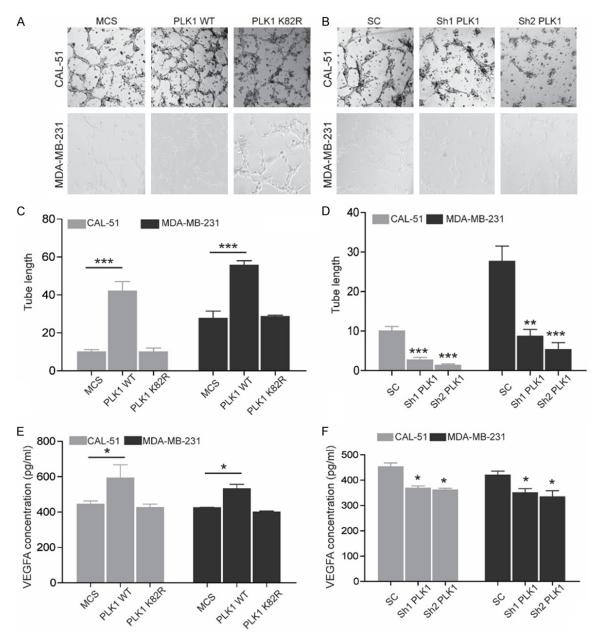
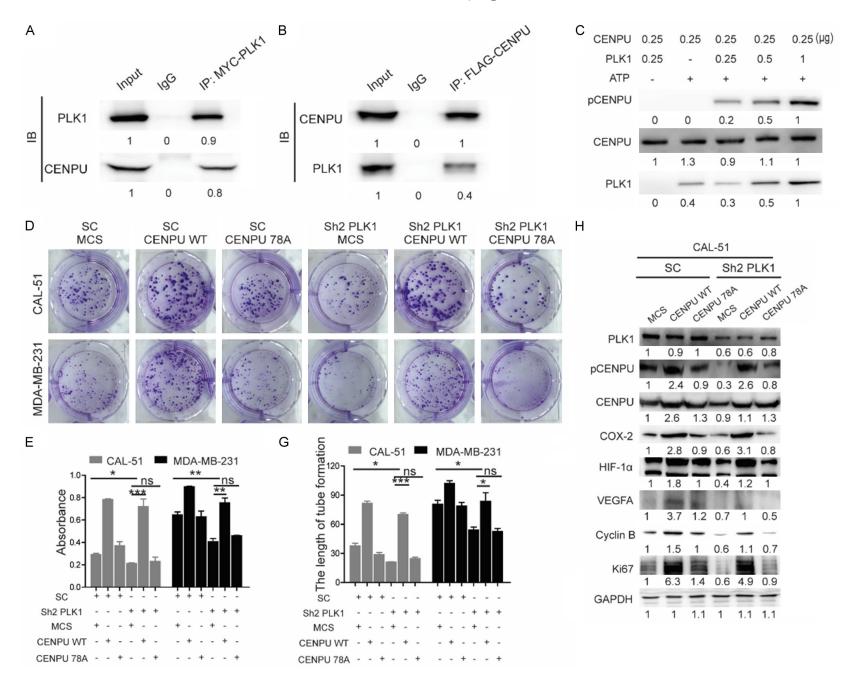
Erratum

Deciphering the performance of polo-like kinase 1 in triple-negative breast cancer progression according to the centromere protein U-phosphorylation pathway: Am J Cancer Res. 2021; 11(5): 2142-2158


Shaorong Zhao^{1,2,3,4}, Yannan Geng⁵, Lixia Cao^{1,2,3,4}, Qianxi Yang^{1,2,3,4}, Teng Pan^{1,2,3,4}, Dongdong Zhou^{1,2,3,4}, Jingjing Liu^{1,2,3,4}, Zhendong Shi^{1,2,3,4}, Jin Zhang^{1,2,3,4}

¹The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin 300060, The People's Republic of China; ²Key Laboratory of Cancer Prevention and Therapy, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin 300060, The People's Republic of China; ³Tianjin's Clinical Research Center for Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin 300060, The People's Republic of China; ⁴Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin 300060, The People's Republic of China; ⁵Department of Spinal Surgery, Tianjin Union Medical Center, Hongqiao District, Tianjin 300121, The People's Republic of China


Received September 15, 2025; Accepted September 17, 2025; Epub November 25, 2025; Published November 30, 2025

In this text, some errors were found in **Figures 3B** and **5I**, therefore, we provide the correct version to displace the wrong figures and reflect changes. We deeply apologize for any inconvenience this inadvertent oversight may have caused. The correction does not have any effect on the results or conclusions of the paper. The corrected **Figures 3B** and **5I** are provided below.

Address correspondence to: Jin Zhang, The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin 300060, The People's Republic of China. Tel: +86-22-23340123; E-mail: zhangjintjmuch1@163.com

Figure 3. PLK1 promotes VEGFA production and tube formation in endothelial cells. (A, C) A tube formation assay was performed using CAL-51 and MDA-MB-231 cells transfected with the MCS, PLK1, or PLK1 K82R vector (A). Quantification of tube lengths (C). (B, D) Tube formation assays were performed in PLK1-knockdown MDA-MB-231 and CAL-51 cells (B). Quantification of tube lengths (D). (E, F) VEGFA production was measured using ELISA in PLK1-overexpressing (E) and PLK1-knockdown (F) Cells of CAL-51 or MDA-MB-231. *P < 0.5, **P < 0.01, ***P < 0.05.

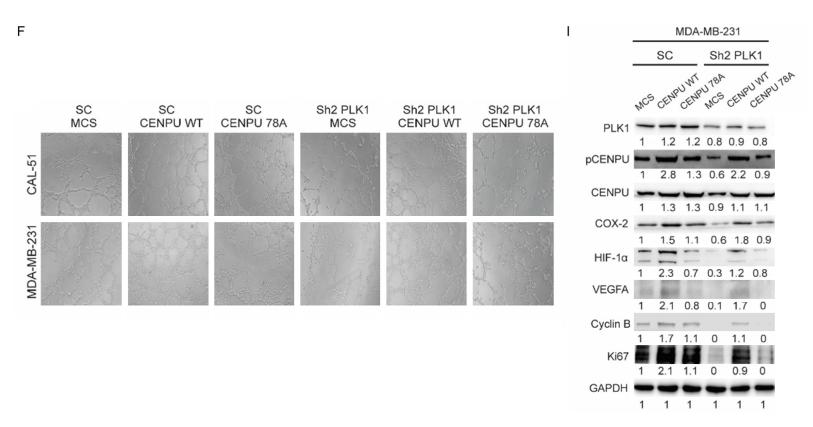


Figure 5. PLK1 phosphorylates CENPU and promotes the signaling of COX-2-HIF-1α-VEGFA-pathway and metaphase-anaphase transition. (A, B) The PLK1-CENPU interaction was investigated in 293T cells overexpressing Myc-tagged PLK1 and Flag-tagged CENPU using the co-IP assay. (C) PLK1 phosphorylates CENPU, as determined by in vitro kinase assay. (D, E) CENPU and CENPU T78A interfere with clone formation by PLK1-knockdown CAL-51 or MDA-MB-231 cells (D). Quantification of absorbance values (E). (F, G) CENPU and CENPU T78A interfere with tube formation by PLK1-knockdown CAL-51 cells or MDA-MB-231 cells (F). Quantification of tube lengths (G). (H, I) CENPU and CENPU T78A interfere with protein expression in PLK1-knockdown CAL-51 (H) and MDA-MB-231 cells (I). *P < 0.5, **P < 0.01, ***P < 0.05.