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Abstract: Gynecological tumors represent a significant health burden worldwide. Protein lactylation has emerged 
as a novel post-translational modification (PTMs) that directly links metabolic reprogramming to epigenetic and 
functional regulation. Lactylation occurs when lactate covalently modifies the lysine residues of proteins. Initially 
discovered on histones, lactylation was shown to influence gene transcription; however, accumulating evidence 
reveals its broader impact on nonhistone proteins, affecting diverse processes. Elevated lactate levels in the tumor 
microenvironment increase protein lactylation. Evidence suggests a dynamic interplay between tumor metabolism 
and cancer progression. In this review, we provide an overview of the fundamental aspects of protein lactylation, 
including the key enzymes that catalyze the addition and removal of lactyl groups. We further emphasize recent 
discoveries on how lactylation influences the development and progression of gynecological malignancies. Finally, 
we explore the potential of targeting protein lactylation as an emerging therapeutic strategy in the management of 
gynecological cancers.
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Introduction 

Gynecological tumors are a group of common 
malignancies that originate in the female re- 
productive system [1]. Gynecological cancers 
are categorized based on their site of origin, 
including cervical, ovarian, endometrial, vulvar, 
and vaginal cancers [2]. Gynecological cancer 
patients exhibit irregular intermenstrual bleed-
ing or discharge, pelvic pain, dyspareunia, and 
vulvar itching or burning. Various strategies 
have been implemented for prevention and 
early detection, such as routine pelvic examina-
tions, HPV vaccination, and evaluation of family 
history [3-5]. Moreover, inherited susceptibility 
contributes importantly to the onset of certain 
gynecologic malignancies [6, 7]. Current treat-
ment options include surgical intervention, che-
motherapy, radiation therapy, molecular target-
ed agents, immune-based treatments, or in- 
tegrated multimodal approaches [8-10].

Post-translational modifications (PTMs) refer to 
chemical changes that occur in proteins once 

they have been synthesized by ribosomes [11]. 
Typical PTMs include ubiquitination, methyla-
tion, glycosylation, phosphorylation, acetyla-
tion, nitrosylation, and lipidation [12-14]. PTMs 
influence protein function by regulating their 
enzymatic activity, structural stability, and lo- 
calization within cells through the addition or 
removal of functional groups or by modifying 
amino acid structures [15]. PTMs are funda-
mental to the modulation of numerous cellular 
functions, such as metabolism, differentiation, 
proliferation, cell cycle progression, apoptosis, 
immune responses, and metastasis [16]. Con- 
sequently, perturbation of PTMs is tightly con-
nected to the pathogenesis of various diseas-
es, including cancer [17, 18].

In 2019, Zhang et al. reported that lactate-
derived histone lactylation functions as a novel 
epigenetic modification that regulates gene 
transcription, which links the Warburg effect 
and various broader pathophysiological pro-
cesses [19]. In recent years, research on pro-
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tein lactylation has increased rapidly, with nu- 
merous studies demonstrating its important 
role in a broad range of illnesses, including  
cardiovascular abnormalities [20, 21], neuro-
degeneration [22, 23], and cancers [24-26]. 
Lactylation is one type of PTM in which a lactyl 
group derived from lactate is bound via stable 
covalent linkage to lysine sites in proteins [27]. 
Lactylation was initially described for histone 
proteins, leading to the regulation of gene tran-
scription [28]. Lactylation provides a direct con-
nection between cellular metabolism, specifi-
cally glycolysis, and the epigenetic and func- 
tional regulation of proteins [29]. Elevated lac-
tate levels, which are often observed in the 
tumor microenvironment (TME) because of aer-
obic glycolysis, known as the Warburg effect, 
can increase protein lactylation [30-32]. Lacty- 
lation has been reported to alter protein activi-
ty, stability, localization, and interactions [33, 
34]. In addition to histones, the lactylation of 

nonhistone proteins contributes to multiple bio-
logical processes, such as proliferation, differ-
entiation, apoptosis, autophagy, invasion and 
metastasis [35-37]. Given its close relationship 
with the metabolic state and cancer, including 
gynecological cancers, protein lactylation could 
be critical for tumorigenesis. Therefore, this 
review provides an overview of protein lacty-
lation, particularly the enzymatic machinery 
responsible for writing and erasing lactyl marks 
(Figure 1). Moreover, we highlight the role of 
lactylation in gynecological cancers and dis-
cuss whether protein lactylation might em- 
erge as a potential intervention point in the 
treatment of gynecological cancers. 

Protein lactylation 

Lactyltransferases

The lactyltransferases that catalyze protein  
lactylation have been investigated in recent 

Figure 1. Schematic overview of the protein lactylation process. Glucose metabolism via glycolysis produces pyru-
vate, which is converted into lactate by lactate dehydrogenase (LDH). Lactate is transported by monocarboxylate 
transporters (MCTs) and used to produce lactyl-CoA. Lactyl-CoA serves as a donor for histone and nonhistone pro-
tein lactylation mediated by acyltransferases, thereby influencing gene expression. Conversely, histone deacety-
lases (HDACs) and sirtuins (SIRTs) remove lactylation marks, suggesting the dynamic and reversible feature of 
this modification. Abnormal lactylation regulates cell proliferation, tumor metastasis, drug resistance, and immune 
evasion in human cancer.
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years. Some evidence suggests that p300/
CBP, which is a well-known histone acetyltrans-
ferase, may also mediate histone lactylation by 
using lactyl-CoA as a donor molecule [38]. The 
mechanism by which p300 catalyzes protein 
lactylation remains an active area of research. 
Recent studies have identified alanyl-tRNA  
synthetases 1 and 2 (AARS1 and AARS2) as 
novel lactyltransferases responsible for cata-
lyzing lysine lactylation on proteins [39]. In  
general, AARS1 and AARS2 function as alanyl-
tRNA synthetases and charge tRNA molecules 
with alanine during protein translation. AARS1 
and AARS2 predominantly regulate cytoplas-
mic and mitochondrial protein lactylation, re- 
spectively, indicating that they have spatial 
specificity in the regulation of lactylation. For 
example, one study revealed that AARS1 uses 
lactate and ATP to modify the YAP protein in 
gastric cancer [40]. AARS2 promotes ferropto-
sis during intestinal ischemia-reperfusion in- 
jury by driving histone lactylation [41]. In addi-
tion, hypoxia induces AARS2 accumulation to 
increase PDHA1 and CPT2 lactylation, leading 
to the suppression of oxidative phosphorylation 
(OXPHOS) [42].

Delactylases

Recent studies have identified certain histone 
deacetylases (HDACs) and sirtuins as potential 
delactylases. For example, one study from the 
Zhao group revealed that HDAC1-3 and SIRT1-3 
function as delactylases to control protein lac-
tylation [43]. Liu et al. reported that Xklp2 
(TPX2) is lactylated at K249, a modification 
mediated by the lactylase CBP and reversed  
by the delactylase HDAC1, which promotes 
AURKA activation, cell cycle progression, and 
tumor growth in hepatocellular carcinoma 
(HCC) [44]. He et al. showed that HDAC2 pro-
motes cisplatin resistance in triple negative 
breast cancer (TNBC) by delactylating METTL3, 
leading to enhanced m6A-mediated DNA re- 
pair, whereas HDAC2 inhibition by tucidinostat 
sensitizes tumor cells to cisplatin treatment 
[45]. Zhao et al. uncovered that lactate-induc- 
ed RBM15 lactylation at lysine 850 stabilizes 
RBM15, enhances its interaction with METTL3, 
and promotes m6A methylation and tumor  
progression in lung adenocarcinoma, whereas 
HDAC3 acts as its delactylase to reduce RB- 
M15 lactylation [46]. HDAC6 has been iden- 
tified as a lactyltransferase that catalyzes 
α-tubulin lactylation at lysine 40 in a lactate-

dependent and reversible manner, thereby en- 
hancing microtubule dynamics and promoting 
neurite outgrowth [47]. SIRT1 and SIRT3 are 
NAD+-dependent deacetylases (class III HD- 
ACs) that exhibit lysine delactylase activity. For 
instance, one study identified SIRT1 and SIRT3 
as key delactylases that selectively regulate 
histone and nonhistone lysine lactylation, in- 
cluding that of the PKM2 protein [48]. However, 
the full repertoire of delactylation enzymes, 
especially those that modify nonhistone pro-
teins, is still being investigated.

Lactyl-CoA synthetase

Lactyl-CoA synthetases catalyze the enzymatic 
conversion of lactate and CoA into lactyl-CoA, 
which makes it suitable for use as a donor mol-
ecule in protein lactylation. The nuclear enzyme 
GTPSCS catalyzes the conversion of L-lactate 
into lactyl-CoA, which enables histone lacty-
lation through its interaction with p300 [49]. 
The GTPSCS/p300 axis enhances H3K18la 
modification and GDF15 expression, thereby 
promoting glioma proliferation and radiothe- 
rapy resistance [49]. Zhu et al. reported that 
ACSS2 can function as a lactyl-CoA synthetase 
whose phosphorylation and nuclear transloca-
tion upon EGFR-ERK activation enable the con-
version of lactate into lactyl-CoA, which inter-
acts with KAT2A to mediate histone H3 lacty- 
lation [50]. Moreover, ACSS2 and KAT2A pro-
mote oncogenic signaling and immune evasion 
in brain tumors. Furthermore, blocking the as- 
sociation of ACSS2 with KAT2A enhances the 
efficacy of anti-PD-1 therapy [50]. 

Lactylation functions in tumorigenesis and 
progression 

Numerous studies have established that lacty-
lation is an important regulator of tumorigene-
sis and cancer progression. One study reveal- 
ed that DNA damage induces CBP-mediated 
MRE11 lactylation at lysine 673, which increas-
es its DNA binding ability and promotes homol-
ogous recombination repair [51]. Another study 
identified that AARS1 is a lactate sensor that 
transfers lactate to p53 at K120 and K139, 
thereby impairing the phase separation and 
transcriptional activity of p53 [52]. Chen et al. 
reported that lactate-driven lactylation of NBS1 
at K388, which is catalyzed by TIP60 and 
removed by HDAC3, enhances homologous re- 
combination-mediated DNA repair and contrib-
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Table 1. The role of lactylation in gynecologic cancer progression

Tumor type Targets Lactylation 
site Mechanisms Functions Ref

Cervical cancer PPP1R14B K140 Increases the infiltration of CD8+ T cells Suppresses proliferation and 
migration 

[62]

Cervical cancer DPF2 H3K14 Acts as an H3K14la effector, couples 
histone lactylation

Drives transcription and tumori-
genesis

[64]

Cervical cancer GPD2 H3K18 Lactate upregulates H3K18la-modified 
GPD2; promotes M2 polarization

Promote malignant transforma-
tion 

[66]

Cervical cancer DCBLD1 K172 Increases DCBLD1 stability, enhances 
PPP activity via stabilization of G6PD

Lactate promotes proliferation 
and metastasis

[70]

Cervical cancer G6PD K45 Suppresses PPP activation; inhibits GSH, 
NADPH; increases ROS

Inhibits cell proliferation [80]

Ovarian cancer MRE11, 
NBS1

Not detect Acetylated ME2 drives glutamine-derived 
lactate production

Causes DNA repair and chemo-
resistance

[85]

Ovarian cancer ALDH1A1, 
S100A4

Not detect Elevates oxidative phosphorylation and 
glycolysis activity 

Promotes cisplatin resistance [86]

Ovarian cancer Histone H3K18 Increases migration Associates with poor prognosis [87]
Ovarian cancer CCL18 H3K18 Lactate activates CCL18 expression Promotes ovarian tumorigenesis [88]
Ovarian cancer PD-L1 H3K18 LDHB mediates histone lactylation to 

activate PD-L1
Promotes ovarian cancer im-
mune escape

[89]

Ovarian cancer RAD23A H4K12 Activates RAD23A via Myc; enhances 
DNA damage repair ability 

Promotes niraparib resistance [90]

Ovarian cancer PFKP K392 Enhances glycolysis, decreases PTEN Promotes tumor progression [95]
Ovarian cancer Histone H3K9 H3K9la activates RAD51 and BRCA2 

expression, facilitates HR repair
Promotes cisplatin resistance 
and poor prognosis

[101]

Ovarian cancer RAD51 K73 Enhances HR repair Enhances cisplatin resistance [101]
Endometrial 
cancer

USP39 H3K18 Stimulates USP39 expression, activates 
PI3K/AKT/HIF-1α, stabilizes PGK1 

Stimulates glycolysis, promotes 
tumor progression

[108]

Endometrial 
cancer

P53 H3K18 CAP activates the p53 transcription by 
H3K18 lactylation 

Drives cell ferroptosis [111]

Endometrial 
cancer

PFKM K678 Involves immune infiltration Promotes proliferation, invasion, 
tumor progression

[116]

utes to drug resistance [53]. AARS1 and AARS2 
act as intracellular sensors of L-lactate, direct- 
ly catalyzing cGAS lactylation, which dampens 
innate immune responses [54]. Without doubt, 
lactylation is strongly implicated in gynecologi-
cal cancer development. The subsequent para-
graphs explore its functions in tumor initiation 
and advancement. 

Role of lactylation in gynecological cancers 

Cervical cancer

As one of the most common gynecological can-
cers, cervical cancer continues to pose a major 
health challenge worldwide [55]. It has been 
known that chronic infection with high-risk 
HPVs is recognized as the primary cause lead-
ing to malignant transformation [56]. Despite 
advances in screening, vaccination, and thera-
py, challenges such as recurrence, metastasis, 
and therapeutic resistance continue to limit 

survival in patients with cervical cancer [57, 
58]. Recent evidence suggests that lactyla- 
tion contributes to cervical tumorigenesis and 
progression [59]. Protein phosphatase 1 regu-
latory subunit 14B (PPP1R14B) is an inhibitory 
regulator of protein phosphatase 1 that modu-
lates cellular contraction, signaling, and cyto-
skeletal dynamics through phosphorylation-
dependent pathways [60]. PPP1R14B is up- 
regulated in cervical and endometrial cancers, 
predicts poor prognosis, and promotes tumor 
cell proliferation and survival by activating the 
Akt pathway [61]. One study performed a com-
prehensive proteomic and multiomics analysis 
of lysine lactylation (Kla) in cervical cancer  
and identified Kla-related subtypes. Moreover, 
PPP1R14B-K140 lactylation suppressed tumor 
progression in cervical cancer [62]. Here, we 
address the impact of lactylation on both the 
initiation and advancement of cervical cancer 
(Table 1). 
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Histone lactylation: Double PHD fingers 2 
(DPF2) is a chromatin-associated protein that 
regulates gene transcription and cell fate deci-
sions. For example, high DPF2 expression is 
associated with poor prognosis, immune eva-
sion, and dysregulation of key pathways such 
as the cell cycle and Wnt signaling in hepatocel-
lular carcinoma [63]. Zhai et al. identified that 
DPF2 is a reader of the histone lactylation mar- 
ker H3K14la in cervical cancer, which facili-
tates lactate-driven histone lactylation to pro-
mote oncogene transcription and cell survival 
[64]. GPD2 is a mitochondrial enzyme and is 
involved in lipid metabolism and redox balance 
[65]. Huang et al. reported that the secretion of 
lactate from cervical cancer cells stimulates 
M2 macrophage polarization, a process depen-
dent on H3K18 lactylation-driven induction of 
GPD2, which supports a histone lactylation-
mediated mechanism to drive immune modula-
tion and cancer progression [66]. Both DPF2 
and GPD2 participate in lactate-driven epigen-
etic regulation and immune modulation in cer-
vical cancer. DPF2 acts as a histone lactyla- 
tion reader that promotes oncogene trans- 
cription [64], whereas GPD2, through lactate-
induced histone lactylation, facilitates M2 ma- 
crophage polarization and tumor progression 
[66]. Overall, both factors play key roles in the 
lactate-lactylation-tumor development axis in 
cervical cancer.

DCBLD1 lactylation: The DCBLD1 gene has 
been implicated in the regulation of cell signal-
ing, cell proliferation, and tumor progression 
[67]. For example, Shen et al. reported that 
DCBLD1 expression is elevated in cervical can-
cer tissues and promotes tumor progression by 
increasing cell proliferation, invasion, and sur-
vival, whereas its knockdown induces apopto-
sis and G1 cell cycle arrest. Mechanistically, 
TBP was identified as a transcriptional activator 
of DCBLD1 [68]. Similarly, another group illus-
trated that DCBLD1 expression is elevated in 
various cancer types, including cervical cancer, 
and is linked to unfavorable clinical outcomes 
and immune infiltration. Furthermore, silenc- 
ing DCBLD1 expression suppressed tumor cell 
growth, motility and invasive behaviors in cervi-
cal cancer [69]. Lactate promotes cervical can-
cer progression by increasing DCBLD1 expres-
sion through HIF-1α-mediated transcriptional 
activation and stabilizing it via K172 lactyla- 
tion, thereby enhancing pentose phosphate 
pathway (PPP) activity through the upregulation 

and stabilization of glucose-6-phosphate dehy-
drogenase (G6PD) [70]. Moreover, targeting 
G6PD with 6-AN effectively suppresses tumor 
growth by inhibiting PPP activation in mice [70]. 
These studies highlight the therapeutic poten-
tial of targeting the lactate-DCBLD1-PPP axis in 
cervical cancer.

G6PD lactylation: G6PD is a rate-limiting 
enzyme of the pentose phosphate pathway 
that regulates cellular redox homeostasis by 
producing NADPH [71]. G6PD has been identi-
fied to regulate tumorigenesis and tumor pro-
gression, including in cervical cancer [72, 73]. 
For instance, G6PD is upregulated in cervical 
cancer cells harboring high-risk HPV infection 
and promotes cell proliferation and survival, 
with its inhibition leading to reduced grow- 
th and increased apoptosis, particularly in 
HPV18+ cells [74]. Fang et al. proposed that 
G6PD deficiency restrains cell migratory be- 
havior and proliferation by increasing ROS-
induced apoptosis and disrupting cytoskeletal 
organization and biomechanical properties in 
cervical cancer [75]. Additionally, miRNA-1 and 
miRNA-206 suppress tumor progression by 
directly downregulating G6PD expression, re- 
sulting in decreased proliferation and elevated 
apoptotic activity in cervical cancer [76, 77]. 
Notably, one study identified HPV16 E6 as a 
transcriptional activator of G6PD, which pro-
motes progression by enhancing cell growth 
and migratory behavior in cervical cancer via 
the upregulation of G6PD expression [78]. 
Another study revealed that HPV E6 promotes 
tumor progression by upregulating G6PD in  
cervical cancer, which upregulates STAT3 and 
PLOD2 expression to enhance the biological 
functions of tumor cells [79]. Recently, one 
group reported that the suppression of G6PD 
K45 lactylation by HPV16 E6 leads to PPP ac- 
tivation and increased cell proliferation, which 
enhances G6PD dimer formation and enzyme 
activity in cervical cancer [80]. In line with this 
point, lactylation-mimicking mutations or G6PD 
inhibition suppresses tumor growth in patients 
with cervical cancer [80]. Together, these find-
ings underscore lactylation-dependent G6PD 
regulation as a critical driver of cervical cancer 
progression.

Ovarian cancer

Ovarian cancer is the deadliest gynecological 
malignancy, primarily because of its silent 
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onset and the absence of reliable early screen-
ing tools [81]. A large proportion of patients 
with ovarian cancer are diagnosed late, when 
peritoneal dissemination has already occurr- 
ed. Cytoreductive surgery and platinum-based 
chemotherapy remain the mainstay treatments 
[82]. However, chemoresistance and recurren- 
ce remain major clinical challenges and lead to 
poor survival outcomes [83]. Lactylation has 
been reported to be involved in prognosis and 
drug resistance in ovarian cancer (Table 1). Yu 
et al. identified that 14 LRGs are linked to 
patient prognosis, patterns of immune infiltra-
tion, and responsiveness to therapy in ovarian 
cancer. Moreover, an eight-gene lactylation-
based prognostic model demonstrated strong 
predictive value in ovarian cancer [84]. Zheng 
et al. revealed that acetylated malate enzyme  
2 (ME2) drives the production of glutamine-
derived lactate under glucose-limited condi-
tions, causing DNA repair and chemoresistance 
through protein lactylation in ovarian cancer 
cells [85]. An integrative analysis of scRNA-seq 
and bulk RNA-seq profiles suggested that the 
expression of ALDH1A1 and S100A4, which are 
genes associated with lactylation, could drive 
resistance to chemotherapy in ovarian cancer 
[86]. In the next paragraphs, we dissect the 
role of lactylation in ovarian tumorigenesis and 
progression. 

Histone lactylation: Chao et al. reported that 
elevated histone H3K18 lactylation is linked to 
poor prognosis, resistance to platinum-based 
therapy, and increased metastatic capacity in 
epithelial ovarian cancer [87]. Lactate facili-
tates ovarian cancer progression by inducing 
the expression of CCL18 through H3K18 la- 
ctylation in macrophages, which results in M2 
polarization and enhanced tumor growth and 
metastasis via the Gpr132-CCL18 axis [88]. Hu 
and colleagues reported that LDHB facilitates 
immune escape by increasing PD-L1 levels 
through H3K18 lactylation at its promoter in 
ovarian cancer [89]. Moreover, LDHB knock-
down reduced lactate production, inhibited 
tumor growth, and restored T-cell-mediated 
immune activation [89]. Furthermore, lactate-
induced H4K12 lactylation upregulated RAD- 
23A expression via superenhancer activation in 
ovarian cancer cells with resistance to nirapar-
ib, which resulted in enhanced DNA repair and 
increased drug resistance [90]. In ovarian can-
cer, lactate-driven histone lactylation modifica-

tions, including H3K18la and H4K12la, pro-
motes tumor progression, metastasis, immune 
escape, and therapeutic resistance, highlight-
ing histone lactylation as a key epigenetic driv-
er of ovarian malignancy.

PFKP lactylation: Phosphofructokinase platelet 
type (PFKP), a central rate-determining enzyme 
in glycolysis, controls cell proliferation, migra-
tion, metastasis and stemness via glycolysis 
[91]. PFKP has been identified as a potential 
diagnostic marker and a drug target for various 
cancer types, including ovarian cancer [92, 93]. 
PFKP expression is strongly positively correlat-
ed with activated NK cells and follicular helper 
T cells but negatively correlated with naïve B 
cells [93]. The antiparasitic drug ivermectin  
has been shown to strongly suppress prolifera-
tion in epithelial ovarian cancer cells, primarily 
by targeting PFKP in glycolytic pathways [94]. 
One study revealed that the lactylation of PFKP 
at K392 enhances glycolysis and promotes 
tumor progression by downregulating PTEN 
expression in ovarian cancer [95]. Therefore, 
PFKP not only shapes the immune microenvi-
ronment but also enhances glycolysis, thereby 
driving ovarian cancer progression and reveal-
ing lactylation-dependent metabolic vulnerabi- 
lities.

RAD51 lactylation: RAD51 is a highly conserved 
protein that regulates the homologous recombi-
nant DNA repair pathway [96]. Research has 
demonstrated that RAD51 governs the initia-
tion and progression of cervical cancer [97]. 
For example, metformin antagonizes cisplatin 
efficacy in ovarian cancer by suppressing the 
ATM/CHK2 pathway and upregulating RAD51 
expression, thereby leading to decreased ap- 
optosis, impaired DNA damage, and chemore-
sistance [98]. High RAD51 expression predicts 
poor survival after PARPi treatment, and its 
upregulation is associated with acquired PARPi 
resistance [99]. Lysine-specific demethylase 1 
(LSD1) suppression reduces the expression of 
BRCA1/2 and RAD51, triggers impaired HR 
repair, and increases the sensitivity of HR- 
proficient tumors to the therapeutic effects of 
PARP inhibitors in ovarian cancer [100]. One 
group demonstrated that elevated histone 
H3K9 and RAD51 lactylation in ovarian can- 
cer, which are regulated by GCN5, promotes HR 
repair and contributes to platinum resistance 
[101]. Hence, RAD51 not only drives the initia-
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tion and progression of ovarian cancers but 
also, when overexpressed or lactylated, pro-
motes resistance to platinum and PARP inhibi-
tors, highlighting that the RAD51-centered HR 
repair machinery and the regulation of its la- 
ctylation are promising therapeutic targets for 
overcoming treatment resistance in ovarian 
cancer.

Endometrial cancer

Endometrial cancer incidence is steadily in- 
creasing because of increasing obesity and 
aging populations [102]. Molecular alterations, 
including defects in DNA mismatch repair, 
PI3K/AKT pathway activation, and hormone re- 
ceptor signaling, are involved in the pathogen-
esis of endometrial cancer [103]. Lactylation 
has been validated to play a critical role in the 
development of endometrial cancer (Table 1). 
For example, one group analyzed transcriptom-
ic data from the TCGA for UCEC patients and 
constructed a lactylation-related risk model 
based on IGSF1, ZFHX4, and SCGB2A1 that 
predicts patient prognosis, immune infiltration, 
and therapeutic response in endometrial can-
cer [104]. IGSF1 is associated with poor prog-
nosis, immune response, and metabolic chang-
es in UCEC [104]. Another group also discovered 
16 lactylation-related genes that provide effec-
tive prognostic, immunological, and therapeu-
tic response prediction in endometrial carcino-
ma [105]. Gu et al. uncovered that six lacty- 
lation-related genes form a prognostic risk 
model for endometrial cancer, which links la- 
ctylation to tumor progression, immune micro-
environment alterations, and drug response 
[106]. In the following section, we describe the 
function of lactylation in endometrial cancer 
development. 

Histone lactylation: USP39, a deubiquitinase 
belonging to the USP family, drives tumor pro-
gression and promotes resistance to therapeu-
tic interventions in multiple cancers [107]. One 
study revealed that high levels of histone lacty-
lation promotes the tumor progression through 
USP39 upregulation, leading to PGK1 stabiliza-
tion and subsequent activation of the PI3K/
AKT/HIF-1α pathway in endometrial cancer 
[108]. In addition, p53 is involved in modulat- 
ing biological processes such as aging, cellu- 
lar senescence and tumorigenesis [109]. Ab- 
normal p53 expression is associated with poor 

survival outcomes in patients with endometri-
oid endometrial cancer [110]. Liu et al. revealed 
that cold atmospheric plasma (CAP) suppress-
es endometrial cancer by inducing ferroptosis 
through the USP49-HDAC3-H3K18la-p53 axis 
[111]. This study highlights lactylation-regulat-
ed deubiquitinases and p53 signaling as prom-
ising therapeutic options [111].

PFKM lactylation: PFKM, a muscle-type iso- 
form of phosphofructokinase-1, is a pivotal gly-
colytic enzyme whose overexpression drives 
metabolic reprogramming, tumor growth, and 
metastasis [112]. PFKM undergoes S-nitrosy- 
lation at Cys351 by NOS1, which enhances tet-
ramer stabilization, bypasses feedback inhibi-
tion, and promotes ovarian cancer cell proli- 
feration, tumor growth, and metastasis [113]. 
ZEB1 directly upregulates PFKM transcription, 
thereby enhancing glycolysis, proliferation, and 
invasion in hepatocellular carcinoma [114]. In- 
creased ASIC1 expression promotes liver can-
cer cell survival under acidic conditions throu- 
gh increased PFKM expression, whereas ASIC1 
knockdown or PFKM silencing impairs cell via-
bility and enhances apoptosis [115]. Moreover, 
lactate-driven protein lactylation, particularly of 
PFKM, promotes endometrial cancer progres-
sion, and a lactylation score model correlated 
with clinical features and immune infiltration 
was constructed [116]. This work further links 
PFKM to immune-related clinical features and 
highlights it as a promising metabolic-epigene-
tic therapeutic target [116].

Lactylation and cancer therapy 

In recent years, numerous compounds have 
been reported to regulate protein lactylation 
[117, 118]. Tanshinone I is a bioactive com-
pound from Salvia miltiorrhiza (commonly 
known as danshen) that exhibits broad anti- 
cancer effects in humans via the modulation  
of several pathways, including the ROS, PI3K/
AKT/mTOR, STAT3, NF-κB, and MAPK/ERK 
pathways [119, 120]. Tanshinone I inhibits cer-
vical cancer cell proliferation and reverses cis-
platin resistance by suppressing the ELK1-
mediated transcription of KRAS and downre- 
gulating the KRAS-AKT signaling axis [121]. 
Tanshinone I facilitates the antitumor effects  
of paclitaxel by suppressing cell proliferation 
and migratory behavior through the targeting  
of Bax, Bcl-2, p21 and p16 in ovarian cancer 
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[122]. It also attenuates cell growth by sup-
pressing glycolysis and inhibiting H3K18 lacty-
lation in ovarian cancer, leading to downre- 
gulation of oncogenic gene expression and alle-
viation of the immunosuppressive TME [123]. 
In addition, β-alanine interferes with the ability 
of lactate to interact with AARS1, which reduc-
es p53 lactylation and mitigates tumorigenesis 
[52]. Evodiamine in Evodia rutaecarpa has 
been shown to have antitumor effects on mul-
tiple cancer types [124, 125]. Evodiamine sup-
presses tumor growth by upregulating Sema3A 
expression, inducing ferroptosis via GPX4 inhi-
bition, and blocking lactate-driven histone lac-
tylation and HIF-1α activity [126]. The natural 
compound demethylzeylasteral (DML) down-
regulates the expression of the histone lacty-
lation marker H3K18la, thereby suppressing 
MESP1 expression and inhibiting the mali- 
gnant progression of pancreatic cancer [127]. 
Determining the compounds that can target 
protein lactylation in gynecological cancers is 
necessary. 

Lactate enhances Treg cell stability and immu-
nosuppressive function by inducing MOESIN 
Lys72 lactylation, thereby promoting TGF-β/
SMAD3 signaling. Moreover, lactate degrada-
tion alone or in combination with anti-PD-1 
therapy reduces Treg induction and tumor 
growth [128]. Lactate released from tumors 
downregulates macrophage RARγ expression 
by inducing H3K18 lactylation, leading to 
enhanced IL-6 production and STAT3-driven 
tumor promotion in colorectal cancer [129]. 
SRSF10 drives a self-reinforcing loop with gly-
colysis and H3K18la by stabilizing MYB mRNA 
and promoting GLUT1, HK1, and LDHA ex- 
pression, thereby enhancing M2 polarization  
of macrophages, which dampens CD8+ T-cell 
function and fosters an immunosuppressive 
TME. The small molecule 1C8, which inhibits 
SRSF10, restores PD-1 immunotherapy efficacy 
[130]. In pancreatic ductal adenocarcinoma 
(PDAC), tumor-derived lactate drives ENSA K63 
lactylation, which activates the STAT3/CCL2 
axis to recruit protumor macrophages and sup-
press CD8+ T-cell immunity, thereby also fos- 
tering an immunosuppressive TME. ENSA-
K63la causes resistance to immune check-
point blockade, while targeting ENSA-K63la/
CCL2 restores immunotherapy sensitivity [131]. 
How protein lactylation affects the immune 
response and immunotherapy in gynecological 

cancers remains unclear and warrants further 
investigation. 

Conclusion and future perspectives

In summary, protein lactylation critically con-
tributes to tumor metabolism, epigenetic regu-
lation, and therapeutic resistance, highlighting 
its potential as a promising clinical biomarker 
and an avenue for therapeutic intervention  
for cervical, ovarian, and endometrial cancers. 
Although increasing evidence supports its em- 
erging role in cancer biology, protein lactyla- 
tion research in gynecological malignancies 
remains relatively limited. For example, althou- 
gh several enzymes have been proposed as 
lactylation “writers”, “erasers”, and “readers”, 
their roles in gynecological cancers remain only 
partially defined. The lack of a comprehensive 
enzyme-substrate network in tumor tissues 
limits mechanistic interpretation and rational 
drug design. Moreover, several lactylated pro-
teins such as histones, PFKM, G6PD, and 
RAD51 have been identified in cervical, ovari-
an, and endometrial cancers; however, the 
global lactylome in gynecologic tumors rema- 
ins poorly characterized. Furthermore, current 
“lactylation-targeted” strategies mainly involve 
the modulation of upstream metabolism, such 
as LDH or broad epigenetic regulators, rather 
than specifically targeting lactylation writers, 
erasers, or readers.

Future perspectives should focus on the follow-
ing points: First, current studies have primarily 
concentrated on cervical, ovarian, and endo-
metrial cancers, with significantly less focus on 
vulvar and vaginal cancers. Exploring the role  
of lactylation in these underexplored tumor 
types is necessary. Second, integrating lacty-
lation with metabolism and the TME is critical 
for determining how lactate production (PPP, 
LDHA/LDHB, G6PD, PFKM), hypoxia (HIF-1α), 
and stromal/immune cells (TAMs, T cells, CAFs) 
converge on protein lactylation to shape im- 
mune evasion and metastasis in gynecologic 
tumors using spatial multiomics and single- 
cell approaches. Third, most published works 
have focused on histone lactylation and its epi-
genetic regulation of gene expression. How- 
ever, recent discoveries indicate that the lacty-
lation of nonhistone proteins, such as p53 [52], 
RAD51 [101], and MRE11 [51], drives tumor 
proliferation, invasion, and immune evasion. 
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Future studies should dissect how the lacty-
lation of specific signaling proteins rewires on- 
cogenic pathways and contributes to gyneco-
logical cancers. Fourth, the therapeutic poten-
tial of targeting lactylation remains an exciting 
but underdeveloped area. Few compounds are 
known to modulate lactylation, such as inhibi-
tors of lactate production (LDHA inhibitors and 
metabolic modulators) or small molecules that 
disrupt lactate-enzyme interactions (β-alanine) 
[132, 133]. The development of selective lactyl-
transferase and delactylase inhibitors to con-
trol lactylation is necessary for the treatment  
of gynecological cancers. Fifth, it is pivotal to 
develop robust, standardized assays, includ- 
ing IHC panels, mass-spectrometry signatures, 
and lactylation scores, to evaluate histone and 
nonhistone lactylation in cancer patient sam-
ples and validate their value for prognosis, ther-
apy response prediction, and molecular sub- 
typing in large, prospective cohorts of patients 
with gynecological cancer. Sixth, proteolysis-
targeting chimeras (PROTACs) are bifunctional 
small molecules that recruit a target protein to 
an E3 ubiquitin ligase, triggering its ubiquitina-
tion and selective degradation by the protea-
some [134]. PROTACs have been shown to  
target critical proteins in gynecologic cancers 
[135, 136]. One group developed a stapled 
peptide PROTAC targeting ZDHHC3 to degrade 
PD-L1 in cervical cancer cells, enhancing T-cell 
cytokine release [137]. Hence, PROTACs may 
provide innovative approaches to treat gyneco-
logical tumors by targeting lactylation-associat-
ed enzymes.
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