubicin 
chemoresistance

Doxorubicin, a widely used anthracycline  
anticancer drug, causes DNA damage and sub-
sequent cytotoxicity by intercalating DNA 
strands, inhibits topoisomerase II activity, and 
promotes ROS accumulation [47-49]. However, 
its clinical utility is significantly compromised 
by resistance. A pioneering study demonstrat-
ed that increased ROS combined with sup-
pressed cystine uptake via inhibition of 
SLC7A11 is integral to doxorubicin-induced 
overexpression of P-gp and subsequent drug 
resistance [50]. The researchers reported 
markedly reduced SLC7A11 expression in 
breast cancer (BC) cell line variants resistant to 
doxorubicin (MCF-7R) compared to their sensi-
tive counterparts (MCF-7S). Suppression of 
SLC7A11 expression led to decreased GSH  
synthesis, elevated ROS levels, and increased 
drug efflux mediated by P-gp. Conversely, over-
expression of SLC7A11 increases doxorubicin 
sensitivity in both sensitive and resistant BC 
cells. Additionally, cysteine deprivation in- 
creases ROS levels and P-gp expression, while 
cysteine supplementation decreases both. 
Collectively, these findings suggest that 
SLC7A11 and cysteine regulation critically influ-
ence P-gp expression and function, identifying 
SLC7A11 as a potential therapeutic target for 
overcoming doxorubicin resistance in BC [50] 
(Figure 3).

SLC7A11 positively regulates 5-fluorouracil 
chemoresistance

5-fluorouracil (5-FU) is an antimetabolite che-
motherapy agent. Its active metabolite, fluoro-
uracil deoxynucleotide, inhibits thymidylate 
synthase and blocks DNA synthesis, thereby 
exerting antitumor effects. Currently, resis-
tance to 5-FU remains a primary reason for 
poor chemotherapy outcomes in GC [51]. To 
date, a single investigation has confirmed 
increased SLC7A11 expression levels in GC 
cells and xenograft models resistant to 5-FU. 
Treatment of resistant GC cells with the STAT3 
inhibitor W1131 effectively lowered SLC7A11 
expression, thereby restoring their susceptibili-

ty to 5-FU [52]. Collectively, these observations 
suggest a contributory role for SLC7A11 in pro-
moting chemoresistance to 5-FU in GC (Figure 
3).

Correlation between SLC7A11 and targeted 
therapy resistance

The rationale behind targeted therapies is to 
enhance cancer treatment precision through 
selective inhibition of specific genetic muta-
tions or aberrantly expressed proteins within 
tumors. Nevertheless, resistance remains a 
substantial obstacle limiting their clinical ben-
efit. Recent evidence indicates that SLC7A11 
may influence resistance to targeted therapies 
in various malignancies, including breast, lung, 
liver cancers, and nasopharyngeal carcinoma 
[12, 53-60]. 

Mutations in the epidermal growth factor recep-
tor (EGFR) are frequent therapeutic targets in 
LC; however, acquired resistance substantially 
restricts the efficacy of EGFR tyrosine kinase 
inhibitors (TKIs) [53]. Elevated SLC7A11 ex- 
pression has been observed in lung cancer 
cells resistant to the EGFR inhibitor gefitinib, 
possibly contributing to enhanced antioxidant 
defenses and subsequent gefitinib resistance 
[55]. Furthermore, manoalide has been shown 
to restore sensitivity in osimertinib-resistant  
LC cells by downregulating SLC7A11 expres-
sion [54]. Additionally, AKR1B1 activation was 
reported to elevate SLC7A11 levels, while 
AKR1B1 inhibition restored EGFR-TKI respon-
siveness and delayed acquired resistance in 
LC-derived xenograft models [53].

In BC, human epidermal growth factor receptor 
2 serves as a biomarker guiding targeted  
therapeutic interventions. Research indicates 
that high circ-BGN expression in trastuzumab-
resistant BC cells and tissues stabilizes 
SLC7A11 through OTUB1-mediated deubiquiti-
nation, thereby contributing to trastuzumab 
resistance [56].

Sorafenib, the first multi-target TKI approved 
for advanced HCC, encounters significant chal-
lenges from acquired resistance that diminish 
its clinical utility [61]. Previous studies illustrat-
ed that elevated SLC7A11 expression in 
sorafenib-resistant cells of HCC and nasopha-
ryngeal carcinoma is positively regulated by 
various genes, including FASN1 [60], ABCC5 
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[62], LncRNA DUXAP8 [60], STIM1 [57], and 
NAT10 [63]. These genes enhance resistance 
primarily through decreasing lipid peroxide 
accumulation. Notably, recent data indicate 
that increased SLC7A11 in sorafenib-resistant 
HCC lines (HCCLM3R and HepG2R) may facili-
tate disulfidptosis, thus suppressing resistance 
[12]. This highlights a context-dependent, dual 
regulatory role of SLC7A11 in modulating 
sorafenib resistance (Figure 3).

Correlation between SLC7A11 and tumor im-
munotherapy resistance

Tumor immunotherapy primarily employs im- 
mune checkpoint inhibitors (PD-1/PD-L1 block-
ers) to boost immune responses against tu- 
mors. However, immunotherapy resistance re- 
mains a significant challenge [64]. In anti-PD-
L1-resistant HCC cells and tissues, levels of 
SLC7A11 and MerTK were significantly elevat- 
ed and positively correlated. Knockdown of 
SLC7A11 and MerTK improved sensitivity to 
PD-L1 blockade [64]. Additionally, MerTK inhibi-
tion reduced SLC7A11 expression, promoted 
ferroptosis, and decreased MDSC infiltration 
[64]. These findings suggest that MerTK posi-
tively regulates immunotherapy resistance in 
HCC by upregulating SLC7A11, thereby provid-
ing an effective strategy to enhance PD-L1 
blockade efficacy (Figure 3).

Prognostic value of SLC7A11 in tumor pro-
gression and chemoresistance

Treatment failure and poor clinical outcomes in 
cancer patients frequently result from difficul-
ties in early tumor detection and acquired 
resistance to chemotherapeutic agents [72, 
73]. Remarkably, accumulating evidence indi-
cates that the prognostic significance of 
SLC7A11 expression varies substantially ac- 
ross diverse cancers and chemoresistant sce-
narios [6, 30, 32, 33, 40]. For instance, 
SLC7A11 acts as a negative regulator of pacli-
taxel resistance in OC [6, 43]. Its low expres-
sion correlates significantly with poor overall 
survival (OS), progression-free survival (PFS), 
and post-progression survival (PPS) in OC 
patients [6]. Furthermore, simultaneous high 
expression of SLC7A11 and positively associ-
ated autophagy genes, such as UVRAG or 
STX17, predicts improved patient prognosis [6]. 
However, in platinum-resistant OC, increased 

SLC7A11 levels are associated with adverse 
clinical outcomes, including poor OS and PFS; 
notably, concurrent high expression of SLC- 
7A11 and GPX4 is an independent prognostic 
indicator for poorer OS and PFS [30]. Similarly, 
SLC7A11 is upregulated in cisplatin-resistant 
gastric and bladder cancers. Its elevated 
expression correlates with poor OS, PPS, and 
first progression (FP) in GC patients, as well as 
poor OS, disease-specific survival (DSS), and 
progression-free interval (PFI) in bladder can-
cer patients [32, 40]. Moreover, increased 
SLC7A11 expression significantly predicts poor-
er prognosis in terms of PFS and cancer-specif-
ic survival (CSS) among patients with cisplatin-
resistant bladder cancer [33] (Table 1).

Opportunities for SLC7A11 in regulating tu-
mor drug resistance

Inducing cell death through SLC7A11 inhibitors 
has significant clinical potential for reversing 
tumor resistance. Currently, SLC7A11 inhibi- 
tors mainly include erastin, sulfasalazine, and 
sorafenib, which promote ferroptosis by inhibit-
ing the Xc- system [74, 75]. Studies report that 
combining erastin with cisplatin or docetaxel 
enhances cytotoxicity against human OC cells, 
cisplatin-resistant OC cells, and docetaxel-
resistant NSCLC cells [76, 77]. Furthermore, 
erastin reverses ABCB1-mediated docetaxel 
resistance in ovarian and PC cells [46, 78]. 
Sulfasalazine and sorafenib, approved drugs 
for inflammatory diseases and multi-targeted 
anticancer therapy, respectively [79], also in- 
crease drug sensitivity in resistant cells by 
inhibiting SLC7A11 activity [33, 58, 80, 81].

SLC7A11 holds promise in suppressing tumor 
drug resistance as a positive regulator of 
autophagy or disulfidptosis. Only one study 
identifies SLC7A11 as positively regulating au- 
tophagy to inhibit paclitaxel resistance in OC 
via ceRNA mechanisms [6]. Disulfidptosis, a 
recently identified programmed cell death path-
way, has drawn considerable research interest 
[82]. Disulfidptosis is characterized by high 
SLC7A11 expression, depletion of NADPH syn-
thesized through the pentose phosphate path-
way, and subsequent accumulation of intracel-
lular cystine. This cystine accumulation pro- 
motes abnormal disulfide bond formation am- 
ong actin cytoskeletal proteins [75]. Notably, 
recent research demonstrated that disulfidpto-
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Table 1. Summary of SLC7A11 regulation of tumor drug resistance

SLC7A11 Drugs Tumor Type Drug-resistant 
Cell Lines Relative Indexes Pathways/

Mechanisms Prognosis Ref.

Downregulate Adriamycin Adriamycin resistant bladder cancer cells MCF-7R ROS increases, P-gp expression increases - - [50]

Downregulate Paclitaxel Paclitaxel resistant ovarian cancer cells W1PR - - - [43]

Downregulate Paclitaxel Paclitaxel resistant tissues and cells of 
ovarian cancer

HeyA8-R & 
SKOV3-R

After overexpression of SLC7A11, clonogenic ability 
decreased, cell cycle arrest and apoptosis increased

Cellular autophagy, 
ceRNA

Poor prognosis in OS, 
PFS, PPS

[6]

Upregulate Paclitaxel Endometrial cancer paclitaxel-resistant cells Ishikawa/TAX ROS, MDA, GSH, Fe2+ reduce Ferroptosis - [44]

Upregulate Docetaxel Prostate cancer cells are resistant to 
docetaxel

PC3/DR & 
22RV1/DR

After knocking down SLC7A11, ROS levels and total 
iron content increased

Ferroptosis - [45]

Upregulate Docetaxel Prostate cancer cells resistant to docetaxel PC3-DR & 
DU145-DR

Reduction of lipid peroxides Ferroptosis - [46]

Upregulate Platinum & 
Cisplatin

Epithelial ovarian cancer platinum resistant 
tissue and cisplatin resistant cells

A2780/CisR & 
SKOV3/CisR

Knocking down SLC7A11 reduces cell viability - Poor prognosis in OS, PFS [30]

Upregulate Cisplatin Cisplatin resistant tissue in gastric cancer - - Ferroptosis - [39]

Upregulate Cisplatin Cisplatin resistant non-small cell lung 
cancer cells

A549/DDP - Ferroptosis - [38]

Upregulate Cisplatin Cisplatin resistant cells and organoids in 
bladder cancer

T24R2 Reduction of lipid peroxides Ferroptosis, m6A Poor prognosis in OS, 
DSS, PFI

[32]

Upregulate Cisplatin Cisplatin resistant tissues and cells in ovar-
ian cancer

SKOV3/DDP & 
A2780/DDP

4-HNE, Fe2+ reduce Ferroptosis, ceRNA - [31]

Upregulate Cisplatin Cisplatin chemotherapy for bladder cancer EJ-R, D4-R & 
G7-R

GSH increase - Poor prognosis in PFS, CSS [33]

Upregulate Cisplatin Cisplatin resistant tissues and cells in 
gastric cancer

SGC7901/DDP GSH increase, ROS reduction - Poor prognosis in OS, FP, 
PPS

[40]

Upregulate Oxaliplatin Gastric cancer oxaliplatin resistant cells HGC27/L Reduction of lipid peroxides Ferroptosis - [41]

Upregulate 5-Fluorouracil 5-FU resistant gastric cancer cells MGC803/5-FU Reduction of lipid peroxides, Fe2+ reduce Ferroptosis - [52]

Upregulate Gefitinib Lung cancer cells resistant to gefitinib HCC827GR ROS reduction - - [55]

Upregulate Osimertinib Osimertinib resistant lung cancer cells HCC827OR Reduced synthesis of GSH Ferroptosis - [54]

Upregulate Sorafenib Sorafenib resistant hepatocellular carci-
noma

Huh7-SR & 
7721-SR

Reduction of lipid peroxides Ferroptosis - [59]

Upregulate Sorafenib Sorafenib resistant hepatocellular carci-
noma

Hep3B-SR & 
MHCC97H-SR

Reduction of lipid peroxides Ferroptosis - [57]

Upregulate Sorafenib Sorafenibresistant hepatocellular carcinoma HuH7-SR Reduction of lipid peroxides, Increased expression 
of ABCC5

Ferroptosis - [62]

Downregulate Sorafenib Sorafenibresistant hepatocellular carcinoma HCCLM3R & 
HepG2R

Cell contraction and F-actin contraction Disulfidptosis - [12]

Upregulate PD-L1  
antibody

Hepatocellular carcinoma and tissues 
resistant to PD-L1

Res1-6 Reduction of lipid peroxides Ferroptosis - [83]

Note: overall survival, OS; progression-free survival, PFS; post-progression survival, PPS; disease-specific survival, DSS; progression-free interval, PFI; cancer-specific survival, CSS; first progression, FP.
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sis-related genes correlate with drug sensitivi-
ty. Specifically, inhibition of MYH9 expression 
increased SLC7A11 expression and induced 
disulfidptosis, thereby enhancing sorafenib 
sensitivity in sorafenib-resistant liver cancer 
cells [12].

Challenges of SLC7A11 in regulating tumor 
drug resistance

SLC7A11 exhibits dual roles within a complex 
regulatory network of tumor drug resistance, 
both enhancing and inhibiting resistance. 
Specifically, it inhibits ferroptosis to promote 
resistance, while mediates autophagy and di- 
sulfidptosis to enhance drug sensitivity. How- 
ever, whether these three mechanisms of cell 
death act antagonistically or synergistically re- 
mains unclear and warrants further study. A 
major challenge lies in the fact that disulfidpto-
sis, induced by high SLC7A11 expression, is a 
newly identified form of cell death with many 
unresolved questions. For example, the precise 
molecular mechanism underlying disulfidptosis 
is unclear, as is its potential interaction with 
other redox-related cell death pathways [82]. 
Current studies primarily associate elevated 
SLC7A11 expression with poor prognosis ac- 
ross various drug-resistant tumors, as it mainly 
promotes resistance by inhibiting ferroptosis. 
Thus, SLC7A11 represents a promising thera-
peutic target. However, due to tumor heteroge-
neity, drug-related adverse effects, and toxi- 
city concerns that remain inadequately con-
trolled, development and clinical application of 
SLC7A11 inhibitors are still limited to the pre-
clinical stage.

Conclusion

SLC7A11 is a critical light-chain subunit of the 
Xc- system with transport activity. It influences 
tumor resistance primarily by regulating fe- 
rroptosis and disulfidptosis through controlling 
intracellular cystine levels and GSH synthesis. 
Tumor drug resistance involves complex genet-
ic and biological processes, with SLC7A11 play-
ing diverse regulatory roles and demonstrating 
prognostic significance across different cancer 
types. Current research predominantly high-
lights SLC7A11-mediated inhibition of ferropto-
sis to promote drug resistance. Conversely, lim-
ited studies indicate that SLC7A11 may regu- 
late autophagy or disulfidptosis, suppressing 
paclitaxel resistance in OC, sorafenib resis-

tance in liver cancer, and doxorubicin resis-
tance in BC. However, associations between 
SLC7A11 and carboplatin resistance remain 
unexplored, and SLC7A11-targeted inhibitors 
have not entered clinical practice. In conclu-
sion, SLC7A11 represents both a promising 
therapeutic target and a prognostic biomarker 
in tumor drug resistance, with potential implica-
tions for improving the efficacy of chemothera-
py, targeted therapy, and immunotherapy.
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