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Abstract: Advances in radiomics and machine learning techniques have facilitated the extraction of quantitative
radiomic features that can be correlated with genomic data. Breast MRI-based radiogenomics, which combines MRI
radiomics and genomics, is an emerging field that non-invasively reflects tumor heterogeneity and assesses the bio-
logical behaviour of breast cancer. Studies have shown that radiogenomics has the potential to replace traditional
genetic testing for breast cancer, reducing the need for invasive procedures such as biopsies. In the future, the clini-
cal application of radiogenomics as a tool for molecular subtype identification, treatment response and prognosis
prediction, and recurrence risk assessment is both necessary and feasible.

Keywords: Radiogenomics, breast cancer, magnetic resonance imaging (MRI), molecular subtype, neoadjuvant

chemotherapy (NAC)

Introduction

Breast cancer is a major global health concern,
ranking as the second most common cancer
in 2022, with an estimated 2.3 million new
cases, representing 11.6% of all cancers. It
is also the fourth leading cause of cancer-relat-
ed deaths worldwide, accounting for 666,000
deaths (6.9% of all cancer deaths). Among
women, breast cancer is the most frequently
diagnosed cancer and the leading cause of
cancer deaths globally [1]. The high heteroge-
neity of breast cancer has led to the integra-
tion of whole-genome expression profiling tech-
niques in clinical practice for improved disease
management [2]. These technologies enable
molecular subtyping of breast cancer, leading
to more accurate predictions of recurrence,
metastasis risk, and treatment response [3].
However, due to cost and technological limita-
tions, immunohistochemical analysis of pathol-
ogy remains a commonly used alternative.
Immunohistochemistry results can be limited
by tumor heterogeneity and volume, and pa-
thohistology cannot comprehensively, objec-
tively, and quantitatively analyze tumors [4]. To
address these limitations, radiogenomics, an
emerging field that combines radiology and
genomics, offers a promising solution. It non-

invasively reflects the overall heterogeneity of
tumors, aiding in our understanding of tumor
biology [5]. This review will illustrate the critical
role of state-of-the-art MRI-based radiogenom-
ics in precision medicine for breast cancer, with
the goal of optimizing medical decisions and
improving patient prognosis.

Search strategy and selection criteria

We conducted a systematic literature search
according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines, and local institutional
ethical approval was not required as this is a
review article of current literature. The search
of PubMed, Web of Science, and Embase data-
bases was performed for articles published
from January 1, 2012, to May 31, 2025. This
search was performed using the following
headings adapted for each database: “breast
cancer”, “radiomics”, “radiogenomics”, “MRI”,
“dynamic contrast-enhanced”, “DCE-MRI”, “neo-
adjuvant chemotherapy”, “pathological com-
plete response”, “prognosis”, and “survival”.
Only studies published in English were consid-
ered for inclusion. All duplicate studies were
manually removed before the titles and ab-
stracts were screened. The full texts of studies
deemed appropriate were then reviewed. This
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Figure 1. The PRISMA flowchart of the review process and study selection.

Table 1. Classification of surrogate molecular subtypes

Study quality and risk-of-bias
assessment

We evaluated study quality

Subtype Receptor Status and risk of bias using the
Luminal A ER positive and/or PR positive, HER2 negative QUADAS-2 (Quality Assessment
Luminal B ER positive and/or PR positive, HER2 positive of Diagnostic Accuracy Studi-
HER2 ER negative and PR negative, HER2 positive es) framework, focusing on
Basal ER negative, PR negative, and HER2 negative four domains: patient selec-

process was carried out by two independent
reviewers (X.G. and C.Z.). If the reviewers dis-
agreed, a third author (H.Z.) was asked to arbi-
trate. The PRISMA flow diagram is shown in
Figure 1.

Inclusion and exclusion criteria

Studies meeting the following inclusion criteria
were included: (1) Original studies (prospec-
tive or retrospective) reporting MRI-based
radiomics/radiogenomics analyses in breast
cancer patients; (2) Studies must link imaging
features to genomic endpoints; (3) Studies
reporting prediction or association for at least
one of the following: molecular subtype, recep-
tor status, proliferation index, pathologic com-
plete response (pCR) to neoadjuvant che-
motherapy, recurrence-free survival (RFS)/dis-
ease-free survival (DFS)/overall survival (0S),
or validated multigene recurrence risk scores;
(4) The sample size is greater than or equal to
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tion, imaging and feature ex-
traction, genomic assay quali-
ty, and flow and timing (e.g., imaging vs tissue
timing, loss to follow-up). Each included study
was flagged for key bias indicators: single-cen-
ter vs. multicenter, retrospective vs. prospec-
tive design, sample size, lack of external va-
lidation, no calibration reporting, and unclear
segmentation reproducibility (ICC not report-
ed). These flags are reported in Tables 4 and 5
to assist in evaluating evidence strength.

Genomic characteristics of breast cancer

Gene testing and analysis provide valuable
clinical insights into breast cancer. Breast can-
cer exhibits significant genomic heterogeneity,
which can be categorized into three distinct
levels.

Susceptibility gene mutation and single
nucleotide polymorphism (SNP)

Over 70 genes have been identified as breast
cancer susceptibility genes, including those
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Table 2. Summary of the classification of DCE-MRI features

Category Description

Examples

Morphological
Features

General characteristics of the image

Size, shape, edge, distribution

Histogram-based Features derived from the global gray-level histo- Mean, entropy, skewness, kurtosis, uni-

Features gram that do not consider spatial relationships

Texture-based

formity, standard deviation, percentiles

Second-order features that capture textural proper- Autocorrelation function, gray-level co-

Features ties by analyzing spatial relationships among pixels occurrence matrix, gray-level run

Kinetic Features Features related to the dynamic or temporal as-

pects of image behavior

Maximum absorption rate, peak time, ab-
sorption rate, clearance rate, transit rate

Table 3. Summary of the role of machine learning in feature extraction

Requires Machine

Method ) Characteristics Typical Tools/Models
Learning
Traditional Handcrafted No High interpretability, relies on manual PyRadiomics, MaZda,
design IBEX
Deep Feature Extraction Yes Data-driven, captures complex patterns, ResNet, VGG, 3D CNN
requires large datasets
End-to-End Learning Yes Features highly tailored to the task, strong U-Net, Transformer-

black-box nature

Hybrid Method Yes (Partial)

based models

Balances interpretability and performance, PyRadiomics + Custom

requires feature fusion strategies CNNs

that confer high risk (BRCA1, BRCA2, PTEN,
TP53) as well as moderate and low risk (ATM,
BARD1, CDH1, CHEK2, NF1, PALB2, RAD51C,
RAD51D, STK11) for the development of can-
cer, although penetrance may vary. Notably,
BRCA1/2 plays a crucial role in DNA homolo-
gous recombination repair. Pathogenic muta-
tions in these genes, often located within exon-
icorsplice-site regions, can disrupt homologous
recombination repair, increasing the likelihood
of tumor development. Research has also iden-
tified at least 55 SNPs that are closely associ-
ated with breast cancer. For instance, a mis-
sense mutation in rs1800371 within the TP53
coding region can lead to p53 protein altera-
tions, considerably elevating breast cancer
risk. Additionally, SNPs in non-coding regions,
such as rs4973768 in the SLC4A7 gene dis-
covered by Ahmed et al., have also been link-
ed to an increased risk of breast cancer
development.

Expression profile characteristics

Breast cancer exhibits unique gene and pro-
tein expression patterns, reflecting its diverse
nature. Perou et al. pioneered the use of cDNA
microarray data to perform differential analysis
of breast cancer gene expression profiles, high-

5121

lighting the variations in gene expression levels
across different tumors. As sequencing tech-
nologies have advanced, RNA sequencing data
has largely replaced microarray data for differ-
ential analysis. However, protein expression
profiles offer a more comprehensive under-
standing of breast cancer’s expression charac-
teristics. Consequently, reverse-phase protein
arrays (RPPA) data have been widely employed
to reveal protein expression profiles in breast
cancetr.

Molecular subtype characteristics

Molecular subtypes of breast cancer are used
to explain differences in response to treatment
and clinical outcomes beyond what can be
achieved with nuclear grade and tumor size
alone [6]. Based on gene expression profiling,
breast cancer is classified into different molec-
ular subtypes. Although the field is still evolv-
ing, the currently commonly accepted molecu-
lar subtypes classified by surrogate biomarkers
include luminal A, luminal B, HER2-enriched
(human epidermal growth factor receptor 2),
and basal-like subtypes [7], as shown in Table
1. Molecular subtyping of breast cancer is of
significant clinical importance as different sub-
types exhibit distinct patterns ranging from
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Table 4. Representative studies: molecular subtype classification

Study (year) Cohort size

MRI sequences

Feature/model

Validation type

Best metric

Grimm/Mazurowski
et al. (Radiology/
JMRI; 2015-2017).

Holli-Helenius et al.
(2017).

Retrospective, multiple
cohorts (e.g., TCGA subsets
and institution cohorts).

Retrospective, N = 27 (15
Luminal A, 12 Luminal B).

Saha et al., BrJ
Cancer (2018).

Retrospective, N = 922 (split
461 train/461 test).

Xie et al. (2018). Retrospective, N = 134 (22
TN, 26 Luminal A, 68 Lumi-

nal B, 18 HER2+).

Leithner et al., Breast
Cancer Res (2019).

Retrospective multi-center-
ish design; Training N = 91,
Validation N = 52 (total 143).
Retrospective, N = 51 (19
Luminal A, 32 Luminal B).

Wang et al. (2020).

Leithner et al.
(2020).

Retrospective, N = 91 (49
LumA, 8 LumB, 11 HER2+,
23 TN).

Du et al. (2021). Retrospective, N = 200 (41
LumA, 66 LumB, 32 Lum-

HER2, 25 HER2+, 36 TN).

Huang et al., Front
Oncol (2021).

Retrospective, single-center;
N = 162 women (T2-T4
invasive breast cancer).

Tsai et al., Korean J
Radiol (2021).

Prospective, single-center;
N = 306 patients (308
tumors).

Ming et al., Cancers
(2022).

Multi-cohort radiogenomic (N
= 246 combined).

Sheng et al., Front.
Oncol. (2022).

Retrospective, single-center,
N = 190 patients (99 Lumi-
nal, 59 HER2+, 32 TNBC).

DCE features (kinetics),
multiparametric MRI.

T1-weighted non-fat-
saturated pre- and post-
contrast MRI.

DCE-MRI (preop).

Multiparametric MRI:
DWI (ADC map) and DCE
(washin, washout maps).

CE-MRI (3T).

DCE-MRI.

DWI with ADC mapping.

Multiparametric: Syn-
thetic MRI (T4, T2, PD),
DCE-MRI, DWI (ADC).

3.0 T multi-parametric
MRI: DCE-T1WI, fat-
suppressed T2WI, ADC
map.

DCE-MRI and IVIM-DWI
(1.5T, 11 b-values).

DCE-MRI (174 features).

3-T DCE-MRI (T1, T2, DWI,
DCE) Vibrant + sequence
8 dynamic phases.

Regression/ML on kinetic and texture
features.

Co-occurrence matrix (COM) texture features;
binary logistic regression model.

529 DCE features; ML models (multivariate).

Whole-tumor histogram analysis; first-order
texture features from ADC, washin, washout
maps; univariate analysis + ROC.

Radiomic signature (LDA + k-NN classifica-
tion).

Texture analysis (kurtosis, inhomogeneity,
entropy); manual ROI delineation; statistical
comparison (t-test, ROC).

Multiple radiomic feature types (HIS, COM,
RLM, etc.); feature selection + LDA + k-NN
classifier.

Multiple quantitative parameters; univariate
+ multivariate logistic regression; combined
parameter models. No radiomics texture
features reported.

4,198 radiomics features extracted using
Pyradiomics; feature selection with LASSO +
RFE, mRMR, Boruta; classifiers: RF, SVM, LR,
LDA, GNB, MLP; LOOCV used for all models.

Quantitative kinetic (Tofts model: Ktrans,
kep, vp, ve, IAUGCBN90) and IVIM param-
eters (D, Dp, f, SO); regression and ROC
analyses/Tofts model used.

Unsupervised clustering — imaging sub-
types; then tested association with PAM50
and outcomes.

1130 Radiomic Features (Shape, First-order,
Texture, Wavelet, LOG) Feature Selection:
LASSO Models: LR, RF, NB, SVM, XGBoost.

Internal and some exter-
nal cohort comparisons
in later works.

Leave-one-out cross-
validation.

Internal hold-out test
(split).

Internal, statistical vali-
dation (no hold-out set).

Independent validation
dataset from second
institution.

Internal, statistical vali-
dation (no hold-out set).

Leave-one-out cross-
validation.

Internal statistical
validation; no external
validation set.

Leave-one-out cross-
validation (internal).

Internal statistical
validation only (logistic/
linear regression, ROC).

Internal discovery +

validation cohort (s)
reported.

Internal 5-fold cross-

validation Train/Test
split (70:30).

Reported moderate AUCs/discriminative stats
(varies by dataset); typical AUCs in 0.65-0.75 range
depending on subtype task.

Combined model (sum entropy + sum variance):
AUC = 0.878 (Sens 91.7%, Spec 86.7%);

Single features: Sum entropy AUC = 0.828, Sum
variance AUC = 0.833.

Luminal A AUC = 0.697 (95% Cl 0.647-0.746);
TNBC AUC = 0.654 (0.589-0.727); ER AUC = 0.649
(0.591-0.705); PR AUC = 0.622 (0.569-0.674).

TN vs HER2+: AUC = 0.763 (Sens 86.4%, Spec
72.2%);

TN vs Luminal A: AUC = 0.710;

TN vs non-TN: AUC = 0.683.

Validation accuracies: Luminal A vs Luminal B
~79.4%, Luminal B vs TN ~77.1%; several pairwise
accuracies in training > 80%.

Entropy AUC = 0.891 (Sensitivity 90.62%, Specific-
ity 78.95% at cutoff < 4.22).

Luminal B vs HER2+: Acc = 100% (direct ADC
segmentation);

Luminal A vs B: Acc = 91.5%;

Luminal B vs others: Acc = 91.1%.

Luminal A vs others: Combined (T2 + ADC + Vol-
ume) AUC = 0.765;

TN vs others: Combined (T1 + Rim enhancement)
AUC = 0.742;

Single parameters: T2 for LumA (AUC = 0.702), T1
for TN (AUC = 0.699).

MLP model: AUC 0.907 (AR expression, ACC
85.8%), AUC 0.965 (TNBC vs non-TNBC), 0.840
(HER2+ vs HER2-), 0.860 (HR+/HER2- vs others);
micro-AUC 0.896 overall.

Significant group differences (P < 0.05): lower
Ktrans, kep, vp, IAUGCBN9O and higher ve, D in
subtype lll/VI and Luminal A/normal-like; ROC
analysis showed discriminatory ability (no AUC
explicitly reported).

Imaging-subtype separation validated; no single
AUC for subtype prediction reported (focus on
subtyping & outcome associations).

1. Luminal vs. Non-Lumina: XGBoost, AUC = 0.828.
2. HER2+ vs. Non-HER2: Random Forest, AUC =
0.805.

3. TNBC vs. Non-TNBC: XGBoost, AUC = 0.903.

Notes: Many subtype-classification studies report moderate discrimination, which is better for some pairwise subtype tasks than for full multi-class classification. The most robust studies are those with separate external validation cohorts (e.g.
Leithner, 2019) or a very large sample size with test splits (Saha, 2018).

5122

Am J Cancer Res 2025;15(12):5119-5139



MRI-based radiogenomics in breast cancer

Table 5. Representative studies: treatment response and prognosis

(S;::r); Cohort size Timepoint Feature/Model Validation Endpoint Best metric Calibration
Ashraf et al., Retrospective;  Preoperative  Multiparametric imaging phe- Leave-one-out cross- Recurrence risk (On- AUC 0.82 (SE 0.060) when including imag-  Not reported.
Radiology N =56 (ER+ DCE-MRI. notype vector (morphologic, validation. cotype DX Recurrence ing phenotype category as a predictor.
(2014). patients). aggregate kinetic, heteroge- Score: High vs. Low/
neity kinetic features); Hierar- Medium).
chical clustering for intrinsic
phenotypes; Multivariate
logistic regression.
Lietal., Retrospective Preoperative =~ Computer-extracted image Leave-one-case-out Agreement with research AUCs for distinguishing good vs. poor Not reported.
Radiology (TCGA/TCIA), DCE-MRI. phenotypes (CEIPs): size, cross-validation (inter- versions of multigene prognosis: MammaPrint 0.88 (SE 0.05);
(2016). N = 84 (multi- shape, margin, enhancement nal). assay risk groupings Oncotype DX 0.76 (SE 0.06); PAM50 ROR-S
institutional). texture, kinetics. Logistic (MammaPrint, Oncotype 0.68 (SE 0.08); PAM50 ROR-P 0.55 (SE
regression classifier. DX, PAM50 ROR-S, 0.09).
PAM50 ROR-P).
Wan et al., Retrospective;  Pre-treatment 176 features (Shape, PK, EK, 2-fold cross-validation. OncotypeDX Recurrence  AUC 0.87 (95% Cl: 0.78-0.96) for the com-  Not reported.
Sci. Rep. N =96 (ER+ DCE-MRI IK, TK, DHoG, DLBP); LDA Score (High vs. Low bined feature model.
(2016). patients, multi-  (1.5T). classifier with top 6 feature Risk).
institutional). combination.
Drukker et Retrospective Pre-treatment  Automated Most Enhancing Internal (cohort analysis Recurrence-free survival statistic for association with RFS: Calibration not explicitly
al., Cancer (ACRIN 6657/1- and early Tumor Volume (METV) from within trial). (RFS). Pre-treatment: 0.69 (95% Cl 0.58-0.80). reported for the C-statis-
Imaging SPY 1),N= treatment (af- DCE-MRI. Early-treatment: 0.72 (95% CI 0.60-0.84). tic model. Performance
(2018). 162. ter 1st cycle was comparable to a
of NAC). semi-manual FTV model
(C-statistic 0.70).
Chitalia Retrospective;  Pre-operative 22 radiomic features (mor- Independent validation ~ 10-year Recurrence-free  C-statistic improved from 0.55 (baseline Not reported.
etal., Clin Discovery: N = DCE-MRI. phology, texture from SER cohort (TCIA/ISPY-1). survival (RFS). model: HR + HER2) to 0.73 (baseline +
Cancer Res. 95, Validation: maps); Unsupervised hierar- imaging phenotypes).
(2020). N =163. chical clustering for intrinsic
phenotypes.
Lee et al., Retrospective;  Pre-treatment Multivariable Cox model Internal validation via Disease Recurrence C-index: 0.825 (95% ClI: 0.755-0.896) for Not reported.
Sci. Rep. N = 267. DCE-MRI. (Model D) with clinicopatho- statistical models. (ipsilateral, contralateral, the comprehensive model (Model D).
(2020). logic factors, morphologic fea- distant metastasis).
tures (ipsilateral vascularity),
and quantitative parameters
(texture skewness, Kep 25th
percentile).
Magbanua Prospective Pre-treatment Combined serial Functional Internal (pilot analysis).  Pathological complete PCR Prediction (T1): Calibration not explic-
etal., NPJ pilot, N =84 (I- (T0), 3 weeks Tumor Volume (FTV) from response (pCR) and e FTV only AUC: 0.59 itly reported for the com-
Breast Can-  SPY 2 TRIAL). after treat- DCE-MRI and circulating Distant Recurrence-Free * FTV + ctDNA AUC: 0.69 (P = 0.25vs FTV  bined model. The model
cer (2021). ment start tumor DNA (ctDNA) levels Survival (DRFS). alone, NS) with FTV, pCR, subtype,
(T1), between (Signatera test). DRFS Prognosis (T3): and ctDNA had the best
regimens * ctDNA positivity post-NAC provided sig- fit to survival data (lowest
(T2), post-NAC nificant additive value to FTV (Multivariable  AIC score).
pre-surgery Cox model: ctDNA HR = 14.25, P = 0.0046;
(T3). FTV HR = 1.03, P = 0.0191).
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Fanetal., Multicohort
Radiology retrospective,
(2022). N =381 (130 +

116 + 135).
Zhang et al., Retrospective,
JTransIMed N =112 (TNBC
(2022). patients).
Wangetal.,, Retrospective,
Front. Oncol. N =227.
(2022).

Preoperative
DCE-MRI.

Baseline +
after 2 cycles
of NAC.

Preoperative.

MRI-based radiogenomics in breast cancer

Radiogenomic model predict-
ing Oncotype DX Recurrence
Score (RS); combined pre-
dicted RS + complementary
features for NACT response.

Radiogenomic model (Light-
GBM) combining radiomic
features (from tumoral & peri-
tumoral regions on CE-MRI)
and genomic Variant Allele
Frequency (VAF) features.
DWI/IVIM/DKI parameters
(ADC, D, D*, f, MD, MK) and
combined models.

External validation
across independent
prognostic (n = 116)
and treatment (n = 135)
assessment cohorts.

Training/validation
split (2:1 ratio) internal
validation.

Training/validation split
(2:1) internal validation.

Predicted Oncotype DX
RS; Association with
survival (OS/RFS) and
NACT response.

Pathological complete
response (pCR) in TNBC.

Prediction of Nottingham
Prognostic Index (NPI),
Ki-67 expression status,
and molecular subtypes
(Luminal vs. non-Lumi-
nal; Triple-negative).

AUC 0.85 for predicting NACT response
(combined model). Predicted RS > 29.9
associated with worse OS (HR = 8.6) and

RFS (HR = 2.7).

Radiogenomic Model AUC:

* Training set: 0.89 (95% Cl 0.74-0.95)
* Validation set: 0.87 (95% Cl 0.73-0.91)
*Significantly higher than radiomics-only

models (AUCs 0.71-0.73)*.

Combined model AUCs:
* NPI (D* + MK): 0.734

¢ Ki-67 (D + D* + f + MK): 0.755
¢ Luminal vs. non-Luminal (D + D* + MD +

MK): 0.830
* Triple-negative (f + MK): 0.756

Not reported.

Not reported.

Good agreement per cali-
bration curves (Hosmer-
Lemeshow test P = 0.22
for Luminal model; P =
0.74 for TNBC model).

Notes: Several MRI-derived volumetric features (METV and FTV) and radiogenomic signatures demonstrate moderate-to-good prognostic discrimination. The most compelling studies for predicting prognosis and response combine imaging
with genomic biomarkers (e.g., Fan 2022 combining predicted RS; Zhang 2022 radiogenomic for TNBC; Magbanua 2021 FTV + ctDNA).
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gene mutations and SNP characteristics to
expression profile features and ultimately clini-
cal characteristics such as pathological mani-
festations and treatment regimens. For exam-
ple, luminal A and B subtypes are more prone
to developing osteoblastic metastases, while
basal-like subtypes are more likely to cause
pulmonary and brain metastases. Preoperative
chemotherapy is generally more effective for
HER2-overexpressed subtypes, whereas lumi-
nal A and B subtypes typically undergo postop-
erative radiotherapy.

Multigene assays

Multigene assays provide valuable insights into
breast cancer heterogeneity and help guide
personalized treatment strategies. A growing
number of commercially available multigene
assays are becoming increasingly accessible
for widespread clinical use, including PAM50/
Prosigna, Oncotype DX, MammaPrint, Endo-
Predict, and Breast Cancer Index. For example,
PAM50 stands for Prediction Analysis of Mic-
roarray 50 and is a molecular typing method
for breast cancer. By analyzing the expression
levels of 50 specific genes, it classifies breast
cancers into five subtypes: Luminal A, Luminal
B, HER2-enriched, Basal-like, and Normal-like
[8]. This typing can be used to predict the like-
lihood of metastasis in patients with estrogen
receptor (ER)-positive, HER2-negative breast
cancer and guide clinical decisions regarding
hormone therapy and chemotherapy [9]. Onco-
type DX is a validated expression assay based
on 21 genes strongly associated with ER-
positive early-stage breast cancer [10]. This
assay scores the risk of recurrence of early
invasive breast cancer within 10 years. A large
prospective multicenter trial (TAILORX) involv-
ing 10,253 women demonstrated that a low
Oncotype DX Recurrence Score (ODxRS) was
associated with very low rates of breast cancer
recurrence in women treated with endocrine
therapy alone [11]. For eligible women, che-
motherapy could be avoided, reducing patient
morbidity and healthcare costs.

MRI-based radiogenomics in breast cancer

The convergence of artificial intelligence and
genomic sequencing has propelled radioge-
nomics to the forefront of personalized medi-
cine. Currently, radiogenomics studies in bre-
ast cancer primarily utilize magnetic resonance
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imaging (MRI) and mammography, with a
smaller number of studies employing ultra-
sound and PET data [12, 13]. Mammography
and ultrasound also provide valuable radiomic
features. However, DCE-MRI uniquely offers
pharmacokinetic information. Since Yamamoto
et al. conducted the first radiogenomics study
of breast cancer in 2012 [14], dynamic con-
trast-enhanced magnetic resonance imaging
(DCE-MRI) data have been widely used in relat-
ed research due to their high resolution and
spatio-temporal continuity, allowing for the as-
sessment of vascular permeability [15]. A sim-
plified workflow for MRI-based radiogenomics
is shown in Figure 2.

Feature extraction

The primary methods for DCE-MRI feature ex-
traction can be classified into four categories:
morphological features, histogram-based fea-
tures, texture-based features, and kinetic fea-
tures, as shown in Table 2. Most DCE-MRI fea-
ture values are calculated on a voxel-by-voxel
basis. Although the imaging features of com-
monly used mammography and ultrasound are
largely similar to those of DCE-MRI, they lack
features related to enhanced kinetic, pharma-
cokinetic, and thin-walled tissue enhancement,
all of which are unique to DCE-MRI [16]. It’s
important to note that this classification of fea-
ture types is not absolute and can be adjusted
as needed [17]. These features can be hand-
crafted or automatically learned using machine
learning, especially deep learning methods. For
example, tools such as PyRadiomics, MaZda,
and IBEX implement imaging feature extraction
based on mathematical and statistical meth-
ods, which are highly interpretable and have
a deterministic process [18]. In recent years,
machine learning, especially deep learning, has
been widely used to automatically learn MRI
features and is suitable for pattern mining of
high-dimensional data. The automatic data-
driven MRI features perform better in predict-
ing clinical features of breast cancer, which are
more significantly associated with genomic fea-
tures, than traditional semi-automatic MRI fea-
tures [19]. They can capture complex patterns
such as tumor heterogeneity and edge blurring,
but with low interpretability. Identifying scien-
tifically sound feature extraction methods to
obtain accurate feature data remains a signifi-
cant challenge, and increasingly studies are
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Obtain MRI images & gene expression
profiles

'

Ethics approval & dataset split
(training/test)
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Figure 2. The MRI-based radiogenomic workflow.

learning in feature extraction
as shown in Table 3.

Feature selection

After extracting a large num-
ber of high-throughput imag-
ing features, feature selection
methods are employed to iden-
tify the most informative sub-
set. This subset is then used
to train machine learning algo-
rithms to build prediction and
classification models based
on histological image featur-
es. Common feature selection
approaches include Least Ab-
solute Shrinkage and Selection
Operator (LASSO), Recursive
Feature Elimination (RFE), Mi-
nimum Redundancy Maximum
Relevance (MRMR), mutual in-
formation, Pearson or Spear-
man correlation, intra-class
correlation, and Principal Com-
ponent Analysis (PCA), am-
ong others. Of these, LASSO -
an embedded technique that
adds an L1 penalty to a linear
regression model - is the most
commonly used, as it forces
the coefficients of less impor-
tant predictors to zero [20].
The next most popular meth-
ods are RFE and mRMR. RFE is
a wrapper strategy that repeat-
edly fits a classifier, ranks fea-
tures by a chosen metric, and
removes the lowest scoring
ones, making it adept at find-
ing the best subset for a given
model. In contrast, MRMR is a
filtering method that selects
features with the highest rele-
vance to the target while mi-
nimizing redundancy between
features, thereby achieving di-
mensionality reduction [21].
These techniques are favored
in radiomics because they ef-
fectively handle redundant in-

exploring hybrid approaches that combine formation. Other commonly used reduction
these two paradigms to improve model perfor- techniques, either alone or combined, include
mance. We summarize the role of machine PCA, the t-test, and the Mann-Whitney U-test.
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Specifically, PCA transforms continuous vari-
ables into orthogonal principal components
that capture maximum variance, effectively
creating new features by linearly combining
the originals [22].

Modelling and evaluation

Next, various statistical and machine learning
algorithms are used to build and validate ra-
diogenomic models. Popular choices include
Support Vector Machines (SVM), Random
Forests (RF), K-Nearest Neighbours (KNN), Lo-
gistic Regression (LR), Decision Trees, and
Artificial Neural Networks (ANNs). Among tradi-
tional methods, SVM, LR, and RF remain popu-
lar in radiogenomics due to their consistently
strong performance. SVMs find the optimal lin-
ear or non-linear boundary to distinguish class-
es in feature space, are inherently resistant to
overfitting, and can handle redundant inputs.
Logistic regression is valued for its simplicity
and ease of interpretation but can overfit when
faced with many irrelevant or correlated vari-
ables in high-dimensional settings. Random
forests combine multiple decision trees to im-
prove robustness, although identifying truly
informative features in large feature sets can
be challenging. Most supervised classifiers in
radiogenomics are shallow models with only a
few layers or simple architectures. However,
ANNs have been increasingly adopted for their
ability to capture complex patterns in both clas-
sification and regression tasks [23]. Model
effectiveness is typically evaluated using met-
rics such as true positive rate, true negative
rate, overall accuracy, and area under the ROC
curve (AUC) - all of which can be generalized
from binary to multi-class problems.

Modeling and reporting rigor in radiogenomics

To ensure robust, reproducible, and clinically
useful radiogenomic models, it is essential to
follow best practices in data preprocessing,
model development, and reporting. Key recom-
mendations include:

1. Prevent data leakage: All preprocessing and
feature selection steps should be performed
within cross-validation folds, preferably nest-
ed cross-validation. This prevents information
from the test set leaking into the training pro-
cess and avoids overly optimistic performance
estimates [24].
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2. Report model calibration and clinical utility:
In addition to discrimination metrics such as
AUC, model calibration should be assessed
using calibration curves, Brier scores, and cali-
bration slopes. Decision curve analysis (DCA)
is recommended to evaluate potential clinical
utility and inform decision-making [25].

3. Address class imbalance: Class imbalance
should be explicitly addressed using methods
such as threshold adjustment, resampling
(oversampling/undersampling), or reporting
metrics robust to imbalance such as PR-
AUC. Proper handling of imbalanced datasets
ensures reliable model performance across
classes [26].

4. Consider domain shift and image harmoni-
zation: For multi-center or multi-scanner datas-
ets, domain shift due to variations in acqui-
sition protocols should be assessed. Image
harmonization techniques (e.g., ComBat, histo-
gram matching) may be applied to improve
model generalizability [27].

5. Document reproducibility: Reproducibility
should be reported, including test-retest ro-
bustness and segmentation reliability (e.g.,
Intraclass Correlation Coefficient, ICC). Detail-
ed documentation of preprocessing pipelines,
software versions, and random seeds is critical
for enabling independent replication [28].

6. Encourage adherence to established stan-
dards: Follow standardized feature definitions
such as IBSI (e.g., Image Biomarker Standar-
disation Initiative, IBSI) and prediction model
reporting guidelines (e.g., Transparent Repor-
ting of a multivariable prediction model for
Individual Prognosis Or Diagnosis, TRIPOD) to
ensure transparency, reproducibility, and com-
parability in radiogenomic research [29].

Radiogenomics at the gene sequence level

The performance of breast MRl is critical in the
evaluation of patients with cancer-predisposing
pathogenic variants. It aims to establish a link
between breast cancer susceptibility genes,
SNP loci information, and imaging features,
uncovering the correlation between breast can-
cer genetic characteristics and imaging pheno-
types. A pilot study by Yamamoto et al. [14] an-
alyzed 10 breast cancer patients and found
that MRI phenotypes with a heterogeneous
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enhancement pattern were significantly asso-
ciated with immune-related genes characteriz-
ing the interferon-rich subtype, which is often
associated with basal breast cancer. This stu-
dy identified 12 DCE-MRI-specific traits sig-
nificantly associated with high expression of
immune-related genes, including STAT1, CXCL9,
and IFIT1. Subsequently, Maimone et al. [30]
investigated 410 breast cancer patients (2001-
2020) who underwent MRI with identified
pathogenic variants and found that BRCA1
(29.5%), BRCA2 (25.9%), CHEK2 (16.6%), ATM
(8.0%), and PALB2 (6.3%) were the most com-
mon variants. Significant associations were
observed with tumor shape, margin, grade, rim
enhancement, kinetics, and necrosis. BRCA1
tumors were predominantly basal (47.9%) and
exhibited distinct imaging features such as
round shape (31.4%), circumscribed margins
(24.0%), rim enhancement (24.0%), washout
(58.7%), and necrosis (19.8%), while CHEK2
and ATM tumors were often lower grade with
spiculated margins, rarely exhibiting washout
or necrosis, and were mostly comprised of lu-
minal molecular subtypes (CHEK2: 88.2%,
ATM: 90.9%).

While these studies established a link be-
tween susceptibility genes and imaging fea-
tures, researchers expanded upon this con-
cept using RNA sequencing. Advances in next-
generation RNA sequencing have led to the dis-
covery of new transcriptional and epigenetic
regulators. For example, Incoronato et al. [31]
found that standard quantitative visualization
biomarkers on MRI and positron emission
tomography (PET) correlated with circulating
microRNAs. Their study included 77 breast can-
cer patients who underwent PET/MRI analysis
and blood sampling on the same day, along
with 78 healthy individuals as a control group.
The results demonstrated that among the 84
microRNAs identified, MIR-125b-5p, MIR-143-
3p, MIR-145-5p, MIR-100-5p, and MIR-23a-
3p were more frequently detected in plasma
samples. A strong correlation was observed
between the expression level of circulating
MIR-143-3p and the mean initial area under
the concentration curve in stage Il breast can-
cer, suggesting a potential role of MIR-143-3p
in tumor vascularization regulation. Additionally,
a strong correlation was observed between
MIR-143-3p and the maximum standardized
uptake value at this stage, indicating that mi-
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croRNAs play a role in cancer metabolism
control.

Beyond microRNAs, long noncoding RNAs
(IncRNAs), referred to as non-coding tran-
scripts, are key regulatory RNAs implicated in
breast cancer. Yamamoto et al. [32] investi-
gated the relationship between MRI-derived
enhancing rim fraction scores and the expres-
sion of 14,880 IncRNAs. Radiogenomic analy-
sis allowed the identification of three previously
uncharacterized and five named IncRNAs that
were significantly associated with high enhanc-
ing rim fraction, including homeobox transcript
antisense intergenic RNA (HOTAIR), a known
predictor of tumor metastasis in breast cancer
patients.

In a recent prospective cohort by Park et al.
[33], 95 women with invasive breast cancer
were evaluated using BI-RADS scoring, texture
analysis, and next-generation RNA sequenc-
ing. The authors observed that tumors pre-
senting as masses had increased CCL3L1
expression, whereas those with irregular sha-
pes had decreased MIR421 levels. Within the
ER-positive mass subgroup, CCL3L1, SNHG-
12, and MIR206 were upregulated, whereas
MIR597, MIR126, and SOX17 were downregu-
lated. In basal tumors with higher texture het-
erogeneity on precontrast T1l-weighted ima-
ges, the genes CLEC3A, SRGN, HSPG2, KMT2D,
and VMP1 were overexpressed, whereas IGLC2
and PRDX4 were underexpressed. Gene net-
work analyses further linked ER-positive mass
lesions with increased cell proliferation, resis-
tance to anti-estrogen treatment, and poorer
survival.

These insights support the potential of radioge-
nomics as an alternative to traditional genetic
testing in breast cancer.

Radiogenomics at the gene pathway level

The analysis of gene pathways can reflect
changes in gene activity and transcription dur-
ing the occurrence and development of breast
cancer. MRI-based radiogenomics utilizes gene
and protein expression profiling data to reveal
the relationship between the activity character-
istics of breast cancer at the transcriptional
and translational levels and its MRI phenotype.
For instance, Janus kinases (JAK), a type of
non-receptor tyrosine kinase, are crucial for
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activating signal transducer and activator of
transcription (STAT) proteins in breast cancer.
Disruption of the JAK-STAT pathway can lead to
cancer development [34]. Yeh et al. [35] ana-
lyzed 47 invasive breast cancers using radio-
mic techniques and gene expression data from
fresh tissue samples; their Gene Set Enrich-
ment Analysis (GSEA) linked 186 gene path-
ways to 38 imaging features. The results
showed that radiomic size features were posi-
tively associated with replication and prolifera-
tion pathways and negatively associated with
the apoptosis pathway. Notably, pathways re-
lated to immune regulation and extracellular
signalling showed the most significant corre-
lations with radiomic features. Tumors with
upregulation of immune and extracellular sig-
nalling pathways were smaller, more spherical,
and had a more heterogeneous texture on DCE-
MRI, whereas tumors with higher expression
levels of JAK/STAT and VEGF pathways had
increased contrast, variance, and entropy, whi-
le homogeneity and linearity decreased. In
addition, the tumor necrosis factor-alpha (TNF-
«)/NF-kappaB/Snail pathway is another key
molecular pathway in breast cancer, influenc-
ing epithelial-mesenchymal transition, prolifer-
ation, angiogenesis, invasion, and metastasis
[36-38]. Wu et al. [39] analyzed 10 quantita-
tive imaging features related to tumor-adjacent
enhancement patterns and found that certain
parenchymal imaging features associated with
the TNF pathway have prognostic value.

Zhu et al. [16] obtained breast cancer-related
gene pathways from the Kyoto Encyclopedia of
Genes and Genomes (KEGQG) and utilized GSEA
to identify gene pathways associated with 38
imaging features. The results revealed signifi-
cant associations between numerous KEGG
pathways and imaging features, particularly
showing statistically significant positive corre-
lations with lesion volume, effective diameter,
surface area, and maximum linear dimension,
while exhibiting significant negative correla-
tions with margin sharpness and radial gradi-
ent histogram variance. Additionally, the study
employed RPPA data encompassing 142 pro-
teins such as p53 and cadherin to analyze the
correlation between protein expression profiles
and imaging features using linear regression
models. The results demonstrated that pro-
tein expression characteristics exhibited limit-
ed correlations solely with tumor size and mor-
phological features.
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However, the complexity of gene expression
and signalling pathways limits such studies.

Research of MRI-based radiogenomics in
breast cancer

The role of radiogenomics in identifying mo-
lecular subtypes of breast cancer

Preoperative knowledge of breast cancer
molecular subtypes is crucial for guiding indi-
vidualized treatment selection, including che-
motherapy, endocrine therapy, and HER2-tar-
geted therapy. While genomic analysis remains
the gold standard for classifying molecular sub-
types, its high cost and time-consuming nature
limit its applicability to a large patient popula-
tion. Consequently, most studies often rely on
receptor status as a surrogate for genomic
analysis to leverage larger sample sizes.

Researchers have extensively investigated the
relationship between contrast enhancement
Kinetics on breast MRl and molecular subtypes.
MRI enhancement kinetics can be categorized
into an initial phase (slow, medium, and fast)
and a delayed phase (persistent, plateau, and
washout). Blaschke and Abe [40] observed that
the HER2-enriched subtype exhibited faster ini-
tial phase enhancement compared to other
subtypes in an analysis of 112 cancer cases.
Grimm et al. [41] identified two dynamic imag-
ing features as independent predictors of the
luminal A and B subtypes: 1) the ratio of tumor
enhancement to fibroglandular tissue at two
time points, and 2) the sequence number at
which peak enhancement occurs. Further re-
search by Grimm et al. [42] found that the
shape of the breast mass is significantly asso-
ciated with the basal-like subtype, whereas the
mass margin is significantly associated with
the HER2-enriched subtype. Notably, homoge-
neous mass-like and non-mass-like internal
enhancement have a higher negative predictive
value for the luminal B subtype. Subsequently,
Ming et al. [43] utilized an unsupervised analy-
sis of DCE-MRI features to identify and validate
three novel imaging subtypes of breast cancer
in two independent radiogenomics cohorts,
totaling 246 patients. The study revealed that
these imaging subtypes were significantly asso-
ciated with Ki67 status, PAM50 intrinsic molec-
ular subtypes, and tumor stage. There were
significant differences in tumor size, enhance-
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ment patterns, and clinical outcomes among
the subtypes.

Other studies have focused on the role of back-
ground parenchymal enhancement (BPE) in
subtype differentiation. Mazurowski et al. [44]
found that luminal B breast cancer showed
maximal tumor enhancement relative to back-
ground parenchyma. HER2 overexpression, of-
ten seenin luminal B and HER2-enriched breast
cancer, is linked to vascular endothelial growth
factor (VEGF). Dilorenzo et al. [45] found that
mild BPE suggests Luminal B or HER2-negative
subtypes, while severe BPE suggests the basal
subtype. Wang et al. [46] found that the addi-
tion of quantitative imaging features of BPE
significantly improved its ability to predict the
basal subtype, increasing prediction accuracy
from 86.9% to 90.0% and AUC from 0.782 to
0.883. Furthermore, Luo et al. [47] aimed to
identify differences in pharmacokinetic param-
eters derived from DCE-MRI between luminal A
and B breast cancer subtypes. They retrospec-
tively analyzed data from 94 patients with con-
firmed breast cancer, applying the Mann-Whit-
ney U-test to compare pharmacokinetic param-
eters (Ktrans, Kep, and Ve) along with their cor-
responding histogram and texture features.
Their findings showed that luminal B cancers
exhibited significantly higher maximum values
for Ktrans, Kep, and Ve, as well as increased
mean and 90th percentile values for Ve, com-
pared to luminal A cancers. This study con-
cluded that DCE-MRI-derived pharmacokinetic
parameters could represent valuable imaging
biomarkers for differentiating between luminal
A and B subtypes of breast cancer.

With the advancement of MRI radiogenomics,
recent studies have typically provided both
quantitative and qualitative imaging biomark-
ers. For example, in a retrospective analysis of
51 patients with ER-positive invasive ductal
carcinoma using DCE-MRI texture analysis,
Wang et al. [48] found that kurtosis, hetero-
geneity, and entropy effectively discriminated
between Luminal A and Luminal B, with entropy
showing the highest diagnostic efficacy (AUC =
0.891). Saha et al. [49] performed a compre-
hensive analysis on a larger cohort of 922
female patients with invasive breast cancer
who underwent pre-operative DCE-MRI. The re-
searchers used a machine learning approach
to extract 529 imaging features from the MRIs
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and developed multivariate models to predict
various molecular and genomic characteris-
tics, including tumor subtype, ER, progesterone
receptor (PR), HER2 status, and the prolifera-
tion marker Ki-67. The results indicated moder-
ate associations between the imaging features
and molecular biomarkers, with the highest
predictive accuracy achieved for distinguishing
Luminal A subtype (AUC = 0.697) and basal
breast cancer (AUC = 0.654).

Early studies of breast MRI radiogenomics were
often based on T1-weighted imaging, and multi-
parametric imaging is the greatest strength of
MRI. In the first study that investigated the util-
ity of diffusion weighted imaging (DWI) radiomic
signatures, Xie et al. [50] investigated DWI and
DCE-MRI histogram features for the differentia-
tion of basal from other molecular subtypes
with AUCs up to 0.763. However, histogram
features do not provide textural information
regarding spatial relationships between the sig-
nal intensities of pixels/voxels across a region
or volume of interest. Leithner et al. [51] found
that radiomic features from DWI, such as gray-
level co-occurrence matrices, can more accu-
rately assess the receptor status and molecu-
lar subtype of breast cancer, especially for the
luminal A and B subtypes (with accuracies of
91.5% and 89.5%, respectively). Meanwhile,
Holli-Helenius et al. [52] achieved AUC values
of 0.83-0.88 for the separation of luminal A
and B cancers in a small patient cohort (n = 27)
using co-occurrence matrix features alone.
Siyao Du et al. [53] conducted a study involv-
ing 200 breast cancer patients who underwent
synthetic MRI, DWI, and DCE-MRI examina-
tions. The study found that T1 and T2 values
were significantly different in hormone recep-
tor-negative and Ki67 > 14% tumors, while
HER2-positive tumors demonstrated higher
Ktrans and Kep. The authors concluded that
MRI quantitative parameters can help distin-
guish molecular markers and subtypes, with T1
values from synthetic MRI being associated
with the basal subtype and combined parame-
ters including T2 values showing potential in
discriminating the Luminal A subtype. In a pro-
spective study, Tsai et al. [54] evaluated 306
female patients with de novo breast cancer,
specifically tumors larger than 1 cm, using DCE-
MRI, DWI, and intravoxel incoherent motion
(IVIM). They found that breast cancer PAM50
subtypes luminal A and normal-like exhibited
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significantly higher expression of vascular nor-
malization genes compared to other subtypes.

Building on multiparametric MRl examinations,
researchers have explored the use of advanced
machine learning techniques to differentiate
molecular subtypes. For example, Huang et al.
[55] conducted a study involving 162 female
patients diagnosed with clinical stage T2-4
breast cancer to investigate the potential of
multiparametric MRI-based radiomic features
in predicting molecular subtypes and androgen
receptor expression. They employed various
machine learning algorithms and feature se-
lection strategies to analyze a total of 4,198
radiomic features extracted from MRI se-
quences. The study found that the Multilayer
Perceptron (MLP) model demonstrated the
best performance, achieving an AUC of 0.907
for predicting AR expression and a micro-AUC
of 0.896 for classifying molecular subtypes.

MRI-based radiomic features could also be
used alongside other clinical variables to un-
derstand tumor biology. For example, Sheng et
al. [56] conducted a study on 190 Chinese
female patients with invasive ductal breast
cancer. The study utilized a combination of
three-dimensional imaging features extracted
from DCE-MRI, pathology variables, and clini-
cal data, applying machine learning techniques
to predict molecular subtypes. The study found
that the eXtreme Gradient Boosting model
demonstrated superior performance in differ-
entiating the various molecular subtypes of
breast cancer, including Luminal, HER2, and
basal subtypes, especially in the Luminal and
basal groups, with AUC values of 0.8282 and
0.9031, respectively.

The methods used in the above studies varied
in their ability to identify molecular subtypes of
breast cancer. Consequently, Davey et al. [57]
performed a meta-analysis to assess the diag-
nostic accuracy of radiogenomics in differenti-
ating molecular subtypes. The authors evaluat-
ed 41 studies (from 2015 to 2020) involving
10,090 breast cancer patients. This analysis
supports the reliability of preoperative MRI-
based radiogenomics in independently differ-
entiating the therapeutically relevant luminal
A (sensitivity: 0.78 and specificity: 0.83) and
HER2+ (sensitivity: 0.87 and specificity: 0.88)
subtypes from each other. It also supports the
refinement of deep learning and convolutional
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neural networks (CNN) as the most favorable
means of radiogenomic analysis. The authors
concluded that radiogenomics has the poten-
tial to differentiate breast cancer into its clini-
cally relevant subtypes, while preserving inva-
sive approaches until the time of surgical
resection.

Predictive value of radiogenomics for treat-
ment response and prognosis

Prognostic risk analysis is crucial for post-oper-
ative treatment selection and survival assess-
ment in breast cancer. Radiogenomics has
shown significant potential in predicting treat-
ment response and prognosis, which could
guide personalized therapy in breast cancer
management, ultimately improving patient sur-
vival and quality of life.

A secondary analysis of the “Multimodality
Analysis and Radiologic Guidance in Breast-
Conserving Therapy” (MARGIN) study evaluated
21 MRI-based imaging characteristics, focus-
ing on six key parameters: tumor size, shape,
contours, initial and late signal enhancement,
and intensity, in relation to gene expression
profiles obtained from RNA sequencing in 295
patients. A significant link was found between
tumor proliferation and size, indicating that
larger, highly proliferative tumors have worse
prognoses [58]. Building upon this paradigm,
Ming et al. [59] conducted a radiogenomic an-
alysis based on DCE-MRI and RNA sequencing
data from 246 patients across multiple cen-
ters. The expression of genes including RBP4,
MYBL2, and LINCO0993 was found to correlate
significantly with imaging features. Based on
these findings, the researchers developed a
prognostic signature using eight imaging-as-
sociated genes. Experimental results showed
that high expression of this signature indicated
a poor prognosis. Incorporating five genomic
features and three MRI radiomic features, Chen
et al. [60] developed and validated a radioge-
nomic model to predict axillary lymph node
metastasis in breast cancer, achieving a higher
AUC value of 0.84.

Further expanding the clinical applicability of
imaging biomarkers, Wang et al. [61] conduct-
ed a retrospective study involving 227 breast
cancer patients to explore the clinical value of
advanced diffusion MRI techniques, including
apparent diffusion coefficient (ADC), intravoxel
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incoherent motion (IVIM), and diffusion kurto-
sis imaging (DKI), in predicting genotypes and
prognostic factors. The researchers found that
perfusion-related diffusion coefficient (D*) and
mean kurtosis (MK) values were significantly
higher in high-grade Nottingham prognostic
index (NPI) groups, while lower ADC and true
diffusion coefficient (D) values were associat-
ed with high Ki-67 expression. The combination
of DWI, IVIM, and DKI could enhance diagnos-
tic efficiency in breast cancer patients. Con-
currently, Wu et al. [62] analyzed two cohorts
(discovery cohort: 60 patients; validation co-
hort: 186 patients) to investigate intratumoral
spatial heterogeneity at perfusion MR imaging
of locally advanced breast cancer treated with
neoadjuvant chemotherapy. The authors devel-
oped a two-stage clustering method to identify
three intratumoral subregions (poorly, moder-
ately, and highly perfused), quantified spatial
heterogeneity using multiregional spatial inter-
action (MSI) matrices, and performed network-
based patient stratification. Results showed
that MRI-based heterogeneity was an inde-
pendent predictor of recurrence-free survival
beyond traditional clinicopathologic and geno-
mic factors. In another multicohort study,
Fan et al. [63] aimed to identify preoperative
radiomic signatures associated with ODxRS in
ER-positive breast cancer patients. They uti-
lized DCE-MRI data from three independent
cohorts, comprising a total of 332 patients, to
develop and validate these signatures. The
study found that high ODxRS predicted values
were significantly associated with a favorable
response to neoadjuvant chemotherapy, and
the identified radiomic signatures have the
potential to serve as promising non-invasive
biomarkers for prognosis and treatment res-
ponse in breast cancer.

Neoadjuvant chemotherapy (NAC) is the stan-
dard treatment for localized and advanced
breast cancer, aiming to reduce tumor size and
potentially enable breast-conserving surgery.
However, not all breast cancers benefit from
NAC treatment, as some biologically aggressive
lesions may not be effectively controlled after
months of treatment and may even increase
the risk of tumor metastasis. Therefore, it is
crucial to distinguish between patients who
benefit from NAC treatment and those who are
insensitive to NAC treatment as early as possi-
ble during treatment. Drukker et al. [64] con-
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ducted a study using DCE-MRI data from the
American College of Radiology Imaging Net-
work (ACRIN) trial 6657, which included 162
women with breast cancer undergoing NAC.
They employed an automated method to calcu-
late the most enhancing tumor volume (METV)
as a radiomic feature for predicting recurrence-
free survival. The results indicated that METV
was predictive of recurrence-free survival both
pre-treatment and after the first cycle of che-
motherapy, with C-statistics of 0.69 and 0.72,
respectively.

Pathologic complete remission (pCR) is closely
related to good patient prognosis and can be
used as an indicator to evaluate the effective-
ness of NAC treatment. Several studies have
investigated the potential of radiogenomics to
predict pCR and assess the effectiveness of
NAC treatment. For example, Tsukada et al.
[65] showed that the tumor growth direction
parallel to the Cooper ligament (i.e., the tumor
anteroposterior diameter is longer than the
mediolateral diameter) and the pre-treatment
multi-parametric MRI clearance rate are predic-
tive indicators of pCR. Chamming et al. [66]
found a statistically significant difference in the
relationship between kurtosis with a spatial
proportion factor of 2 and prognosis in non-
basal breast cancer patients. Kim et al. [67]
showed that patients with higher tumor entropy
values on T2-weighted imaging had lower recur-
rence-free survival rates. Additionally, Parikh et
al. [68] detected changes in tumor entropy and
homogeneity (gray level distribution) during
treatment and found that tumors became mo-
re homogeneous after NAC treatment, with an
increase in signal homogeneity and a decrease
in entropy on T2-weighted imaging, which may
indicate pCR earlier than changes in tumor size.
Zhang et al. [69] developed a radiogenomic
model to predict pCR in patients with basal
breast cancer undergoing NAC. The prediction
model, which integrated imaging and genetic
data, showed excellent predictive performance,
achieving an AUC of 0.87. They also discovered
that the MED23 p. P394H mutation correlated
with increased epirubicin resistance in vitro.

Concurrently, Magbanua et al. [70] conducted a
pilot study involving 84 high-risk early breast
cancer patients to investigate the predictive
value of circulating tumor DNA (ctDNA) and
functional tumor volume (FTV) measured by
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MRI in assessing NAC response and recurrence
risk. The researchers employed serial measure-
ments of ctDNA and FTV at multiple time points
during treatment, analyzing their correlations
and their combined predictive capabilities for
pCR and distant recurrence-free survival. They
found that ctDNA levels were significantly cor-
related with FTV, and while the addition of
ctDNA to FTV-based predictors improved the
prediction of pCR, the change was not statisti-
cally significant. However, ctDNA positivity after
NAC significantly enhanced the identification of
patients at increased risk of metastatic recur-
rence and death. The study concluded that
combining ctDNA and FTV could provide a more
robust framework for predicting treatment out-
comes in early breast cancer patients undergo-
ing NAC.

Correlation between imaging phenotype and
recurrence in breast cancer

MRI imaging characteristics hold promise as
radiomic biomarkers for predicting breast
cancer recurrence risk. In an earlier study,
Mazurowski et al. [71] examined the relation-
ship between MRI enhancement dynamics and
recurrence-free survival in 275 breast cancer
patients. Using semi-automated computer al-
gorithms, they quantified enhancement dynam-
ics from preoperative MRI scans. Their multi-
variate analysis revealed that these enhance-
ment dynamics were independently predictive
of recurrence-free survival (P = 0.024) among
patients newly diagnosed with breast cancer,
even after controlling for patient age, race/eth-
nicity, menopausal status, tumor grade, and
tumor size. This dynamic feature represents
the rate of enhancement of the tumor versus
the background breast parenchymal enhance-
ment, and the survival regression model indi-
cated that a higher feature value was associat-
ed with an increased risk of disease recurrence.
Consequently, Chitalia et al. [72] identified and
validated imaging phenotypes of breast can-
cer heterogeneity using preoperative DCE-MRI
scans from two cohorts of women with invasive
breast cancer (discovery cohort: 95 patients;
validation cohort: 163 patients). The research-
ers employed radiomic feature extraction, un-
supervised hierarchical clustering, and survival
analysis. They identified three phenotypes of
tumor heterogeneity (low, medium, and high)
that were reproducible and demonstrated sig-
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nificant prognostic value (c = 0.73) in predicting
10-year recurrence-free survival.

Moreover, Lee et al. [73] investigated prognos-
tic factors for breast cancer recurrence by ana-
lyzing a cohort of 267 patients who underwent
DCE-MRI prior to surgery. The researchers
employed univariable and multivariable Cox
proportional hazards regression analysis to
identify associations between various imaging
parameters, including morphologic features,
quantitative MRI metrics, and clinicopathologic
factors, with disease recurrence. Their findings
revealed that increased ipsilateral vascularity,
higher positive skewness in texture analysis,
and advanced pathologic stage were signifi-
cant predictors of recurrence. The comprehen-
sive model incorporating both imaging and
clinicopathologic factors demonstrated excel-
lent discrimination for identifying high-risk pa-
tients, with a C index of 0.825. Meanwhile, in
another study, Lee et al. [74] focused on the
imaging characteristics of young age breast
cancer (YABC) in 53 patients under 40 years of
age, utilizing pre-treatment DCE-MRI to obtain
quantitative parameters such as tumor-stroma
ratio (TSR), microvessel density (MVD), and
endothelial Notch 1 (EC Notch 1). The findings
revealed that several MRl parameters could
serve as imaging biomarkers for the tumor
microenvironment and predict disease recur-
rence, particularly highlighting the significant
association of the basal subtype and low CD34
MVD positivity in Notch 1 hotspots with tu-
mor recurrence. Texture parameters reflecting
tumor sphericity and homogeneity were also
associated with disease recurrence. The study
concluded that several quantitative MRI param-
eters can be used as imaging biomarkers for
the tumor microenvironment and can predict
disease recurrence in YABC.

The use of multigene assays to predict the risk
of tumor recurrence has been introduced into
clinical practice. While these assays provide
valuable information, their high cost and the
requirement for offsite laboratory analysis limit
their accessibility. MRI-based radiogenomics
has emerged as a promising tool for assessing
breast cancer recurrence risk, offering a non-
invasive alternative to biopsies in less time
and at lower cost. As Oncotype DX is the most
widely used assay in clinical practice, multiple
studies have explored the correlation between
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MRI imaging features and ODxRS. For example,
Ashraf et al. [75] conducted a study involving
56 patients and found that tumors with high
ODxRS tended to exhibit significantly rapid
enhancement. During dynamic contrast en-
hancement, high-risk breast cancers occupied
a larger proportion of enhancement in rela-
tively faster-enhancing phases, with their peak
enhancement often occurring in the first en-
hancement phase and declining in proportion
by the third phase. Through unsupervised clus-
ter analysis of imaging features, the tumors
were categorized into four imaging phenotypes.
A multiple linear regression model was then
established to analyze the correlation between
imaging features and recurrence risk. The
results demonstrated that DCE-MRI imaging
features of ER-positive breast cancers showed
a moderate correlation with genetically predict-
ed tumor recurrence risk, achieving an AUC of
0.77. When the imaging phenotype classifica-
tion results were added as additional variables
to the classifier, the AUC increased to 0.82.
Subsequently, Sutton et al. [76] performed cor-
relation analysis among DCE-MRI, clinical, and
pathological features in a cohort of 95 breast
cancer patients. They found that two kurtosis
values from breast MRI and histological nucle-
ar grade were significantly associated with
ODxRS in luminal A breast cancer, consistent
with the findings of Pickles et al. [77] and Yi et
al. [78], who found that increased perfusion in
luminal A breast cancer correlates with reduced
disease-free survival. While both Ashraf et al.
and Sutton et al. found that tumors with rapid
contrast enhancement features had increased
ODxRS, their studies differed in several aspects
as follows: 1) the former included four major
imaging phenotypes but did not mention kurto-
sis; 2) the former included ductal and lobular
breast cancers, but the PR and HER2 status
were unclear; 3) the former only considered
imaging features, while the latter combined
imaging, clinical, and pathological features for
a more comprehensive analysis.

Wan et al. [79] analyzed the correlation be-
tween 196 imaging features and Oncotype DX
risk categories in 96 ER-positive breast cancer
patients. The results showed a high correla-
tion between DCE-MRI texture features of
ER-positive breast cancer and ODxRS, with
AUCs of 0.84 and 0.80 for directional gradient
histogram and dynamic local binary pattern,
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respectively. Unlike Agner et al. [80], who used
a single parameter to assess lesion texture,
directional gradient histogram and dynamic
local binary pattern can capture dynamic tex-
ture changes over time and space. This study
differs from Ashraf et al.s work as it focuses
|on texture features rather than kinetic fea-
tures, which are based on assessments of
time-intensity curve, peak enhancement, wash-
in, and wash-out parameters. Notably, Wan et
al. believe that intensity feature discrimination
has the worst stability, while morphology fea-
tures have the highest error rate among all
classification criteria. This research marked the
first systematic comparison of various kinetic
and morphological features to evaluate recur-
rence risk in ER-positive breast cancer. The
authors suggested that non-invasive radioge-
nomic methods may be superior to biopsy in
the assessment of recurrence risk.

Li et al. [81] investigated the relationships
between three multigene assays (Mamma-
Print, Oncotype DX, and PAM50) and MRI phe-
notypes to assess breast cancer recurrence
risk. The research utilized a retrospective data-
set of 84 deidentified breast MR examinations
from the Cancer Imaging Archive (TCIA), along
with clinical and genomic data from the Cancer
Genome Atlas (TCGA). The authors used multi-
ple linear regression and receiver operating
characteristic analysis to evaluate the predic-
tive ability of MR radiomic features. Their
results showed significant associations be-
tween multigene assay recurrence scores and
radiomic signatures (R? = 0.25-0.32, r = 0.5-
0.56, P < 0.0001), particularly tumor size and
enhanced texture, meaning that the larger and
less homogeneously enhanced the tumor, the
higher the risk of recurrence.

Furthermore, Thakur et al. [82] measured ADC
values in ER-positive and axillary lymph node-
negative invasive breast cancer and found that
low-risk lesions with low ODxRS exhibited sig-
nificantly higher ADC values compared to inter-
mediate/high-risk lesions.

Limitations

Although MRI-based radiogenomics in breast
cancer, which links tumor genotype with imag-
ing phenotype, shows significant clinical value
and vast application prospects, there are mo-
deling and reporting gaps across the field.
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Studies with higher clinical rigor - meaning large
sample size, external validation, or prospec-
tive/multicenter design; clearly defined end-
points and performance metrics; full subtype
or response prediction models, not only imag-
ing-gene correlations - are needed. However,
most studies rely on single institutions and ret-
rospective datasets with small sample sizes,
lacking representativeness. Many studies use
internal hold-outs, cross-validation, or leave-
one-out methods but lack independent exter-
nal test sets. Very few studies report calibra-
tion metrics or decision curve analysis (DCA).
Multi-class molecular subtype tasks often yie-
Id lower multi-class discrimination, and many
studies present pairwise accuracy or per-class
AUCs rather than robust multi-class calibra-
tion. This inflates perceived performance if re-
aders interpret pairwise results as equivalent
to multi-class accuracy. Large multi-institution-
al pools (TCGA/TCIA/multi-center cohorts) in-
troduce scanner and protocol variability, but
only a minority of studies explicitly harmonize
imaging or test robustness to scanner differ-
ences. The lack of standardized protocols, vary-
ing software and imaging equipment, and inter-
and intra-institutional heterogeneity of data-
sets restrict the reproducibility of results. This
is a major limitation for clinical translation.
Some studies [16, 81] link radiomic signatures
to gene assays and pathways (strong biological
anchor), which improves interpretability. Others
present black-box deep learning models with-
out pathway linkage, which require stronger
external validation and explainability for clini-
cal uptake. Additionally, the complexity of gene
expression and signaling pathways, coupled
with the expense and operational intricacies of
gene testing, hinder large-scale radiogenomics
research. Manual or automatic segmentation
methods for regions of interest can also influ-
ence feature extraction and subsequent analy-
sis. Future research should focus on overcom-
ing these hurdles to establish radiogenomics
as a reliable tool in clinical practice.

Conclusion and future direction

Studies have demonstrated moderate relation-
ships between radiomic features and genomic
features. MRI-based radiogenomics offers a
rapid and non-invasive approach to obtain valu-
able imaging biomarkers, holding promise to
improve the accuracy of molecular subtype
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identification, treatment response and progno-
sis prediction, and recurrence risk assess-
ment. Moving forward, radiogenomics should
aim to obtain multicenter and larger sample
sizes to conduct prospective and validation
studies, as well as to develop standardized
protocols for feature extraction and normaliza-
tion. Translating these research findings into
clinical practice to address real-world challeng-
es will facilitate the advancement of personal-
ized treatment and precision medicine.
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