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Abstract: Objective: To assess the diagnostic performance of serum prostate-specific antigen (PSA), the Prostate 
Health Index (PHI), and peripheral blood inflammatory markers (neutrophil-lymphocyte ratio (NLR), lymphocyte-
monocyte ratio (LMR), neutrophil-apolipoprotein A1 ratio (NAR) apolipoprotein A1 (ApoA1)) in differentiating prostate 
cancer (PCa) from biopsy-negative benign prostatic hyperplasia (BPH), and to construct an optimized machine learn-
ing diagnostic model. Methods: A retrospective analysis was conducted on 701 patients referred for prostate biopsy 
between March 2018 and January 2024, including 421 PCa and 280 BPH cases. Patients were divided into training 
(60%; n=421), validation (20%; n=140), and test (20%; n=140) cohorts. LASSO regression identified key predictors, 
which were used to develop five machine learning models-logistic regression, decision tree, random forest, support 
vector machine, and XGBoost. model performance was evaluated using ROC and precision-recall curves, calibration 
plots, Brier Scores, and decision curve analysis (DCA). AUCs were compared using the DeLong test. Results: PCa 
patients exhibited higher PSA, Neu, MONO, NLR, NAR, and PHI but lower ApoA1 and LMR than BPH patients (all 
P<0.05). XGBoost achieved the best performance (AUC: training 0.994; validation 0.953; test 0.979), significantly 
surpassing PSA (AUC difference: 0.055-0.118, P<0.001) and PHI (AUC difference: 0.077-0.084, P<0.007). Calibra-
tion curves indicated low Brier Scores (0.0326-0.0751) and excellent model fit. DCA confirmed superior clinical ben-
efit. NLR and NAR were major contributors to PCa risk prediction. Conclusions: The XGBoost model integrating NLR, 
LMR, and NAR demonstrates superior diagnostic accuracy and clinical utility compared with PSA and PHI, potentially 
improving pre-biopsy risk stratification and reducing unnecessary invasive procedures. 
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Introduction

Prostate cancer (PCa) is one of the most com-
mon malignancies in the male genitourinary 
system, particularly in the United States, where 
it ranks as the second most fatal malignancy 
for men, posing a serious health threat to older 
males [1]. In China, the detection rate of PCa 
continues to rise due to improvements in qual-
ity of life and advancements in detection tech-
nologies [2]. However, many patients are diag-
nosed at an advanced stage or with distant 
metastases, leading to poor prognosis and 
increasing mortality each year [3]. Therefore, 
early detection and accurate diagnosis of PCa 
are critical.

Serum prostate-specific antigen (PSA) is a core 
biomarker for early screening and monitoring 

therapeutic effects in PCa, playing a vital role  
in clinical practice [4]. However, PSA’s diagnos-
tic specificity is limited, as its levels can also 
rise in benign prostatic hyperplasia (BPH), pr- 
ostatitis, and other non-malignant conditions, 
affecting its accuracy in differential diagnosis 
[5]. Consequently, there is a pressing need to 
explore new biomarkers that, in combination 
with PSA, can improve the accuracy of PCa 
diagnosis.

Recent studies have highlighted the role of 
inflammation in tumorigenesis. Chronic inflam-
mation and excessive inflammatory responses 
may trigger histiocytic cancers [6]. Approxi- 
mately 20% of cancers are linked to chronic 
inflammatory stimuli, such as gastric cancer 
from gastritis and liver cancer from hepatitis 
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[7]. Neutrophils, through the secretion of in- 
flammatory factors like vascular endothelial 
growth factor (VEGF), interleukins (IL-6/10), 
and prostaglandins, significantly influence the 
tumor microenvironment (TME) in PCa [8, 9]. 
Monocytes and their derivatives, such as mac-
rophages, are crucial in tumor progression, 
spread, and therapeutic responses [10]. Emer- 
ging evidence suggests that circulating inflam-
matory markers (CIMs) like neutrophil-lympho-
cyte ratio (NLR), lymphocyte-monocyte ratio 
(LMR), neutrophil-apolipoprotein A1 ratio (NAR), 
and Prostate Health Index (PHI) have potential 
diagnostic and prognostic applications in oncol-
ogy. Song et al. [11] demonstrated associations 
between NLR, LMR, and platelet-to-lymphocyte 
ratios with breast cancer prognosis, while Shi 
et al. [12] showed that NLR, LMR, and nutrition-
al risk index predict outcomes in non-small cell 
lung cancer. However, systematic research on 
the role of NLR, LMR, NAR, and PHI in the dif-
ferential diagnosis of PCa is lacking.

In this study, we systematically evaluate the 
clinical application of serum PSA, circulating 
inflammatory markers (NLR, LMR, NAR, apoli-
poprotein A1 (ApoA1)), and PHI in distinguishing 
PCa from BPH. By comparing baseline charac-
teristics and inflammatory factor levels in train-
ing, validation, and test groups, key diagnostic 
variables (NLR, LMR, NAR) are selected using 
Lasso regression. Various machine learning 
models are then constructed and evaluated to 
assess model performance comprehensively. 
This study innovates by combining CIMs with 
machine learning techniques to optimize the 
PCa diagnostic model. Its goal is to provide cli- 
nically applicable, accurate, and reliable diag-
nostic tools that reduce unnecessary invasive 
examinations and improve patient prognoses.

Methods and materials

Sample source

We retrospectively evaluated 701 consecutive 
patients (421 PCa and 280 BPH cases.) treated 
between March 2018 and January 2024. The 
PCa cohort comprised patients with histologi-
cally confirmed PCa, while the control cohort 
consisted of men with benign biopsy results 
(primarily BPH). Samples were randomly allo-
cated to training (60%), validation (20%), and 
test sets (20%) with matched case distribu- 

tions (training: 289 PCa/132 BPH; validation: 
100 PCa/40 BPH; test: 95 PCa/45 BPH) for 
model development, validation, and evalua- 
tion. The study was approved by the Ethics 
Committee of The First Affiliated Hospital of 
Xi’an Jiaotong University (Figure 1).

Inclusion and exclusion criteria (PCa patients)

Inclusion criteria: PCa confirmed by prostate 
biopsy or post-surgery pathology; no recent (≤3 
months) infections; no blood/immune system 
abnormalities; complete clinical and lab data.

Exclusion other malignancies; critical organ 
(cardiac, hepatic, or renal) impairment; severe 
infections or chronic inflammatory conditions 
(e.g., prostatitis); autoimmune or hypersensitiv-
ity disorders.

Inclusion and diagnostic criteria (BPH cases)

Inclusion criteria: Controls were biopsy-nega-
tive men with benign disease (predominantly 
BPH) referred for prostate biopsy due to el- 
evated PSA and/or suspicious DRE/imaging 
findings. Histopathology revealed no malignan-
cy, and clinical evaluation was consistent with 
BPH. Men were followed for ≥X months to 
exclude missed cancers (if available). Normal 
bloodwork, biochemistry, immunology, and mi- 
crobiology assessments excluding acute ill-
ness; negative imaging findings for PCa and 
other malignancies (e.g., prostate ultrasound, 
CT, MRI); complete clinical records; no hemato-
logic/immune pathologies.

Clinical data collection

Patient clinical and laboratory data were ob- 
tained through the electronic medical record 
system. Clinical data included age, BMI, and 
histories of smoking, alcohol consumption, 
hypertension, hyperlipidemia, and diabetes. 
Laboratory parameters included PSA, neutro-
phil count (Neu), lymphocyte count (Lym), mo- 
nocyte count (MONO), ApoA1, and calculated 
ratios (NLR, LMR, NAR, PHI).

Model construction

Five machine learning models were construct-
ed: Logistic Regression, Decision Tree (DT), 
Random Forest (RF), Support Vector Machine 
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Figure 1. Research flow chart.
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(SVM), and Extreme Gradient Boosting (XG- 
Boost). All models were implemented using 
mlr3, and predictions were set to return pro- 
babilities (predict type=“prob”). Model optimi-
zation was performed via 5-fold cross-valida-
tion using the training set. Key parameters 
(e.g., DT’s cp and minbucket, RF’s mtry and 
nodesize, SVM’s cost and gamma, XGBoost’s 
eta, nrounds, and maxdepth) were adjusted 
using grid search. Logistic Regression used 
default configurations without extensive tuning. 
The training set was used for model training, 
the validation set for hyperparameter selection 
and preliminary checks, and the test set for 
final performance assessment. Model perfor-
mance was evaluated using accuracy (classif.
acc), Brier Score (classif.bbrier), AUC (classif.
auc), sensitivity (classif.sensitivity), specificity 
(classif.specificity), area under the precision-
recall (PR)curve (classif.prauc), precision (clas-
sif.precision), recall (classif.recall), and F1 score 
(classif.fbeta). Model calibration and clinical 
net benefit were assessed via ROC curves, PR 
curves, calibration curves, and decision curve 
analysis (DCA). SHAP analysis was employed  
to identify the most important features in the 
top-performing model. To compare calibration 
performance, Brier Scores were decomposed 
into per-subject squared errors, and paired 
Wilcoxon signed-rank tests were conducted, 
with Holm correction for multiple comparisons. 
Robustness was confirmed using 2,000 rounds 
of bootstrap resampling and bias-corrected 
accelerated (BCa) 95% confidence intervals.

Outcome measurements

Baseline characteristics of the training, valida-
tion, and test groups were compared. The dif-
ferences in clinical data and CIMs between PCa 
and BPH groups were analyzed. The diagnostic 
ability of serum PSA was evaluated against 
CIMs (Neu, MONO, ApoA1, NLR, LMR, NAR) and 
PHI. Key variables for PCa diagnosis were iden-
tified via Lasso regression, and the diagnostic 
value of NLR, LMR, and NAR was analyzed. Five 
machine learning models (Logistic Regression, 
DT, RF, XGBoost, SVM) were constructed ba- 
sed on the selected variables, and their perfor-
mance was compared across training, valida-
tion, and test groups. A nomogram was used to 
analyze the contribution of NLR, LMR, and NAR 
in PCa risk prediction.

Statistical methods

Statistical analyses were performed using 
SPSS 26.0 and R software. Qualitative data 
were presented as numbers and percentages, 
and inter-group comparisons were made using 
the χ2 test. Quantitative data were tested for 
normal distribution. Normally distributed data 
were expressed as mean±standard deviation 
(SD) and compared using t-tests or ANOVA; 
non-normally distributed data were expressed 
as median and interquartile range, and ana-
lyzed using the Mann-Whitney U test or Kruskal-
Wallis test. Lasso regression was used to select 
diagnostic variables, and five machine learning 
models (Logistic, DT, RF, XGBoost, SVM) were 
constructed. Model performance was evaluat-
ed using ROC, PR, and calibration curves, with 
AUC and Brier Score calculated. The DeLong 
test was used to compare AUC differences 
between models. A P value<0.05 was consid-
ered statistically significant.

Results

Comparison of baseline data among training, 
validation, and test groups

No significant differences were found in age, 
BMI, the prevalences of smoking, alcoholism, 
hypertension, hyperlipidemia, or diabetes am- 
ong the groups (all P>0.05). PSA, Neu, Lym, 
MONO, ApoA1, NLR, LMR, NAR, and PHI also 
showed no significant differences (all P>0.05, 
Table 1).

Comparison of baseline characteristics and 
CIMs between PCa and BPH groups

No significant intergroup differences were fo- 
und in age, BMI, smoking status, alcohol abuse, 
or comorbidities such as hypertension, hyper-
lipidemia, and diabetes (all P>0.05). Lym levels 
were comparable between groups (P=0.935). 
However, PCa patients exhibited significantly 
higher PSA (P<0.001), neutrophil (P<0.001), 
and monocyte (P=0.022) levels than BPH pa- 
tients. In contrast, ApoA1 levels were markedly 
higher in the BPH group (P<0.001).

Regarding inflammatory markers, the PCa gr- 
oup demonstrated significantly elevated NLR 
and NAR values (both P<0.001) and a reduced 
LMR (P<0.001). Similarly, PHI levels were sub-
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Table 1. Baseline feature comparisons across the training, validation, and test groups

Variable Training group 
(n=421)

Validation group 
(n=140) Test group (n=140) Statistic P

Age 0.368 0.832
    ≥70 252 (59.86%) 87 (62.14%) 87 (62.14%)
    <70 169 (40.14%) 53 (37.86%) 53 (37.86%)
Body mass index 0.511 0.774
    ≥25 kg/m2 58 (13.78%) 22 (15.71%) 18 (12.86%)
    <25 kg/m2 363 (86.22%) 118 (84.29%) 122 (87.14%)
Smoking history 3.265 0.195
    With 352 (83.61%) 110 (78.57%) 109 (77.86%)
    Without 69 (16.39%) 30 (21.43%) 31 (22.14%)
Alcoholism history 1.112 0.574
    With 37 (8.79%) 10 (7.14%) 15 (10.71%)
    Without 384 (91.21%) 130 (92.86%) 125 (89.29%)
Hypertension history 1.720 0.423
    With 106 (25.18%) 42 (30.00%) 41 (29.29%)
    Without 315 (74.82%) 98 (70.00%) 99 (70.71%)
Hyperlipidemia history 0.784 0.676
    With 57 (13.54%) 16 (11.43%) 21 (15.00%)
    Without 364 (86.46%) 124 (88.57%) 119 (85.00%)
Diabetes history 1.649 0.438
    With 72 (17.10%) 25 (17.86%) 18 (12.86%)
    Without 349 (82.90%) 115 (82.14%) 122 (87.14%)
PSA (ng/mL) 27.25 [20.16, 36.39] 29.94 [21.58, 38.67] 28.22 [19.69, 35.00] 3.191 0.203
Neu (×109/L) 4.86±0.65 4.89±0.70 4.93±0.64 0.565 0.569
Lym (×109/L) 1.20±0.32 1.22±0.33 1.25±0.31 0.926 0.397
MONO (×109/L) 0.38 [0.31, 0.45] 0.39 [0.33, 0.46] 0.39 [0.32, 0.45] 1.813 0.404
ApoA1 (g/L) 1.04 [0.99, 1.10] 1.02 [0.98, 1.08] 1.04 [0.98, 1.12] 2.218 0.330
NLR 4.01 [3.71, 4.53] 3.99 [3.72, 4.43] 3.95 [3.70, 4.32] 1.945 0.378
LMR 3.13 [3.02, 3.34] 3.12 [3.00, 3.31] 3.16 [3.04, 3.36] 2.471 0.291
NAR 4.68 [4.30, 5.12] 4.77 [4.35, 5.15] 4.67 [4.36, 5.15] 1.264 0.531
PHI 38.31±7.88 38.76±6.93 38.34±7.86 0.184 0.832
Note: PSA, prostate-specific antigen; Neu, neutrophil count; Lym, lymphocyte count; MONO, monocyte count; ApoA1, apolipo-
protein A1; NLR, neutrophil-lymphocyte ratio; LMR, lymphocyte-monocyte ratio; NAR, neutrophil-apolipoprotein A1 ratio; PHI, 
prostate health index.

stantially higher in PCa compared with BPH 
(P<0.001, Table 2).

PCa diagnostic variables using Lasso regres-
sion

Lasso regression was used to identify key diag-
nostic variables in the training set. PSA and 
PHI, as established reference indicators, were 
excluded from the regression analysis. Instead, 
Lasso was applied to the remaining inflamma-
tory markers (Neu, MONO, ApoA1, NLR, LMR, 
NAR) to find additional predictors. NLR, LMR, 

and NAR were identified as the most relevant 
predictors (Figure 2).

Comparison of model performance

Five models (Logistic Regression, DT, RF, 
XGBoost, SVM) were tested on the training, vali-
dation, and test data. Model performance var-
ied across datasets. All models showed perfor-
mance metrics in the training, validation, and 
test sets, which were presented in a heatmap 
reflecting each model’s predictive capabilities 
(Figure 3).
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Table 2. Comparison of baseline characteristics and circulating inflammatory makers between PCa 
and BPH groups in training group
Variable PCa (n=289) BPH (n=132) Statistic P
Age 0.000 0.998
    ≥70 173 (59.86%) 79 (59.85%)
    <70 116 (40.14%) 53 (40.15%)
Body mass index 0.736 0.391
    ≥25 kg/m2 37 (12.80%) 21 (15.91%)
    <25 kg/m2 252 (87.20%) 111 (84.09%)
Smoking history 1.730 0.188
    With 237 (82.01%) 115 (87.12%)
    Without 52 (17.99%) 17 (12.88%)
Alcoholism history 0.022 0.882
    With 25 (8.65%) 12 (9.09%)
    Without 264 (91.35%) 120 (90.91%)
History of hypertension 0.089 0.765
    With 74 (25.61%) 32 (24.24%)
    Without 215 (74.39%) 100 (75.76%)
Hyperlipidemia history 0.777 0.378
    With 42 (14.53%) 15 (11.36%)
    Without 247 (85.47%) 117 (88.64%)
Diabetes history 0.995 0.319
    With 53 (18.34%) 19 (14.39%)
    Without 236 (81.66%) 113 (85.61%)
PSA (ng/mL) 32.94±10.37 19.41±5.49 -14.099 <0.001
Neu (×109/L) 4.97±0.65 4.62±0.58 -5.308 <0.001
Lym (×109/L) 1.20±0.31 1.21±0.32 0.081 0.935
MONO (×109/L) 0.39±0.10 0.36±0.09 -2.297 0.022
ApoA1 (g/L) 1.02 [0.97, 1.08] 1.08 [1.03, 1.12] 5.831 <0.001
NLR 4.11 [3.76, 4.54] 3.81 [3.49, 4.39] 4.515 <0.001
LMR 3.07 [2.97, 3.24] 3.31 [3.17, 3.40] 7.007 <0.001
NAR 4.88 [4.53, 5.24] 4.30 [4.04, 4.60] 10.257 <0.001
PHI 41.79±6.08 30.69±5.71 -17.712 <0.001
Note: PCa, prostate cancer; BPH, benign prostatic hyperplasia; PSA, prostate-specific antigen; Neu, neutrophil count; Lym, 
lymphocyte count; MONO, monocyte count; ApoA1, apolipoprotein A1; NLR, neutrophil-lymphocyte ratio; LMR, lymphocyte-
monocyte ratio; NAR, neutrophil-apolipoprotein A1 ratio; PHI, prostate health index.

ROC curve evaluation of model performance

ROC curve analysis was performed to evaluate 
the classification performance of the five 
machine-learning models across the training, 
validation, and test datasets. In the training set 
(Figure 4A), XGBoost demonstrated the highest 
discriminative ability with an AUC of 0.9942, 
followed by RF (0.987) and SVM (0.9708), 
whereas logistic regression and DT yielded 
AUCs of 0.9618 and 0.9515, respectively. In 
the validation set (Figure 4B), XGBoost again 
achieved the highest AUC (0.9527), with RF 
(0.948) and SVM (0.944) showing comparable 

performance, while logistic regression and DT 
obtained AUCs of 0.9052 and 0.9289. In the 
test set (Figure 4C), XGBoost maintained the 
best performance with an AUC of 0.9788, fol-
lowed by RF (0.9724) and SVM (0.9682), and 
logistic regression and DT reached AUCs of 
0.9401 and 0.923, respectively. Overall, 
XGBoost consistently showed the strongest dis-
criminative power across all datasets.

PR curve evaluation of model performance 

PR curve analysis was used to evaluate the 
classification performance of the five models  
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Figure 2. Lasso regression-based variable screening results. A: Coefficient 
trajectory plot for each variable, displaying how coefficients of variables 
change during Lasso regression. B: Bias curve, showing the trend in which 
bias varies with Log(λ) in the model’s cross-validation process.

in the training, validation, and test sets. In the 
training set, XGBoost showed the highest AUC 
(0.9974), indicating excellent performance in 
predicting positive cases (P<0.001). RF and 
SVM had AUCs of 0.9941 and 0.9856, res- 
pectively, with good performance (P<0.001). 
Logistic (AUC=0.9709) and DT (AUC=0.9723) 
showed some discriminative ability (P<0.001). 
In the validation set, XGBoost, SVM, and RF 
achieved AUCs of 0.979 (P<0.001), 0.974, and 
0.9783, respectively, showing robustness. In 
the test set, XGBoost had the highest AUC 
(0.9907, P<0.001), with RF and SVM achieving 
AUCs of 0.9877 and 0.985, respectively, dem-
onstrating excellent classification performance 
(Figure 5).

Calibration curve evaluation of model perfor-
mance

Calibration curves and Brier Scores were  
used to evaluate the prediction probabilities  
of the five models across the training, valida-
tion, and test sets. In the training set, XGBoost 
had the lowest Brier Score (0.0326), indicat- 
ing the most accurate predictions (P<0.001), 

followed by RF (0.0435). In the 
validation group, SVM had the 
lowest Brier Score (0.0751, P< 
0.001), with XGBoost (0.0742) 
showing favorable calibration. 
In the test set, SVM again  
had the lowest Brier Score 
(0.0640, P<0.001), followed  
by RF (0.0642) and XGBoost 
(0.0561), all showing strong 
calibration. XGBoost and SVM 
consistently outperformed oth- 
er models across all datasets 
(Figure 6). Pairwise Wilcoxon 
tests demonstrated that in the 
training set, XGBoost achieved 
significantly lower Brier Scores 
than all other models (all adjust-
ed P<0.001). In the validation 
and test sets, XGBoost and 
SVM outperformed Logistic Re- 
gression and DT, as well as 
Random Forest (P<0.05). Diffe- 
rences between XGBoost and 
SVM were not significant (vali-
dation P=0.36; test P=0.08), in- 
dicating that both models had 
the best calibration (Table S1).

DCA curve evaluation of models’ clinical 
decision-making value

DCA results showed that the XGBoost model 
outperformed other models across all datas-
ets. Using dcurves: dca in R, thresholds were 
set from 0.00 to 1.00 at 0.01 increments with 
smoothing enabled (span=0.5). XGBoost con-
sistently demonstrated the highest net benefit 
across the clinically relevant threshold range 
(0.10-0.70) in the training, validation, and test 
cohorts, outperforming both RF and SVM, as 
well as the treat-all and treat-none strategies. 
RF and SVM showed competitive, but slightly 
lower net benefit, while Logistic Regression  
and DT underperformed. These findings con-
firm the clinical utility of the XGBoost model 
(Figure 7A-C).

AUC comparison of XGBoost with PSA and PHI 
across different datasets

The AUC of XGBoost was consistently superior 
to that of PSA and PHI across all datasets. In 
the training set, the AUC differences between 
XGBoost and PSA (0.118) and between XGBoost 
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Figure 3. Heat map of model performance. The heatmap presents a performance comparison of Logistic, DT, RF, 
XGBoost, and SVM across training, validation, and test sets. The color gradient indicates the level of performance 
indicators. Red represents higher performance, while green represents lower performance. Note: DT, decision tree; 
RF, random forest; XGBoost, extreme gradient boosting; SVM, support vector machine.

Figure 4. ROC curve analysis. A: This ROC curve is for training data and shows the sensitivity and specificity of Lo-
gistic, DT, RF, XGBoost, and SVM; B: This ROC curve is for validation data, showing the sensitivity and specificity of 
the five models; C: Test data ROC curve, displaying the five models’ sensitivity and specificity. Note: ROC, receiver 
operating characteristic; DT, decision tree; RF, random forest; XGBoost, extreme gradient boosting; SVM, support 
vector machine; AUC, area under the curve.

Figure 5. PR curves. A: PR relationships for Logistic, DT, RF, SVM, and XGBoost by PR curves (training data); B: The 
PR curve for the validation dataset, showing the precision and recall rates of these models; C: The PR curve for the 
test group data, presenting the precision and recall rates of these five models. Note: PR, precision-recall; DT, deci-
sion tree; RF, random forest; XGBoost, extreme gradient boosting; SVM, support vector machine; AUC, area under 
the curve.
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Figure 6. Calibration curves. A: DCA curves of the training data, showing the clinical net benefit of Logistic, Rpart, 
RF, SVM, and XGBoost models; B: The five models’ clinical net benefit rates by DCA curves (validation data); C: Test 
data DCA curves showing the five models’ clinical net benefits. Note: DT, decision tree; RF, random forest; XGBoost, 
extreme gradient boosting; SVM, support vector machine.

Figure 7. DCA. A: DCA of net benefits of Logistic Regression, DT, RF, SVM, and XGBoost in the training set; B: DCA-
derived net benefit rates for all models in the validation set; C: DCA-derived net benefit rates for all models in the 
independent test set. Note: DCA, decision curve analysis; DT, decision tree; RF, random forest; XGBoost, extreme 
gradient boosting; SVM, support vector machine.

and PHI (0.084) were statistically significant 
(P<0.001). In the validation set, the AUC differ-
ences were 0.055 when comparing XGBoost 
with PSA and 0.083 when comparing XGBoost 
with PHI, both reaching statistical significance 
(P<0.001). In the test set, XGBoost again out-
performed PSA and PHI, with AUC differences 
of 0.109 (P<0.001) and 0.077 (P=0.007), 
respectively. These findings further highlight 
the strong diagnostic potential of the XGBoost 
model, particularly in comparison with PSA and 
PHI (Figure 8).

Nomogram based on NLR, LMR, and NAR and 
its application value

A significant positive correlation was found 
between NLR and NAR, as evidenced by their 
similar trends in score changes in the logistic 

regression model. This suggests that NLR and 
NAR play a crucial collaborative role in risk pre-
diction. In contrast, LMR showed a weaker rela-
tionship with the risk, with its influence on the 
model being less pronounced. Although all 
three variables contribute to risk prediction, 
NLR and NAR appear to be more significant  
predictors, while the impact of LMR is relatively 
smaller (Figure 9).

Discussion

This study retrospectively analyzed 701 
patients. With population aging and dietary 
changes in China, the incidence and mortality 
of PCa continue to rise annually [13], under-
scoring the need for more accurate diagnostic 
strategies. In our study, the XGBoost model 
based on NLR, LMR, and NAR achieved AUCs of 
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Figure 8. AUC comparison of XGBoost with PSA and PHI. A: XGBoost-PSA and XGBoost-PHI AUC comparisons (training set); B: XGBoost-PSA and XGBoost-PHI AUC 
comparisons (validation set); C: XGBoost-PSA and XGBoost-PHI AUC comparisons (test set). Note: ROC, receiver operating characteristic; AUC, area under the curve; 
XGBoost, extreme gradient boosting; PSA, prostate-specific antigen; PHI, prostate health index.
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0.994, 0.953, and 0.979 in the training, valida-
tion, and test sets, respectively, consistently 
surpassing the diagnostic performance of PSA 
and PHI. The AUC differences between XGBoost 
and PSA were 0.118, 0.055, and 0.109 across 
the three datasets, while the differences 
between XGBoost and PHI were 0.084, 0.083, 
and 0.077, respectively. Calibration curves and 
DCA analysis further confirmed the excellent 
calibration and the highest net clinical benefit 
of the XGBoost model. These findings suggest 
that CIM-based machine learning models hold 
substantial clinical potential for improving diag-
nostic accuracy and reducing unnecessary 
invasive examinations.

PSA and PHI were excluded from the Lasso 
regression, as they were established bench-
marks for comparison. Our approach specifi-
cally aimed to assess whether adding simple 
inflammatory markers could provide incre- 
mental diagnostic value over these traditional 
indicators.

The study found that NLR and NAR were signifi-
cantly higher in PCa patients than in BPH cases, 
while LMR and ApoA1 levels were lower. These 
findings align with the known pathophysiologi-
cal mechanisms of tumor-related inflammation. 
Inflammation is closely associated with cancer, 
particularly within the TME [16]. Tumor cells 
release cytokines and chemokines that trigger 

systemic inflammation, altering immune cell 
function and promoting processes like angio-
genesis and metastasis [17]. Neutrophils, in 
particular, can reshape the TME, promote can-
cer cell spread, and form neutrophil extracellu-
lar traps (NETs), enhancing cancer progression 
[18].

The advantage of NAR over NLR lies in its com-
bination of inflammatory response and lipid 
metabolism disorders. NLR reflects neutrophil-
mediated inflammation, while NAR integrates 
ApoA1, which is critical for antioxidant and anti-
inflammatory functions in PCa [19]. ApoA1 is a 
key protein component of high-density lipopro-
tein (HDL) and plays a crucial role in cholesterol 
efflux. In PCa, this pathway is often silenced 
through hypermethylation of the ABCA1 pro-
moter [20]. Experimental studies further show 
that SR-B1-mediated uptake of HDL/ApoA1 sti- 
mulates PCa cell proliferation, while genetic 
ablation of SR-B1 abrogates this effect [21]. At 
the population level, low circulating ApoA1/HDL 
levels in AMORIS cohort are associated with an 
increased risk of PCa [22]. Beyond its effects 
on PCa, ApoA1 also exerts systemic anti-in- 
flammatory and antioxidant effects through  
the SR-B1/PDZK1/PI3K-Akt axis [24]. ApoA1’s 
depletion has been linked to impaired immune 
function and altered lipid metabolism, making 
it an essential component of NAR in PCa diag-
nosis. Additionally, the decrease in LMR reflects 

Figure 9. Nomogram and risk prediction based on NLR, LMR and NAR. Note: NLR, neutrophil-lymphocyte ratio; LMR, 
lymphocyte-monocyte ratio.
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the weakening of immune surveillance due to 
the dysfunction of T lymphocytes and the con-
version of monocytes into tumor-associated 
macrophages [24]. During the progression of 
PCa, tumor cells secrete immunosuppressive 
factors such as TGF-β and IL-10, which induce 
the proliferation of regulatory T cells and pro-
mote the differentiation of effector T cells into 
an exhausted phenotype-characterized by high 
expression of PD-1, TIM-3, and LAG-3 [25].

ApoA1 not only mediates lipid transport but 
also exerts important anti-inflammatory, anti-
oxidant, and immunomodulatory effects. Me- 
chanistically, ApoA1 exerts direct anti-tumor 
effects through multiple pathways. It disrupts 
lipid raft structures in PCa cell membranes by 
activating ABCA1-mediated cholesterol efflux, 
thereby interfering with key signaling cascades 
such as PI3K/AKT [26-28]. Decreased ApoA1 
levels in PCa patients reflect impaired anti-
inflammatory capacity, while elevated NAR lev-
els indicate enhanced inflammatory responses 
and weakened anti-inflammatory ability-provid-
ing a theoretical basis for the application of 
CIMs in PCa.

Previous studies have shown the diagnostic 
and prognostic significance of CIMs in various 
cancers. For example, Song et al. [11] found 
that higher NLR and lower LMR are associat- 
ed with poorer prognosis in breast cancer. 
Similarly, Shi et al. reported that NLR, LMR, and 
nutritional risk index function as independent 
prognostic factors in non-small cell lung cancer 
[12]. Investigations into cervical cancer have 
shown that serum inflammatory factors are 
highly expressed, with an AUC of up to 0.846 
[29]. Similarly, Deepthi et al. reported that sali-
vary gland inflammatory cytokines show prom-
ise as biomarkers for oral leukoplakia and oral 
squamous cell carcinoma [30]. These studies 
indicate that CIMs are closely associated with 
tumor initiation and progression. However, rela-
tively few systematic studies have explored the 
combined use of multiple inflammatory factors 
in the differential diagnosis of PCa.

In this study, the combination of NLR, LMR, and 
NAR was applied to the differential diagnosis  
of PCa and BPH for the first time, with Lasso 
regression identifying the key diagnostic vari-
ables. The combined use of multiple markers 
provides a more comprehensive reflection of 

the body’s inflammatory state and immune 
function, improving diagnostic accuracy.

XGBoost outperformed other machine learning 
models in this study. As an ensemble learning 
algorithm, XGBoost excels in managing com-
plex, non-linear relationships between fea-
tures, which is critical for medical data analy-
sis. Unlike traditional logistic regression, XG- 
Boost can automatically detect interactions 
between variables without assuming linearity. 
Its superior performance was evident across 
various dimensions: highest AUC and Youden 
index in ROC curve analysis, excellent positive 
prediction in PR curve analysis, and strong cali-
bration with the lowest Brier Score. DCA con-
firmed the model’s highest clinical net benefit, 
highlighting its potential as a diagnostic tool.  
In medical diagnosis, combined prediction en- 
hances diagnostic accuracy and comprehen-
siveness by integrating multiple biomarkers 
[31], making it particularly suitable for the diag-
nosis of complex diseases [32]. A key advan-
tage of machine learning algorithms lies in their 
ability to process large volumes of complex 
data and identify patterns and associations 
inaccessible to humans, thereby enabling more 
precise diagnosis and prediction.

The XGBoost model’s diagnostic tool has prac-
tical advantages. It is cost-effective, easily 
accessible, and based on routine blood tests, 
making it suitable for widespread use in medi-
cal institutions. Unlike ultrasound and MRI, 
which have limitations in early PCa detection 
[14, 15], this model offers a non-invasive and 
accurate alternative that can significantly re- 
duce unnecessary prostate biopsies. Further- 
more, it enhances diagnostic performance by 
combining multiple biomarkers, which improves 
risk stratification and reduces misdiagnosis 
rates.

A combined prediction strategy significantly 
enhances diagnostic performance. Guo et al. 
reported that combined detection of TGF-β1, 
p2PSA, and PSA yielded an AUC of 0.932 for 
PCa diagnosis [33]. Similarly, another study 
demonstrated that the AUC for PCa assess-
ment with combined multiple indicators was 
0.900 [34]. These studies indicate that com-
bined detection provides more comprehensive 
disease status information, reduces the risks 
of misdiagnosis and missed diagnosis, and 
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improves patient risk stratification capacity 
[35]. Furthermore, the model facilitates early 
detection and risk stratification of PCa, allowing 
clinicians to identify high-risk patients earlier 
and promptly formulate individualized diagno-
sis and treatment plans. Nomogram analysis 
demonstrated that NLR and NAR made sub-
stantial contributions to risk prediction, sug-
gesting that clinicians should monitor changes 
in these two indicators. Moreover, combined 
prediction plays a crucial role in disease moni-
toring and prognostic assessment [36].

The model could also support telemedicine  
and AI-assisted diagnosis, facilitating collabor-
ative diagnosis between primary and special-
ized hospitals.

However, this study has limitations. As a single-
center retrospective study, it may have selec-
tion and information biases, and multi-center 
prospective studies are needed for external 
validation. The sample was primarily from the 
Chinese population, and its applicability to 
other ethnicities and regions remains unveri-
fied. Long-term follow-up data is also lacking, 
and the absence of biomarkers such as imag-
ing features and genomic data limits the mod-
el’s predictive power. Additionally, the “black 
box” nature of machine learning models poses 
challenges to clinical interpretation, and future 
work should focus on improving model trans-
parency. The effects of complications, medica-
tion history, and lifestyle factors on outcomes 
were not fully considered. Future research sh- 
ould expand the sample size, include diverse 
populations, integrate imaging and genomic 
data, and enhance the model’s accuracy and 
predictive capabilities.

Conclusion

The XGBoost machine learning model, based 
on NLR, LMR, and NAR, outperforms traditional 
PSA and PHI tests in the differential diagnosis 
of PCa and BPH. This model offers a cost-effec-
tive, accurate, and clinically applicable non-
invasive diagnostic tool that is expected to 
reduce unnecessary invasive procedures and 
improve diagnostic precision.

Disclosure of conflict of interest

None.

Address correspondence to: Hongjun Xie, Depart- 
ment of Urology, The First Affiliated Hospital of Xi’an 
Jiaotong University, No. 277 Yanta West Road, Xi’an 
710061, Shaanxi, China. Tel: +86-4000003222; 
E-mail: apolodite@163.com

References

[1]	 Bray F, Ferlay J, Soerjomataram I, Siegel RL, 
Torre LA and Jemal A. Global cancer statistics 
2018: globocan estimates of incidence and 
mortality worldwide for 36 cancers in 185 
countries. CA Cancer J Clin 2018; 68: 394-
424.

[2]	 Fu ZT, Guo XL, Zhang SW, Zheng RS, Zeng HM, 
Chen R, Wang SM, Sun KX, Wei WW and He J. 
Statistical analysis of incidence and mortality 
of prostate cancer in China, 2015. Zhonghua 
Zhong Liu Za Zhi 2020; 42: 718-722.

[3]	 He H, Liang L, Han D, Xu F and Lyu J. Different 
trends in the incidence and mortality rates of 
prostate cancer between china and the USA: a 
joinpoint and age-period-cohort analysis. Front 
Med (Lausanne) 2022; 9: 824464.

[4]	 Hugosson J, Månsson M, Wallström J, Axcrona 
U, Carlsson SV, Egevad L, Geterud K, Khatami 
A, Kohestani K, Pihl CG, Socratous A, Stranne 
J, Godtman RA and Hellström M. Prostate can-
cer screening with PSA and MRI followed by 
targeted biopsy only. N Engl J Med 2022; 387: 
2126-2137.

[5]	 Kachuri L, Hoffmann TJ, Jiang Y, Berndt SI, 
Shelley JP, Schaffer KR, Machiela MJ, Freed-
man ND, Huang WY, Li SA, Easterlin R, Good-
man PJ, Till C, Thompson I, Lilja H, Van Den 
Eeden SK, Chanock SJ, Haiman CA, Conti DV, 
Klein RJ, Mosley JD, Graff RE and Witte JS. Ge-
netically adjusted PSA levels for prostate can-
cer screening. Nat Med 2023; 29: 1412-1423.

[6]	 Weinlich R, Oberst A, Beere HM and Green DR. 
Necroptosis in development, inflammation and 
disease. Nat Rev Mol Cell Biol 2017; 18: 127-
136.

[7]	 Schottenfeld D and Beebe-Dimmer J. Chronic 
inflammation: a common and important factor 
in the pathogenesis of neoplasia. CA Cancer J 
Clin 2006; 56: 69-83.

[8]	 DeBerardinis RJ. Tumor microenvironment, 
metabolism, and immunotherapy. N Engl J 
Med 2020; 382: 869-871.

[9]	 Powell DR and Huttenlocher A. Neutrophils in 
the tumor microenvironment. Trends Immunol 
2016; 37: 41-52.

[10]	 Ugel S, Canè S, De Sanctis F and Bronte V. 
Monocytes in the tumor microenvironment. 
Annu Rev Pathol 2021; 16: 93-122.

[11]	 Song D, Li X and Zhang X. Expression and prog-
nostic value of ratios of platelet lymphocyte, 

mailto:apolodite@163.com


Serum PSA and inflammatory biomarkers in prostate cancer differential diagnosis

4778	 Am J Cancer Res 2025;15(11):4765-4779

neutrophil lymphocyte and lymphocyte mono-
cyte in breast cancer patients. Am J Transl Res 
2022; 14: 3233-3239.

[12]	 Shi Z, Zheng D, Tang X and Du Y. Correlation of 
immune inflammatory indices and nutritional 
risk index with prognosis in patients with non-
small cell lung cancer. Am J Transl Res 2023; 
15: 4100-4109.

[13]	 Parker C, Castro E, Fizazi K, Heidenreich A, Ost 
P, Procopio G, Tombal B and Gillessen S. Pros-
tate cancer: esmo clinical practice guidelines 
for diagnosis, treatment and follow-up. Ann On-
col 2020; 31: 1119-1134.

[14]	 Ahdoot M, Wilbur AR, Reese SE, Lebastchi AH, 
Mehralivand S, Gomella PT, Bloom J, Gurram 
S, Siddiqui M, Pinsky P, Parnes H, Linehan WM, 
Merino M, Choyke PL, Shih JH, Turkbey B, 
Wood BJ and Pinto PA. MRI-targeted, system-
atic, and combined biopsy for prostate cancer 
diagnosis. N Engl J Med 2020; 382: 917-928.

[15]	 Bulten W, Kartasalo K, Chen PC, Ström P, 
Pinckaers H, Nagpal K, Cai Y, Steiner DF, van 
Boven H, Vink R, Hulsbergen-van de Kaa C, van 
der Laak J, Amin MB, Evans AJ, van der Kwast 
T, Allan R, Humphrey PA, Grönberg H, Samara-
tunga H, Delahunt B, Tsuzuki T, Häkkinen T, 
Egevad L, Demkin M, Dane S, Tan F, Valkonen 
M, Corrado GS, Peng L, Mermel CH, Ruusuvuo-
ri P, Litjens G and Eklund M; Panda challenge 
consortium. Artificial intelligence for diagnosis 
and Gleason grading of prostate cancer: the 
panda challenge. Nat Med 2022; 28: 154-
163.

[16]	 Chan JM, Zaidi S, Love JR, Zhao JL, Setty M, 
Wadosky KM, Gopalan A, Choo ZN, Persad S, 
Choi J, LaClair J, Lawrence KE, Chaudhary O, 
Xu T, Masilionis I, Linkov I, Wang S, Lee C, Bar-
las A, Morris MJ, Mazutis L, Chaligne R, Chen Y, 
Goodrich DW, Karthaus WR, Pe’er D and Saw-
yers CL. Lineage plasticity in prostate cancer 
depends on JAK/STAT inflammatory signaling. 
Science 2022; 377: 1180-1191.

[17]	 Herre M, Cedervall J, Mackman N and Olsson 
AK. Neutrophil extracellular traps in the pathol-
ogy of cancer and other inflammatory diseas-
es. Physiol Rev 2023; 103: 277-312.

[18]	 Propper DJ and Balkwill FR. Harnessing cyto-
kines and chemokines for cancer therapy. Nat 
Rev Clin Oncol 2022; 19: 237-253.

[19]	 Thang NVV, Luyen LT, Vi NTT and Hai PD. Neu-
trophil-to-lymphocyte-to-albumin ratio as a 
prognostic marker for mortality in sepsis and 
septic shock in Vietnam. Acute Crit Care 2025; 
40: 244-251.

[20]	 Lee BH, Taylor MG, Robinet P, Smith JD, Sch-
weitzer J, Sehayek E, Falzarano SM, Magi-Gal-
luzzi C, Klein EA and Ting AH. Dysregulation of 
cholesterol homeostasis in human prostate 
cancer through loss of ABCA1. Cancer Res 
2013; 73: 1211-1218.

[21]	 Xiong T, Xu G, Huang XL, Lu KQ, Xie WQ, Yin K 
and Tu J. ATP-binding cassette transporter A1: 
a promising therapy target for prostate cancer. 
Mol Clin Oncol 2018; 8: 9-14.

[22]	 Van Hemelrijck M, Walldius G, Jungner I, Ham-
mar N, Garmo H, Binda E, Hayday A, Lambe M 
and Holmberg L. Low levels of apolipoprotein 
A-I and HDL are associated with risk of pros-
tate cancer in the Swedish AMORIS study. Can-
cer Causes Control 2011; 22: 1011-1019.

[23]	 Kluck GEG, Qian AS, Sakarya EH, Quach H, 
Deng YD and Trigatti BL. Apolipoprotein A1 pro-
tects against necrotic core development in ath-
erosclerotic plaques: PDZK1-dependent high-
density lipoprotein suppression of necroptosis 
in macrophages. Arterioscler Thromb Vasc Biol 
2023; 43: 45-63.

[24]	 Heidegger I, Fotakis G, Offermann A, Goveia J, 
Daum S, Salcher S, Noureen A, Timmer-Boss-
cha H, Schäfer G, Walenkamp A, Perner S, Be-
atovic A, Moisse M, Plattner C, Krogsdam A, 
Haybaeck J, Sopper S, Thaler S, Keller MA, 
Klocker H, Trajanoski Z, Wolf D and Pircher A. 
Comprehensive characterization of the pros-
tate tumor microenvironment identifies CXCR4/
CXCL12 crosstalk as a novel antiangiogenic 
therapeutic target in prostate cancer. Mol Can-
cer 2022; 21: 132.

[25]	 Joller N, Anderson AC and Kuchroo VK. LAG-3, 
TIM-3, and TIGIT: distinct functions in immune 
regulation. Immunity 2024; 57: 206-222.

[26]	 Li Z, Li JN, Li Q, Liu C, Zhou LH, Zhang Q and Xu 
Y. Cholesterol efflux regulator ABCA1 exerts 
protective role against high shear stress-in-
duced injury of HBMECs via regulating PI3K/
Akt/eNOS signaling. BMC Neurosci 2022; 23: 
61.

[27]	 Kiebish MA, Cullen J, Mishra P, Ali A, Milliman 
E, Rodrigues LO, Chen EY, Tolstikov V, Zhang L, 
Panagopoulos K, Shah P, Chen Y, Petrovics G, 
Rosner IL, Sesterhenn IA, McLeod DG, Granger 
E, Sarangarajan R, Akmaev V, Srinivasan A, 
Srivastava S, Narain NR and Dobi A. Multi-omic 
serum biomarkers for prognosis of disease 
progression in prostate cancer. J Transl Med 
2020; 18: 10.

[28]	 Kluck GEG, Qian AS, Sakarya EH, Quach H, 
Deng YD and Trigatti BL. Apolipoprotein A1 pro-
tects against necrotic core development in ath-
erosclerotic plaques: PDZK1-dependent high-
density lipoprotein suppression of necroptosis 
in macrophages. Arterioscler Thromb Vasc Biol 
2023; 43: 45-63.

[29]	 Sha J, Du J, Yang J, Hu X and Li L. Changes of 
serum levels of tumor necrosis factor (TNF-α) 
and soluble interleukin-2 receptor (SIL 2R) in 
patients with cervical cancer and their clinical 
significance. Am J Transl Res 2021; 13: 6599-
6604.



Serum PSA and inflammatory biomarkers in prostate cancer differential diagnosis

4779	 Am J Cancer Res 2025;15(11):4765-4779

[30]	 G D, Nandan SRK and Kulkarni PG. Salivary 
tumour necrosis factor-α as a biomarker in oral 
leukoplakia and oral squamous cell carcino-
ma. Asian Pac J Cancer Prev 2019; 20: 2087-
2093.

[31]	 Li L, Zhang F, Zhang J, Shi X, Wu H, Chao X, Ma 
S, Lang J, Wu M, Zhang D and Liang Z. Identify-
ing serum small extracellular vesicle microRNA 
as a noninvasive diagnostic and prognostic 
biomarker for ovarian cancer. ACS Nano 2023; 
17: 19197-19210.

[32]	 Qiu C, Duan Y, Wang B, Shi J, Wang P, Ye H, Dai 
L, Zhang J and Wang X. Serum anti-pdlim1 au-
toantibody as diagnostic marker in ovarian 
cancer. Front Immunol 2021; 12: 698312.

[33]	 Guo X, Sun X and Ye P. The diagnostic value of 
serum TGF-β1, p2PSA combined with PSA in 
prostate cancer. Altern Ther Health Med 2024; 
30: 184-191. 

[34]	 Guo T, Wang XX, Fu H, Tang YC, Meng BQ and 
Chen CH. Early diagnostic role of PSA com-
bined miR-155 detection in prostate cancer. 
Eur Rev Med Pharmacol Sci 2018; 22: 1615-
1621.

[35]	 Boehm BE, York ME, Petrovics G, Kohaar I and 
Chesnut GT. Biomarkers of aggressive prostate 
cancer at diagnosis. Int J Mol Sci 2023; 24: 
2185. 

[36]	 Kaneko M, Lenon MSL, Storino Ramacciotti L, 
Medina LG, Sayegh AS, La Riva A, Perez LC, 
Ghoreifi A, Lizana M, Jadvar DS, Lebastchi AH, 
Cacciamani GE and Abreu AL. Multiparame- 
tric ultrasound of prostate: role in prostate  
cancer diagnosis. Ther Adv Urol 2022; 14: 
17562872221145625.



Serum PSA and inflammatory biomarkers in prostate cancer differential diagnosis

1	

Table S1. Brier Scores of five models across training, validation, and test sets with pairwise wilcoxon 
comparisons

Dataset Model Mean Brier 
Score

Lowest 
Model(s) Significant comparisons (Wilcoxon, Holm-adjusted)

Training Logistic 0.0624 XGB<Logistic (P<0.001), XGB<Rpart (P<0.001), 
XGB<RF (P<0.001), XGB<SVM (P<0.001)

Rpart (DT) 0.067
RF 0.0435

SVM 0.0548
XGBoost 0.0326 √

Validation Logistic 0.0952 XGB<Logistic (P<0.001), XGB<Rpart (P<0.001), 
XGB<RF (P=0.002); XGB vs SVM (P=0.36, n.s.)

Rpart (DT) 0.0847
RF 0.0826

SVM 0.0751 √ (with XGB)
XGBoost 0.0742 √ (with SVM)

Test Logistic 0.0794 XGB<Logistic (P<0.001), XGB<Rpart (P<0.001), 
XGB<RF (P=0.04); XGB vs SVM (P=0.08, n.s.)

Rpart (DT) 0.1103
RF 0.0642

SVM 0.064 √ (with XGB)
XGBoost 0.0561 √ (with SVM)

DT: Decision Tree, RF: Random Forest, SVM: Support Vector Machine, and XGBoost: Extreme Gradient Boosting.


