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Abstract: Objective: To assess the diagnostic performance of serum prostate-specific antigen (PSA), the Prostate
Health Index (PHI), and peripheral blood inflammatory markers (neutrophil-lymphocyte ratio (NLR), lymphocyte-
monocyte ratio (LMR), neutrophil-apolipoprotein A1 ratio (NAR) apolipoprotein A1 (ApoA1l)) in differentiating prostate
cancer (PCa) from biopsy-negative benign prostatic hyperplasia (BPH), and to construct an optimized machine learn-
ing diagnostic model. Methods: A retrospective analysis was conducted on 701 patients referred for prostate biopsy
between March 2018 and January 2024, including 421 PCa and 280 BPH cases. Patients were divided into training
(60%; n=421), validation (20%; n=140), and test (20%; n=140) cohorts. LASSO regression identified key predictors,
which were used to develop five machine learning models-logistic regression, decision tree, random forest, support
vector machine, and XGBoost. model performance was evaluated using ROC and precision-recall curves, calibration
plots, Brier Scores, and decision curve analysis (DCA). AUCs were compared using the DeLong test. Results: PCa
patients exhibited higher PSA, Neu, MONO, NLR, NAR, and PHI but lower ApoAl and LMR than BPH patients (all
P<0.05). XGBoost achieved the best performance (AUC: training 0.994; validation 0.953; test 0.979), significantly
surpassing PSA (AUC difference: 0.055-0.118, P<0.001) and PHI (AUC difference: 0.077-0.084, P<0.007). Calibra-
tion curves indicated low Brier Scores (0.0326-0.0751) and excellent model fit. DCA confirmed superior clinical ben-
efit. NLR and NAR were major contributors to PCa risk prediction. Conclusions: The XGBoost model integrating NLR,
LMR, and NAR demonstrates superior diagnostic accuracy and clinical utility compared with PSA and PHI, potentially
improving pre-biopsy risk stratification and reducing unnecessary invasive procedures.
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Introduction therapeutic effects in PCa, playing a vital role
in clinical practice [4]. However, PSA’s diagnos-
tic specificity is limited, as its levels can also
rise in benign prostatic hyperplasia (BPH), pr-
ostatitis, and other non-malignant conditions,
affecting its accuracy in differential diagnosis
[5]. Consequently, there is a pressing need to
explore new biomarkers that, in combination
with PSA, can improve the accuracy of PCa
diagnosis.

Prostate cancer (PCa) is one of the most com-
mon malignancies in the male genitourinary
system, particularly in the United States, where
it ranks as the second most fatal malignancy
for men, posing a serious health threat to older
males [1]. In China, the detection rate of PCa
continues to rise due to improvements in qual-
ity of life and advancements in detection tech-
nologies [2]. However, many patients are diag-
nosed at an advanced stage or with distant
metastases, leading to poor prognhosis and
increasing mortality each year [3]. Therefore,
early detection and accurate diagnosis of PCa
are critical.

Recent studies have highlighted the role of
inflammation in tumorigenesis. Chronic inflam-
mation and excessive inflammatory responses
may trigger histiocytic cancers [6]. Approxi-
mately 20% of cancers are linked to chronic

Serum prostate-specific antigen (PSA) is a core
biomarker for early screening and monitoring

inflammatory stimuli, such as gastric cancer
from gastritis and liver cancer from hepatitis
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[7]. Neutrophils, through the secretion of in-
flammatory factors like vascular endothelial
growth factor (VEGF), interleukins (IL-6/10),
and prostaglandins, significantly influence the
tumor microenvironment (TME) in PCa [8, 9].
Monocytes and their derivatives, such as mac-
rophages, are crucial in tumor progression,
spread, and therapeutic responses [10]. Emer-
ging evidence suggests that circulating inflam-
matory markers (CIMs) like neutrophil-lympho-
cyte ratio (NLR), lymphocyte-monocyte ratio
(LMR), neutrophil-apolipoprotein Al ratio (NAR),
and Prostate Health Index (PHI) have potential
diagnostic and prognostic applications in oncol-
ogy. Song et al. [11] demonstrated associations
between NLR, LMR, and platelet-to-lymphocyte
ratios with breast cancer prognosis, while Shi
et al. [12] showed that NLR, LMR, and nutrition-
al risk index predict outcomes in non-small cell
lung cancer. However, systematic research on
the role of NLR, LMR, NAR, and PHI in the dif-
ferential diagnosis of PCa is lacking.

In this study, we systematically evaluate the
clinical application of serum PSA, circulating
inflammatory markers (NLR, LMR, NAR, apoli-
poprotein A1l (ApoA1l)), and PHI in distinguishing
PCa from BPH. By comparing baseline charac-
teristics and inflammatory factor levels in train-
ing, validation, and test groups, key diagnostic
variables (NLR, LMR, NAR) are selected using
Lasso regression. Various machine learning
models are then constructed and evaluated to
assess model performance comprehensively.
This study innovates by combining CIMs with
machine learning techniques to optimize the
PCa diagnostic model. Its goal is to provide cli-
nically applicable, accurate, and reliable diag-
nostic tools that reduce unnecessary invasive
examinations and improve patient prognoses.

Methods and materials
Sample source

We retrospectively evaluated 701 consecutive
patients (421 PCa and 280 BPH cases.) treated
between March 2018 and January 2024. The
PCa cohort comprised patients with histologi-
cally confirmed PCa, while the control cohort
consisted of men with benign biopsy results
(primarily BPH). Samples were randomly allo-
cated to training (60%), validation (20%), and
test sets (20%) with matched case distribu-
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tions (training: 289 PCa/132 BPH; validation:
100 PCa/40 BPH; test: 95 PCa/45 BPH) for
model development, validation, and evalua-
tion. The study was approved by the Ethics
Committee of The First Affiliated Hospital of
Xi'an Jiaotong University (Figure 1).

Inclusion and exclusion criteria (PCa patients)

Inclusion criteria: PCa confirmed by prostate
biopsy or post-surgery pathology; no recent (<3
months) infections; no blood/immune system
abnormalities; complete clinical and lab data.

Exclusion other malignancies; critical organ
(cardiac, hepatic, or renal) impairment; severe
infections or chronic inflammatory conditions
(e.g., prostatitis); autoimmune or hypersensitiv-
ity disorders.

Inclusion and diagnostic criteria (BPH cases)

Inclusion criteria: Controls were biopsy-nega-
tive men with benign disease (predominantly
BPH) referred for prostate biopsy due to el-
evated PSA and/or suspicious DRE/imaging
findings. Histopathology revealed no malignan-
¢y, and clinical evaluation was consistent with
BPH. Men were followed for >X months to
exclude missed cancers (if available). Normal
bloodwork, biochemistry, immunology, and mi-
crobiology assessments excluding acute ill-
ness; negative imaging findings for PCa and
other malignancies (e.g., prostate ultrasound,
CT, MRI); complete clinical records; no hemato-
logic/immune pathologies.

Clinical data collection

Patient clinical and laboratory data were ob-
tained through the electronic medical record
system. Clinical data included age, BMI, and
histories of smoking, alcohol consumption,
hypertension, hyperlipidemia, and diabetes.
Laboratory parameters included PSA, neutro-
phil count (Neu), lymphocyte count (Lym), mo-
nocyte count (MONO), ApoAl, and calculated
ratios (NLR, LMR, NAR, PHI).

Model construction
Five machine learning models were construct-

ed: Logistic Regression, Decision Tree (DT),
Random Forest (RF), Support Vector Machine
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Patient Selection

Study period: March 2018 — January 2024

Total patients: 701

PCa group (n=421): confirmed by prostate biopsy or postoperative
pathology

BPH/benign controls (n=280): biopsy-negative or postoperative
pathology benign, clinically diagnosed as BPH

v v

Exclusion criteria: other malignancies;
severe cardiac/hepatic/renal dysfunction;
active infection or chronic inflammatory
disease (including prostatitis); autoimmune
or hypersensitivity disorders

Inclusion criteria: complete
clinical/laboratory data; no hematologic or
immune disorders

Data Collection

Clinical information: age, BMI, smoking,
alcohol, hypertension, hyperlipidemia,
diabetes. Laboratory tests: PSA, neutrophil
(Neu), lymphocyte (Lym), monocyte
(MONO), ApoAL. Derived ratios: NLR, LMR,
NAR, PHI

Group Allocation & Dataset Split
Random stratified allocation (keeping
PCa/BPH proportion balanced):
Training set: 60% (289 PCa / 132 BPH)
Validation set: 20% (100 PCa / 40 BPH)
Test set: 20% (95 PCa / 45 BPH)

v

Feature Selection

Lasso regression applied on the training set
PSA and PHI excluded (used as benchmarks,
not entered into selection)

Key predictors identified: NLR, LMR, NAR

I
Y Y

Model Evaluation
Validation set: hyperparameter tuning and

Model Construction

Five machine learning models developed:
Logistic Regression

Decision Tree (Rpart)

Random Forest

Support Vector Machine (SVM)

Extreme Gradient Boosting (XGBoost)

Training: performed on training set
Hyperparameter tuning: 5-fold cross-validation
with grid search

Figure 1. Research flow chart.
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preliminary evaluation

Test set: independent final evaluation
Performance indicators:

Discrimination: ROC, AUC, PR curves, AUCPR
Calibration: Brier Score, calibration curves
Clinical utility: Decision Curve Analysis (DCA)
Comparative analysis: XGBoost vs PSA and PHI
(AUC, net benefit)

Model interpretation: SHAP analysis

Risk visualization: Nomogram
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(SVM), and Extreme Gradient Boosting (XG-
Boost). All models were implemented using
mlir3, and predictions were set to return pro-
babilities (predict type=“prob”). Model optimi-
zation was performed via 5-fold cross-valida-
tion using the training set. Key parameters
(e.g., DT's cp and minbucket, RF’'s mtry and
nodesize, SVM’s cost and gamma, XGBoost's
eta, nrounds, and maxdepth) were adjusted
using grid search. Logistic Regression used
default configurations without extensive tuning.
The training set was used for model training,
the validation set for hyperparameter selection
and preliminary checks, and the test set for
final performance assessment. Model perfor-
mance was evaluated using accuracy (classif.
acc), Brier Score (classif.bbrier), AUC (classif.
auc), sensitivity (classif.sensitivity), specificity
(classif.specificity), area under the precision-
recall (PR)curve (classif.prauc), precision (clas-
sif.precision), recall (classif.recall), and F1 score
(classif.fbeta). Model calibration and clinical
net benefit were assessed via ROC curves, PR
curves, calibration curves, and decision curve
analysis (DCA). SHAP analysis was employed
to identify the most important features in the
top-performing model. To compare calibration
performance, Brier Scores were decomposed
into per-subject squared errors, and paired
Wilcoxon signed-rank tests were conducted,
with Holm correction for multiple comparisons.
Robustness was confirmed using 2,000 rounds
of bootstrap resampling and bias-corrected
accelerated (BCa) 95% confidence intervals.

Outcome measurements

Baseline characteristics of the training, valida-
tion, and test groups were compared. The dif-
ferences in clinical data and CIMs between PCa
and BPH groups were analyzed. The diagnostic
ability of serum PSA was evaluated against
CIMs (Neu, MONO, ApoA1, NLR, LMR, NAR) and
PHI. Key variables for PCa diagnosis were iden-
tified via Lasso regression, and the diagnostic
value of NLR, LMR, and NAR was analyzed. Five
machine learning models (Logistic Regression,
DT, RF, XGBoost, SVM) were constructed ba-
sed on the selected variables, and their perfor-
mance was compared across training, valida-
tion, and test groups. A nomogram was used to
analyze the contribution of NLR, LMR, and NAR
in PCa risk prediction.

4768

Statistical methods

Statistical analyses were performed using
SPSS 26.0 and R software. Qualitative data
were presented as numbers and percentages,
and inter-group comparisons were made using
the x? test. Quantitative data were tested for
normal distribution. Normally distributed data
were expressed as meanzstandard deviation
(SD) and compared using t-tests or ANOVA;
non-normally distributed data were expressed
as median and interquartile range, and ana-
lyzed using the Mann-Whitney U test or Kruskal-
Wallis test. Lasso regression was used to select
diagnostic variables, and five machine learning
models (Logistic, DT, RF, XGBoost, SVM) were
constructed. Model performance was evaluat-
ed using ROC, PR, and calibration curves, with
AUC and Brier Score calculated. The DelLong
test was used to compare AUC differences
between models. A P value<0.05 was consid-
ered statistically significant.

Results

Comparison of baseline data among training,
validation, and test groups

No significant differences were found in age,
BMI, the prevalences of smoking, alcoholism,
hypertension, hyperlipidemia, or diabetes am-
ong the groups (all P>0.05). PSA, Neu, Lym,
MONO, ApoAl, NLR, LMR, NAR, and PHI also
showed no significant differences (all P>0.05,
Table 1).

Comparison of baseline characteristics and
CIMs between PCa and BPH groups

No significant intergroup differences were fo-
und in age, BMI, smoking status, alcohol abuse,
or comorbidities such as hypertension, hyper-
lipidemia, and diabetes (all P>0.05). Lym levels
were comparable between groups (P=0.935).
However, PCa patients exhibited significantly
higher PSA (P<0.001), neutrophil (P<0.001),
and monocyte (P=0.022) levels than BPH pa-
tients. In contrast, ApoA1l levels were markedly
higher in the BPH group (P<0.001).

Regarding inflammatory markers, the PCa gr-
oup demonstrated significantly elevated NLR
and NAR values (both P<0.001) and a reduced
LMR (P<0.001). Similarly, PHI levels were sub-
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Table 1. Baseline feature comparisons across the training, validation, and test groups

Training group

Validation group

Variable (n=421) (n=140) Test group (n=140)  Statistic P
Age 0.368 0.832
>70 252 (59.86%) 87 (62.14%) 87 (62.14%)
<70 169 (40.14%) 53 (37.86%) 53 (37.86%)
Body mass index 0.511 0.774
>25 kg/m? 58 (13.78%) 22 (15.71%) 18 (12.86%)
<25 kg/m? 363 (86.22%) 118 (84.29%) 122 (87.14%)
Smoking history 3.265 0.195
With 352 (83.61%) 110 (78.57%) 109 (77.86%)
Without 69 (16.39%) 30 (21.43%) 31 (22.14%)
Alcoholism history 1.112 0.574
With 37 (8.79%) 10 (7.14%) 15 (10.71%)
Without 384 (91.21%) 130 (92.86%) 125 (89.29%)
Hypertension history 1.720 0.423
With 106 (25.18%) 42 (30.00%) 41 (29.29%)
Without 315 (74.82%) 98 (70.00%) 99 (70.71%)
Hyperlipidemia history 0.784 0.676
With 57 (13.54%) 16 (11.43%) 21 (15.00%)
Without 364 (86.46%) 124 (88.57%) 119 (85.00%)
Diabetes history 1.649 0.438
With 72 (17.10%) 25 (17.86%) 18 (12.86%)
Without 349 (82.90%) 115 (82.14%) 122 (87.14%)
PSA (ng/mL) 27.25[20.16, 36.39] 29.94 [21.58, 38.67] 28.22[19.69, 35.00] 3.191 0.203
Neu (x10°/L) 4.86+0.65 4.89+0.70 4.931+0.64 0.565 0.569
Lym (x10°/L) 1.20+0.32 1.22+0.33 1.25+0.31 0.926 0.397
MONO (x10°/L) 0.38[0.31, 0.45] 0.39[0.33, 0.46] 0.39[0.32, 0.45] 1.813 0.404
ApoA1l (g/L) 1.04 [0.99, 1.10] 1.02 [0.98, 1.08] 1.04 [0.98, 1.12] 2.218 0.330
NLR 4.01[3.71, 4.53] 3.99[3.72, 4.43] 3.95[3.70, 4.32] 1.945 0.378
LMR 3.13[3.02, 3.34] 3.12[3.00, 3.31] 3.16 [3.04, 3.36] 2471  0.291
NAR 4.68 [4.30, 5.12] 4.77 [4.35, 5.15] 4.67 [4.36, 5.15] 1.264 0.531
PHI 38.31+7.88 38.76+6.93 38.3417.86 0.184 0.832

Note: PSA, prostate-specific antigen; Neu, neutrophil count; Lym, lymphocyte count; MONO, monocyte count; ApoAl, apolipo-
protein A1l; NLR, neutrophil-lymphocyte ratio; LMR, lymphocyte-monocyte ratio; NAR, neutrophil-apolipoprotein A1 ratio; PHI,

prostate health index.

stantially higher in PCa compared with BPH
(P<0.001, Table 2).

PCa diagnostic variables using Lasso regres-
sion

Lasso regression was used to identify key diag-
nostic variables in the training set. PSA and
PHI, as established reference indicators, were
excluded from the regression analysis. Instead,
Lasso was applied to the remaining inflamma-
tory markers (Neu, MONO, ApoAl, NLR, LMR,
NAR) to find additional predictors. NLR, LMR,
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and NAR were identified as the most relevant
predictors (Figure 2).

Comparison of model performance

Five models (Logistic Regression, DT, RF,
XGBoost, SVM) were tested on the training, vali-
dation, and test data. Model performance var-
ied across datasets. All models showed perfor-
mance metrics in the training, validation, and
test sets, which were presented in a heatmap
reflecting each model’s predictive capabilities
(Figure 3).
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Table 2. Comparison of baseline characteristics and circulating inflammatory makers between PCa

and BPH groups in training group

Variable PCa (n=289) BPH (n=132) Statistic P
Age 0.000 0.998
>70 173 (59.86%) 79 (59.85%)
<70 116 (40.14%) 53 (40.15%)
Body mass index 0.736 0.391
>25 kg/m? 37 (12.80%) 21 (15.91%)
<25 kg/m? 252 (87.20%) 111 (84.09%)
Smoking history 1.730 0.188
With 237 (82.01%) 115 (87.12%)
Without 52 (17.99%) 17 (12.88%)
Alcoholism history 0.022 0.882
With 25 (8.65%) 12 (9.09%)
Without 264 (91.35%) 120 (90.91%)
History of hypertension 0.089 0.765
With 74 (25.61%) 32 (24.24%)
Without 215 (74.39%) 100 (75.76%)
Hyperlipidemia history 0.777 0.378
With 42 (14.53%) 15 (11.36%)
Without 247 (85.47%) 117 (88.64%)
Diabetes history 0.995 0.319
With 53 (18.34%) 19 (14.39%)
Without 236 (81.66%) 113 (85.61%)
PSA (ng/mL) 32.94+10.37 19.41+5.49 -14.099 <0.001
Neu (x10°/L) 4.97+0.65 4.62+0.58 -5.308 <0.001
Lym (x10°/L) 1.20+0.31 1.21+0.32 0.081 0.935
MONO (x10°/L) 0.39+0.10 0.36+0.09 -2.297 0.022
ApoAl (g/L) 1.02[0.97, 1.08] 1.08 [1.03, 1.12] 5.831 <0.001
NLR 4,11 [3.76, 4.54] 3.81[3.49, 4.39] 4.515 <0.001
LMR 3.07 [2.97, 3.24] 3.31[3.17, 3.40] 7.007 <0.001
NAR 4.88[4.53, 5.24] 4.30 [4.04, 4.60] 10.257 <0.001
PHI 41.79+6.08 30.6915.71 -17.712 <0.001

Note: PCa, prostate cancer; BPH, benign prostatic hyperplasia; PSA, prostate-specific antigen; Neu, neutrophil count; Lym,
lymphocyte count; MONO, monocyte count; ApoAl, apolipoprotein A1; NLR, neutrophil-lymphocyte ratio; LMR, lymphocyte-
monocyte ratio; NAR, neutrophil-apolipoprotein A1 ratio; PHI, prostate health index.

ROC curve evaluation of model performance

ROC curve analysis was performed to evaluate
the classification performance of the five
machine-learning models across the training,
validation, and test datasets. In the training set
(Figure 4A), XGBoost demonstrated the highest
discriminative ability with an AUC of 0.9942,
followed by RF (0.987) and SVM (0.9708),
whereas logistic regression and DT yielded
AUCs of 0.9618 and 0.9515, respectively. In
the validation set (Figure 4B), XGBoost again
achieved the highest AUC (0.9527), with RF
(0.948) and SVM (0.944) showing comparable
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performance, while logistic regression and DT
obtained AUCs of 0.9052 and 0.9289. In the
test set (Figure 4C), XGBoost maintained the
best performance with an AUC of 0.9788, fol-
lowed by RF (0.9724) and SVM (0.9682), and
logistic regression and DT reached AUCs of
0.9401 and 0.923, respectively. Overall,
XGBoost consistently showed the strongest dis-
criminative power across all datasets.

PR curve evaluation of model performance

PR curve analysis was used to evaluate the
classification performance of the five models

Am J Cancer Res 2025;15(11):4765-4779
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Figure 2. Lasso regression-based variable screening results. A: Coefficient
trajectory plot for each variable, displaying how coefficients of variables
change during Lasso regression. B: Bias curve, showing the trend in which
bias varies with Log(A) in the model’s cross-validation process.

followed by RF (0.0435). In the
validation group, SVM had the
lowest Brier Score (0.0751, P<
0.001), with XGBoost (0.0742)
showing favorable calibration.
In the test set, SVM again
had the lowest Brier Score
(0.0640, P<0.001), followed
by RF (0.0642) and XGBoost
(0.0561), all showing strong
calibration. XGBoost and SVM
consistently outperformed oth-
er models across all datasets
(Figure 6). Pairwise Wilcoxon
tests demonstrated that in the
training set, XGBoost achieved
significantly lower Brier Scores
than all other models (all adjust-
ed P<0.001). In the validation
and test sets, XGBoost and
SVM outperformed Logistic Re-
gression and DT, as well as
Random Forest (P<0.05). Diffe-
rences between XGBoost and
SVM were not significant (vali-
dation P=0.36; test P=0.08), in-
dicating that both models had

in the training, validation, and test sets. In the
training set, XGBoost showed the highest AUC
(0.9974), indicating excellent performance in
predicting positive cases (P<0.001). RF and
SVM had AUCs of 0.9941 and 0.9856, res-
pectively, with good performance (P<0.001).
Logistic (AUC=0.9709) and DT (AUC=0.9723)
showed some discriminative ability (P<0.001).
In the validation set, XGBoost, SVM, and RF
achieved AUCs of 0.979 (P<0.001), 0.974, and
0.9783, respectively, showing robustness. In
the test set, XGBoost had the highest AUC
(0.9907, P<0.001), with RF and SVM achieving
AUCs of 0.9877 and 0.985, respectively, dem-
onstrating excellent classification performance
(Figure 5).

Calibration curve evaluation of model perfor-
mance

Calibration curves and Brier Scores were
used to evaluate the prediction probabilities
of the five models across the training, valida-
tion, and test sets. In the training set, XGBoost
had the lowest Brier Score (0.0326), indicat-
ing the most accurate predictions (P<0.001),
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the best calibration (Table S1).

DCA curve evaluation of models’ clinical
decision-making value

DCA results showed that the XGBoost model
outperformed other models across all datas-
ets. Using dcurves: dca in R, thresholds were
set from 0.00 to 1.00 at 0.01 increments with
smoothing enabled (span=0.5). XGBoost con-
sistently demonstrated the highest net benefit
across the clinically relevant threshold range
(0.10-0.70) in the training, validation, and test
cohorts, outperforming both RF and SVM, as
well as the treat-all and treat-none strategies.
RF and SVM showed competitive, but slightly
lower net benefit, while Logistic Regression
and DT underperformed. These findings con-
firm the clinical utility of the XGBoost model
(Figure 7A-C).

AUC comparison of XGBoost with PSA and PHI
across different datasets

The AUC of XGBoost was consistently superior
to that of PSA and PHI across all datasets. In
the training set, the AUC differences between
XGBoostand PSA (0.118) and between XGBoost

Am J Cancer Res 2025;15(11):4765-4779
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Figure 3. Heat map of model performance. The heatmap presents a performance comparison of Logistic, DT, RF,
XGBoost, and SVM across training, validation, and test sets. The color gradient indicates the level of performance
indicators. Red represents higher performance, while green represents lower performance. Note: DT, decision tree;
RF, random forest; XGBoost, extreme gradient boosting; SVM, support vector machine.
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Figure 4. ROC curve analysis. A: This ROC curve is for training data and shows the sensitivity and specificity of Lo-
gistic, DT, RF, XGBoost, and SVM; B: This ROC curve is for validation data, showing the sensitivity and specificity of
the five models; C: Test data ROC curve, displaying the five models’ sensitivity and specificity. Note: ROC, receiver
operating characteristic; DT, decision tree; RF, random forest; XGBoost, extreme gradient boosting; SVM, support
vector machine; AUC, area under the curve.
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Figure 5. PR curves. A: PR relationships for Logistic, DT, RF, SVM, and XGBoost by PR curves (training data); B: The
PR curve for the validation dataset, showing the precision and recall rates of these models; C: The PR curve for the
test group data, presenting the precision and recall rates of these five models. Note: PR, precision-recall; DT, deci-
sion tree; RF, random forest; XGBoost, extreme gradient boosting; SVM, support vector machine; AUC, area under
the curve.
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Figure 6. Calibration curves. A: DCA curves of the training data, showing the clinical net benefit of Logistic, Rpart,
RF, SVM, and XGBoost models; B: The five models’ clinical net benefit rates by DCA curves (validation data); C: Test
data DCA curves showing the five models’ clinical net benefits. Note: DT, decision tree; RF, random forest; XGBoost,
extreme gradient boosting; SVM, support vector machine.
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Figure 7. DCA. A: DCA of net benefits of Logistic Regression, DT, RF, SVM, and XGBoost in the training set; B: DCA-
derived net benefit rates for all models in the validation set; C: DCA-derived net benefit rates for all models in the
independent test set. Note: DCA, decision curve analysis; DT, decision tree; RF, random forest; XGBoost, extreme

gradient boosting; SVM, support vector machine.

and PHI (0.084) were statistically significant
(P<0.001). In the validation set, the AUC differ-
ences were 0.055 when comparing XGBoost
with PSA and 0.083 when comparing XGBoost
with PHI, both reaching statistical significance
(P<0.001). In the test set, XGBoost again out-
performed PSA and PHI, with AUC differences
of 0.109 (P<0.001) and 0.077 (P=0.007),
respectively. These findings further highlight
the strong diagnostic potential of the XGBoost
model, particularly in comparison with PSA and
PHI (Figure 8).

Nomogram based on NLR, LMR, and NAR and
its application value

A significant positive correlation was found

between NLR and NAR, as evidenced by their
similar trends in score changes in the logistic
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regression model. This suggests that NLR and
NAR play a crucial collaborative role in risk pre-
diction. In contrast, LMR showed a weaker rela-
tionship with the risk, with its influence on the
model being less pronounced. Although all
three variables contribute to risk prediction,
NLR and NAR appear to be more significant
predictors, while the impact of LMR is relatively
smaller (Figure 9).

Discussion

This study retrospectively analyzed 701
patients. With population aging and dietary
changes in China, the incidence and mortality
of PCa continue to rise annually [13], under-
scoring the need for more accurate diagnostic
strategies. In our study, the XGBoost model
based on NLR, LMR, and NAR achieved AUCs of
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Figure 8. AUC comparison of XGBoost with PSA and PHI. A: XGBoost-PSA and XGBoost-PHI AUC comparisons (training set); B: XGBoost-PSA and XGBoost-PHI AUC
comparisons (validation set); C: XGBoost-PSA and XGBoost-PHI AUC comparisons (test set). Note: ROC, receiver operating characteristic; AUC, area under the curve;
XGBoost, extreme gradient boosting; PSA, prostate-specific antigen; PHI, prostate health index.
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Figure 9. Nomogram and risk prediction based on NLR, LMR and NAR. Note: NLR, neutrophil-lymphocyte ratio; LMR,
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0.994, 0.953, and 0.979 in the training, valida-
tion, and test sets, respectively, consistently
surpassing the diagnostic performance of PSA
and PHI. The AUC differences between XGBoost
and PSA were 0.118, 0.055, and 0.109 across
the three datasets, while the differences
between XGBoost and PHI were 0.084, 0.083,
and 0.077, respectively. Calibration curves and
DCA analysis further confirmed the excellent
calibration and the highest net clinical benefit
of the XGBoost model. These findings suggest
that CIM-based machine learning models hold
substantial clinical potential for improving diag-
nostic accuracy and reducing unnecessary
invasive examinations.

PSA and PHI were excluded from the Lasso
regression, as they were established bench-
marks for comparison. Our approach specifi-
cally aimed to assess whether adding simple
inflammatory markers could provide incre-
mental diagnostic value over these traditional
indicators.

The study found that NLR and NAR were signifi-
cantly higher in PCa patients than in BPH cases,
while LMR and ApoA1l levels were lower. These
findings align with the known pathophysiologi-
cal mechanisms of tumor-related inflammation.
Inflammation is closely associated with cancer,
particularly within the TME [16]. Tumor cells
release cytokines and chemokines that trigger
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systemic inflammation, altering immune cell
function and promoting processes like angio-
genesis and metastasis [17]. Neutrophils, in
particular, can reshape the TME, promote can-
cer cell spread, and form neutrophil extracellu-
lar traps (NETs), enhancing cancer progression
[18].

The advantage of NAR over NLR lies in its com-
bination of inflammatory response and lipid
metabolism disorders. NLR reflects neutrophil-
mediated inflammation, while NAR integrates
ApoA1l, which is critical for antioxidant and anti-
inflammatory functions in PCa [19]. ApoAl is a
key protein component of high-density lipopro-
tein (HDL) and plays a crucial role in cholesterol
efflux. In PCa, this pathway is often silenced
through hypermethylation of the ABCA1l pro-
moter [20]. Experimental studies further show
that SR-B1-mediated uptake of HDL/ApoA1l sti-
mulates PCa cell proliferation, while genetic
ablation of SR-B1 abrogates this effect [21]. At
the population level, low circulating ApoA1/HDL
levels in AMORIS cohort are associated with an
increased risk of PCa [22]. Beyond its effects
on PCa, ApoAl also exerts systemic anti-in-
flammatory and antioxidant effects through
the SR-B1/PDZK1/PI3K-Akt axis [24]. ApoAl's
depletion has been linked to impaired immune
function and altered lipid metabolism, making
it an essential component of NAR in PCa diag-
nosis. Additionally, the decrease in LMR reflects
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the weakening of immune surveillance due to
the dysfunction of T lymphocytes and the con-
version of monocytes into tumor-associated
macrophages [24]. During the progression of
PCa, tumor cells secrete immunosuppressive
factors such as TGF- and IL-10, which induce
the proliferation of regulatory T cells and pro-
mote the differentiation of effector T cells into
an exhausted phenotype-characterized by high
expression of PD-1, TIM-3, and LAG-3 [25].

ApoAl not only mediates lipid transport but
also exerts important anti-inflammatory, anti-
oxidant, and immunomodulatory effects. Me-
chanistically, ApoAl exerts direct anti-tumor
effects through multiple pathways. It disrupts
lipid raft structures in PCa cell membranes by
activating ABCA1-mediated cholesterol efflux,
thereby interfering with key signaling cascades
such as PI3K/AKT [26-28]. Decreased ApoAl
levels in PCa patients reflect impaired anti-
inflammatory capacity, while elevated NAR lev-
els indicate enhanced inflammatory responses
and weakened anti-inflammatory ability-provid-
ing a theoretical basis for the application of
CIMs in PCa.

Previous studies have shown the diagnostic
and prognostic significance of CIMs in various
cancers. For example, Song et al. [11] found
that higher NLR and lower LMR are associat-
ed with poorer prognosis in breast cancer.
Similarly, Shi et al. reported that NLR, LMR, and
nutritional risk index function as independent
prognostic factors in non-small cell lung cancer
[12]. Investigations into cervical cancer have
shown that serum inflammatory factors are
highly expressed, with an AUC of up to 0.846
[29]. Similarly, Deepthi et al. reported that sali-
vary gland inflammatory cytokines show prom-
ise as biomarkers for oral leukoplakia and oral
squamous cell carcinoma [30]. These studies
indicate that CIMs are closely associated with
tumor initiation and progression. However, rela-
tively few systematic studies have explored the
combined use of multiple inflammatory factors
in the differential diagnosis of PCa.

In this study, the combination of NLR, LMR, and
NAR was applied to the differential diagnosis
of PCa and BPH for the first time, with Lasso
regression identifying the key diagnostic vari-
ables. The combined use of multiple markers
provides a more comprehensive reflection of
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the body’s inflammatory state and immune
function, improving diagnostic accuracy.

XGBoost outperformed other machine learning
models in this study. As an ensemble learning
algorithm, XGBoost excels in managing com-
plex, non-linear relationships between fea-
tures, which is critical for medical data analy-
sis. Unlike traditional logistic regression, XG-
Boost can automatically detect interactions
between variables without assuming linearity.
Its superior performance was evident across
various dimensions: highest AUC and Youden
index in ROC curve analysis, excellent positive
prediction in PR curve analysis, and strong cali-
bration with the lowest Brier Score. DCA con-
firmed the model’s highest clinical net benefit,
highlighting its potential as a diagnostic tool.
In medical diagnosis, combined prediction en-
hances diagnostic accuracy and comprehen-
siveness by integrating multiple biomarkers
[31], making it particularly suitable for the diag-
nosis of complex diseases [32]. A key advan-
tage of machine learning algorithms lies in their
ability to process large volumes of complex
data and identify patterns and associations
inaccessible to humans, thereby enabling more
precise diagnosis and prediction.

The XGBoost model’s diagnostic tool has prac-
tical advantages. It is cost-effective, easily
accessible, and based on routine blood tests,
making it suitable for widespread use in medi-
cal institutions. Unlike ultrasound and MRI,
which have limitations in early PCa detection
[14, 15], this model offers a non-invasive and
accurate alternative that can significantly re-
duce unnecessary prostate biopsies. Further-
more, it enhances diagnostic performance by
combining multiple biomarkers, which improves
risk stratification and reduces misdiagnosis
rates.

A combined prediction strategy significantly
enhances diagnostic performance. Guo et al.
reported that combined detection of TGF-B1,
p2PSA, and PSA yielded an AUC of 0.932 for
PCa diagnosis [33]. Similarly, another study
demonstrated that the AUC for PCa assess-
ment with combined multiple indicators was
0.900 [34]. These studies indicate that com-
bined detection provides more comprehensive
disease status information, reduces the risks
of misdiagnosis and missed diagnosis, and
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improves patient risk stratification capacity
[35]. Furthermore, the model facilitates early
detection and risk stratification of PCa, allowing
clinicians to identify high-risk patients earlier
and promptly formulate individualized diagno-
sis and treatment plans. Nomogram analysis
demonstrated that NLR and NAR made sub-
stantial contributions to risk prediction, sug-
gesting that clinicians should monitor changes
in these two indicators. Moreover, combined
prediction plays a crucial role in disease moni-
toring and prognostic assessment [36].

The model could also support telemedicine
and Al-assisted diagnosis, facilitating collabor-
ative diagnosis between primary and special-
ized hospitals.

However, this study has limitations. As a single-
center retrospective study, it may have selec-
tion and information biases, and multi-center
prospective studies are needed for external
validation. The sample was primarily from the
Chinese population, and its applicability to
other ethnicities and regions remains unveri-
fied. Long-term follow-up data is also lacking,
and the absence of biomarkers such as imag-
ing features and genomic data limits the mod-
el's predictive power. Additionally, the “black
box” nature of machine learning models poses
challenges to clinical interpretation, and future
work should focus on improving model trans-
parency. The effects of complications, medica-
tion history, and lifestyle factors on outcomes
were not fully considered. Future research sh-
ould expand the sample size, include diverse
populations, integrate imaging and genomic
data, and enhance the model's accuracy and
predictive capabilities.

Conclusion

The XGBoost machine learning model, based
on NLR, LMR, and NAR, outperforms traditional
PSA and PHI tests in the differential diagnosis
of PCa and BPH. This model offers a cost-effec-
tive, accurate, and clinically applicable non-
invasive diagnostic tool that is expected to
reduce unnecessary invasive procedures and
improve diagnostic precision.
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Table S1. Brier Scores of five models across training, validation, and test sets with pairwise wilcoxon
comparisons

Mean Brier Lowest L ) ) .
Dataset Model Score Model(s) Significant comparisons (Wilcoxon, Holm-adjusted)
Training Logistic 0.0624 XGB<Logistic (P<0.001), XGB<Rpart (P<0.001),

XGB<RF (P<0.001), XGB<SVM (P<0.001)
Rpart (DT) 0.067

RF 0.0435
SVM 0.0548
XGBoost 0.0326 S
Validation Logistic 0.0952 XGB<Logistic (P<0.001), XGB<Rpart (P<0.001),

XGB<RF (P=0.002); XGB vs SVM (P=0.36, n.s.)
Rpart (DT) 0.0847

RF 0.0826
SVM 0.0751 v (with XGB)
XGBoost 0.0742 v (with SYM)
Test Logistic 0.0794 XGB<Logistic (P<0.001), XGB<Rpart (P<0.001),

XGB<RF (P=0.04); XGB vs SVM (P=0.08, n.s.)
Rpart (DT) 0.1103

RF 0.0642
SVM 0.064 v (with XGB)
XGBoost 0.0561 v (with SVM)

DT: Decision Tree, RF: Random Forest, SVM: Support Vector Machine, and XGBoost: Extreme Gradient Boosting.



