

Review Article

Decoding protein lactylation in the pathogenesis and progression of gynecological cancer

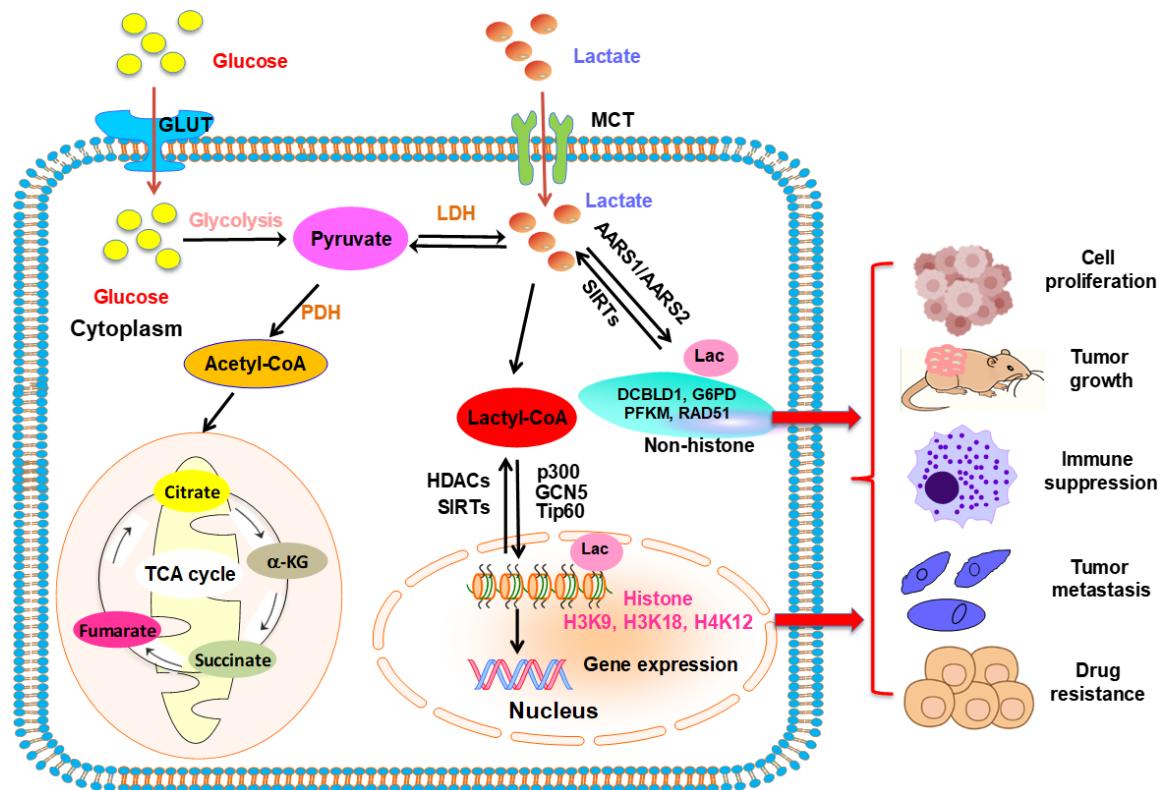
Yue Fang¹, Yixuan Wang², Caifei Ding²

¹The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; ²Department of Reproductive Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou 310011, Zhejiang, China

Received September 13, 2025; Accepted December 14, 2025; Epub December 15, 2025; Published December 30, 2025

Abstract: Gynecological tumors represent a significant health burden worldwide. Protein lactylation has emerged as a novel post-translational modification (PTMs) that directly links metabolic reprogramming to epigenetic and functional regulation. Lactylation occurs when lactate covalently modifies the lysine residues of proteins. Initially discovered on histones, lactylation was shown to influence gene transcription; however, accumulating evidence reveals its broader impact on nonhistone proteins, affecting diverse processes. Elevated lactate levels in the tumor microenvironment increase protein lactylation. Evidence suggests a dynamic interplay between tumor metabolism and cancer progression. In this review, we provide an overview of the fundamental aspects of protein lactylation, including the key enzymes that catalyze the addition and removal of lactyl groups. We further emphasize recent discoveries on how lactylation influences the development and progression of gynecological malignancies. Finally, we explore the potential of targeting protein lactylation as an emerging therapeutic strategy in the management of gynecological cancers.

Keywords: Lactylation, cervical cancer, ovarian cancer, endometrial cancer, treatment


Introduction

Gynecological tumors are a group of common malignancies that originate in the female reproductive system [1]. Gynecological cancers are categorized based on their site of origin, including cervical, ovarian, endometrial, vulvar, and vaginal cancers [2]. Gynecological cancer patients exhibit irregular intermenstrual bleeding or discharge, pelvic pain, dyspareunia, and vulvar itching or burning. Various strategies have been implemented for prevention and early detection, such as routine pelvic examinations, HPV vaccination, and evaluation of family history [3-5]. Moreover, inherited susceptibility contributes importantly to the onset of certain gynecologic malignancies [6, 7]. Current treatment options include surgical intervention, chemotherapy, radiation therapy, molecular targeted agents, immune-based treatments, or integrated multimodal approaches [8-10].

Post-translational modifications (PTMs) refer to chemical changes that occur in proteins once

they have been synthesized by ribosomes [11]. Typical PTMs include ubiquitination, methylation, glycosylation, phosphorylation, acetylation, nitrosylation, and lipidation [12-14]. PTMs influence protein function by regulating their enzymatic activity, structural stability, and localization within cells through the addition or removal of functional groups or by modifying amino acid structures [15]. PTMs are fundamental to the modulation of numerous cellular functions, such as metabolism, differentiation, proliferation, cell cycle progression, apoptosis, immune responses, and metastasis [16]. Consequently, perturbation of PTMs is tightly connected to the pathogenesis of various diseases, including cancer [17, 18].

In 2019, Zhang et al. reported that lactate-derived histone lactylation functions as a novel epigenetic modification that regulates gene transcription, which links the Warburg effect and various broader pathophysiological processes [19]. In recent years, research on pro-

Figure 1. Schematic overview of the protein lactylation process. Glucose metabolism via glycolysis produces pyruvate, which is converted into lactate by lactate dehydrogenase (LDH). Lactate is transported by monocarboxylate transporters (MCTs) and used to produce lactyl-CoA. Lactyl-CoA serves as a donor for histone and nonhistone protein lactylation mediated by acyltransferases, thereby influencing gene expression. Conversely, histone deacetylases (HDACs) and sirtuins (SIRTs) remove lactylation marks, suggesting the dynamic and reversible feature of this modification. Abnormal lactylation regulates cell proliferation, tumor metastasis, drug resistance, and immune evasion in human cancer.

tein lactylation has increased rapidly, with numerous studies demonstrating its important role in a broad range of illnesses, including cardiovascular abnormalities [20, 21], neurodegeneration [22, 23], and cancers [24-26]. Lactylation is one type of PTM in which a lactyl group derived from lactate is bound via stable covalent linkage to lysine sites in proteins [27]. Lactylation was initially described for histone proteins, leading to the regulation of gene transcription [28]. Lactylation provides a direct connection between cellular metabolism, specifically glycolysis, and the epigenetic and functional regulation of proteins [29]. Elevated lactate levels, which are often observed in the tumor microenvironment (TME) because of aerobic glycolysis, known as the Warburg effect, can increase protein lactylation [30-32]. Lactylation has been reported to alter protein activity, stability, localization, and interactions [33, 34]. In addition to histones, the lactylation of

nonhistone proteins contributes to multiple biological processes, such as proliferation, differentiation, apoptosis, autophagy, invasion and metastasis [35-37]. Given its close relationship with the metabolic state and cancer, including gynecological cancers, protein lactylation could be critical for tumorigenesis. Therefore, this review provides an overview of protein lactylation, particularly the enzymatic machinery responsible for writing and erasing lactyl marks (Figure 1). Moreover, we highlight the role of lactylation in gynecological cancers and discuss whether protein lactylation might emerge as a potential intervention point in the treatment of gynecological cancers.

Protein lactylation

Lactyltransferases

The lactyltransferases that catalyze protein lactylation have been investigated in recent

years. Some evidence suggests that p300/CBP, which is a well-known histone acetyltransferase, may also mediate histone lactylation by using lactyl-CoA as a donor molecule [38]. The mechanism by which p300 catalyzes protein lactylation remains an active area of research. Recent studies have identified alanyl-tRNA synthetases 1 and 2 (AARS1 and AARS2) as novel lactyltransferases responsible for catalyzing lysine lactylation on proteins [39]. In general, AARS1 and AARS2 function as alanyl-tRNA synthetases and charge tRNA molecules with alanine during protein translation. AARS1 and AARS2 predominantly regulate cytoplasmic and mitochondrial protein lactylation, respectively, indicating that they have spatial specificity in the regulation of lactylation. For example, one study revealed that AARS1 uses lactate and ATP to modify the YAP protein in gastric cancer [40]. AARS2 promotes ferroptosis during intestinal ischemia-reperfusion injury by driving histone lactylation [41]. In addition, hypoxia induces AARS2 accumulation to increase PDHA1 and CPT2 lactylation, leading to the suppression of oxidative phosphorylation (OXPHOS) [42].

Delactylases

Recent studies have identified certain histone deacetylases (HDACs) and sirtuins as potential delactylases. For example, one study from the Zhao group revealed that HDAC1-3 and SIRT1-3 function as delactylases to control protein lactylation [43]. Liu et al. reported that Xklp2 (TPX2) is lactylated at K249, a modification mediated by the lactylase CBP and reversed by the delactylase HDAC1, which promotes AURKA activation, cell cycle progression, and tumor growth in hepatocellular carcinoma (HCC) [44]. He et al. showed that HDAC2 promotes cisplatin resistance in triple negative breast cancer (TNBC) by delactylating METTL3, leading to enhanced m6A-mediated DNA repair, whereas HDAC2 inhibition by tucidinostat sensitizes tumor cells to cisplatin treatment [45]. Zhao et al. uncovered that lactate-induced RBM15 lactylation at lysine 850 stabilizes RBM15, enhances its interaction with METTL3, and promotes m6A methylation and tumor progression in lung adenocarcinoma, whereas HDAC3 acts as its delactylase to reduce RBM15 lactylation [46]. HDAC6 has been identified as a lactyltransferase that catalyzes α -tubulin lactylation at lysine 40 in a lactate-

dependent and reversible manner, thereby enhancing microtubule dynamics and promoting neurite outgrowth [47]. SIRT1 and SIRT3 are NAD⁺-dependent deacetylases (class III HDACs) that exhibit lysine delactylase activity. For instance, one study identified SIRT1 and SIRT3 as key delactylases that selectively regulate histone and nonhistone lysine lactylation, including that of the PKM2 protein [48]. However, the full repertoire of delactylation enzymes, especially those that modify nonhistone proteins, is still being investigated.

Lactyl-CoA synthetase

Lactyl-CoA synthetases catalyze the enzymatic conversion of lactate and CoA into lactyl-CoA, which makes it suitable for use as a donor molecule in protein lactylation. The nuclear enzyme GTPSCS catalyzes the conversion of L-lactate into lactyl-CoA, which enables histone lactylation through its interaction with p300 [49]. The GTPSCS/p300 axis enhances H3K18a modification and GDF15 expression, thereby promoting glioma proliferation and radiotherapy resistance [49]. Zhu et al. reported that ACSS2 can function as a lactyl-CoA synthetase whose phosphorylation and nuclear translocation upon EGFR-ERK activation enable the conversion of lactate into lactyl-CoA, which interacts with KAT2A to mediate histone H3 lactylation [50]. Moreover, ACSS2 and KAT2A promote oncogenic signaling and immune evasion in brain tumors. Furthermore, blocking the association of ACSS2 with KAT2A enhances the efficacy of anti-PD-1 therapy [50].

Lactylation functions in tumorigenesis and progression

Numerous studies have established that lactylation is an important regulator of tumorigenesis and cancer progression. One study revealed that DNA damage induces CBP-mediated MRE11 lactylation at lysine 673, which increases its DNA binding ability and promotes homologous recombination repair [51]. Another study identified that AARS1 is a lactate sensor that transfers lactate to p53 at K120 and K139, thereby impairing the phase separation and transcriptional activity of p53 [52]. Chen et al. reported that lactate-driven lactylation of NBS1 at K388, which is catalyzed by TIP60 and removed by HDAC3, enhances homologous recombination-mediated DNA repair and contrib-

Lactylation in gynecological cancer

Table 1. The role of lactylation in gynecologic cancer progression

Tumor type	Targets	Lactylation site	Mechanisms	Functions	Ref
Cervical cancer	PPP1R14B	K140	Increases the infiltration of CD8+ T cells	Suppresses proliferation and migration	[62]
Cervical cancer	DPF2	H3K14	Acts as an H3K14la effector, couples histone lactylation	Drives transcription and tumorigenesis	[64]
Cervical cancer	GPD2	H3K18	Lactate upregulates H3K18la-modified GPD2; promotes M2 polarization	Promote malignant transformation	[66]
Cervical cancer	DCBLD1	K172	Increases DCBLD1 stability, enhances PPP activity via stabilization of G6PD	Lactate promotes proliferation and metastasis	[70]
Cervical cancer	G6PD	K45	Suppresses PPP activation; inhibits GSH, NADPH; increases ROS	Inhibits cell proliferation	[80]
Ovarian cancer	MRE11, NBS1	Not detect	Acetylated ME2 drives glutamine-derived lactate production	Causes DNA repair and chemo-resistance	[85]
Ovarian cancer	ALDH1A1, S100A4	Not detect	Elevates oxidative phosphorylation and glycolysis activity	Promotes cisplatin resistance	[86]
Ovarian cancer	Histone	H3K18	Increases migration	Associates with poor prognosis	[87]
Ovarian cancer	CCL18	H3K18	Lactate activates CCL18 expression	Promotes ovarian tumorigenesis	[88]
Ovarian cancer	PD-L1	H3K18	LDHB mediates histone lactylation to activate PD-L1	Promotes ovarian cancer immune escape	[89]
Ovarian cancer	RAD23A	H4K12	Activates RAD23A via Myc; enhances DNA damage repair ability	Promotes niraparib resistance	[90]
Ovarian cancer	PFKP	K392	Enhances glycolysis, decreases PTEN	Promotes tumor progression	[95]
Ovarian cancer	Histone	H3K9	H3K9la activates RAD51 and BRCA2 expression, facilitates HR repair	Promotes cisplatin resistance and poor prognosis	[101]
Ovarian cancer	RAD51	K73	Enhances HR repair	Enhances cisplatin resistance	[101]
Endometrial cancer	USP39	H3K18	Stimulates USP39 expression, activates PI3K/AKT/HIF-1 α , stabilizes PGK1	Stimulates glycolysis, promotes tumor progression	[108]
Endometrial cancer	P53	H3K18	CAP activates the p53 transcription by H3K18 lactylation	Drives cell ferroptosis	[111]
Endometrial cancer	PFKM	K678	Involves immune infiltration	Promotes proliferation, invasion, tumor progression	[116]

utes to drug resistance [53]. AARS1 and AARS2 act as intracellular sensors of L-lactate, directly catalyzing cGAS lactylation, which dampens innate immune responses [54]. Without doubt, lactylation is strongly implicated in gynecological cancer development. The subsequent paragraphs explore its functions in tumor initiation and advancement.

Role of lactylation in gynecological cancers

Cervical cancer

As one of the most common gynecological cancers, cervical cancer continues to pose a major health challenge worldwide [55]. It has been known that chronic infection with high-risk HPVs is recognized as the primary cause leading to malignant transformation [56]. Despite advances in screening, vaccination, and therapy, challenges such as recurrence, metastasis, and therapeutic resistance continue to limit

survival in patients with cervical cancer [57, 58]. Recent evidence suggests that lactylation contributes to cervical tumorigenesis and progression [59]. Protein phosphatase 1 regulatory subunit 14B (PPP1R14B) is an inhibitory regulator of protein phosphatase 1 that modulates cellular contraction, signaling, and cytoskeletal dynamics through phosphorylation-dependent pathways [60]. PPP1R14B is upregulated in cervical and endometrial cancers, predicts poor prognosis, and promotes tumor cell proliferation and survival by activating the Akt pathway [61]. One study performed a comprehensive proteomic and multiomics analysis of lysine lactylation (Kla) in cervical cancer and identified Kla-related subtypes. Moreover, PPP1R14B-K140 lactylation suppressed tumor progression in cervical cancer [62]. Here, we address the impact of lactylation on both the initiation and advancement of cervical cancer (Table 1).

Histone lactylation: Double PHD fingers 2 (DPF2) is a chromatin-associated protein that regulates gene transcription and cell fate decisions. For example, high DPF2 expression is associated with poor prognosis, immune evasion, and dysregulation of key pathways such as the cell cycle and Wnt signaling in hepatocellular carcinoma [63]. Zhai et al. identified that DPF2 is a reader of the histone lactylation marker H3K14la in cervical cancer, which facilitates lactate-driven histone lactylation to promote oncogene transcription and cell survival [64]. GPD2 is a mitochondrial enzyme and is involved in lipid metabolism and redox balance [65]. Huang et al. reported that the secretion of lactate from cervical cancer cells stimulates M2 macrophage polarization, a process dependent on H3K18 lactylation-driven induction of GPD2, which supports a histone lactylation-mediated mechanism to drive immune modulation and cancer progression [66]. Both DPF2 and GPD2 participate in lactate-driven epigenetic regulation and immune modulation in cervical cancer. DPF2 acts as a histone lactylation reader that promotes oncogene transcription [64], whereas GPD2, through lactate-induced histone lactylation, facilitates M2 macrophage polarization and tumor progression [66]. Overall, both factors play key roles in the lactate-lactylation-tumor development axis in cervical cancer.

DCBLD1 lactylation: The DCBLD1 gene has been implicated in the regulation of cell signaling, cell proliferation, and tumor progression [67]. For example, Shen et al. reported that DCBLD1 expression is elevated in cervical cancer tissues and promotes tumor progression by increasing cell proliferation, invasion, and survival, whereas its knockdown induces apoptosis and G1 cell cycle arrest. Mechanistically, TBP was identified as a transcriptional activator of DCBLD1 [68]. Similarly, another group illustrated that DCBLD1 expression is elevated in various cancer types, including cervical cancer, and is linked to unfavorable clinical outcomes and immune infiltration. Furthermore, silencing DCBLD1 expression suppressed tumor cell growth, motility and invasive behaviors in cervical cancer [69]. Lactate promotes cervical cancer progression by increasing DCBLD1 expression through HIF-1 α -mediated transcriptional activation and stabilizing it via K172 lactylation, thereby enhancing pentose phosphate pathway (PPP) activity through the upregulation

and stabilization of glucose-6-phosphate dehydrogenase (G6PD) [70]. Moreover, targeting G6PD with 6-AN effectively suppresses tumor growth by inhibiting PPP activation in mice [70]. These studies highlight the therapeutic potential of targeting the lactate-DCBLD1-PPP axis in cervical cancer.

G6PD lactylation: G6PD is a rate-limiting enzyme of the pentose phosphate pathway that regulates cellular redox homeostasis by producing NADPH [71]. G6PD has been identified to regulate tumorigenesis and tumor progression, including in cervical cancer [72, 73]. For instance, G6PD is upregulated in cervical cancer cells harboring high-risk HPV infection and promotes cell proliferation and survival, with its inhibition leading to reduced growth and increased apoptosis, particularly in HPV18+ cells [74]. Fang et al. proposed that G6PD deficiency restrains cell migratory behavior and proliferation by increasing ROS-induced apoptosis and disrupting cytoskeletal organization and biomechanical properties in cervical cancer [75]. Additionally, miRNA-1 and miRNA-206 suppress tumor progression by directly downregulating G6PD expression, resulting in decreased proliferation and elevated apoptotic activity in cervical cancer [76, 77]. Notably, one study identified HPV16 E6 as a transcriptional activator of G6PD, which promotes progression by enhancing cell growth and migratory behavior in cervical cancer via the upregulation of G6PD expression [78]. Another study revealed that HPV E6 promotes tumor progression by upregulating G6PD in cervical cancer, which upregulates STAT3 and PLOD2 expression to enhance the biological functions of tumor cells [79]. Recently, one group reported that the suppression of G6PD K45 lactylation by HPV16 E6 leads to PPP activation and increased cell proliferation, which enhances G6PD dimer formation and enzyme activity in cervical cancer [80]. In line with this point, lactylation-mimicking mutations or G6PD inhibition suppresses tumor growth in patients with cervical cancer [80]. Together, these findings underscore lactylation-dependent G6PD regulation as a critical driver of cervical cancer progression.

Ovarian cancer

Ovarian cancer is the deadliest gynecological malignancy, primarily because of its silent

onset and the absence of reliable early screening tools [81]. A large proportion of patients with ovarian cancer are diagnosed late, when peritoneal dissemination has already occurred. Cytoreductive surgery and platinum-based chemotherapy remain the mainstay treatments [82]. However, chemoresistance and recurrence remain major clinical challenges and lead to poor survival outcomes [83]. Lactylation has been reported to be involved in prognosis and drug resistance in ovarian cancer (Table 1). Yu et al. identified that 14 LRGs are linked to patient prognosis, patterns of immune infiltration, and responsiveness to therapy in ovarian cancer. Moreover, an eight-gene lactylation-based prognostic model demonstrated strong predictive value in ovarian cancer [84]. Zheng et al. revealed that acetylated malate enzyme 2 (ME2) drives the production of glutamine-derived lactate under glucose-limited conditions, causing DNA repair and chemoresistance through protein lactylation in ovarian cancer cells [85]. An integrative analysis of scRNA-seq and bulk RNA-seq profiles suggested that the expression of ALDH1A1 and S100A4, which are genes associated with lactylation, could drive resistance to chemotherapy in ovarian cancer [86]. In the next paragraphs, we dissect the role of lactylation in ovarian tumorigenesis and progression.

Histone lactylation: Chao et al. reported that elevated histone H3K18 lactylation is linked to poor prognosis, resistance to platinum-based therapy, and increased metastatic capacity in epithelial ovarian cancer [87]. Lactate facilitates ovarian cancer progression by inducing the expression of CCL18 through H3K18 lactylation in macrophages, which results in M2 polarization and enhanced tumor growth and metastasis via the Gpr132-CCL18 axis [88]. Hu and colleagues reported that LDHB facilitates immune escape by increasing PD-L1 levels through H3K18 lactylation at its promoter in ovarian cancer [89]. Moreover, LDHB knockdown reduced lactate production, inhibited tumor growth, and restored T-cell-mediated immune activation [89]. Furthermore, lactate-induced H4K12 lactylation upregulated RAD23A expression via superenhancer activation in ovarian cancer cells with resistance to niraparib, which resulted in enhanced DNA repair and increased drug resistance [90]. In ovarian cancer, lactate-driven histone lactylation modifica-

tions, including H3K18la and H4K12la, promotes tumor progression, metastasis, immune escape, and therapeutic resistance, highlighting histone lactylation as a key epigenetic driver of ovarian malignancy.

PFKP lactylation: Phosphofructokinase platelet type (PFKP), a central rate-determining enzyme in glycolysis, controls cell proliferation, migration, metastasis and stemness via glycolysis [91]. PFKP has been identified as a potential diagnostic marker and a drug target for various cancer types, including ovarian cancer [92, 93]. PFKP expression is strongly positively correlated with activated NK cells and follicular helper T cells but negatively correlated with naïve B cells [93]. The antiparasitic drug ivermectin has been shown to strongly suppress proliferation in epithelial ovarian cancer cells, primarily by targeting PFKP in glycolytic pathways [94]. One study revealed that the lactylation of PFKP at K392 enhances glycolysis and promotes tumor progression by downregulating PTEN expression in ovarian cancer [95]. Therefore, PFKP not only shapes the immune microenvironment but also enhances glycolysis, thereby driving ovarian cancer progression and revealing lactylation-dependent metabolic vulnerabilities.

RAD51 lactylation: RAD51 is a highly conserved protein that regulates the homologous recombinant DNA repair pathway [96]. Research has demonstrated that RAD51 governs the initiation and progression of cervical cancer [97]. For example, metformin antagonizes cisplatin efficacy in ovarian cancer by suppressing the ATM/CHK2 pathway and upregulating RAD51 expression, thereby leading to decreased apoptosis, impaired DNA damage, and chemoresistance [98]. High RAD51 expression predicts poor survival after PARPi treatment, and its upregulation is associated with acquired PARPi resistance [99]. Lysine-specific demethylase 1 (LSD1) suppression reduces the expression of BRCA1/2 and RAD51, triggers impaired HR repair, and increases the sensitivity of HR-proficient tumors to the therapeutic effects of PARP inhibitors in ovarian cancer [100]. One group demonstrated that elevated histone H3K9 and RAD51 lactylation in ovarian cancer, which are regulated by GCN5, promotes HR repair and contributes to platinum resistance [101]. Hence, RAD51 not only drives the initia-

tion and progression of ovarian cancers but also, when overexpressed or lactylated, promotes resistance to platinum and PARP inhibitors, highlighting that the RAD51-centered HR repair machinery and the regulation of its lactylation are promising therapeutic targets for overcoming treatment resistance in ovarian cancer.

Endometrial cancer

Endometrial cancer incidence is steadily increasing because of increasing obesity and aging populations [102]. Molecular alterations, including defects in DNA mismatch repair, PI3K/AKT pathway activation, and hormone receptor signaling, are involved in the pathogenesis of endometrial cancer [103]. Lactylation has been validated to play a critical role in the development of endometrial cancer (**Table 1**). For example, one group analyzed transcriptomic data from the TCGA for UCEC patients and constructed a lactylation-related risk model based on IGSF1, ZFHX4, and SCGB2A1 that predicts patient prognosis, immune infiltration, and therapeutic response in endometrial cancer [104]. IGSF1 is associated with poor prognosis, immune response, and metabolic changes in UCEC [104]. Another group also discovered 16 lactylation-related genes that provide effective prognostic, immunological, and therapeutic response prediction in endometrial carcinoma [105]. Gu et al. uncovered that six lactylation-related genes form a prognostic risk model for endometrial cancer, which links lactylation to tumor progression, immune microenvironment alterations, and drug response [106]. In the following section, we describe the function of lactylation in endometrial cancer development.

Histone lactylation: USP39, a deubiquitinase belonging to the USP family, drives tumor progression and promotes resistance to therapeutic interventions in multiple cancers [107]. One study revealed that high levels of histone lactylation promotes the tumor progression through USP39 upregulation, leading to PGK1 stabilization and subsequent activation of the PI3K/AKT/HIF-1 α pathway in endometrial cancer [108]. In addition, p53 is involved in modulating biological processes such as aging, cellular senescence and tumorigenesis [109]. Abnormal p53 expression is associated with poor

survival outcomes in patients with endometrioid endometrial cancer [110]. Liu et al. revealed that cold atmospheric plasma (CAP) suppresses endometrial cancer by inducing ferroptosis through the USP49-HDAC3-H3K18la-p53 axis [111]. This study highlights lactylation-regulated deubiquitinases and p53 signaling as promising therapeutic options [111].

PFKM lactylation: PFKM, a muscle-type isoform of phosphofructokinase-1, is a pivotal glycolytic enzyme whose overexpression drives metabolic reprogramming, tumor growth, and metastasis [112]. PFKM undergoes S-nitrosylation at Cys351 by NOS1, which enhances tetramer stabilization, bypasses feedback inhibition, and promotes ovarian cancer cell proliferation, tumor growth, and metastasis [113]. ZEB1 directly upregulates PFKM transcription, thereby enhancing glycolysis, proliferation, and invasion in hepatocellular carcinoma [114]. Increased ASIC1 expression promotes liver cancer cell survival under acidic conditions through increased PFKM expression, whereas ASIC1 knockdown or PFKM silencing impairs cell viability and enhances apoptosis [115]. Moreover, lactate-driven protein lactylation, particularly of PFKM, promotes endometrial cancer progression, and a lactylation score model correlated with clinical features and immune infiltration was constructed [116]. This work further links PFKM to immune-related clinical features and highlights it as a promising metabolic-epigenetic therapeutic target [116].

Lactylation and cancer therapy

In recent years, numerous compounds have been reported to regulate protein lactylation [117, 118]. Tanshinone I is a bioactive compound from *Salvia miltiorrhiza* (commonly known as danshen) that exhibits broad anti-cancer effects in humans via the modulation of several pathways, including the ROS, PI3K/AKT/mTOR, STAT3, NF- κ B, and MAPK/ERK pathways [119, 120]. Tanshinone I inhibits cervical cancer cell proliferation and reverses cisplatin resistance by suppressing the ELK1-mediated transcription of KRAS and downregulating the KRAS-AKT signaling axis [121]. Tanshinone I facilitates the antitumor effects of paclitaxel by suppressing cell proliferation and migratory behavior through the targeting of Bax, Bcl-2, p21 and p16 in ovarian cancer

[122]. It also attenuates cell growth by suppressing glycolysis and inhibiting H3K18 lactylation in ovarian cancer, leading to downregulation of oncogenic gene expression and alleviation of the immunosuppressive TME [123]. In addition, β -alanine interferes with the ability of lactate to interact with AARS1, which reduces p53 lactylation and mitigates tumorigenesis [52]. Evodiamine in *Evodia rutaecarpa* has been shown to have antitumor effects on multiple cancer types [124, 125]. Evodiamine suppresses tumor growth by upregulating Sema3A expression, inducing ferroptosis via GPX4 inhibition, and blocking lactate-driven histone lactylation and HIF-1 α activity [126]. The natural compound demethylzeylasterol (DML) downregulates the expression of the histone lactylation marker H3K18la, thereby suppressing MESP1 expression and inhibiting the malignant progression of pancreatic cancer [127]. Determining the compounds that can target protein lactylation in gynecological cancers is necessary.

Lactate enhances Treg cell stability and immunosuppressive function by inducing MOESIN Lys72 lactylation, thereby promoting TGF- β /SMAD3 signaling. Moreover, lactate degradation alone or in combination with anti-PD-1 therapy reduces Treg induction and tumor growth [128]. Lactate released from tumors downregulates macrophage RAR γ expression by inducing H3K18 lactylation, leading to enhanced IL-6 production and STAT3-driven tumor promotion in colorectal cancer [129]. SRSF10 drives a self-reinforcing loop with glycolysis and H3K18la by stabilizing MYB mRNA and promoting GLUT1, HK1, and LDHA expression, thereby enhancing M2 polarization of macrophages, which dampens CD8 $^{+}$ T-cell function and fosters an immunosuppressive TME. The small molecule 1C8, which inhibits SRSF10, restores PD-1 immunotherapy efficacy [130]. In pancreatic ductal adenocarcinoma (PDAC), tumor-derived lactate drives ENSA K63 lactylation, which activates the STAT3/CCL2 axis to recruit protumor macrophages and suppress CD8 $^{+}$ T-cell immunity, thereby also fostering an immunosuppressive TME. ENSA-K63la causes resistance to immune checkpoint blockade, while targeting ENSA-K63la/CCL2 restores immunotherapy sensitivity [131]. How protein lactylation affects the immune response and immunotherapy in gynecological

cancers remains unclear and warrants further investigation.

Conclusion and future perspectives

In summary, protein lactylation critically contributes to tumor metabolism, epigenetic regulation, and therapeutic resistance, highlighting its potential as a promising clinical biomarker and an avenue for therapeutic intervention for cervical, ovarian, and endometrial cancers. Although increasing evidence supports its emerging role in cancer biology, protein lactylation research in gynecological malignancies remains relatively limited. For example, although several enzymes have been proposed as lactylation “writers”, “erasers”, and “readers”, their roles in gynecological cancers remain only partially defined. The lack of a comprehensive enzyme-substrate network in tumor tissues limits mechanistic interpretation and rational drug design. Moreover, several lactylated proteins such as histones, PFKM, G6PD, and RAD51 have been identified in cervical, ovarian, and endometrial cancers; however, the global lactylome in gynecologic tumors remains poorly characterized. Furthermore, current “lactylation-targeted” strategies mainly involve the modulation of upstream metabolism, such as LDH or broad epigenetic regulators, rather than specifically targeting lactylation writers, erasers, or readers.

Future perspectives should focus on the following points: First, current studies have primarily concentrated on cervical, ovarian, and endometrial cancers, with significantly less focus on vulvar and vaginal cancers. Exploring the role of lactylation in these underexplored tumor types is necessary. Second, integrating lactylation with metabolism and the TME is critical for determining how lactate production (PPP, LDHA/LDHB, G6PD, PFKM), hypoxia (HIF-1 α), and stromal/immune cells (TAMs, T cells, CAFs) converge on protein lactylation to shape immune evasion and metastasis in gynecologic tumors using spatial multiomics and single-cell approaches. Third, most published works have focused on histone lactylation and its epigenetic regulation of gene expression. However, recent discoveries indicate that the lactylation of nonhistone proteins, such as p53 [52], RAD51 [101], and MRE11 [51], drives tumor proliferation, invasion, and immune evasion.

Future studies should dissect how the lactylation of specific signaling proteins rewires oncogenic pathways and contributes to gynecological cancers. Fourth, the therapeutic potential of targeting lactylation remains an exciting but underdeveloped area. Few compounds are known to modulate lactylation, such as inhibitors of lactate production (LDHA inhibitors and metabolic modulators) or small molecules that disrupt lactate-enzyme interactions (β -alanine) [132, 133]. The development of selective lactyltransferase and delactylase inhibitors to control lactylation is necessary for the treatment of gynecological cancers. Fifth, it is pivotal to develop robust, standardized assays, including IHC panels, mass-spectrometry signatures, and lactylation scores, to evaluate histone and nonhistone lactylation in cancer patient samples and validate their value for prognosis, therapy response prediction, and molecular subtyping in large, prospective cohorts of patients with gynecological cancer. Sixth, proteolysis-targeting chimeras (PROTACs) are bifunctional small molecules that recruit a target protein to an E3 ubiquitin ligase, triggering its ubiquitination and selective degradation by the proteasome [134]. PROTACs have been shown to target critical proteins in gynecologic cancers [135, 136]. One group developed a stapled peptide PROTAC targeting ZDHHC3 to degrade PD-L1 in cervical cancer cells, enhancing T-cell cytokine release [137]. Hence, PROTACs may provide innovative approaches to treat gynecological tumors by targeting lactylation-associated enzymes.

Acknowledgements

The research was supported by the Zhejiang Provincial TCM Science and Technology Plan Project (No. 2025ZR179) and Hangzhou Health Science and Technology Projects (NO. ZD20210029).

Disclosure of conflict of interest

None.

Abbreviations

AARS1, alanyl-tRNA synthetases 1; 6-An, 6-aminonicotinamide; CPT2, carnitine palmitoyltransferase 2; DCBLD1, Discoidin, CUB, and LCCL domain-containing type I; DML, Demethylzeylasterol; G6PD, glucose-6-phosphate

dehydrogenase; GPD2, glycerol-3-phosphate dehydrogenase 2; GTPSCS, Guanosine triphosphate (GTP)-specific SCS; HCC, hepatocellular carcinoma; HDACs, histone deacetylases; HIF-1 α , Hypoxia-Inducible Factor 1-alpha; HPV, Human papillomavirus; LSD1, Lysine-specific demethylase 1; OXPHOS, oxidative phosphorylation; PARPi, Poly (ADP-ribose) polymerase inhibitor; PPP, Pentose phosphate pathway; PPP1R14B, Protein phosphatase 1 regulatory subunit 14B; PTM, Post-translational modifications; PROTAC, proteolysis targeting chimera; TBP, TATA-box binding protein; TCGA, The Cancer Genome Atlas; TME, Tumor microenvironment; TwHF, Tripterygium wilfordii Hook F; UCEC, Uterine corpus endometrial carcinoma.

Address correspondence to: Caifei Ding, Department of Reproductive Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, No. 208 East Huancheng Road, Hangzhou 310011, Zhejiang, China. E-mail: hhyy8714@163.com

References

- [1] Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A. Cancer statistics, 2025. CA Cancer J Clin 2025; 75: 10-45.
- [2] Garg P, Ramisetty SK, Raghu Subbalakshmi A, Krishna BM, Pareek S, Mohanty A, Kulkarni P, Horne D, Salgia R and Singhal SS. Gynecological cancer tumor microenvironment: unveiling cellular complexity and therapeutic potential. Biochem Pharmacol 2024; 229: 116498.
- [3] Gyllensten U. Novel diagnostics for improved treatment of gynecological cancer. Ups J Med Sci 2025; 130.
- [4] Aravantinou-Fatorou A, Georgakopoulou VE, Dimopoulos MA and Lontos M. Precision medicine in gynecological cancer. Biomed Rep 2025; 22: 43.
- [5] Zeng S, Wang XL and Yang H. Radiomics and radiogenomics: extracting more information from medical images for the diagnosis and prognostic prediction of ovarian cancer. Mil Med Res 2024; 11: 77.
- [6] Minaguchi T, Shikama A, Akiyama A and Satoh T. Molecular biomarkers for facilitating genome-directed precision medicine in gynecological cancer (Review). Oncol Lett 2023; 26: 426.
- [7] Watanabe T, Soeda S, Okoshi C, Fukuda T, Yasuda S and Fujimori K. Landscape of somatic mutated genes and inherited susceptibility genes in gynecological cancer. J Obstet Gynaecol Res 2023; 49: 2629-2643.

[8] Wagle NS, Nogueira L, Devasia TP, Mariotto AB, Yabroff KR, Islami F, Jemal A, Alteri R, Ganz PA and Siegel RL. Cancer treatment and survivorship statistics, 2025. *CA Cancer J Clin* 2025; 75: 308-340.

[9] Dasgupta S, Gayen S, Chakraborty T, Afroze N, Pal R, Mahata S, Nasare V and Roy S. Potential role of immune cell therapy in gynecological cancer and future promises: a comprehensive review. *Med Oncol* 2024; 41: 98.

[10] Pirs B, Skof E, Smrkolj V and Smrkolj S. Overview of immune checkpoint inhibitors in gynecological cancer treatment. *Cancers (Basel)* 2022; 14: 631.

[11] Wang J, Wang Y, Jiang X, Xu M, Wang M, Wang R, Zheng B, Chen M, Ke Q and Long J. Unleashing the power of immune checkpoints: post-translational modification of novel molecules and clinical applications. *Cancer Lett* 2024; 588: 216758.

[12] Li W, Li F, Zhang X, Lin HK and Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. *Signal Transduct Target Ther* 2021; 6: 422.

[13] Tang BF, Xu WT, Fang SJ, Zhu JY, Qiu RF, Shen L, Yang Y, Weng QY, Wang YJ, Ding JY, Zhang XJ, Chen WQ, Zheng LY, Song JJ, Chen B, Zhao ZW, Chen MJ and Ji JS. MELK prevents radiofrequency ablation-induced immunogenic cell death and antitumor immune response by stabilizing FABP5 in hepatocellular malignancies. *Mil Med Res* 2025; 12: 5.

[14] Xiong HJ, Yu HQ, Zhang J, Fang L, Wu D, Lin XT and Xie CM. Elevated FBXL6 activates both wild-type KRAS and mutant KRAS^{G12D} and drives HCC tumorigenesis via the ERK/mTOR/PRELID2/ROS axis in mice. *Mil Med Res* 2023; 10: 68.

[15] Song H, Shen R, Liu X, Yang X, Xie K, Guo Z and Wang D. Histone post-translational modification and the DNA damage response. *Genes Dis* 2023; 10: 1429-1444.

[16] Wang W, Liu W, Chen Q, Yuan Y and Wang P. Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy. *Semin Cancer Biol* 2022; 87: 84-97.

[17] Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C and Yang Y. Exploring the landscape of post-translational modification in drug discovery. *Pharmacol Ther* 2025; 265: 108749.

[18] Qian M, Yan F, Yuan T, Yang B, He Q and Zhu H. Targeting post-translational modification of transcription factors as cancer therapy. *Drug Discov Today* 2020; 25: 1502-1512.

[19] Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, Ding J, Czyz D, Hu R, Ye Z, He M, Zheng YG, Shuman HA, Dai L, Ren B, Roeder RG, Becker L and Zhao Y. Metabolic regulation of gene expression by histone lactylation. *Nature* 2019; 574: 575-580.

[20] Ma M, Xu C, Zhou H and Zhou Y. Lactylation in cardiovascular diseases: epigenetic mechanisms and therapeutic potential. *J Cardiovasc Pharmacol* 2025; 86: 448-457.

[21] Song M, Liu B, Wang H and Sun W. Lactate metabolism and lactylation modification: new opportunities and challenges in cardiovascular disease. *MedComm (2020)* 2025; 6: e70269.

[22] Zhang YM, Yang F, Li Q and Zhang JN. Role of histone lactylation in neurological disorders. *Int J Mol Sci* 2025; 26: 7949.

[23] Cao M, Yin Z, Hu W, Luo Y, Wang Q and Dong P. Lactate lactylation in neural pathophysiology: bridging metabolism and neurodegeneration. *Neuroscience* 2025; 585: 1-13.

[24] Li C, Liu Z, Kong D, Li Z and Li L. Lactylation: a novel driver of drug resistance in the tumor microenvironment. *Cancer Drug Resist* 2025; 8: 39.

[25] Hou X, Hong Z, Zen H, Zhang C, Zhang P, Ma D and Han Z. Lactylation in cancer biology: unlocking new avenues for research and therapy. *Cancer Commun (Lond)* 2025; 45: 1367-1406.

[26] Sheng X, Lin H, Cole PA and Zhao Y. Biochemistry and regulation of histone lysine L-lactylation. *Nat Rev Mol Cell Biol* 2025; [Epub ahead of print].

[27] Deng D, Luo Y, Hong Y, Ren X, Zu X and Feng J. Lactylation: a new direction for tumor-targeted therapy. *Biochim Biophys Acta Rev Cancer* 2025; 1880: 189399.

[28] Ghadyani F, Zandi P and Ghafouri-Fard S. Histone lactylation: a new target for overcoming immune evasion and therapy resistance. *Med Oncol* 2025; 42: 399.

[29] Yang Y, Wu Y, Chen H, Xu Z, Lu R, Zhang S, Zhan R, Xi Q and Jin Y. Research progress on the interaction between glucose metabolic reprogramming and lactylation in tumors. *Front Immunol* 2025; 16: 1595162.

[30] Wang J, Peng M, Oyang L, Shen M, Li S, Jiang X, Ren Z, Peng Q, Xu X, Tan S, Xia L, Yang W, Li H, Wu N, Tang Y, Lin J, Liao Q, Han Y and Zhou Y. Mechanism and application of lactylation in cancers. *Cell Biosci* 2025; 15: 76.

[31] Zhu W, Fan C, Hou Y and Zhang Y. Lactylation in tumor microenvironment and immunotherapy resistance: new mechanisms and challenges. *Cancer Lett* 2025; 627: 217835.

[32] Gao C, Li J and Shan B. Research progress on the regulatory role of lactate and lactylation in tumor microenvironment. *Biochim Biophys Acta Rev Cancer* 2025; 1880: 189339.

[33] Wang D, Rong H, Ma K and Peng J. Lactylation in tumor: mechanisms and therapeutic potentials. *Front Immunol* 2025; 16: 1609596.

[34] Sun Y, Wang H, Cui Z, Yu T, Song Y, Gao H, Tang R, Wang X, Li B, Li W and Wang Z. Lactylation in cancer progression and drug resistance. *Drug Resist Updat* 2025; 81: 101248.

[35] Ren H, Tang Y and Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling. *Nat Metab* 2025; 7: 647-664.

[36] Zhang Q, Luo B, Sun X, Nagashima H, Wu Y, Liang G, Luo Y, Sasaki R and Qin Q. Non-histone lysine lactylation: emerging roles in tumor biology and therapeutic implications. *Ageing Res Rev* 2025; 112: 102875.

[37] Zhang D, Liang C, Wu C, Hawanga M, Wan S, Xu L, Zhang X, Liu Y, Hu F, Wang M, Wang X, Xu L and Huang X. Nonhistone lactylation: a hub for tumour metabolic reprogramming and epigenetic regulation. *J Transl Med* 2025; 23: 901.

[38] Zeng Q, Wang K, Zhao Y, Ma Q, Chen Z and Huang W. Effects of the acetyltransferase p300 on tumour regulation from the novel perspective of posttranslational protein modification. *Biomolecules* 2023; 13: 417.

[39] Zong Z, Ren J, Yang B, Zhang L and Zhou F. Emerging roles of lysine lactyltransferases and lactylation. *Nat Cell Biol* 2025; 27: 563-574.

[40] Ju J, Zhang H, Lin M, Yan Z, An L, Cao Z, Geng D, Yue J, Tang Y, Tian L, Chen F, Han Y, Wang W, Zhao S, Jiao S and Zhou Z. The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signalling in gastric cancer. *J Clin Invest* 2024; 134: e174587.

[41] Dong W, Huang SX, Qin ML and Pan Z. Mitochondrial alanyl-tRNA synthetase 2 mediates histone lactylation to promote ferroptosis in intestinal ischemia-reperfusion injury. *World J Gastrointest Surg* 2025; 17: 106777.

[42] Mao Y, Zhang J, Zhou Q, He X, Zheng Z, Wei Y, Zhou K, Lin Y, Yu H, Zhang H, Zhou Y, Lin P, Wu B, Yuan Y, Zhao J, Xu W and Zhao S. Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation. *Cell Res* 2024; 34: 13-30.

[43] Moreno-Yruela C, Zhang D, Wei W, Baek M, Liu W, Gao J, Dankova D, Nielsen AL, Bolding JE, Yang L, Jameson ST, Wong J, Olsen CA and Zhao Y. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. *Sci Adv* 2022; 8: eabi6696.

[44] Liu S, Cai J, Qian X, Zhang J, Zhang Y, Meng X, Wang M, Gao P and Zhong X. TPX2 lactylation is required for the cell cycle regulation and hepatocellular carcinoma progression. *Life Sci Alliance* 2025; 8: e202402978.

[45] He X, Li Y, Li J, Li Y, Chen S, Yan X, Xie Z, Du J, Chen G, Song J and Mei Q. HDAC2-Mediated METTL3 delactylation promotes DNA damage repair and chemotherapy resistance in triple-negative breast cancer. *Adv Sci (Weinh)* 2025; 12: e2413121.

[46] Zhao Z, Zhang Z, Cai Q, Yang R, Liang H, Qian B, Xiao B, Jiang Y, Wang L, Wang X and Cai J. Lactylation increases the stability of RBM15 to drives m6A modification in non-small-cell lung cancer cells. *FASEB J* 2025; 39: e70493.

[47] Sun S, Xu Z, He L, Shen Y, Yan Y, Lv X, Zhu X, Li W, Tian WY, Zheng Y, Lin S, Sun Y and Li L. Metabolic regulation of cytoskeleton functions by HDAC6-catalyzed alpha-tubulin lactylation. *Nat Commun* 2024; 15: 8377.

[48] Du R, Gao Y, Yan C, Ren X, Qi S, Liu G, Guo X, Song X, Wang H, Rao J, Zang Y, Zheng M, Li J and Huang H. Sirtuin 1/sirtuin 3 are robust lysine delactylases and sirtuin 1-mediated de-lactylation regulates glycolysis. *iScience* 2024; 27: 110911.

[49] Liu R, Ren X, Park YE, Feng H, Sheng X, Song X, AminiTabrizi R, Shah H, Li L, Zhang Y, Abdullah KG, Dubois-Coyne S, Lin H, Cole PA, DeBerardinis RJ, McBryer SK, Huang H and Zhao Y. Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis. *Cell Metab* 2025; 37: 377-394, e379.

[50] Zhu R, Ye X, Lu X, Xiao L, Yuan M, Zhao H, Guo D, Meng Y, Han H, Luo S, Wu Q, Jiang X, Xu J, Tang Z, Tao YJ and Lu Z. ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion. *Cell Metab* 2025; 37: 361-376, e367.

[51] Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, Zhao F, Wang Z, Yang X, Jin M, Huang B, Ding X, Li R, Yang J, He Y, Wang Q, Wang W, Kloeber JA, Li Y, Hao B, Zhang Y, Wang J, Tan M, Li K, Wang P, Lou Z and Yuan J. Metabolic regulation of homologous recombination repair by MRE11 lactylation. *Cell* 2024; 187: 294-311, e221.

[52] Zong Z, Xie F, Wang S, Wu X, Zhang Z, Yang B and Zhou F. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. *Cell* 2024; 187: 2375-2392, e2333.

[53] Chen H, Li Y, Li H, Chen X, Fu H, Mao D, Chen W, Lan L, Wang C, Hu K, Li J, Zhu C, Evans I, Cheung E, Lu D, He Y, Behrens A, Yin D and Zhang C. NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. *Nature* 2024; 631: 663-669.

[54] Li H, Liu C, Li R, Zhou L, Ran Y, Yang Q, Huang H, Lu H, Song H, Yang B, Ru H, Lin S and Zhang L. AARS1 and AARS2 sense L-lactate to regulate cGAS as global lysine lactyltransferases. *Nature* 2024; 634: 1229-1237.

[55] Zampaoglou E, Boureka E, Gounari E, Liasidi PN, Kalogiannidis I, Tsimtsiou Z, Haidich AB, Tsakiridis I and Dagklis T. Screening for cervi-

cal cancer: a comprehensive review of guidelines. *Cancers (Basel)* 2025; 17: 2072.

[56] Li Y, Deng J, Liu Y and Yu S. HPV infection and the immune microenvironment in cervical cancer. *Front Immunol* 2025; 16: 1645019.

[57] Li ML, Qi JL, Ma YQ, Shu W, Xiao HD, Wang LJ, Yin P, Guo HY, Vermund SH, Zhou MG and Hu YF. National age-specific mortality trends for cervical and breast cancers in urban-rural areas of China from 2009 to 2021: a population-based analysis. *Mil Med Res* 2024; 11: 55.

[58] Soumarova R and Havlik J. Current complex treatment for cervical cancer. *Klin Onkol* 2025; 38: 185-191.

[59] Li X, Zhou M, Yu J, Yu S and Ruan Z. Histone modifications in cervical cancer: epigenetic mechanisms, functions and clinical implications (Review). *Oncol Rep* 2025; 54: 131.

[60] Eto M. Rediscovery of PHI-1/PPP1R14B: emerging roles of cellular PP1 signaling mediated by the PPP1R14B gene product in multiple cancers and beyond. *Biomolecules* 2025; 15: 344.

[61] Xiang N, Chen T, Zhao X and Zhao M. In vitro assessment of roles of PPP1R14B in cervical and endometrial cancer. *Tissue Cell* 2022; 77: 101845.

[62] He C, Zhang J, Bai X, Lu C and Zhang K. Lysine lactylation-based insight to understanding the characterization of cervical cancer. *Biochim Biophys Acta Mol Basis Dis* 2024; 1870: 167356.

[63] Yang K, Nong J, Xie H, Wan Z, Zhou X, Liu J, Qin C, Luo J, Zhu G and Peng T. DPF2 overexpression correlates with immune infiltration and dismal prognosis in hepatocellular carcinoma. *J Cancer* 2024; 15: 4668-4685.

[64] Zhai G, Niu Z, Jiang Z, Zhao F, Wang S, Chen C, Zheng W, Wang A, Zang Y, Han Y and Zhang K. DPF2 reads histone lactylation to drive transcription and tumorigenesis. *Proc Natl Acad Sci U S A* 2024; 121: e2421496121.

[65] Oh S, Mai XL, Kim J, de Guzman ACV, Lee JY and Park S. Glycerol 3-phosphate dehydrogenases (1 and 2) in cancer and other diseases. *Exp Mol Med* 2024; 56: 1066-1079.

[66] Huang C, Xue L, Lin X, Shen Y and Wang X. Histone lactylation-driven GPD2 mediates M2 macrophage polarization to promote malignant transformation of cervical cancer progression. *DNA Cell Biol* 2024; 43: 605-618.

[67] Schmoker AM, Ebert AM and Ballif BA. The DCBLD receptor family: emerging signaling roles in development, homeostasis and disease. *Biochem J* 2019; 476: 931-950.

[68] Shen Z, Li M, Zhu H and Song T. TBP activates DCBLD1 transcription to promote cell cycle progression in cervical cancer. *Funct Integr Genomics* 2024; 24: 221.

[69] Shen Q, Qiu L, Zhou Y, Wang L, Pan J, Zhang X, Chen Y, Yao H, Wang J and Yu X. Pan-cancer analysis of DCBLD1 and its association with the diagnosis, immunotherapy, and prognosis of cervical cancer. *Int Immunopharmacol* 2025; 148: 114167.

[70] Meng Q, Sun H, Zhang Y, Yang X, Hao S, Liu B, Zhou H, Xu ZX and Wang Y. Lactylation stabilizes DCBLD1 activating the pentose phosphate pathway to promote cervical cancer progression. *J Exp Clin Cancer Res* 2024; 43: 36.

[71] Ahamed A, Hosea R, Wu S and Kasim V. The emerging roles of the metabolic regulator G6PD in human cancers. *Int J Mol Sci* 2023; 24: 17238.

[72] Wang C, Yu C, Chang H, Song J, Zhang S, Zhao J, Wang J, Wang T, Qi Q and Shan C. Glucose-6-phosphate dehydrogenase: a therapeutic target for ovarian cancer. *Expert Opin Ther Targets* 2023; 27: 733-743.

[73] Meng Q, Zhang Y, Hao S, Sun H, Liu B, Zhou H, Wang Y and Xu ZX. Recent findings in the regulation of G6PD and its role in diseases. *Front Pharmacol* 2022; 13: 932154.

[74] Hu T, Li YS, Chen B, Chang YF, Liu GC, Hong Y, Chen HL and Xiyang YB. Elevated glucose-6-phosphate dehydrogenase expression in the cervical cancer cases is associated with the cancerigenic event of high-risk human papillomaviruses. *Exp Biol Med (Maywood)* 2015; 240: 1287-1297.

[75] Fang Z, Jiang C, Feng Y, Chen R, Lin X, Zhang Z, Han L, Chen X, Li H, Guo Y and Jiang W. Effects of G6PD activity inhibition on the viability, ROS generation and mechanical properties of cervical cancer cells. *Biochim Biophys Acta* 2016; 1863: 2245-2254.

[76] Hu T, Chang YF, Xiao Z, Mao R, Tong J, Chen B, Liu GC, Hong Y, Chen HL, Kong SY, Huang YM, Xiyang YB and Jin H. miR-1 inhibits progression of high-risk papillomavirus-associated human cervical cancer by targeting G6PD. *Oncotarget* 2016; 7: 86103-86116.

[77] Cui J, Pan Y, Wang J, Liu Y, Wang H and Li H. MicroRNA-206 suppresses proliferation and predicts poor prognosis of HR-HPV-positive cervical cancer cells by targeting G6PD. *Oncol Lett* 2018; 16: 5946-5952.

[78] Chang YF, Yan GJ, Liu GC, Hong Y, Chen HL, Jiang S, Zhong Y, Xiyang YB and Hu T. HPV16 E6 promotes the progression of HPV infection-associated cervical cancer by upregulating glucose-6-phosphate dehydrogenase expression. *Front Oncol* 2021; 11: 718781.

[79] Zhang J, Dong W, Yang Q, Liu LN, Cai XL, Wang D, Yan GJ, Xiyang YB, Hu T and Zhang J. Dysregulation of G6PD by HPV E6 exacerbates cervical cancer by activating the STAT3/PLD2 pathway. *Carcinogenesis* 2025; 46: bgaf005.

[80] Meng Q, Zhang Y, Sun H, Yang X, Hao S, Liu B, Zhou H, Wang Y and Xu ZX. Human papillomavirus-16 E6 activates the pentose phosphate pathway to promote cervical cancer cell proliferation by inhibiting G6PD lactylation. *Redox Biol* 2024; 71: 103108.

[81] Caruso G, Weroha SJ and Cliby W. Ovarian cancer: a review. *JAMA* 2025; 334: 1278-1291.

[82] Wang L, Zhang Q, Wang X, Dong Z, Liu S, Wang Q, Zhang Z and Xing J. Therapeutic landscape of ovarian cancer: recent advances and emerging therapies. *Biomark Res* 2025; 13: 103.

[83] Garg P, Singhal G, Pareek S, Khan A, Tan T, Wheeler D and Singhal SS. Role of immunotherapy in ovarian cancer: advances, challenges, and future perspectives. *Cancer Treat Res* 2025; 129: 187-220.

[84] Yu L, Jing C, Zhuang S, Ji L and Jiang L. A novel lactylation-related gene signature for effectively distinguishing and predicting the prognosis of ovarian cancer. *Transl Cancer Res* 2024; 13: 2497-2508.

[85] Zheng C, Tan H, Niu G, Huang X, Lu J, Chen S, Li H, Zhu J, Zhou Z, Xu M, Pan C, Liu J and Li J. ACAT1-Mediated ME2 acetylation drives chemoresistance in ovarian cancer by linking glutaminolysis to lactate production. *Adv Sci (Weinh)* 2025; 12: e2416467.

[86] Ren F, Pang X, Jin F, Luan N, Guo H and Zhu L. Integration of scRNA-seq and bulk RNA-seq to reveal the association and potential molecular mechanisms of metabolic reprogramming regulated by lactylation and chemotherapy resistance in ovarian cancer. *Front Immunol* 2025; 16: 1513806.

[87] Chao J, Chen GD, Huang ST, Gu H, Liu YY, Luo Y, Lin Z, Chen ZZ, Li X, Zhang B, Xu X and He S. High histone H3K18 lactylation level is correlated with poor prognosis in epithelial ovarian cancer. *Neoplasma* 2024; 71: 319-332.

[88] Sun J, Feng Q, He Y, Wang M and Wu Y. Lactate activates CCL18 expression via H3K18 lactylation in macrophages to promote tumorigenesis of ovarian cancer. *Acta Biochim Biophys Sin (Shanghai)* 2024; 56: 1373-1386.

[89] Hu X, Huang Z and Li L. LDHB Mediates Histone Lactylation to activate PD-L1 and promote ovarian cancer immune escape. *Cancer Invest* 2025; 43: 70-79.

[90] Lu B, Chen S, Guan X, Chen X, Du Y, Yuan J, Wang J, Wu Q, Zhou L, Huang X and Zhao Y. Lactate accumulation induces H4K12la to activate super-enhancer-driven RAD23A expression and promote niraparib resistance in ovarian cancer. *Mol Cancer* 2025; 24: 83.

[91] Wang H, Penalosa T, Manea AJ and Gao X. PFKP: more than phosphofructokinase. *Adv Cancer Res* 2023; 160: 1-15.

[92] Lang L, Chemmalakuzhy R, Shay C and Teng Y. PFKP signaling at a glance: an emerging mediator of cancer cell metabolism. *Adv Exp Med Biol* 2019; 1134: 243-258.

[93] Wang X, Xie C and Lu C. Identification and analysis of gene biomarkers for ovarian cancer. *Genet Test Mol Biomarkers* 2024; 28: 70-81.

[94] Li N, Li H, Wang Y, Cao L and Zhan X. Quantitative proteomics revealed energy metabolism pathway alterations in human epithelial ovarian carcinoma and their regulation by the anti-parasite drug ivermectin: data interpretation in the context of 3P medicine. *EPMA J* 2020; 11: 661-694.

[95] Mi J, Zhao L, Shen Y, Mo S and Kuang Y. PFKP lactylation promotes the ovarian cancer progression through targeting PTEN. *Biochem Genet* 2025; 63: 5294-5311.

[96] Ramirez-Otero MA and Costanzo V. "Bridging the DNA divide": Understanding the interplay between replication- gaps and homologous recombination proteins RAD51 and BRCA1/2. *DNA Repair (Amst)* 2024; 141: 103738.

[97] Kausar MA, Alshammari KF, Alenazi F, Anwar S, Khalifa AM, Ginawi T, Asiri A, Najm MZ, Rabbaní SA, El-Tanani M and Gantayat S. RAD51 and PALB2 in precision oncology: clinical implications for HRD associated breast and ovarian cancers (Review). *Int J Oncol* 2025; 67: 65.

[98] Zhang J, Zhou P, Wu T, Zhang L, Kang J, Liao J, Jiang D, Hu Z, Han Z and Zhou B. Metformin combined with cisplatin reduces anticancer activity via ATM/CHK2-dependent upregulation of Rad51 pathway in ovarian cancer. *Neoplasia* 2024; 57: 101037.

[99] Kim YN, Kim K, Joung JG, Kim SW, Kim S, Lee JY and Park E. RAD51 as an immunohistochemistry-based marker of poly (ADP-ribose) polymerase inhibitor resistance in ovarian cancer. *Front Oncol* 2024; 14: 1351778.

[100] Tao L, Zhou Y, Pan X, Luo Y, Qiu J, Zhou X, Chen Z, Li Y, Xu L, Zhou Y, Zuo Z, Liu C, Wang L, Liu X, Tian X, Su N, Yang Z, Zhang Y, Gou K, Sang N, Liu H, Zou J, Xiao Y, Zhong X, Xu J, Yang X, Xiao K, Liu Y, Yang S, Peng Y, Han J, Cen X and Zhao Y. Repression of LSD1 potentiates homologous recombination-proficient ovarian cancer to PARP inhibitors through down-regulation of BRCA1/2 and RAD51. *Nat Commun* 2023; 14: 7430.

[101] Sun C, Li X, Teng Q, Liu X, Song L, Schiott HB, Wu H, Ma X, Zhang Z, Qi C, Zhang H, Song K, Zhang Q and Kong B. Targeting platinum-resistant ovarian cancer by disrupting histone and RAD51 lactylation. *Theranostics* 2025; 15: 3055-3075.

[102] DiSipio T, Turner J, Da Silva W, Driscoll E, Preston M, Tran K, Varnier-Lui N, Yeoh HL, Kaur D, Alsop K, Hayes SC, Janda M and Spence

RR. Understanding contemporary endometrial cancer survivorship issues: umbrella review and healthcare professional survey. *Cancers (Basel)* 2025; 17: 2696.

[103] Balhara N, Yadav R and Chauhan MB. Role of signaling pathways in endometrial cancer. *Mol Biol Rep* 2025; 52: 408.

[104] Yin Y and Luo M. Lactylation-related risk model for prognostication and therapeutic responsiveness in uterine corpus endometrial carcinoma. *Discov Oncol* 2025; 16: 677.

[105] Chen L, Xia M, Wen W, Yuan L, Jia Y, Zhao X, Fan H, Liu S, Liu T, Liu P, Jiang H, Wang W, Liao Y, Zhang C and Yao S. Identification and validation of a novel lactylation-related gene signature to predict the prognosis of endometrial cancer. *Discov Oncol* 2025; 16: 862.

[106] Gu L, Zhang C, Xu M, Peng F, Huang RH and Luo D. Prognostic value and immune infiltration analysis of a novel lactylation-related gene signature in endometrial cancer. *Biochem Biophys Rep* 2025; 42: 102056.

[107] Li J, Zhong J, Ye J, Xiang Y and Wang X. USP39: a key regulator in malignant tumor progression. *Front Oncol* 2025; 15: 1556011.

[108] Wei S, Zhang J, Zhao R, Shi R, An L, Yu Z, Zhang Q, Zhang J, Yao Y, Li H and Wang H. Histone lactylation promotes malignant progression by facilitating USP39 expression to target PI3K/AKT/HIF-1alpha signal pathway in endometrial carcinoma. *Cell Death Discov* 2024; 10: 121.

[109] Huang Y, Che X, Wang PW and Qu X. p53/MDM2 signaling pathway in aging, senescence and tumorigenesis. *Semin Cancer Biol* 2024; 101: 44-57.

[110] Casanova J, Babiciu A, Duarte GS, da Costa AG, Serra SS, Costa T, Catarino A, Leitao MM Jr. and Lima J. Abnormal p53 high-grade endometrioid endometrial cancer: a systematic review and meta-analysis. *Cancers (Basel)* 2024; 17: 38.

[111] Liu J, Li Y, Ma R, Chen Y, Wang J, Zhang L, Wang B, Zhang Z, Huang L, Zhang H, Wan J and Liu H. Cold atmospheric plasma drives USP49/HDAC3 axis mediated ferroptosis as a novel therapeutic strategy in endometrial cancer via reinforcing lactylation dependent p53 expression. *J Transl Med* 2025; 23: 442.

[112] Yuan R, Wang J, Zhang S, Xu Z and Song L. Phosphofructokinase-1 redefined: a metabolic hub orchestrating cancer hallmarks through multi-dimensional control networks. *J Transl Med* 2025; 23: 873.

[113] Gao W, Huang M, Chen X, Chen J, Zou Z, Li L, Ji K, Nie Z, Yang B, Wei Z, Xu P, Jia J, Zhang Q, Shen H, Wang Q, Li K, Zhu L, Wang M, Ye S, Zeng S, Lin Y, Rong Z, Xu Y, Zhu P, Zhang H, Hao B and Liu Q. The role of S-nitrosylation of PFKM in regulation of glycolysis in ovarian cancer cells. *Cell Death Dis* 2021; 12: 408.

[114] Zhou Y, Lin F, Wan T, Chen A, Wang H, Jiang B, Zhao W, Liao S, Wang S, Li G, Xu Z, Wang J, Zhang J, Ma H, Lin D and Li Q. ZEB1 enhances Warburg effect to facilitate tumorigenesis and metastasis of HCC by transcriptionally activating PFKM. *Theranostics* 2021; 11: 5926-5938.

[115] Wu X, Wang B, Hou Y, Fang Y, Jiang Y, Song Y, Liu Y and Jin C. PFKM-mediated glycolysis: a pathway for ASIC1 to enhance cell survival in the acidic microenvironment of liver cancer. *Biomolecules* 2025; 15: 356.

[116] Wang B, Ma J and Yang D. Role of PFKM lactylation in glycolysis regulation in endometrial cancer cells. *Genes Dis* 2024; 12: 101400.

[117] Qiu Y, Wen J, Jia N, Zhang Y, Xu J and Zhao C. Decoding the lactylation landscape: implications for tumor microenvironment remodeling and marine algal saccharide-based therapeutic interventions. *Phytomedicine* 2025; 147: 157169.

[118] Qiu Y and Shao X. Histone lactylation in diseases: regulation by traditional Chinese medicine and therapeutic implications. *Drug Des Devel Ther* 2025; 19: 6435-6459.

[119] Ke L, Zhong C, Chen Z, Zheng Z, Li S, Chen B, Wu Q and Yao H. Tanshinone I: pharmacological activities, molecular mechanisms against diseases and future perspectives. *Phytomedicine* 2023; 110: 154632.

[120] Huang X, Jin L, Deng H, Wu D, Shen QK, Quan ZS, Zhang CH and Guo HY. Research and development of natural product tanshinone I: pharmacology, total synthesis, and structure modifications. *Front Pharmacol* 2022; 13: 920411.

[121] Dun S and Gao L. Tanshinone I attenuates proliferation and chemoresistance of cervical cancer in a KRAS-dependent manner. *J Biochem Mol Toxicol* 2019; 33: e22267.

[122] Zhou J, Jiang YY, Wang HP, Chen H, Wu YC, Wang L, Pu X, Yue G and Zhang L. Natural compound Tan-I enhances the efficacy of Paclitaxel chemotherapy in ovarian cancer. *Ann Transl Med* 2020; 8: 752.

[123] Jin Z, Yun L and Cheng P. Tanshinone I reprograms glycolysis metabolism to regulate histone H3 lysine 18 lactylation (H3K18la) and inhibits cancer cell growth in ovarian cancer. *Int J Biol Macromol* 2025; 291: 139072.

[124] Solanki R and Patel S. Evodiamine and its nano-based approaches for enhanced cancer therapy: recent advances and challenges. *J Sci Food Agric* 2024; 104: 8430-8444.

[125] Panda M, Tripathi SK, Zengin G and Biswal BK. Evodiamine as an anticancer agent: a comprehensive review on its therapeutic application, pharmacokinetic, toxicity, and metabolism in various cancers. *Cell Biol Toxicol* 2023; 39: 1-31.

Lactylation in gynecological cancer

[126] Yu Y, Huang X, Liang C and Zhang P. Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer. *Eur J Pharmacol* 2023; 957: 176007.

[127] Ma X, Cheng M, Jia Y, Zhang K, Zhang H, Feng D, Xu W and Qiao G. Demethylzeylasterol suppresses the expression of MESP1 by reducing H3K18la level to inhibit the malignant behaviors of pancreatic cancer. *Cell Death Discov* 2025; 11: 305.

[128] Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, Wang Q, Liang Y and Lu L. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-beta signaling in regulatory T cells. *Cell Rep* 2022; 39: 110986.

[129] Li XM, Yang Y, Jiang FQ, Hu G, Wan S, Yan WY, He XS, Xiao F, Yang XM, Guo X, Lu JH, Yang XQ, Chen JJ, Ye WL, Liu Y, He K, Duan HX, Zhou YJ, Gan WJ, Liu F and Wu H. Histone lactylation inhibits RAR γ expression in macrophages to promote colorectal tumorigenesis through activation of TRAF6-IL-6-STAT3 signaling. *Cell Rep* 2024; 43: 113688.

[130] Cai J, Song L, Zhang F, Wu S, Zhu G, Zhang P, Chen S, Du J, Wang B, Cai Y, Yang Y, Wan J, Zhou J, Fan J and Dai Z. Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma. *Cancer Commun (Lond)* 2024; 44: 1231-1260.

[131] Sun K, Zhang X, Shi J, Huang J, Wang S, Li X, Lin H, Zhao D, Ye M, Zhang S, Qiu L, Yang M, Liao C, He L, Lao M, Song J, Lu N, Ji Y, Yang H, Liu L, Liu X, Chen Y, Yao S, Xu Q, Lin J, Mao Y, Zhou J, Zhi X, Sun K, Lu X, Bai X and Liang T. Elevated protein lactylation promotes immunosuppressive microenvironment and therapeutic resistance in pancreatic ductal adenocarcinoma. *J Clin Invest* 2025; 135: e187024.

[132] Peng J, Jiang Z, Song J, Chen J, Fu Z, Zhang H, Zhen J, Tuerdi M, Luo M, Wu J and Sun T. Identification of lactylation-related hub genes as novel therapeutic and diagnostic targets for thoracic aortic dissection. *Cell Signal* 2025; 134: 111944.

[133] Xing Z, Yang T, Li X, Xu H, Hong Y, Shao S, Li T, Ye L, Li Y, Jin X and Wei Y. High-glucose-associated YTHDC1 lactylation reduces the sensitivity of bladder cancer to enfortumab vedotin therapy. *Cell Rep* 2025; 44: 115545.

[134] Bekes M, Langley DR and Crews CM. PROTAC targeted protein degraders: the past is prologue. *Nat Rev Drug Discov* 2022; 21: 181-200.

[135] Gunasekaran P, Shin SC, Hwang YS, Lee J, La YK, Yim MS, Kim HN, Kim TW, Yang E, Lee SJ, Yoon JM, Kim EE, Jeon S, Ryu EK and Bang JK. N-degron-based PROTAC targeting PLK1: a potential therapeutic strategy for cervical cancer. *Pharmaceutics* 2025; 17: 1027.

[136] Smalley TB, Nicolaci AA, Tran KC, Lokhandwala J, Obertopp N, Matlack JK, Miner RE 3rd, Teng MN, Pilon-Thomas S and Binning JM. Targeted degradation of the HPV oncoprotein E6 reduces tumor burden in cervical cancer. *Mol Ther* 2025; 33: 5415-5426.

[137] Shi YY, Wang AJ, Liu XL, Dai MY and Cai HB. Stapled peptide PROTAC induced significantly greater anti-PD-L1 effects than inhibitor in human cervical cancer cells. *Front Immunol* 2023; 14: 1193222.