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Abstract: Gynecological tumors represent a significant health burden worldwide. Protein lactylation has emerged
as a novel post-translational modification (PTMs) that directly links metabolic reprogramming to epigenetic and
functional regulation. Lactylation occurs when lactate covalently modifies the lysine residues of proteins. Initially
discovered on histones, lactylation was shown to influence gene transcription; however, accumulating evidence
reveals its broader impact on nonhistone proteins, affecting diverse processes. Elevated lactate levels in the tumor
microenvironment increase protein lactylation. Evidence suggests a dynamic interplay between tumor metabolism
and cancer progression. In this review, we provide an overview of the fundamental aspects of protein lactylation,
including the key enzymes that catalyze the addition and removal of lactyl groups. We further emphasize recent
discoveries on how lactylation influences the development and progression of gynecological malignancies. Finally,
we explore the potential of targeting protein lactylation as an emerging therapeutic strategy in the management of

gynecological cancers.
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Introduction

Gynecological tumors are a group of common
malignancies that originate in the female re-
productive system [1]. Gynecological cancers
are categorized based on their site of origin,
including cervical, ovarian, endometrial, vulvar,
and vaginal cancers [2]. Gynecological cancer
patients exhibit irregular intermenstrual bleed-
ing or discharge, pelvic pain, dyspareunia, and
vulvar itching or burning. Various strategies
have been implemented for prevention and
early detection, such as routine pelvic examina-
tions, HPV vaccination, and evaluation of family
history [3-5]. Moreover, inherited susceptibility
contributes importantly to the onset of certain
gynecologic malignancies [6, 7]. Current treat-
ment options include surgical intervention, che-
motherapy, radiation therapy, molecular target-
ed agents, immune-based treatments, or in-
tegrated multimodal approaches [8-10].

Post-translational modifications (PTMs) refer to
chemical changes that occur in proteins once

they have been synthesized by ribosomes [11].
Typical PTMs include ubiquitination, methyla-
tion, glycosylation, phosphorylation, acetyla-
tion, nitrosylation, and lipidation [12-14]. PTMs
influence protein function by regulating their
enzymatic activity, structural stability, and lo-
calization within cells through the addition or
removal of functional groups or by modifying
amino acid structures [15]. PTMs are funda-
mental to the modulation of numerous cellular
functions, such as metabolism, differentiation,
proliferation, cell cycle progression, apoptosis,
immune responses, and metastasis [16]. Con-
sequently, perturbation of PTMs is tightly con-
nected to the pathogenesis of various diseas-
es, including cancer [17, 18].

In 2019, Zhang et al. reported that lactate-
derived histone lactylation functions as a novel
epigenetic modification that regulates gene
transcription, which links the Warburg effect
and various broader pathophysiological pro-
cesses [19]. In recent years, research on pro-

https://doi.org/10.62347/QRTR7828


http://www.ajcr.us
https://doi.org/10.62347/QRTR7828


Lactylation in gynecological cancer

Q ' L8

Glucose Lactate

MCT

MIWIMII@EEE?II!IW’ s

.
[ o Lactate
3 o

3 ) — =

: O —~ @i o) Cell

- " proliferation
s Glucose /DH b
E* Cytoplasm .
s Acetyl-CoA Tumor
f:‘; DCBLD1 G6PD growth
;-. j PFKM, RAD51

',5 /\ . Non-histone Immune

S/ HDACs p:é:or?S suppression
e3 / SIRTs Tip60
i 4 \ A — ——
‘.". \ W Lac @ “—
E; [ | T Tumor
g; : - B one N metastasis
E_ [ “" H3K9, H3K18, H4K12 i
= || ==
W Gene expressmn g; @ Drug
-

F ist
— resistance
(0loo)

m,m“

) Iilffleus ‘g*
ifﬁ?’nmmzmmzmnnmnzzmm@‘

Figure 1. Schematic overview of the protein lactylation process. Glucose metabolism via glycolysis produces pyru-
vate, which is converted into lactate by lactate dehydrogenase (LDH). Lactate is transported by monocarboxylate
transporters (MCTs) and used to produce lactyl-CoA. Lactyl-CoA serves as a donor for histone and nonhistone pro-
tein lactylation mediated by acyltransferases, thereby influencing gene expression. Conversely, histone deacety-
lases (HDACs) and sirtuins (SIRTs) remove lactylation marks, suggesting the dynamic and reversible feature of
this modification. Abnormal lactylation regulates cell proliferation, tumor metastasis, drug resistance, and immune

evasion in human cancer.

tein lactylation has increased rapidly, with nu-
merous studies demonstrating its important
role in a broad range of illnesses, including
cardiovascular abnormalities [20, 21], neuro-
degeneration [22, 23], and cancers [24-26].
Lactylation is one type of PTM in which a lactyl
group derived from lactate is bound via stable
covalent linkage to lysine sites in proteins [27].
Lactylation was initially described for histone
proteins, leading to the regulation of gene tran-
scription [28]. Lactylation provides a direct con-
nection between cellular metabolism, specifi-
cally glycolysis, and the epigenetic and func-
tional regulation of proteins [29]. Elevated lac-
tate levels, which are often observed in the
tumor microenvironment (TME) because of aer-
obic glycolysis, known as the Warburg effect,
can increase protein lactylation [30-32]. Lacty-
lation has been reported to alter protein activi-
ty, stability, localization, and interactions [33,
34]. In addition to histones, the lactylation of
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nonhistone proteins contributes to multiple bio-
logical processes, such as proliferation, differ-
entiation, apoptosis, autophagy, invasion and
metastasis [35-37]. Given its close relationship
with the metabolic state and cancer, including
gynecological cancers, protein lactylation could
be critical for tumorigenesis. Therefore, this
review provides an overview of protein lacty-
lation, particularly the enzymatic machinery
responsible for writing and erasing lactyl marks
(Figure 1). Moreover, we highlight the role of
lactylation in gynecological cancers and dis-
cuss whether protein lactylation might em-
erge as a potential intervention point in the
treatment of gynecological cancers.

Protein lactylation
Lactyltransferases

The lactyltransferases that catalyze protein
lactylation have been investigated in recent
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years. Some evidence suggests that p300/
CBP, which is a well-known histone acetyltrans-
ferase, may also mediate histone lactylation by
using lactyl-CoA as a donor molecule [38]. The
mechanism by which p300 catalyzes protein
lactylation remains an active area of research.
Recent studies have identified alanyl-tRNA
synthetases 1 and 2 (AARS1 and AARS2) as
novel lactyltransferases responsible for cata-
lyzing lysine lactylation on proteins [39]. In
general, AARS1 and AARS2 function as alanyl-
tRNA synthetases and charge tRNA molecules
with alanine during protein translation. AARS1
and AARS2 predominantly regulate cytoplas-
mic and mitochondrial protein lactylation, re-
spectively, indicating that they have spatial
specificity in the regulation of lactylation. For
example, one study revealed that AARS1 uses
lactate and ATP to modify the YAP protein in
gastric cancer [40]. AARS2 promotes ferropto-
sis during intestinal ischemia-reperfusion in-
jury by driving histone lactylation [41]. In addi-
tion, hypoxia induces AARS2 accumulation to
increase PDHA1 and CPT2 lactylation, leading
to the suppression of oxidative phosphorylation
(OXPHOS) [42].

Delactylases

Recent studies have identified certain histone
deacetylases (HDACs) and sirtuins as potential
delactylases. For example, one study from the
Zhao group revealed that HDAC1-3 and SIRT1-3
function as delactylases to control protein lac-
tylation [43]. Liu et al. reported that XkIp2
(TPX2) is lactylated at K249, a modification
mediated by the lactylase CBP and reversed
by the delactylase HDAC1, which promotes
AURKA activation, cell cycle progression, and
tumor growth in hepatocellular carcinoma
(HCC) [44]. He et al. showed that HDAC2 pro-
motes cisplatin resistance in triple negative
breast cancer (TNBC) by delactylating METTLS3,
leading to enhanced m6A-mediated DNA re-
pair, whereas HDAC2 inhibition by tucidinostat
sensitizes tumor cells to cisplatin treatment
[45]. Zhao et al. uncovered that lactate-induc-
ed RBM15 lactylation at lysine 850 stabilizes
RBM15, enhances its interaction with METTL3,
and promotes m6A methylation and tumor
progression in lung adenocarcinoma, whereas
HDAC3 acts as its delactylase to reduce RB-
M15 lactylation [46]. HDAC6 has been iden-
tified as a lactyltransferase that catalyzes
a-tubulin lactylation at lysine 40 in a lactate-
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dependent and reversible manner, thereby en-
hancing microtubule dynamics and promoting
neurite outgrowth [47]. SIRT1 and SIRT3 are
NAD*-dependent deacetylases (class Il HD-
ACs) that exhibit lysine delactylase activity. For
instance, one study identified SIRT1 and SIRT3
as key delactylases that selectively regulate
histone and nonhistone lysine lactylation, in-
cluding that of the PKM2 protein [48]. However,
the full repertoire of delactylation enzymes,
especially those that modify nonhistone pro-
teins, is still being investigated.

Lactyl-CoA synthetase

Lactyl-CoA synthetases catalyze the enzymatic
conversion of lactate and CoA into lactyl-CoA,
which makes it suitable for use as a donor mol-
ecule in protein lactylation. The nuclear enzyme
GTPSCS catalyzes the conversion of L-lactate
into lactyl-CoA, which enables histone lacty-
lation through its interaction with p300 [49].
The GTPSCS/p300 axis enhances H3K18la
modification and GDF15 expression, thereby
promoting glioma proliferation and radiothe-
rapy resistance [49]. Zhu et al. reported that
ACSS2 can function as a lactyl-CoA synthetase
whose phosphorylation and nuclear transloca-
tion upon EGFR-ERK activation enable the con-
version of lactate into lactyl-CoA, which inter-
acts with KAT2A to mediate histone H3 lacty-
lation [50]. Moreover, ACSS2 and KAT2A pro-
mote oncogenic signaling and immune evasion
in brain tumors. Furthermore, blocking the as-
sociation of ACSS2 with KAT2A enhances the
efficacy of anti-PD-1 therapy [50].

Lactylation functions in tumorigenesis and
progression

Numerous studies have established that lacty-
lation is an important regulator of tumorigene-
sis and cancer progression. One study reveal-
ed that DNA damage induces CBP-mediated
MRE11 lactylation at lysine 673, which increas-
es its DNA binding ability and promotes homol-
ogous recombination repair [51]. Another study
identified that AARS1 is a lactate sensor that
transfers lactate to p53 at K120 and K139,
thereby impairing the phase separation and
transcriptional activity of p53 [52]. Chen et al.
reported that lactate-driven lactylation of NBS1
at K388, which is catalyzed by TIP60 and
removed by HDAC3, enhances homologous re-
combination-mediated DNA repair and contrib-
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Table 1. The role of lactylation in gynecologic cancer progression

Lactylation . .
Tumor type Targets s%te Mechanisms Functions Ref
Cervical cancer PPP1R14B K140 Increases the infiltration of CD8+ T cells  Suppresses proliferation and [62]
migration

Cervical cancer DPF2 H3K14 Acts as an H3K14la effector, couples Drives transcription and tumori-  [64]
histone lactylation genesis

Cervical cancer GPD2 H3K18 Lactate upregulates H3K18la-modified Promote malignant transforma-  [66]
GPD2; promotes M2 polarization tion

Cervical cancer DCBLD1 K172 Increases DCBLD1 stability, enhances Lactate promotes proliferation [70]
PPP activity via stabilization of GGPD and metastasis

Cervical cancer G6PD K45 Suppresses PPP activation; inhibits GSH, Inhibits cell proliferation [80]
NADPH; increases ROS

Ovarian cancer MRE11, Not detect Acetylated ME2 drives glutamine-derived Causes DNA repair and chemo-  [85]

NBS1 lactate production resistance
Ovarian cancer ALDH1A1, Not detect Elevates oxidative phosphorylation and Promotes cisplatin resistance [86]
S100A4 glycolysis activity

Ovarian cancer Histone H3K18 Increases migration Associates with poor prognosis [87]

Ovarian cancer CCL18 H3K18 Lactate activates CCL18 expression Promotes ovarian tumorigenesis [88]

Ovarian cancer PD-L1 H3K18 LDHB mediates histone lactylation to Promotes ovarian cancer im- [89]
activate PD-L1 mune escape

Ovarian cancer RAD23A H4K12 Activates RAD23A via Myc; enhances Promotes niraparib resistance [90]
DNA damage repair ability

Ovarian cancer PFKP K392 Enhances glycolysis, decreases PTEN Promotes tumor progression [95]

Ovarian cancer Histone H3K9 H3K9la activates RAD51 and BRCA2 Promotes cisplatin resistance [101]
expression, facilitates HR repair and poor prognosis

Ovarian cancer RAD51 K73 Enhances HR repair Enhances cisplatin resistance [101]

Endometrial USP39 H3K18 Stimulates USP39 expression, activates  Stimulates glycolysis, promotes  [108]

cancer PI3K/AKT/HIF-1q, stabilizes PGK1 tumor progression

Endometrial P53 H3K18 CAP activates the p53 transcription by Drives cell ferroptosis [111]

cancer H3K18 lactylation

Endometrial PFKM K678 Involves immune infiltration Promotes proliferation, invasion, [116]

cancer tumor progression

utes to drug resistance [53]. AARS1 and AARS2
act as intracellular sensors of L-lactate, direct-
ly catalyzing cGAS lactylation, which dampens
innate immune responses [54]. Without doubt,
lactylation is strongly implicated in gynecologi-
cal cancer development. The subsequent para-
graphs explore its functions in tumor initiation
and advancement.

Role of lactylation in gynecological cancers
Cervical cancer

As one of the most common gynecological can-
cers, cervical cancer continues to pose a major
health challenge worldwide [55]. It has been
known that chronic infection with high-risk
HPVs is recognized as the primary cause lead-
ing to malignant transformation [56]. Despite
advances in screening, vaccination, and thera-
py, challenges such as recurrence, metastasis,
and therapeutic resistance continue to limit
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survival in patients with cervical cancer [57,
58]. Recent evidence suggests that lactyla-
tion contributes to cervical tumorigenesis and
progression [59]. Protein phosphatase 1 regu-
latory subunit 14B (PPP1R14B) is an inhibitory
regulator of protein phosphatase 1 that modu-
lates cellular contraction, signaling, and cyto-
skeletal dynamics through phosphorylation-
dependent pathways [60]. PPP1R14B is up-
regulated in cervical and endometrial cancers,
predicts poor prognosis, and promotes tumor
cell proliferation and survival by activating the
Akt pathway [61]. One study performed a com-
prehensive proteomic and multiomics analysis
of lysine lactylation (Kla) in cervical cancer
and identified Kla-related subtypes. Moreover,
PPP1R14B-K140 lactylation suppressed tumor
progression in cervical cancer [62]. Here, we
address the impact of lactylation on both the
initiation and advancement of cervical cancer
(Table 1).
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Histone lactylation: Double PHD fingers 2
(DPF2) is a chromatin-associated protein that
regulates gene transcription and cell fate deci-
sions. For example, high DPF2 expression is
associated with poor prognosis, immune eva-
sion, and dysregulation of key pathways such
as the cell cycle and Wnt signaling in hepatocel-
lular carcinoma [63]. Zhai et al. identified that
DPF2 is a reader of the histone lactylation mar-
ker H3K14la in cervical cancer, which facili-
tates lactate-driven histone lactylation to pro-
mote oncogene transcription and cell survival
[64]. GPD2 is a mitochondrial enzyme and is
involved in lipid metabolism and redox balance
[65]. Huang et al. reported that the secretion of
lactate from cervical cancer cells stimulates
M2 macrophage polarization, a process depen-
dent on H3K18 lactylation-driven induction of
GPD2, which supports a histone lactylation-
mediated mechanism to drive immune modula-
tion and cancer progression [66]. Both DPF2
and GPD2 participate in lactate-driven epigen-
etic regulation and immune modulation in cer-
vical cancer. DPF2 acts as a histone lactyla-
tion reader that promotes oncogene trans-
cription [64], whereas GPD2, through lactate-
induced histone lactylation, facilitates M2 ma-
crophage polarization and tumor progression
[66]. Overall, both factors play key roles in the
lactate-lactylation-tumor development axis in
cervical cancer.

DCBLD1 lactylation: The DCBLD1 gene has
been implicated in the regulation of cell signal-
ing, cell proliferation, and tumor progression
[67]. For example, Shen et al. reported that
DCBLD1 expression is elevated in cervical can-
cer tissues and promotes tumor progression by
increasing cell proliferation, invasion, and sur-
vival, whereas its knockdown induces apopto-
sis and G1 cell cycle arrest. Mechanistically,
TBP was identified as a transcriptional activator
of DCBLD1 [68]. Similarly, another group illus-
trated that DCBLD1 expression is elevated in
various cancer types, including cervical cancer,
and is linked to unfavorable clinical outcomes
and immune infiltration. Furthermore, silenc-
ing DCBLD1 expression suppressed tumor cell
growth, motility and invasive behaviors in cervi-
cal cancer [69]. Lactate promotes cervical can-
cer progression by increasing DCBLD1 expres-
sion through HIF-1a-mediated transcriptional
activation and stabilizing it via K172 lactyla-
tion, thereby enhancing pentose phosphate
pathway (PPP) activity through the upregulation
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and stabilization of glucose-6-phosphate dehy-
drogenase (G6PD) [70]. Moreover, targeting
G6PD with 6-AN effectively suppresses tumor
growth by inhibiting PPP activation in mice [70].
These studies highlight the therapeutic poten-
tial of targeting the lactate-DCBLD1-PPP axis in
cervical cancer.

G6PD lactylation: G6PD is a rate-limiting
enzyme of the pentose phosphate pathway
that regulates cellular redox homeostasis by
producing NADPH [71]. G6PD has been identi-
fied to regulate tumorigenesis and tumor pro-
gression, including in cervical cancer [72, 73].
For instance, G6PD is upregulated in cervical
cancer cells harboring high-risk HPV infection
and promotes cell proliferation and survival,
with its inhibition leading to reduced grow-
th and increased apoptosis, particularly in
HPV18+ cells [74]. Fang et al. proposed that
G6PD deficiency restrains cell migratory be-
havior and proliferation by increasing ROS-
induced apoptosis and disrupting cytoskeletal
organization and biomechanical properties in
cervical cancer [75]. Additionally, miRNA-1 and
miRNA-206 suppress tumor progression by
directly downregulating G6PD expression, re-
sulting in decreased proliferation and elevated
apoptotic activity in cervical cancer [76, 77].
Notably, one study identified HPV16 E6 as a
transcriptional activator of G6PD, which pro-
motes progression by enhancing cell growth
and migratory behavior in cervical cancer via
the upregulation of G6PD expression [78].
Another study revealed that HPV E6 promotes
tumor progression by upregulating G6PD in
cervical cancer, which upregulates STAT3 and
PLOD2 expression to enhance the biological
functions of tumor cells [79]. Recently, one
group reported that the suppression of G6PD
K45 lactylation by HPV16 E6 leads to PPP ac-
tivation and increased cell proliferation, which
enhances G6PD dimer formation and enzyme
activity in cervical cancer [80Q]. In line with this
point, lactylation-mimicking mutations or G6GPD
inhibition suppresses tumor growth in patients
with cervical cancer [80]. Together, these find-
ings underscore lactylation-dependent G6PD
regulation as a critical driver of cervical cancer
progression.

Ovarian cancer

Ovarian cancer is the deadliest gynecological
malignancy, primarily because of its silent
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onset and the absence of reliable early screen-
ing tools [81]. A large proportion of patients
with ovarian cancer are diagnosed late, when
peritoneal dissemination has already occurr-
ed. Cytoreductive surgery and platinum-based
chemotherapy remain the mainstay treatments
[82]. However, chemoresistance and recurren-
ce remain major clinical challenges and lead to
poor survival outcomes [83]. Lactylation has
been reported to be involved in prognosis and
drug resistance in ovarian cancer (Table 1). Yu
et al. identified that 14 LRGs are linked to
patient prognosis, patterns of immune infiltra-
tion, and responsiveness to therapy in ovarian
cancer. Moreover, an eight-gene lactylation-
based prognostic model demonstrated strong
predictive value in ovarian cancer [84]. Zheng
et al. revealed that acetylated malate enzyme
2 (ME2) drives the production of glutamine-
derived lactate under glucose-limited condi-
tions, causing DNA repair and chemoresistance
through protein lactylation in ovarian cancer
cells [85]. An integrative analysis of sScCRNA-seq
and bulk RNA-seq profiles suggested that the
expression of ALDH1A1 and S100A4, which are
genes associated with lactylation, could drive
resistance to chemotherapy in ovarian cancer
[86]. In the next paragraphs, we dissect the
role of lactylation in ovarian tumorigenesis and
progression.

Histone lactylation: Chao et al. reported that
elevated histone H3K18 lactylation is linked to
poor prognosis, resistance to platinum-based
therapy, and increased metastatic capacity in
epithelial ovarian cancer [87]. Lactate facili-
tates ovarian cancer progression by inducing
the expression of CCL18 through H3K18 la-
ctylation in macrophages, which results in M2
polarization and enhanced tumor growth and
metastasis via the Gpr132-CCL18 axis [88]. Hu
and colleagues reported that LDHB facilitates
immune escape by increasing PD-L1 levels
through H3K18 lactylation at its promoter in
ovarian cancer [89]. Moreover, LDHB knock-
down reduced lactate production, inhibited
tumor growth, and restored T-cell-mediated
immune activation [89]. Furthermore, lactate-
induced H4K12 lactylation upregulated RAD-
23A expression via superenhancer activation in
ovarian cancer cells with resistance to nirapar-
ib, which resulted in enhanced DNA repair and
increased drug resistance [90]. In ovarian can-
cer, lactate-driven histone lactylation modifica-
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tions, including H3K18la and H4K12la, pro-
motes tumor progression, metastasis, immune
escape, and therapeutic resistance, highlight-
ing histone lactylation as a key epigenetic driv-
er of ovarian malignancy.

PFKP lactylation: Phosphofructokinase platelet
type (PFKP), a central rate-determining enzyme
in glycolysis, controls cell proliferation, migra-
tion, metastasis and stemness via glycolysis
[91]. PFKP has been identified as a potential
diagnostic marker and a drug target for various
cancer types, including ovarian cancer [92, 93].
PFKP expression is strongly positively correlat-
ed with activated NK cells and follicular helper
T cells but negatively correlated with naive B
cells [93]. The antiparasitic drug ivermectin
has been shown to strongly suppress prolifera-
tion in epithelial ovarian cancer cells, primarily
by targeting PFKP in glycolytic pathways [94].
One study revealed that the lactylation of PFKP
at K392 enhances glycolysis and promotes
tumor progression by downregulating PTEN
expression in ovarian cancer [95]. Therefore,
PFKP not only shapes the immune microenvi-
ronment but also enhances glycolysis, thereby
driving ovarian cancer progression and reveal-
ing lactylation-dependent metabolic vulnerabi-
lities.

RADS51 lactylation: RAD51 is a highly conserved
protein that regulates the homologous recombi-
nant DNA repair pathway [96]. Research has
demonstrated that RAD51 governs the initia-
tion and progression of cervical cancer [97].
For example, metformin antagonizes cisplatin
efficacy in ovarian cancer by suppressing the
ATM/CHK2 pathway and upregulating RAD51
expression, thereby leading to decreased ap-
optosis, impaired DNA damage, and chemore-
sistance [98]. High RAD51 expression predicts
poor survival after PARPi treatment, and its
upregulation is associated with acquired PARPI
resistance [99]. Lysine-specific demethylase 1
(LSD1) suppression reduces the expression of
BRCA1/2 and RAD51, triggers impaired HR
repair, and increases the sensitivity of HR-
proficient tumors to the therapeutic effects of
PARP inhibitors in ovarian cancer [100]. One
group demonstrated that elevated histone
H3K9 and RAD51 lactylation in ovarian can-
cer, which are regulated by GCN5, promotes HR
repair and contributes to platinum resistance
[101]. Hence, RAD51 not only drives the initia-
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tion and progression of ovarian cancers but
also, when overexpressed or lactylated, pro-
motes resistance to platinum and PARP inhibi-
tors, highlighting that the RAD51-centered HR
repair machinery and the regulation of its la-
ctylation are promising therapeutic targets for
overcoming treatment resistance in ovarian
cancer.

Endometrial cancer

Endometrial cancer incidence is steadily in-
creasing because of increasing obesity and
aging populations [102]. Molecular alterations,
including defects in DNA mismatch repair,
PI3K/AKT pathway activation, and hormone re-
ceptor signaling, are involved in the pathogen-
esis of endometrial cancer [103]. Lactylation
has been validated to play a critical role in the
development of endometrial cancer (Table 1).
For example, one group analyzed transcriptom-
ic data from the TCGA for UCEC patients and
constructed a lactylation-related risk model
based on IGSF1, ZFHX4, and SCGB2A1 that
predicts patient prognosis, immune infiltration,
and therapeutic response in endometrial can-
cer [104]. IGSF1 is associated with poor prog-
nosis, immune response, and metabolic chang-
es in UCEC [104]. Another group also discovered
16 lactylation-related genes that provide effec-
tive prognostic, immunological, and therapeu-
tic response prediction in endometrial carcino-
ma [105]. Gu et al. uncovered that six lacty-
lation-related genes form a prognostic risk
model for endometrial cancer, which links la-
ctylation to tumor progression, immune micro-
environment alterations, and drug response
[106]. In the following section, we describe the
function of lactylation in endometrial cancer
development.

Histone lactylation: USP39, a deubiquitinase
belonging to the USP family, drives tumor pro-
gression and promotes resistance to therapeu-
tic interventions in multiple cancers [107]. One
study revealed that high levels of histone lacty-
lation promotes the tumor progression through
USP39 upregulation, leading to PGK1 stabiliza-
tion and subsequent activation of the PISK/
AKT/HIF-1a pathway in endometrial cancer
[108]. In addition, p53 is involved in modulat-
ing biological processes such as aging, cellu-
lar senescence and tumorigenesis [109]. Ab-
normal p53 expression is associated with poor
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survival outcomes in patients with endometri-
oid endometrial cancer [110]. Liu et al. revealed
that cold atmospheric plasma (CAP) suppress-
es endometrial cancer by inducing ferroptosis
through the USP49-HDAC3-H3K18la-p53 axis
[111]. This study highlights lactylation-regulat-
ed deubiquitinases and p53 signaling as prom-
ising therapeutic options [111].

PFKM lactylation: PFKM, a muscle-type iso-
form of phosphofructokinase-1, is a pivotal gly-
colytic enzyme whose overexpression drives
metabolic reprogramming, tumor growth, and
metastasis [112]. PFKM undergoes S-nitrosy-
lation at Cys351 by NOS1, which enhances tet-
ramer stabilization, bypasses feedback inhibi-
tion, and promotes ovarian cancer cell proli-
feration, tumor growth, and metastasis [113].
ZEB1 directly upregulates PFKM transcription,
thereby enhancing glycolysis, proliferation, and
invasion in hepatocellular carcinoma [114]. In-
creased ASIC1 expression promotes liver can-
cer cell survival under acidic conditions throu-
gh increased PFKM expression, whereas ASIC1
knockdown or PFKM silencing impairs cell via-
bility and enhances apoptosis [115]. Moreover,
lactate-driven protein lactylation, particularly of
PFKM, promotes endometrial cancer progres-
sion, and a lactylation score model correlated
with clinical features and immune infiltration
was constructed [116]. This work further links
PFKM to immune-related clinical features and
highlights it as a promising metabolic-epigene-
tic therapeutic target [116].

Lactylation and cancer therapy

In recent years, numerous compounds have
been reported to regulate protein lactylation
[117, 118]. Tanshinone | is a bioactive com-
pound from Salvia miltiorrhiza (commonly
known as danshen) that exhibits broad anti-
cancer effects in humans via the modulation
of several pathways, including the ROS, PI3K/
AKT/mTOR, STAT3, NF-kB, and MAPK/ERK
pathways [119, 120]. Tanshinone | inhibits cer-
vical cancer cell proliferation and reverses cis-
platin resistance by suppressing the ELKI1-
mediated transcription of KRAS and downre-
gulating the KRAS-AKT signaling axis [121].
Tanshinone | facilitates the antitumor effects
of paclitaxel by suppressing cell proliferation
and migratory behavior through the targeting
of Bax, Bcl-2, p21 and pl16 in ovarian cancer
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[122]. It also attenuates cell growth by sup-
pressing glycolysis and inhibiting H3K18 lacty-
lation in ovarian cancer, leading to downre-
gulation of oncogenic gene expression and alle-
viation of the immunosuppressive TME [123].
In addition, B-alanine interferes with the ability
of lactate to interact with AARS1, which reduc-
es p53 lactylation and mitigates tumorigenesis
[52]. Evodiamine in Evodia rutaecarpa has
been shown to have antitumor effects on mul-
tiple cancer types [124, 125]. Evodiamine sup-
presses tumor growth by upregulating Sema3A
expression, inducing ferroptosis via GPX4 inhi-
bition, and blocking lactate-driven histone lac-
tylation and HIF-1a activity [126]. The natural
compound demethylzeylasteral (DML) down-
regulates the expression of the histone lacty-
lation marker H3K18la, thereby suppressing
MESP1 expression and inhibiting the mali-
gnant progression of pancreatic cancer [127].
Determining the compounds that can target
protein lactylation in gynecological cancers is
necessary.

Lactate enhances Treg cell stability and immu-
nosuppressive function by inducing MOESIN
Lys72 lactylation, thereby promoting TGF-B/
SMAD3 signaling. Moreover, lactate degrada-
tion alone or in combination with anti-PD-1
therapy reduces Treg induction and tumor
growth [128]. Lactate released from tumors
downregulates macrophage RARy expression
by inducing H3K18 lactylation, leading to
enhanced IL-6 production and STAT3-driven
tumor promotion in colorectal cancer [129].
SRSF10 drives a self-reinforcing loop with gly-
colysis and H3K18la by stabilizing MYB mRNA
and promoting GLUT1, HK1, and LDHA ex-
pression, thereby enhancing M2 polarization
of macrophages, which dampens CD8" T-cell
function and fosters an immunosuppressive
TME. The small molecule 1C8, which inhibits
SRSF10, restores PD-1 immunotherapy efficacy
[130]. In pancreatic ductal adenocarcinoma
(PDAC), tumor-derived lactate drives ENSA K63
lactylation, which activates the STAT3/CCL2
axis to recruit protumor macrophages and sup-
press CD8* T-cell immunity, thereby also fos-
tering an immunosuppressive TME. ENSA-
K63la causes resistance to immune check-
point blockade, while targeting ENSA-K63la/
CCL2 restores immunotherapy sensitivity [131].
How protein lactylation affects the immune
response and immunotherapy in gynecological
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cancers remains unclear and warrants further
investigation.

Conclusion and future perspectives

In summary, protein lactylation critically con-
tributes to tumor metabolism, epigenetic regu-
lation, and therapeutic resistance, highlighting
its potential as a promising clinical biomarker
and an avenue for therapeutic intervention
for cervical, ovarian, and endometrial cancers.
Although increasing evidence supports its em-
erging role in cancer biology, protein lactyla-
tion research in gynecological malignancies
remains relatively limited. For example, althou-
gh several enzymes have been proposed as
lactylation “writers”, “erasers”, and “readers”,
their roles in gynecological cancers remain only
partially defined. The lack of a comprehensive
enzyme-substrate network in tumor tissues
limits mechanistic interpretation and rational
drug design. Moreover, several lactylated pro-
teins such as histones, PFKM, G6PD, and
RAD51 have been identified in cervical, ovari-
an, and endometrial cancers; however, the
global lactylome in gynecologic tumors rema-
ins poorly characterized. Furthermore, current
“lactylation-targeted” strategies mainly involve
the modulation of upstream metabolism, such
as LDH or broad epigenetic regulators, rather
than specifically targeting lactylation writers,
erasers, or readers.

Future perspectives should focus on the follow-
ing points: First, current studies have primarily
concentrated on cervical, ovarian, and endo-
metrial cancers, with significantly less focus on
vulvar and vaginal cancers. Exploring the role
of lactylation in these underexplored tumor
types is necessary. Second, integrating lacty-
lation with metabolism and the TME is critical
for determining how lactate production (PPP,
LDHA/LDHB, G6PD, PFKM), hypoxia (HIF-1a),
and stromal/immune cells (TAMs, T cells, CAFs)
converge on protein lactylation to shape im-
mune evasion and metastasis in gynecologic
tumors using spatial multiomics and single-
cell approaches. Third, most published works
have focused on histone lactylation and its epi-
genetic regulation of gene expression. How-
ever, recent discoveries indicate that the lacty-
lation of nonhistone proteins, such as p53 [52],
RAD51 [101], and MRE11 [51], drives tumor
proliferation, invasion, and immune evasion.
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Future studies should dissect how the lacty-
lation of specific signaling proteins rewires on-
cogenic pathways and contributes to gyneco-
logical cancers. Fourth, the therapeutic poten-
tial of targeting lactylation remains an exciting
but underdeveloped area. Few compounds are
known to modulate lactylation, such as inhibi-
tors of lactate production (LDHA inhibitors and
metabolic modulators) or small molecules that
disrupt lactate-enzyme interactions (3-alanine)
[132, 133]. The development of selective lactyl-
transferase and delactylase inhibitors to con-
trol lactylation is necessary for the treatment
of gynecological cancers. Fifth, it is pivotal to
develop robust, standardized assays, includ-
ing IHC panels, mass-spectrometry signatures,
and lactylation scores, to evaluate histone and
nonhistone lactylation in cancer patient sam-
ples and validate their value for prognosis, ther-
apy response prediction, and molecular sub-
typing in large, prospective cohorts of patients
with gynecological cancer. Sixth, proteolysis-
targeting chimeras (PROTACs) are bifunctional
small molecules that recruit a target protein to
an E3 ubiquitin ligase, triggering its ubiquitina-
tion and selective degradation by the protea-
some [134]. PROTACs have been shown to
target critical proteins in gynecologic cancers
[135, 136]. One group developed a stapled
peptide PROTAC targeting ZDHHC3 to degrade
PD-L1 in cervical cancer cells, enhancing T-cell
cytokine release [137]. Hence, PROTACs may
provide innovative approaches to treat gyneco-
logical tumors by targeting lactylation-associat-
ed enzymes.
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