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Abstract: Advances in radiomics and machine learning techniques have facilitated the extraction of quantitative 
radiomic features that can be correlated with genomic data. Breast MRI-based radiogenomics, which combines MRI 
radiomics and genomics, is an emerging field that non-invasively reflects tumor heterogeneity and assesses the bio-
logical behaviour of breast cancer. Studies have shown that radiogenomics has the potential to replace traditional 
genetic testing for breast cancer, reducing the need for invasive procedures such as biopsies. In the future, the clini-
cal application of radiogenomics as a tool for molecular subtype identification, treatment response and prognosis 
prediction, and recurrence risk assessment is both necessary and feasible.

Keywords: Radiogenomics, breast cancer, magnetic resonance imaging (MRI), molecular subtype, neoadjuvant 
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Introduction

Breast cancer is a major global health concern, 
ranking as the second most common cancer  
in 2022, with an estimated 2.3 million new 
cases, representing 11.6% of all cancers. It  
is also the fourth leading cause of cancer-relat-
ed deaths worldwide, accounting for 666,000 
deaths (6.9% of all cancer deaths). Among 
women, breast cancer is the most frequently 
diagnosed cancer and the leading cause of 
cancer deaths globally [1]. The high heteroge-
neity of breast cancer has led to the integra- 
tion of whole-genome expression profiling tech-
niques in clinical practice for improved disease 
management [2]. These technologies enable 
molecular subtyping of breast cancer, leading 
to more accurate predictions of recurrence, 
metastasis risk, and treatment response [3]. 
However, due to cost and technological limita-
tions, immunohistochemical analysis of pathol-
ogy remains a commonly used alternative. 
Immunohistochemistry results can be limited 
by tumor heterogeneity and volume, and pa- 
thohistology cannot comprehensively, objec-
tively, and quantitatively analyze tumors [4]. To 
address these limitations, radiogenomics, an 
emerging field that combines radiology and 
genomics, offers a promising solution. It non-

invasively reflects the overall heterogeneity of 
tumors, aiding in our understanding of tumor 
biology [5]. This review will illustrate the critical 
role of state-of-the-art MRI-based radiogenom-
ics in precision medicine for breast cancer, with 
the goal of optimizing medical decisions and 
improving patient prognosis.

Search strategy and selection criteria

We conducted a systematic literature search 
according to the Preferred Reporting Items  
for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines, and local institutional  
ethical approval was not required as this is a 
review article of current literature. The search 
of PubMed, Web of Science, and Embase data-
bases was performed for articles published 
from January 1, 2012, to May 31, 2025. This 
search was performed using the following  
headings adapted for each database: “breast 
cancer”, “radiomics”, “radiogenomics”, “MRI”, 
“dynamic contrast-enhanced”, “DCE-MRI”, “neo- 
adjuvant chemotherapy”, “pathological com-
plete response”, “prognosis”, and “survival”. 
Only studies published in English were consid-
ered for inclusion. All duplicate studies were 
manually removed before the titles and ab- 
stracts were screened. The full texts of studies 
deemed appropriate were then reviewed. This 
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Table 1. Classification of surrogate molecular subtypes
Subtype Receptor Status
Luminal A ER positive and/or PR positive, HER2 negative
Luminal B ER positive and/or PR positive, HER2 positive
HER2 ER negative and PR negative, HER2 positive
Basal ER negative, PR negative, and HER2 negative

process was carried out by two independent 
reviewers (X.G. and C.Z.). If the reviewers dis-
agreed, a third author (H.Z.) was asked to arbi-
trate. The PRISMA flow diagram is shown in 
Figure 1.

Inclusion and exclusion criteria

Studies meeting the following inclusion criteria 
were included: (1) Original studies (prospec- 
tive or retrospective) reporting MRI-based 
radiomics/radiogenomics analyses in breast 
cancer patients; (2) Studies must link imaging 
features to genomic endpoints; (3) Studies 
reporting prediction or association for at least 
one of the following: molecular subtype, recep-
tor status, proliferation index, pathologic com-
plete response (pCR) to neoadjuvant che- 
motherapy, recurrence-free survival (RFS)/dis-
ease-free survival (DFS)/overall survival (OS),  
or validated multigene recurrence risk scores; 
(4) The sample size is greater than or equal to 

ty, and flow and timing (e.g., imaging vs tissue 
timing, loss to follow-up). Each included study 
was flagged for key bias indicators: single-cen-
ter vs. multicenter, retrospective vs. prospec-
tive design, sample size, lack of external va- 
lidation, no calibration reporting, and unclear 
segmentation reproducibility (ICC not report-
ed). These flags are reported in Tables 4 and 5 
to assist in evaluating evidence strength.

Genomic characteristics of breast cancer

Gene testing and analysis provide valuable  
clinical insights into breast cancer. Breast can-
cer exhibits significant genomic heterogeneity, 
which can be categorized into three distinct 
levels.

Susceptibility gene mutation and single 
nucleotide polymorphism (SNP)

Over 70 genes have been identified as breast 
cancer susceptibility genes, including those 

Figure 1. The PRISMA flowchart of the review process and study selection.

10. Studies meeting any of  
the following exclusion criteria 
were excluded: (1) Non-human 
studies, editorials, letters, con-
ference abstracts without full 
text, and studies lacking MRI 
modalities (e.g., CT-only or ma- 
mmography-only without MRI 
radiomics); (2) Studies that did 
not include any genomic or 
molecular endpoint. Reasons 
for exclusion at the full-text 
stage were recorded (e.g., no 
radiogenomic endpoint, non-
MRI modality, insufficient out-
come data, unavailable full te- 
xt); (3) Duplicate cohorts or se- 
condary analyses without new 
imaging-genomic data (unless 
reporting a distinct validation 
set).

Study quality and risk-of-bias 
assessment

We evaluated study quality  
and risk of bias using the 
QUADAS-2 (Quality Assessment 
of Diagnostic Accuracy Studi- 
es) framework, focusing on 
four domains: patient selec-
tion, imaging and feature ex- 
traction, genomic assay quali-



MRI-based radiogenomics in breast cancer

5121	 Am J Cancer Res 2025;15(12):5119-5139

Table 2. Summary of the classification of DCE-MRI features
Category Description Examples
Morphological 
Features

General characteristics of the image Size, shape, edge, distribution

Histogram-based 
Features

Features derived from the global gray-level histo-
gram that do not consider spatial relationships

Mean, entropy, skewness, kurtosis, uni-
formity, standard deviation, percentiles

Texture-based 
Features

Second-order features that capture textural proper-
ties by analyzing spatial relationships among pixels

Autocorrelation function, gray-level co-
occurrence matrix, gray-level run

Kinetic Features Features related to the dynamic or temporal as-
pects of image behavior

Maximum absorption rate, peak time, ab-
sorption rate, clearance rate, transit rate

Table 3. Summary of the role of machine learning in feature extraction

Method Requires Machine 
Learning Characteristics Typical Tools/Models

Traditional Handcrafted No High interpretability, relies on manual 
design

PyRadiomics, MaZda, 
IBEX

Deep Feature Extraction Yes Data-driven, captures complex patterns, 
requires large datasets

ResNet, VGG, 3D CNN

End-to-End Learning Yes Features highly tailored to the task, strong 
black-box nature

U-Net, Transformer-
based models

Hybrid Method Yes (Partial) Balances interpretability and performance, 
requires feature fusion strategies

PyRadiomics + Custom 
CNNs

that confer high risk (BRCA1, BRCA2, PTEN, 
TP53) as well as moderate and low risk (ATM, 
BARD1, CDH1, CHEK2, NF1, PALB2, RAD51C, 
RAD51D, STK11) for the development of can-
cer, although penetrance may vary. Notably, 
BRCA1/2 plays a crucial role in DNA homolo-
gous recombination repair. Pathogenic muta-
tions in these genes, often located within exon-
ic or splice-site regions, can disrupt homologous 
recombination repair, increasing the likelihood 
of tumor development. Research has also iden-
tified at least 55 SNPs that are closely associ-
ated with breast cancer. For instance, a mis-
sense mutation in rs1800371 within the TP53 
coding region can lead to p53 protein altera-
tions, considerably elevating breast cancer 
risk. Additionally, SNPs in non-coding regions, 
such as rs4973768 in the SLC4A7 gene dis- 
covered by Ahmed et al., have also been link- 
ed to an increased risk of breast cancer 
development.

Expression profile characteristics

Breast cancer exhibits unique gene and pro- 
tein expression patterns, reflecting its diverse 
nature. Perou et al. pioneered the use of cDNA 
microarray data to perform differential analysis 
of breast cancer gene expression profiles, high-

lighting the variations in gene expression levels 
across different tumors. As sequencing tech-
nologies have advanced, RNA sequencing data 
has largely replaced microarray data for differ-
ential analysis. However, protein expression 
profiles offer a more comprehensive under-
standing of breast cancer’s expression charac-
teristics. Consequently, reverse-phase protein 
arrays (RPPA) data have been widely employed 
to reveal protein expression profiles in breast 
cancer.

Molecular subtype characteristics

Molecular subtypes of breast cancer are used 
to explain differences in response to treatment 
and clinical outcomes beyond what can be 
achieved with nuclear grade and tumor size 
alone [6]. Based on gene expression profiling, 
breast cancer is classified into different molec-
ular subtypes. Although the field is still evolv-
ing, the currently commonly accepted molecu-
lar subtypes classified by surrogate biomarkers 
include luminal A, luminal B, HER2-enriched 
(human epidermal growth factor receptor 2), 
and basal-like subtypes [7], as shown in Table 
1. Molecular subtyping of breast cancer is of 
significant clinical importance as different sub-
types exhibit distinct patterns ranging from 
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Table 4. Representative studies: molecular subtype classification
Study (year) Cohort size MRI sequences Feature/model Validation type Best metric
Grimm/Mazurowski 
et al. (Radiology/
JMRI; 2015-2017).

Retrospective, multiple 
cohorts (e.g., TCGA subsets 
and institution cohorts).

DCE features (kinetics), 
multiparametric MRI.

Regression/ML on kinetic and texture 
features.

Internal and some exter-
nal cohort comparisons 
in later works.

Reported moderate AUCs/discriminative stats 
(varies by dataset); typical AUCs in 0.65-0.75 range 
depending on subtype task.

Holli-Helenius et al. 
(2017).

Retrospective, N = 27 (15 
Luminal A, 12 Luminal B).

T1-weighted non-fat-
saturated pre- and post-
contrast MRI.

Co-occurrence matrix (COM) texture features; 
binary logistic regression model.

Leave-one-out cross-
validation.

Combined model (sum entropy + sum variance): 
AUC = 0.878 (Sens 91.7%, Spec 86.7%);
Single features: Sum entropy AUC = 0.828, Sum 
variance AUC = 0.833.

Saha et al., Br J 
Cancer (2018).

Retrospective, N = 922 (split 
461 train/461 test).

DCE-MRI (preop). 529 DCE features; ML models (multivariate). Internal hold-out test 
(split).

Luminal A AUC = 0.697 (95% CI 0.647-0.746); 
TNBC AUC = 0.654 (0.589-0.727); ER AUC = 0.649 
(0.591-0.705); PR AUC = 0.622 (0.569-0.674).

Xie et al. (2018). Retrospective, N = 134 (22 
TN, 26 Luminal A, 68 Lumi-
nal B, 18 HER2+).

Multiparametric MRI: 
DWI (ADC map) and DCE 
(washin, washout maps).

Whole-tumor histogram analysis; first-order 
texture features from ADC, washin, washout 
maps; univariate analysis + ROC.

Internal, statistical vali-
dation (no hold-out set).

TN vs HER2+: AUC = 0.763 (Sens 86.4%, Spec 
72.2%);
TN vs Luminal A: AUC = 0.710;
TN vs non-TN: AUC = 0.683.

Leithner et al., Breast 
Cancer Res (2019).

Retrospective multi-center-
ish design; Training N = 91, 
Validation N = 52 (total 143).

CE-MRI (3T). Radiomic signature (LDA + k-NN classifica-
tion).

Independent validation 
dataset from second 
institution.

Validation accuracies: Luminal A vs Luminal B 
~79.4%, Luminal B vs TN ~77.1%; several pairwise 
accuracies in training > 80%.

Wang et al. (2020). Retrospective, N = 51 (19 
Luminal A, 32 Luminal B).

DCE-MRI. Texture analysis (kurtosis, inhomogeneity, 
entropy); manual ROI delineation; statistical 
comparison (t-test, ROC).

Internal, statistical vali-
dation (no hold-out set).

Entropy AUC = 0.891 (Sensitivity 90.62%, Specific-
ity 78.95% at cutoff ≤ 4.22).

Leithner et al. 
(2020).

Retrospective, N = 91 (49 
LumA, 8 LumB, 11 HER2+, 
23 TN).

DWI with ADC mapping. Multiple radiomic feature types (HIS, COM, 
RLM, etc.); feature selection + LDA + k-NN 
classifier.

Leave-one-out cross-
validation.

Luminal B vs HER2+: Acc = 100% (direct ADC 
segmentation); 
Luminal A vs B: Acc = 91.5%; 
Luminal B vs others: Acc = 91.1%.

Du et al. (2021). Retrospective, N = 200 (41 
LumA, 66 LumB, 32 Lum-
HER2, 25 HER2+, 36 TN).

Multiparametric: Syn-
thetic MRI (T1, T2, PD), 
DCE-MRI, DWI (ADC).

Multiple quantitative parameters; univariate 
+ multivariate logistic regression; combined 
parameter models. No radiomics texture 
features reported.

Internal statistical 
validation; no external 
validation set.

Luminal A vs others: Combined (T2 + ADC + Vol-
ume) AUC = 0.765; 
TN vs others: Combined (T1 + Rim enhancement) 
AUC = 0.742; 
Single parameters: T2 for LumA (AUC = 0.702), T1 
for TN (AUC = 0.699).

Huang et al., Front 
Oncol (2021).

Retrospective, single-center; 
N = 162 women (T2-T4 
invasive breast cancer).

3.0 T multi-parametric 
MRI: DCE-T1WI, fat-
suppressed T2WI, ADC 
map.

4,198 radiomics features extracted using 
Pyradiomics; feature selection with LASSO + 
RFE, mRMR, Boruta; classifiers: RF, SVM, LR, 
LDA, GNB, MLP; LOOCV used for all models.

Leave-one-out cross-
validation (internal).

MLP model: AUC 0.907 (AR expression, ACC 
85.8%), AUC 0.965 (TNBC vs non-TNBC), 0.840 
(HER2+ vs HER2-), 0.860 (HR+/HER2- vs others); 
micro-AUC 0.896 overall.

Tsai et al., Korean J 
Radiol (2021).

Prospective, single-center; 
N = 306 patients (308 
tumors).

DCE-MRI and IVIM-DWI 
(1.5T, 11 b-values).

Quantitative kinetic (Tofts model: Ktrans, 
kep, vp, ve, IAUGCBN90) and IVIM param-
eters (D, Dp, f, S0); regression and ROC 
analyses/Tofts model used.

Internal statistical 
validation only (logistic/
linear regression, ROC).

Significant group differences (P < 0.05): lower 
Ktrans, kep, vp, IAUGCBN90 and higher ve, D in 
subtype III/VI and Luminal A/normal-like; ROC 
analysis showed discriminatory ability (no AUC 
explicitly reported).

Ming et al., Cancers 
(2022).

Multi-cohort radiogenomic (N 
= 246 combined).

DCE-MRI (174 features). Unsupervised clustering → imaging sub-
types; then tested association with PAM50 
and outcomes.

Internal discovery + 
validation cohort (s) 
reported.

Imaging-subtype separation validated; no single 
AUC for subtype prediction reported (focus on 
subtyping & outcome associations).

Sheng et al., Front. 
Oncol. (2022).

Retrospective, single-center, 
N = 190 patients (99 Lumi-
nal, 59 HER2+, 32 TNBC).

3-T DCE-MRI (T1, T2, DWI, 
DCE) Vibrant + sequence 
8 dynamic phases.

1130 Radiomic Features (Shape, First-order, 
Texture, Wavelet, LOG) Feature Selection: 
LASSO Models: LR, RF, NB, SVM, XGBoost.

Internal 5-fold cross-
validation Train/Test 
split (70:30).

1. Luminal vs. Non-Lumina: XGBoost, AUC = 0.828.
2. HER2+ vs. Non-HER2: Random Forest, AUC = 
0.805.
3. TNBC vs. Non-TNBC: XGBoost, AUC = 0.903.

Notes: Many subtype-classification studies report moderate discrimination, which is better for some pairwise subtype tasks than for full multi-class classification. The most robust studies are those with separate external validation cohorts (e.g. 
Leithner, 2019) or a very large sample size with test splits (Saha, 2018).
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Table 5. Representative studies: treatment response and prognosis
Study 
(year) Cohort size Timepoint Feature/Model Validation Endpoint Best metric Calibration

Ashraf et al., 
Radiology 
(2014).

Retrospective; 
N = 56 (ER+ 
patients).

Preoperative 
DCE-MRI.

Multiparametric imaging phe-
notype vector (morphologic, 
aggregate kinetic, heteroge-
neity kinetic features); Hierar-
chical clustering for intrinsic 
phenotypes; Multivariate 
logistic regression.

Leave-one-out cross-
validation.

Recurrence risk (On-
cotype DX Recurrence 
Score: High vs. Low/
Medium).

AUC 0.82 (SE 0.060) when including imag-
ing phenotype category as a predictor.

Not reported.

Li et al., 
Radiology 
(2016).

Retrospective 
(TCGA/TCIA), 
N = 84 (multi-
institutional).

Preoperative 
DCE-MRI.

Computer-extracted image 
phenotypes (CEIPs): size, 
shape, margin, enhancement 
texture, kinetics. Logistic 
regression classifier.

Leave-one-case-out 
cross-validation (inter-
nal).

Agreement with research 
versions of multigene 
assay risk groupings 
(MammaPrint, Oncotype 
DX, PAM50 ROR-S, 
PAM50 ROR-P).

AUCs for distinguishing good vs. poor 
prognosis: MammaPrint 0.88 (SE 0.05); 
Oncotype DX 0.76 (SE 0.06); PAM50 ROR-S 
0.68 (SE 0.08); PAM50 ROR-P 0.55 (SE 
0.09).

Not reported.

Wan et al., 
Sci. Rep. 
(2016).

Retrospective; 
N = 96 (ER+ 
patients, multi-
institutional).

Pre-treatment 
DCE-MRI 
(1.5T).

176 features (Shape, PK, EK, 
IK, TK, DHoG, DLBP); LDA 
classifier with top 6 feature 
combination.

2-fold cross-validation. OncotypeDX Recurrence 
Score (High vs. Low 
Risk).

AUC 0.87 (95% CI: 0.78-0.96) for the com-
bined feature model.

Not reported.

Drukker et 
al., Cancer 
Imaging 
(2018).

Retrospective 
(ACRIN 6657/I-
SPY 1), N = 
162.

Pre-treatment 
and early 
treatment (af-
ter 1st cycle 
of NAC).

Automated Most Enhancing 
Tumor Volume (METV) from 
DCE-MRI.

Internal (cohort analysis 
within trial).

Recurrence-free survival 
(RFS).

statistic for association with RFS: 
Pre-treatment: 0.69 (95% CI 0.58-0.80). 
Early-treatment: 0.72 (95% CI 0.60-0.84).

Calibration not explicitly 
reported for the C-statis-
tic model. Performance 
was comparable to a 
semi-manual FTV model 
(C-statistic 0.70).

Chitalia 
et al., Clin 
Cancer Res. 
(2020).

Retrospective; 
Discovery: N = 
95, Validation: 
N = 163.

Pre-operative 
DCE-MRI.

22 radiomic features (mor-
phology, texture from SER 
maps); Unsupervised hierar-
chical clustering for intrinsic 
phenotypes.

Independent validation 
cohort (TCIA/ISPY-1).

10-year Recurrence-free 
survival (RFS).

C-statistic improved from 0.55 (baseline 
model: HR + HER2) to 0.73 (baseline + 
imaging phenotypes).

Not reported.

Lee et al., 
Sci. Rep. 
(2020).

Retrospective; 
N = 267.

Pre-treatment 
DCE-MRI.

Multivariable Cox model 
(Model D) with clinicopatho-
logic factors, morphologic fea-
tures (ipsilateral vascularity), 
and quantitative parameters 
(texture skewness, Kep 25th 
percentile).

Internal validation via 
statistical models.

Disease Recurrence 
(ipsilateral, contralateral, 
distant metastasis).

C-index: 0.825 (95% CI: 0.755-0.896) for 
the comprehensive model (Model D).

Not reported.

Magbanua 
et al., NPJ 
Breast Can-
cer (2021).

Prospective 
pilot, N = 84 (I-
SPY 2 TRIAL).

Pre-treatment 
(T0), 3 weeks 
after treat-
ment start 
(T1), between 
regimens 
(T2), post-NAC 
pre-surgery 
(T3).

Combined serial Functional 
Tumor Volume (FTV) from 
DCE-MRI and circulating 
tumor DNA (ctDNA) levels 
(Signatera test).

Internal (pilot analysis). Pathological complete 
response (pCR) and 
Distant Recurrence-Free 
Survival (DRFS).

pCR Prediction (T1):
• FTV only AUC: 0.59
• FTV + ctDNA AUC: 0.69 (P = 0.25 vs FTV 
alone, NS)
DRFS Prognosis (T3):
• ctDNA positivity post-NAC provided sig-
nificant additive value to FTV (Multivariable 
Cox model: ctDNA HR = 14.25, P = 0.0046; 
FTV HR = 1.03, P = 0.0191).

Calibration not explic-
itly reported for the com-
bined model. The model 
with FTV, pCR, subtype, 
and ctDNA had the best 
fit to survival data (lowest 
AIC score).
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Fan et al., 
Radiology 
(2022).

Multicohort 
retrospective, 
N = 381 (130 + 
116 + 135).

Preoperative 
DCE-MRI.

Radiogenomic model predict-
ing Oncotype DX Recurrence 
Score (RS); combined pre-
dicted RS + complementary 
features for NACT response.

External validation 
across independent 
prognostic (n = 116) 
and treatment (n = 135) 
assessment cohorts.

Predicted Oncotype DX 
RS; Association with 
survival (OS/RFS) and 
NACT response.

AUC 0.85 for predicting NACT response 
(combined model). Predicted RS > 29.9 
associated with worse OS (HR = 8.6) and 
RFS (HR = 2.7).

Not reported.

Zhang et al., 
J Transl Med 
(2022).

Retrospective, 
N = 112 (TNBC 
patients).

Baseline + 
after 2 cycles 
of NAC.

Radiogenomic model (Light-
GBM) combining radiomic 
features (from tumoral & peri-
tumoral regions on CE-MRI) 
and genomic Variant Allele 
Frequency (VAF) features.

Training/validation 
split (2:1 ratio) internal 
validation.

Pathological complete 
response (pCR) in TNBC.

Radiogenomic Model AUC: 
• Training set: 0.89 (95% CI 0.74-0.95) 
• Validation set: 0.87 (95% CI 0.73-0.91) 
*Significantly higher than radiomics-only 
models (AUCs 0.71-0.73)*.

Not reported.

Wang et al., 
Front. Oncol. 
(2022).

Retrospective, 
N = 227.

Preoperative. DWI/IVIM/DKI parameters 
(ADC, D, D*, f, MD, MK) and 
combined models.

Training/validation split 
(2:1) internal validation.

Prediction of Nottingham 
Prognostic Index (NPI), 
Ki-67 expression status, 
and molecular subtypes 
(Luminal vs. non-Lumi-
nal; Triple-negative).

Combined model AUCs: 
• NPI (D* + MK): 0.734 
• Ki-67 (D + D* + f + MK): 0.755 
• Luminal vs. non-Luminal (D + D* + MD + 
MK): 0.830 
• Triple-negative (f + MK): 0.756

Good agreement per cali-
bration curves (Hosmer-
Lemeshow test P = 0.22 
for Luminal model; P = 
0.74 for TNBC model).

Notes: Several MRI-derived volumetric features (METV and FTV) and radiogenomic signatures demonstrate moderate-to-good prognostic discrimination. The most compelling studies for predicting prognosis and response combine imaging 
with genomic biomarkers (e.g., Fan 2022 combining predicted RS; Zhang 2022 radiogenomic for TNBC; Magbanua 2021 FTV + ctDNA).
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imaging (MRI) and mammography, with a  
smaller number of studies employing ultra-
sound and PET data [12, 13]. Mammography 
and ultrasound also provide valuable radiomic 
features. However, DCE-MRI uniquely offers 
pharmacokinetic information. Since Yamamoto 
et al. conducted the first radiogenomics study 
of breast cancer in 2012 [14], dynamic con-
trast-enhanced magnetic resonance imaging 
(DCE-MRI) data have been widely used in relat-
ed research due to their high resolution and 
spatio-temporal continuity, allowing for the as- 
sessment of vascular permeability [15]. A sim-
plified workflow for MRI-based radiogenomics 
is shown in Figure 2.

Feature extraction

The primary methods for DCE-MRI feature ex- 
traction can be classified into four categories: 
morphological features, histogram-based fea-
tures, texture-based features, and kinetic fea-
tures, as shown in Table 2. Most DCE-MRI fea-
ture values are calculated on a voxel-by-voxel 
basis. Although the imaging features of com-
monly used mammography and ultrasound are 
largely similar to those of DCE-MRI, they lack 
features related to enhanced kinetic, pharma-
cokinetic, and thin-walled tissue enhancement, 
all of which are unique to DCE-MRI [16]. It’s 
important to note that this classification of fea-
ture types is not absolute and can be adjusted 
as needed [17]. These features can be hand-
crafted or automatically learned using machine 
learning, especially deep learning methods. For 
example, tools such as PyRadiomics, MaZda, 
and IBEX implement imaging feature extraction 
based on mathematical and statistical meth-
ods, which are highly interpretable and have  
a deterministic process [18]. In recent years, 
machine learning, especially deep learning, has 
been widely used to automatically learn MRI 
features and is suitable for pattern mining of 
high-dimensional data. The automatic data-
driven MRI features perform better in predict-
ing clinical features of breast cancer, which are 
more significantly associated with genomic fea-
tures, than traditional semi-automatic MRI fea-
tures [19]. They can capture complex patterns 
such as tumor heterogeneity and edge blurring, 
but with low interpretability. Identifying scien-
tifically sound feature extraction methods to 
obtain accurate feature data remains a signifi-
cant challenge, and increasingly studies are 

gene mutations and SNP characteristics to 
expression profile features and ultimately clini-
cal characteristics such as pathological mani-
festations and treatment regimens. For exam-
ple, luminal A and B subtypes are more prone 
to developing osteoblastic metastases, while 
basal-like subtypes are more likely to cause 
pulmonary and brain metastases. Preoperative 
chemotherapy is generally more effective for 
HER2-overexpressed subtypes, whereas lumi-
nal A and B subtypes typically undergo postop-
erative radiotherapy.

Multigene assays

Multigene assays provide valuable insights into 
breast cancer heterogeneity and help guide 
personalized treatment strategies. A growing 
number of commercially available multigene 
assays are becoming increasingly accessible 
for widespread clinical use, including PAM50/
Prosigna, Oncotype DX, MammaPrint, Endo- 
Predict, and Breast Cancer Index. For example, 
PAM50 stands for Prediction Analysis of Mic- 
roarray 50 and is a molecular typing method  
for breast cancer. By analyzing the expression 
levels of 50 specific genes, it classifies breast 
cancers into five subtypes: Luminal A, Luminal 
B, HER2-enriched, Basal-like, and Normal-like 
[8]. This typing can be used to predict the like- 
lihood of metastasis in patients with estrogen 
receptor (ER)-positive, HER2-negative breast 
cancer and guide clinical decisions regarding 
hormone therapy and chemotherapy [9]. Onco- 
type DX is a validated expression assay based 
on 21 genes strongly associated with ER- 
positive early-stage breast cancer [10]. This 
assay scores the risk of recurrence of early 
invasive breast cancer within 10 years. A large 
prospective multicenter trial (TAILORx) involv-
ing 10,253 women demonstrated that a low 
Oncotype DX Recurrence Score (ODxRS) was 
associated with very low rates of breast cancer 
recurrence in women treated with endocrine 
therapy alone [11]. For eligible women, che- 
motherapy could be avoided, reducing patient 
morbidity and healthcare costs.

MRI-based radiogenomics in breast cancer

The convergence of artificial intelligence and 
genomic sequencing has propelled radioge-
nomics to the forefront of personalized medi-
cine. Currently, radiogenomics studies in bre- 
ast cancer primarily utilize magnetic resonance 
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Figure 2. The MRI-based radiogenomic workflow.

exploring hybrid approaches that combine 
these two paradigms to improve model perfor-
mance. We summarize the role of machine 

learning in feature extraction 
as shown in Table 3.

Feature selection

After extracting a large num- 
ber of high-throughput imag- 
ing features, feature selection 
methods are employed to iden-
tify the most informative sub-
set. This subset is then used  
to train machine learning algo-
rithms to build prediction and 
classification models based  
on histological image featur- 
es. Common feature selection 
approaches include Least Ab- 
solute Shrinkage and Selection 
Operator (LASSO), Recursive 
Feature Elimination (RFE), Mi- 
nimum Redundancy Maximum 
Relevance (mRMR), mutual in- 
formation, Pearson or Spear- 
man correlation, intra-class 
correlation, and Principal Com- 
ponent Analysis (PCA), am- 
ong others. Of these, LASSO - 
an embedded technique that 
adds an L1 penalty to a linear 
regression model - is the most 
commonly used, as it forces 
the coefficients of less impor-
tant predictors to zero [20]. 
The next most popular meth-
ods are RFE and mRMR. RFE is 
a wrapper strategy that repeat-
edly fits a classifier, ranks fea-
tures by a chosen metric, and 
removes the lowest scoring 
ones, making it adept at find-
ing the best subset for a given 
model. In contrast, mRMR is a 
filtering method that selects 
features with the highest rele-
vance to the target while mi- 
nimizing redundancy between 
features, thereby achieving di- 
mensionality reduction [21]. 
These techniques are favored 
in radiomics because they ef- 
fectively handle redundant in- 

formation. Other commonly used reduction 
techniques, either alone or combined, include 
PCA, the t-test, and the Mann-Whitney U-test. 
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Specifically, PCA transforms continuous vari-
ables into orthogonal principal components 
that capture maximum variance, effectively 
creating new features by linearly combining  
the originals [22].

Modelling and evaluation

Next, various statistical and machine learning 
algorithms are used to build and validate ra- 
diogenomic models. Popular choices include 
Support Vector Machines (SVM), Random 
Forests (RF), K-Nearest Neighbours (KNN), Lo- 
gistic Regression (LR), Decision Trees, and 
Artificial Neural Networks (ANNs). Among tradi-
tional methods, SVM, LR, and RF remain popu-
lar in radiogenomics due to their consistently 
strong performance. SVMs find the optimal lin-
ear or non-linear boundary to distinguish class-
es in feature space, are inherently resistant to 
overfitting, and can handle redundant inputs. 
Logistic regression is valued for its simplicity 
and ease of interpretation but can overfit when 
faced with many irrelevant or correlated vari-
ables in high-dimensional settings. Random 
forests combine multiple decision trees to im- 
prove robustness, although identifying truly 
informative features in large feature sets can 
be challenging. Most supervised classifiers in 
radiogenomics are shallow models with only a 
few layers or simple architectures. However, 
ANNs have been increasingly adopted for their 
ability to capture complex patterns in both clas-
sification and regression tasks [23]. Model 
effectiveness is typically evaluated using met-
rics such as true positive rate, true negative 
rate, overall accuracy, and area under the ROC 
curve (AUC) - all of which can be generalized 
from binary to multi-class problems.

Modeling and reporting rigor in radiogenomics

To ensure robust, reproducible, and clinically 
useful radiogenomic models, it is essential to 
follow best practices in data preprocessing, 
model development, and reporting. Key recom-
mendations include:

1. Prevent data leakage: All preprocessing and 
feature selection steps should be performed 
within cross-validation folds, preferably nest- 
ed cross-validation. This prevents information 
from the test set leaking into the training pro-
cess and avoids overly optimistic performance 
estimates [24].

2. Report model calibration and clinical utility: 
In addition to discrimination metrics such as 
AUC, model calibration should be assessed 
using calibration curves, Brier scores, and cali-
bration slopes. Decision curve analysis (DCA)  
is recommended to evaluate potential clinical 
utility and inform decision-making [25].

3. Address class imbalance: Class imbalance 
should be explicitly addressed using methods 
such as threshold adjustment, resampling 
(oversampling/undersampling), or reporting 
metrics robust to imbalance such as PR- 
AUC. Proper handling of imbalanced datasets 
ensures reliable model performance across 
classes [26].

4. Consider domain shift and image harmoni- 
zation: For multi-center or multi-scanner datas-
ets, domain shift due to variations in acqui- 
sition protocols should be assessed. Image 
harmonization techniques (e.g., ComBat, histo-
gram matching) may be applied to improve 
model generalizability [27].

5. Document reproducibility: Reproducibility 
should be reported, including test-retest ro- 
bustness and segmentation reliability (e.g., 
Intraclass Correlation Coefficient, ICC). Detail- 
ed documentation of preprocessing pipelines, 
software versions, and random seeds is critical 
for enabling independent replication [28].

6. Encourage adherence to established stan-
dards: Follow standardized feature definitions 
such as IBSI (e.g., Image Biomarker Standar- 
disation Initiative, IBSI) and prediction model 
reporting guidelines (e.g., Transparent Repor- 
ting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis, TRIPOD) to 
ensure transparency, reproducibility, and com-
parability in radiogenomic research [29].

Radiogenomics at the gene sequence level 

The performance of breast MRI is critical in the 
evaluation of patients with cancer-predisposing 
pathogenic variants. It aims to establish a link 
between breast cancer susceptibility genes, 
SNP loci information, and imaging features, 
uncovering the correlation between breast can-
cer genetic characteristics and imaging pheno-
types. A pilot study by Yamamoto et al. [14] an- 
alyzed 10 breast cancer patients and found 
that MRI phenotypes with a heterogeneous 
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enhancement pattern were significantly asso- 
ciated with immune-related genes characteriz-
ing the interferon-rich subtype, which is often 
associated with basal breast cancer. This stu- 
dy identified 12 DCE-MRI-specific traits sig- 
nificantly associated with high expression of 
immune-related genes, including STAT1, CXCL9, 
and IFIT1. Subsequently, Maimone et al. [30] 
investigated 410 breast cancer patients (2001-
2020) who underwent MRI with identified 
pathogenic variants and found that BRCA1 
(29.5%), BRCA2 (25.9%), CHEK2 (16.6%), ATM 
(8.0%), and PALB2 (6.3%) were the most com-
mon variants. Significant associations were 
observed with tumor shape, margin, grade, rim 
enhancement, kinetics, and necrosis. BRCA1 
tumors were predominantly basal (47.9%) and 
exhibited distinct imaging features such as 
round shape (31.4%), circumscribed margins 
(24.0%), rim enhancement (24.0%), washout 
(58.7%), and necrosis (19.8%), while CHEK2 
and ATM tumors were often lower grade with 
spiculated margins, rarely exhibiting washout 
or necrosis, and were mostly comprised of lu- 
minal molecular subtypes (CHEK2: 88.2%, 
ATM: 90.9%).

While these studies established a link be- 
tween susceptibility genes and imaging fea-
tures, researchers expanded upon this con- 
cept using RNA sequencing. Advances in next-
generation RNA sequencing have led to the dis-
covery of new transcriptional and epigenetic 
regulators. For example, Incoronato et al. [31] 
found that standard quantitative visualization 
biomarkers on MRI and positron emission 
tomography (PET) correlated with circulating 
microRNAs. Their study included 77 breast can-
cer patients who underwent PET/MRI analysis 
and blood sampling on the same day, along 
with 78 healthy individuals as a control group. 
The results demonstrated that among the 84 
microRNAs identified, MIR-125b-5p, MIR-143-
3p, MIR-145-5p, MIR-100-5p, and MIR-23a- 
3p were more frequently detected in plasma 
samples. A strong correlation was observed 
between the expression level of circulating  
MIR-143-3p and the mean initial area under 
the concentration curve in stage II breast can-
cer, suggesting a potential role of MIR-143-3p 
in tumor vascularization regulation. Additionally, 
a strong correlation was observed between 
MIR-143-3p and the maximum standardized 
uptake value at this stage, indicating that mi- 

croRNAs play a role in cancer metabolism 
control.

Beyond microRNAs, long noncoding RNAs 
(lncRNAs), referred to as non-coding tran-
scripts, are key regulatory RNAs implicated in 
breast cancer. Yamamoto et al. [32] investi- 
gated the relationship between MRI-derived 
enhancing rim fraction scores and the expres-
sion of 14,880 lncRNAs. Radiogenomic analy-
sis allowed the identification of three previously 
uncharacterized and five named lncRNAs that 
were significantly associated with high enhanc-
ing rim fraction, including homeobox transcript 
antisense intergenic RNA (HOTAIR), a known 
predictor of tumor metastasis in breast cancer 
patients.

In a recent prospective cohort by Park et al. 
[33], 95 women with invasive breast cancer 
were evaluated using BI-RADS scoring, texture 
analysis, and next-generation RNA sequenc- 
ing. The authors observed that tumors pre- 
senting as masses had increased CCL3L1 
expression, whereas those with irregular sha- 
pes had decreased MIR421 levels. Within the 
ER-positive mass subgroup, CCL3L1, SNHG- 
12, and MIR206 were upregulated, whereas 
MIR597, MIR126, and SOX17 were downregu-
lated. In basal tumors with higher texture het-
erogeneity on precontrast T1-weighted ima- 
ges, the genes CLEC3A, SRGN, HSPG2, KMT2D, 
and VMP1 were overexpressed, whereas IGLC2 
and PRDX4 were underexpressed. Gene net-
work analyses further linked ER-positive mass 
lesions with increased cell proliferation, resis-
tance to anti-estrogen treatment, and poorer 
survival.

These insights support the potential of radioge-
nomics as an alternative to traditional genetic 
testing in breast cancer.

Radiogenomics at the gene pathway level

The analysis of gene pathways can reflect 
changes in gene activity and transcription dur-
ing the occurrence and development of breast 
cancer. MRI-based radiogenomics utilizes gene 
and protein expression profiling data to reveal 
the relationship between the activity character-
istics of breast cancer at the transcriptional 
and translational levels and its MRI phenotype. 
For instance, Janus kinases (JAK), a type of 
non-receptor tyrosine kinase, are crucial for 
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activating signal transducer and activator of 
transcription (STAT) proteins in breast cancer. 
Disruption of the JAK-STAT pathway can lead to 
cancer development [34]. Yeh et al. [35] ana-
lyzed 47 invasive breast cancers using radio- 
mic techniques and gene expression data from 
fresh tissue samples; their Gene Set Enrich- 
ment Analysis (GSEA) linked 186 gene path-
ways to 38 imaging features. The results 
showed that radiomic size features were posi-
tively associated with replication and prolifera-
tion pathways and negatively associated with 
the apoptosis pathway. Notably, pathways re- 
lated to immune regulation and extracellular 
signalling showed the most significant corre- 
lations with radiomic features. Tumors with 
upregulation of immune and extracellular sig-
nalling pathways were smaller, more spherical, 
and had a more heterogeneous texture on DCE-
MRI, whereas tumors with higher expression 
levels of JAK/STAT and VEGF pathways had 
increased contrast, variance, and entropy, whi- 
le homogeneity and linearity decreased. In 
addition, the tumor necrosis factor-alpha (TNF-
α)/NF-kappaB/Snail pathway is another key 
molecular pathway in breast cancer, influenc-
ing epithelial-mesenchymal transition, prolifer-
ation, angiogenesis, invasion, and metastasis 
[36-38]. Wu et al. [39] analyzed 10 quantita- 
tive imaging features related to tumor-adjacent 
enhancement patterns and found that certain 
parenchymal imaging features associated with 
the TNF pathway have prognostic value.

Zhu et al. [16] obtained breast cancer-related 
gene pathways from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and utilized GSEA 
to identify gene pathways associated with 38 
imaging features. The results revealed signifi-
cant associations between numerous KEGG 
pathways and imaging features, particularly 
showing statistically significant positive corre- 
lations with lesion volume, effective diameter, 
surface area, and maximum linear dimension, 
while exhibiting significant negative correla-
tions with margin sharpness and radial gradi-
ent histogram variance. Additionally, the study 
employed RPPA data encompassing 142 pro-
teins such as p53 and cadherin to analyze the 
correlation between protein expression profiles 
and imaging features using linear regression 
models. The results demonstrated that pro- 
tein expression characteristics exhibited limit-
ed correlations solely with tumor size and mor-
phological features.

However, the complexity of gene expression 
and signalling pathways limits such studies.

Research of MRI-based radiogenomics in 
breast cancer

The role of radiogenomics in identifying mo-
lecular subtypes of breast cancer

Preoperative knowledge of breast cancer 
molecular subtypes is crucial for guiding indi-
vidualized treatment selection, including che-
motherapy, endocrine therapy, and HER2-tar- 
geted therapy. While genomic analysis remains 
the gold standard for classifying molecular sub-
types, its high cost and time-consuming nature 
limit its applicability to a large patient popula-
tion. Consequently, most studies often rely on 
receptor status as a surrogate for genomic 
analysis to leverage larger sample sizes.

Researchers have extensively investigated the 
relationship between contrast enhancement 
kinetics on breast MRI and molecular subtypes. 
MRI enhancement kinetics can be categorized 
into an initial phase (slow, medium, and fast) 
and a delayed phase (persistent, plateau, and 
washout). Blaschke and Abe [40] observed that 
the HER2-enriched subtype exhibited faster ini-
tial phase enhancement compared to other 
subtypes in an analysis of 112 cancer cases. 
Grimm et al. [41] identified two dynamic imag-
ing features as independent predictors of the 
luminal A and B subtypes: 1) the ratio of tumor 
enhancement to fibroglandular tissue at two 
time points, and 2) the sequence number at 
which peak enhancement occurs. Further re- 
search by Grimm et al. [42] found that the 
shape of the breast mass is significantly asso-
ciated with the basal-like subtype, whereas the 
mass margin is significantly associated with 
the HER2-enriched subtype. Notably, homoge-
neous mass-like and non-mass-like internal 
enhancement have a higher negative predictive 
value for the luminal B subtype. Subsequently, 
Ming et al. [43] utilized an unsupervised analy-
sis of DCE-MRI features to identify and validate 
three novel imaging subtypes of breast cancer 
in two independent radiogenomics cohorts, 
totaling 246 patients. The study revealed that 
these imaging subtypes were significantly asso-
ciated with Ki67 status, PAM50 intrinsic molec-
ular subtypes, and tumor stage. There were 
significant differences in tumor size, enhance-
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ment patterns, and clinical outcomes among 
the subtypes.

Other studies have focused on the role of back-
ground parenchymal enhancement (BPE) in 
subtype differentiation. Mazurowski et al. [44] 
found that luminal B breast cancer showed 
maximal tumor enhancement relative to back-
ground parenchyma. HER2 overexpression, of- 
ten seen in luminal B and HER2-enriched breast 
cancer, is linked to vascular endothelial growth 
factor (VEGF). Dilorenzo et al. [45] found that 
mild BPE suggests Luminal B or HER2-negative 
subtypes, while severe BPE suggests the basal 
subtype. Wang et al. [46] found that the addi-
tion of quantitative imaging features of BPE  
significantly improved its ability to predict the 
basal subtype, increasing prediction accuracy 
from 86.9% to 90.0% and AUC from 0.782 to 
0.883. Furthermore, Luo et al. [47] aimed to 
identify differences in pharmacokinetic param-
eters derived from DCE-MRI between luminal A 
and B breast cancer subtypes. They retrospec-
tively analyzed data from 94 patients with con-
firmed breast cancer, applying the Mann-Whit- 
ney U-test to compare pharmacokinetic param-
eters (Ktrans, Kep, and Ve) along with their cor-
responding histogram and texture features. 
Their findings showed that luminal B cancers 
exhibited significantly higher maximum values 
for Ktrans, Kep, and Ve, as well as increased 
mean and 90th percentile values for Ve, com-
pared to luminal A cancers. This study con- 
cluded that DCE-MRI-derived pharmacokinetic 
parameters could represent valuable imaging 
biomarkers for differentiating between luminal 
A and B subtypes of breast cancer.

With the advancement of MRI radiogenomics, 
recent studies have typically provided both 
quantitative and qualitative imaging biomark-
ers. For example, in a retrospective analysis of 
51 patients with ER-positive invasive ductal 
carcinoma using DCE-MRI texture analysis, 
Wang et al. [48] found that kurtosis, hetero- 
geneity, and entropy effectively discriminated 
between Luminal A and Luminal B, with entropy 
showing the highest diagnostic efficacy (AUC = 
0.891). Saha et al. [49] performed a compre-
hensive analysis on a larger cohort of 922 
female patients with invasive breast cancer 
who underwent pre-operative DCE-MRI. The re- 
searchers used a machine learning approach 
to extract 529 imaging features from the MRIs 

and developed multivariate models to predict 
various molecular and genomic characteris- 
tics, including tumor subtype, ER, progesterone 
receptor (PR), HER2 status, and the prolifera-
tion marker Ki-67. The results indicated moder-
ate associations between the imaging features 
and molecular biomarkers, with the highest 
predictive accuracy achieved for distinguishing 
Luminal A subtype (AUC = 0.697) and basal 
breast cancer (AUC = 0.654).

Early studies of breast MRI radiogenomics were 
often based on T1-weighted imaging, and multi-
parametric imaging is the greatest strength of 
MRI. In the first study that investigated the util-
ity of diffusion weighted imaging (DWI) radiomic 
signatures, Xie et al. [50] investigated DWI and 
DCE-MRI histogram features for the differentia-
tion of basal from other molecular subtypes 
with AUCs up to 0.763. However, histogram  
features do not provide textural information 
regarding spatial relationships between the sig-
nal intensities of pixels/voxels across a region 
or volume of interest. Leithner et al. [51] found 
that radiomic features from DWI, such as gray-
level co-occurrence matrices, can more accu-
rately assess the receptor status and molecu-
lar subtype of breast cancer, especially for the 
luminal A and B subtypes (with accuracies of 
91.5% and 89.5%, respectively). Meanwhile, 
Holli-Helenius et al. [52] achieved AUC values 
of 0.83-0.88 for the separation of luminal A 
and B cancers in a small patient cohort (n = 27) 
using co-occurrence matrix features alone. 
Siyao Du et al. [53] conducted a study involv- 
ing 200 breast cancer patients who underwent 
synthetic MRI, DWI, and DCE-MRI examina-
tions. The study found that T1 and T2 values 
were significantly different in hormone recep-
tor-negative and Ki67 > 14% tumors, while 
HER2-positive tumors demonstrated higher 
Ktrans and Kep. The authors concluded that 
MRI quantitative parameters can help distin-
guish molecular markers and subtypes, with T1 
values from synthetic MRI being associated 
with the basal subtype and combined parame-
ters including T2 values showing potential in 
discriminating the Luminal A subtype. In a pro-
spective study, Tsai et al. [54] evaluated 306 
female patients with de novo breast cancer, 
specifically tumors larger than 1 cm, using DCE-
MRI, DWI, and intravoxel incoherent motion 
(IVIM). They found that breast cancer PAM50 
subtypes luminal A and normal-like exhibited 
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significantly higher expression of vascular nor-
malization genes compared to other subtypes.

Building on multiparametric MRI examinations, 
researchers have explored the use of advanced 
machine learning techniques to differentiate 
molecular subtypes. For example, Huang et al. 
[55] conducted a study involving 162 female 
patients diagnosed with clinical stage T2-4 
breast cancer to investigate the potential of 
multiparametric MRI-based radiomic features 
in predicting molecular subtypes and androgen 
receptor expression. They employed various 
machine learning algorithms and feature se- 
lection strategies to analyze a total of 4,198 
radiomic features extracted from MRI se- 
quences. The study found that the Multilayer 
Perceptron (MLP) model demonstrated the 
best performance, achieving an AUC of 0.907 
for predicting AR expression and a micro-AUC 
of 0.896 for classifying molecular subtypes.

MRI-based radiomic features could also be 
used alongside other clinical variables to un- 
derstand tumor biology. For example, Sheng et 
al. [56] conducted a study on 190 Chinese 
female patients with invasive ductal breast 
cancer. The study utilized a combination of 
three-dimensional imaging features extracted 
from DCE-MRI, pathology variables, and clini- 
cal data, applying machine learning techniques 
to predict molecular subtypes. The study found 
that the eXtreme Gradient Boosting model 
demonstrated superior performance in differ-
entiating the various molecular subtypes of 
breast cancer, including Luminal, HER2, and 
basal subtypes, especially in the Luminal and 
basal groups, with AUC values of 0.8282 and 
0.9031, respectively.

The methods used in the above studies varied 
in their ability to identify molecular subtypes of 
breast cancer. Consequently, Davey et al. [57] 
performed a meta-analysis to assess the diag-
nostic accuracy of radiogenomics in differenti-
ating molecular subtypes. The authors evaluat-
ed 41 studies (from 2015 to 2020) involving 
10,090 breast cancer patients. This analysis 
supports the reliability of preoperative MRI-
based radiogenomics in independently differ-
entiating the therapeutically relevant luminal  
A (sensitivity: 0.78 and specificity: 0.83) and 
HER2+ (sensitivity: 0.87 and specificity: 0.88) 
subtypes from each other. It also supports the 
refinement of deep learning and convolutional 

neural networks (CNN) as the most favorable 
means of radiogenomic analysis. The authors 
concluded that radiogenomics has the poten-
tial to differentiate breast cancer into its clini-
cally relevant subtypes, while preserving inva-
sive approaches until the time of surgical 
resection.

Predictive value of radiogenomics for treat-
ment response and prognosis

Prognostic risk analysis is crucial for post-oper-
ative treatment selection and survival assess-
ment in breast cancer. Radiogenomics has 
shown significant potential in predicting treat-
ment response and prognosis, which could 
guide personalized therapy in breast cancer 
management, ultimately improving patient sur-
vival and quality of life.

A secondary analysis of the “Multimodality 
Analysis and Radiologic Guidance in Breast-
Conserving Therapy” (MARGIN) study evaluated 
21 MRI-based imaging characteristics, focus-
ing on six key parameters: tumor size, shape, 
contours, initial and late signal enhancement, 
and intensity, in relation to gene expression 
profiles obtained from RNA sequencing in 295 
patients. A significant link was found between 
tumor proliferation and size, indicating that 
larger, highly proliferative tumors have worse 
prognoses [58]. Building upon this paradigm, 
Ming et al. [59] conducted a radiogenomic an- 
alysis based on DCE-MRI and RNA sequencing 
data from 246 patients across multiple cen-
ters. The expression of genes including RBP4, 
MYBL2, and LINC00993 was found to correlate 
significantly with imaging features. Based on 
these findings, the researchers developed a 
prognostic signature using eight imaging-as- 
sociated genes. Experimental results showed 
that high expression of this signature indicated 
a poor prognosis. Incorporating five genomic 
features and three MRI radiomic features, Chen 
et al. [60] developed and validated a radioge-
nomic model to predict axillary lymph node 
metastasis in breast cancer, achieving a higher 
AUC value of 0.84.

Further expanding the clinical applicability of 
imaging biomarkers, Wang et al. [61] conduct-
ed a retrospective study involving 227 breast 
cancer patients to explore the clinical value of 
advanced diffusion MRI techniques, including 
apparent diffusion coefficient (ADC), intravoxel 
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incoherent motion (IVIM), and diffusion kurto-
sis imaging (DKI), in predicting genotypes and 
prognostic factors. The researchers found that 
perfusion-related diffusion coefficient (D*) and 
mean kurtosis (MK) values were significantly 
higher in high-grade Nottingham prognostic 
index (NPI) groups, while lower ADC and true 
diffusion coefficient (D) values were associat- 
ed with high Ki-67 expression. The combination 
of DWI, IVIM, and DKI could enhance diagnos- 
tic efficiency in breast cancer patients. Con- 
currently, Wu et al. [62] analyzed two cohorts 
(discovery cohort: 60 patients; validation co- 
hort: 186 patients) to investigate intratumoral 
spatial heterogeneity at perfusion MR imaging 
of locally advanced breast cancer treated with 
neoadjuvant chemotherapy. The authors devel-
oped a two-stage clustering method to identify 
three intratumoral subregions (poorly, moder-
ately, and highly perfused), quantified spatial 
heterogeneity using multiregional spatial inter-
action (MSI) matrices, and performed network-
based patient stratification. Results showed 
that MRI-based heterogeneity was an inde- 
pendent predictor of recurrence-free survival 
beyond traditional clinicopathologic and geno- 
mic factors. In another multicohort study,  
Fan et al. [63] aimed to identify preoperative 
radiomic signatures associated with ODxRS in 
ER-positive breast cancer patients. They uti-
lized DCE-MRI data from three independent 
cohorts, comprising a total of 332 patients, to 
develop and validate these signatures. The 
study found that high ODxRS predicted values 
were significantly associated with a favorable 
response to neoadjuvant chemotherapy, and 
the identified radiomic signatures have the 
potential to serve as promising non-invasive 
biomarkers for prognosis and treatment res- 
ponse in breast cancer.

Neoadjuvant chemotherapy (NAC) is the stan-
dard treatment for localized and advanced 
breast cancer, aiming to reduce tumor size and 
potentially enable breast-conserving surgery. 
However, not all breast cancers benefit from 
NAC treatment, as some biologically aggressive 
lesions may not be effectively controlled after 
months of treatment and may even increase 
the risk of tumor metastasis. Therefore, it is 
crucial to distinguish between patients who 
benefit from NAC treatment and those who are 
insensitive to NAC treatment as early as possi-
ble during treatment. Drukker et al. [64] con-

ducted a study using DCE-MRI data from the 
American College of Radiology Imaging Net- 
work (ACRIN) trial 6657, which included 162 
women with breast cancer undergoing NAC. 
They employed an automated method to calcu-
late the most enhancing tumor volume (METV) 
as a radiomic feature for predicting recurrence-
free survival. The results indicated that METV 
was predictive of recurrence-free survival both 
pre-treatment and after the first cycle of che-
motherapy, with C-statistics of 0.69 and 0.72, 
respectively.

Pathologic complete remission (pCR) is closely 
related to good patient prognosis and can be 
used as an indicator to evaluate the effective-
ness of NAC treatment. Several studies have 
investigated the potential of radiogenomics to 
predict pCR and assess the effectiveness of 
NAC treatment. For example, Tsukada et al. 
[65] showed that the tumor growth direction 
parallel to the Cooper ligament (i.e., the tumor 
anteroposterior diameter is longer than the 
mediolateral diameter) and the pre-treatment 
multi-parametric MRI clearance rate are predic-
tive indicators of pCR. Chamming et al. [66] 
found a statistically significant difference in the 
relationship between kurtosis with a spatial 
proportion factor of 2 and prognosis in non-
basal breast cancer patients. Kim et al. [67] 
showed that patients with higher tumor entropy 
values on T2-weighted imaging had lower recur-
rence-free survival rates. Additionally, Parikh et 
al. [68] detected changes in tumor entropy and 
homogeneity (gray level distribution) during 
treatment and found that tumors became mo- 
re homogeneous after NAC treatment, with an 
increase in signal homogeneity and a decrease 
in entropy on T2-weighted imaging, which may 
indicate pCR earlier than changes in tumor size. 
Zhang et al. [69] developed a radiogenomic 
model to predict pCR in patients with basal 
breast cancer undergoing NAC. The prediction 
model, which integrated imaging and genetic 
data, showed excellent predictive performance, 
achieving an AUC of 0.87. They also discovered 
that the MED23 p. P394H mutation correlated 
with increased epirubicin resistance in vitro.

Concurrently, Magbanua et al. [70] conducted a 
pilot study involving 84 high-risk early breast 
cancer patients to investigate the predictive 
value of circulating tumor DNA (ctDNA) and 
functional tumor volume (FTV) measured by 
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MRI in assessing NAC response and recurrence 
risk. The researchers employed serial measure-
ments of ctDNA and FTV at multiple time points 
during treatment, analyzing their correlations 
and their combined predictive capabilities for 
pCR and distant recurrence-free survival. They 
found that ctDNA levels were significantly cor-
related with FTV, and while the addition of 
ctDNA to FTV-based predictors improved the 
prediction of pCR, the change was not statisti-
cally significant. However, ctDNA positivity after 
NAC significantly enhanced the identification of 
patients at increased risk of metastatic recur-
rence and death. The study concluded that 
combining ctDNA and FTV could provide a more 
robust framework for predicting treatment out-
comes in early breast cancer patients undergo-
ing NAC.

Correlation between imaging phenotype and 
recurrence in breast cancer

MRI imaging characteristics hold promise as 
radiomic biomarkers for predicting breast  
cancer recurrence risk. In an earlier study, 
Mazurowski et al. [71] examined the relation-
ship between MRI enhancement dynamics and 
recurrence-free survival in 275 breast cancer 
patients. Using semi-automated computer al- 
gorithms, they quantified enhancement dynam-
ics from preoperative MRI scans. Their multi-
variate analysis revealed that these enhance-
ment dynamics were independently predictive 
of recurrence-free survival (P = 0.024) among 
patients newly diagnosed with breast cancer, 
even after controlling for patient age, race/eth-
nicity, menopausal status, tumor grade, and 
tumor size. This dynamic feature represents  
the rate of enhancement of the tumor versus 
the background breast parenchymal enhance-
ment, and the survival regression model indi-
cated that a higher feature value was associat-
ed with an increased risk of disease recurrence. 
Consequently, Chitalia et al. [72] identified and 
validated imaging phenotypes of breast can- 
cer heterogeneity using preoperative DCE-MRI 
scans from two cohorts of women with invasive 
breast cancer (discovery cohort: 95 patients; 
validation cohort: 163 patients). The research-
ers employed radiomic feature extraction, un- 
supervised hierarchical clustering, and survival 
analysis. They identified three phenotypes of 
tumor heterogeneity (low, medium, and high) 
that were reproducible and demonstrated sig-

nificant prognostic value (c = 0.73) in predicting 
10-year recurrence-free survival.

Moreover, Lee et al. [73] investigated prognos-
tic factors for breast cancer recurrence by ana-
lyzing a cohort of 267 patients who underwent 
DCE-MRI prior to surgery. The researchers 
employed univariable and multivariable Cox 
proportional hazards regression analysis to 
identify associations between various imaging 
parameters, including morphologic features, 
quantitative MRI metrics, and clinicopathologic 
factors, with disease recurrence. Their findings 
revealed that increased ipsilateral vascularity, 
higher positive skewness in texture analysis, 
and advanced pathologic stage were signifi-
cant predictors of recurrence. The comprehen-
sive model incorporating both imaging and 
clinicopathologic factors demonstrated excel-
lent discrimination for identifying high-risk pa- 
tients, with a C index of 0.825. Meanwhile, in 
another study, Lee et al. [74] focused on the 
imaging characteristics of young age breast 
cancer (YABC) in 53 patients under 40 years of 
age, utilizing pre-treatment DCE-MRI to obtain 
quantitative parameters such as tumor-stroma 
ratio (TSR), microvessel density (MVD), and 
endothelial Notch 1 (EC Notch 1). The findings 
revealed that several MRI parameters could 
serve as imaging biomarkers for the tumor 
microenvironment and predict disease recur-
rence, particularly highlighting the significant 
association of the basal subtype and low CD34 
MVD positivity in Notch 1 hotspots with tu- 
mor recurrence. Texture parameters reflecting 
tumor sphericity and homogeneity were also 
associated with disease recurrence. The study 
concluded that several quantitative MRI param-
eters can be used as imaging biomarkers for 
the tumor microenvironment and can predict 
disease recurrence in YABC.

The use of multigene assays to predict the risk 
of tumor recurrence has been introduced into 
clinical practice. While these assays provide 
valuable information, their high cost and the 
requirement for offsite laboratory analysis limit 
their accessibility. MRI-based radiogenomics 
has emerged as a promising tool for assessing 
breast cancer recurrence risk, offering a non-
invasive alternative to biopsies in less time  
and at lower cost. As Oncotype DX is the most 
widely used assay in clinical practice, multiple 
studies have explored the correlation between 
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MRI imaging features and ODxRS. For example, 
Ashraf et al. [75] conducted a study involving 
56 patients and found that tumors with high 
ODxRS tended to exhibit significantly rapid 
enhancement. During dynamic contrast en- 
hancement, high-risk breast cancers occupied 
a larger proportion of enhancement in rela- 
tively faster-enhancing phases, with their peak 
enhancement often occurring in the first en- 
hancement phase and declining in proportion 
by the third phase. Through unsupervised clus-
ter analysis of imaging features, the tumors 
were categorized into four imaging phenotypes. 
A multiple linear regression model was then 
established to analyze the correlation between 
imaging features and recurrence risk. The 
results demonstrated that DCE-MRI imaging 
features of ER-positive breast cancers showed 
a moderate correlation with genetically predict-
ed tumor recurrence risk, achieving an AUC of 
0.77. When the imaging phenotype classifica-
tion results were added as additional variables 
to the classifier, the AUC increased to 0.82. 
Subsequently, Sutton et al. [76] performed cor-
relation analysis among DCE-MRI, clinical, and 
pathological features in a cohort of 95 breast 
cancer patients. They found that two kurtosis 
values from breast MRI and histological nucle-
ar grade were significantly associated with 
ODxRS in luminal A breast cancer, consistent 
with the findings of Pickles et al. [77] and Yi et 
al. [78], who found that increased perfusion in 
luminal A breast cancer correlates with reduced 
disease-free survival. While both Ashraf et al. 
and Sutton et al. found that tumors with rapid 
contrast enhancement features had increased 
ODxRS, their studies differed in several aspects 
as follows: 1) the former included four major 
imaging phenotypes but did not mention kurto-
sis; 2) the former included ductal and lobular 
breast cancers, but the PR and HER2 status 
were unclear; 3) the former only considered 
imaging features, while the latter combined 
imaging, clinical, and pathological features for 
a more comprehensive analysis.

Wan et al. [79] analyzed the correlation be- 
tween 196 imaging features and Oncotype DX 
risk categories in 96 ER-positive breast cancer 
patients. The results showed a high correla- 
tion between DCE-MRI texture features of 
ER-positive breast cancer and ODxRS, with 
AUCs of 0.84 and 0.80 for directional gradient 
histogram and dynamic local binary pattern, 

respectively. Unlike Agner et al. [80], who used 
a single parameter to assess lesion texture, 
directional gradient histogram and dynamic 
local binary pattern can capture dynamic tex-
ture changes over time and space. This study 
differs from Ashraf et al.’s work as it focuses 
|on texture features rather than kinetic fea-
tures, which are based on assessments of 
time-intensity curve, peak enhancement, wash-
in, and wash-out parameters. Notably, Wan et 
al. believe that intensity feature discrimination 
has the worst stability, while morphology fea-
tures have the highest error rate among all 
classification criteria. This research marked the 
first systematic comparison of various kinetic 
and morphological features to evaluate recur-
rence risk in ER-positive breast cancer. The 
authors suggested that non-invasive radioge-
nomic methods may be superior to biopsy in 
the assessment of recurrence risk.

Li et al. [81] investigated the relationships 
between three multigene assays (Mamma- 
Print, Oncotype DX, and PAM50) and MRI phe-
notypes to assess breast cancer recurrence 
risk. The research utilized a retrospective data-
set of 84 deidentified breast MR examinations 
from the Cancer Imaging Archive (TCIA), along 
with clinical and genomic data from the Cancer 
Genome Atlas (TCGA). The authors used multi-
ple linear regression and receiver operating 
characteristic analysis to evaluate the predic-
tive ability of MR radiomic features. Their 
results showed significant associations be- 
tween multigene assay recurrence scores and 
radiomic signatures (R2 = 0.25-0.32, r = 0.5-
0.56, P < 0.0001), particularly tumor size and 
enhanced texture, meaning that the larger and 
less homogeneously enhanced the tumor, the 
higher the risk of recurrence.

Furthermore, Thakur et al. [82] measured ADC 
values in ER-positive and axillary lymph node-
negative invasive breast cancer and found that 
low-risk lesions with low ODxRS exhibited sig-
nificantly higher ADC values compared to inter-
mediate/high-risk lesions.

Limitations

Although MRI-based radiogenomics in breast 
cancer, which links tumor genotype with imag-
ing phenotype, shows significant clinical value 
and vast application prospects, there are mo- 
deling and reporting gaps across the field. 
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Studies with higher clinical rigor - meaning large 
sample size, external validation, or prospec-
tive/multicenter design; clearly defined end-
points and performance metrics; full subtype  
or response prediction models, not only imag-
ing-gene correlations - are needed. However, 
most studies rely on single institutions and ret-
rospective datasets with small sample sizes, 
lacking representativeness. Many studies use 
internal hold-outs, cross-validation, or leave-
one-out methods but lack independent exter-
nal test sets. Very few studies report calibra- 
tion metrics or decision curve analysis (DCA). 
Multi-class molecular subtype tasks often yie- 
ld lower multi-class discrimination, and many 
studies present pairwise accuracy or per-class 
AUCs rather than robust multi-class calibra- 
tion. This inflates perceived performance if re- 
aders interpret pairwise results as equivalent 
to multi-class accuracy. Large multi-institution-
al pools (TCGA/TCIA/multi-center cohorts) in- 
troduce scanner and protocol variability, but 
only a minority of studies explicitly harmonize 
imaging or test robustness to scanner differ-
ences. The lack of standardized protocols, vary-
ing software and imaging equipment, and inter- 
and intra-institutional heterogeneity of data- 
sets restrict the reproducibility of results. This 
is a major limitation for clinical translation. 
Some studies [16, 81] link radiomic signatures 
to gene assays and pathways (strong biological 
anchor), which improves interpretability. Others 
present black-box deep learning models with-
out pathway linkage, which require stronger 
external validation and explainability for clini- 
cal uptake. Additionally, the complexity of gene 
expression and signaling pathways, coupled 
with the expense and operational intricacies of 
gene testing, hinder large-scale radiogenomics 
research. Manual or automatic segmentation 
methods for regions of interest can also influ-
ence feature extraction and subsequent analy-
sis. Future research should focus on overcom-
ing these hurdles to establish radiogenomics 
as a reliable tool in clinical practice.

Conclusion and future direction

Studies have demonstrated moderate relation-
ships between radiomic features and genomic 
features. MRI-based radiogenomics offers a 
rapid and non-invasive approach to obtain valu-
able imaging biomarkers, holding promise to 
improve the accuracy of molecular subtype 

identification, treatment response and progno-
sis prediction, and recurrence risk assess- 
ment. Moving forward, radiogenomics should 
aim to obtain multicenter and larger sample 
sizes to conduct prospective and validation 
studies, as well as to develop standardized  
protocols for feature extraction and normaliza-
tion. Translating these research findings into 
clinical practice to address real-world challeng-
es will facilitate the advancement of personal-
ized treatment and precision medicine.
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