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Abstract: Gemcitabine (Gem) is approved for use in pancreatic cancer chemotherapy. However, Gem undergoes 
rapid metabolism in the blood, producing an inactive metabolite. Due to this rapid metabolism, the effective dose of 
Gem is high, thereby predisposing patients to severe adverse effects. This study aimed to improve Gem’s metabolic 
and therapeutic stability by modifying the amine group (4-NH2) with hydroxylamine to form 4-N-hydroxylGem hydro-
chloride (GemAGY). Micro-elemental analysis and Nuclear Magnetic Resonance (NMR) were used to characterize 
GemAGY, and its anticancer activity was investigated against MiaPaCa-2, BxPC-3, and PANC-1 pancreatic cancer 
cell lines. The GemAGY metabolic stability was evaluated in human liver microsomal solution. In the 2D cytotoxicity 
assay, the IC50 values of GemAGY-treated MiaPaCa-2, PANC-1, and BxPC-3 cells were significantly lower when com-
pared to GemHCl-treated cultures. More so, in 3D spheroid assay results, GemAGY IC50 values were found to be 9.5 
± 1.1 µM and 12.6 ± 1.0 µM when compared to GemHCl IC50 values of 24.1 ± 1.6 µM and 30.2 ± 1.8 µM in Mia-
PaCa-2 and PANC-1 cells, respectively. GemAGY was stable, with 60% remaining intact after 2 hours of digestion in 
microsomal enzymes, compared to GemHCl, which had less than 45% remaining intact after 30 minutes. GemAGY-
treated MiaPaCa-2 and PANC-1 cells at 3.12 and 6.25 μΜ concentrations demonstrated a significantly reduced cell 
migration towards the wound area compared to the GemHCl-treated cultures at the same concentrations. Further, 
GemAGY-treated MiaPaCa-2 cells significantly increased the expression of p53 and BAX compared to GemHCl-
treated cells. GemAGY demonstrated significant anticancer activity and improved metabolic stability compared to 
GemHCl and is most likely to have potential anticancer activity against pancreatic cancer.

Keywords: Gemcitabine analog, 4-N-hydroxylGem hydrochloride, pancreatic cancer, synthesis, cytotoxicity, meta-
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Introduction

Pancreatic cancer is a disease of national 
importance in the United States because pan-
creatic cancer is the fourth leading cause of 
cancer death in men and women of all ages. In 
both sexes, the rate of new cases of pancreatic 
cancer has increased steadily by around 1% 
each year since the 1990s. In 2024, it is esti-
mated that over 66,000 adults in the United 
States will be diagnosed with pancreatic can-
cer, and over 51,750 people (24,480 women 
and 27,270 men) will die of pancreatic cancer. 
The disease accounts for approximately 3% of 
all cancers [1]. In recent years, progress has 

been made in the early detection and treatment 
of pancreatic cancer [2]. Despite the progress 
made in the last decade, the overall median 
survival of this deadly malignancy is less than 
one year [2, 3], and when compared with many 
other cancers, pancreatic cancer has an accu-
mulated five-year survival rate of about 5 to 10 
percent, which is very low [4]. This is primarily 
attributed to the late detection and less effec-
tive therapies for pancreatic cancer [5].

Among the modalities of pancreatic cancer 
treatment, surgical resection combined with 
adjuvant systemic chemotherapy currently pro-
vides a higher chance of long-term survival [6, 
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7]. Hence, chemotherapy remains an important 
treatment option for pancreatic cancer patients 
[2, 8]. In considering chemotherapy, the first-
line treatment option used clinically for people 
with locally advanced or metastatic pancreatic 
cancer includes the use of FOLFIRINOX (5-FU, 
leucovorin, irinotecan, and oxaliplatin) and Gem 
plus nab-paclitaxel. However, severe adverse 
effects have limited their use [8, 9].

Gem, a pyrimidine nucleotide antimetabolite, 
was approved by the Food and Drug Admi- 
nistration (FDA) for use as a monotherapy for 
the treatment of inoperable pancreatic cancer 
for decades following a promising randomized 
controlled trial of Gem versus 5-fluorouracil 
(5-FU) [10, 11]. Burris and colleagues reported 
that Gem had a higher efficacy than 5-FU in 
ameliorating some disease-attributable symp-
toms in patients with metastatic, symptomatic 
pancreatic cancer [12]. In evaluating its effec-
tiveness, Gem was found to reduce cancer-
related pain, contribute to an increased Kar- 
nofsky’s performance score and quality of life, 
and subsequently result in a moderate im- 
provement in survival time [13, 14]. After ad- 
ministration, Gem enters the cancer cell, and 
this step is followed by an initial phosphoryla-
tion mediated by the enzymes deoxycytidine 
kinase (dCK) and the extra-mitochondrial thy-
midine kinase 2 [15]. Subsequently, a series of 
phosphorylation steps are taken for Gem to be 
incorporated into both Deoxyribonucleic acid 
(DNA) and Ribonucleic acid (RNA) as its active 
phosphorylated form, which is Gem triphos-
phate (dFdCTP) [15]. Moreover, Ribonucleotide 
Reductase (RR), an enzyme in the nucleotide 
pathway that is responsible for enabling cancer 
cells to manage their pools of deoxynucleo-
tides, is also inhibited by Gem diphosphate 
(dFdCDP) [15].

Despite Gem’s modest improvement in cancer 
survival rate, following its systemic administra-
tion, Gem is rapidly metabolized to the inactive 
metabolite (2’,2’-difluorouridine) by the enzyme 
cytidine deaminase. This process is known to 
shorten Gem’s half-life and decrease its sys-
temic stability, which eventually limits Gem’s 
anticancer effect and application in clinical set-
tings [16]. Owing to its poor systemic stability 
(plasma circulation half-life < 12 min) and rapid 
metabolism [16], Gem is usually administered 

at high doses (usually 1,000 mg/m2) for 30 
minutes via an intravenous infusion to im- 
prove its therapeutic levels [16], thereby caus-
ing severe adverse effects which present as 
renal, hematological, hepatic, and pulmonary 
toxicities [16].

Numerous pieces of evidence from the litera-
ture have demonstrated that the limited effica-
cy of Gem is primarily due to the deamination of 
its 4-NH2 group by cytidine deaminase in the 
blood [17, 18]. Another limitation of this drug is 
that, after initial cancer remission, some can-
cerous cells may develop various types of drug 
resistance, for instance, resistance related to 
nucleoside transporter deficiency [17].

Despite the challenges associated with Gem, 
this drug remains the backbone of numerous 
regimens for chemotherapy, and diverse strate-
gies or approaches have been developed to 
improve its clinical efficacy and stability [19]. 
One such approach is the chemical modifica-
tion of drugs employed to address some meta-
bolic stability issues associated with a drug. 
For example, some anticancer agents such as 
paclitaxel and Gem have been chemically mo- 
dified (Paclitaxel was chemically modified to 
form paclitaxel-2’-O-3-pentadecylhemiglutara- 
te, 10-Deacetylpaclitaxel, and Gem to PEG-ge- 
mcitabine, 4-(N)-stearoyl-gemcitabine, and 4- 
(N)-Tris-nor-squalenoylgemcitabine) to enhance 
their metabolic stability [20-22], increase half-
life [22, 23], improve cellular uptake [22], and 
prolong cell retention [22].

Overall, we designed, synthesized, and evalu-
ated GemAGY’s metabolic stability and antican-
cer activity in this study.

Materials and methods

Materials

All analytical-grade reagents and chemicals 
were purchased from Sigma-Aldrich (St. Louis, 
Missouri, USA), and we purchased GemHCl 
(Gemcitabine Hydrochloride) from AK Scientific 
(Union City, CA). Pancreatic cancer cell lines 
MiaPaCa-2 (ATCC® CRL1420TM), BxPC-3 (ATCC® 
CRL-1687TM), and PANC-1 (ATCC® CRL1469TM) 
were bought from American Type Culture 
Collection (ATCC) (Manassas, VA).
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Synthesis and characterization of GemAGY

Chemistry

The synthesis of GemAGY started from Gem- 
HCl with multiple steps of transformations, as 
depicted in Scheme 1. Protection of the prima-
ry hydroxy group by conversion of GemHCl into 
its 5’-TBDMS silyl ether was finished quantita-
tively. Transformation of the 4-NH2 amine into 
its 4-dimethylamino imine Gem 1 by condensa-
tion of Gem 5’-TBDMS silyl ether with DMF-DMA 
(N, N-Dimethylformamide dimethyl acetal). The 
reaction was conducted by refluxing the tolu-
ene solution, and the reaction was monitored 
by TLC till the complete disappearance of the 
starting material Gem 5’-TBDMS silyl ether in 
two hours. Hydroxylamine was installed by 
refluxing 4-dimethylamino imine Gem 1 with 
hydroxylamine hydrochloride in butanol/H2O 
(1:1). At the same time, the 5’-TBDMS silyl  
ether was removed to provide 4-N-hydroxyl 
Gem free base which then was converted into 
its HCl salt GemAGY.

Experimental

Unless otherwise specified, the reagents were 
purchased from commercial suppliers and 
used without further purification. NMR (Nuclear 
Magnetic Resonance) spectra were recorded 
on a Mercury 300 spectrometer operating at 
300 (1H NMR) and Bruker 600 MHz (13C NMR) 
in DMSO-d6 or CDCl3. All 1H and 13C NMR chemi-
cal shifts were reported in parts per million and 

coupling constants J are given in Hz. The follow-
ing abbreviations are used to describe peak 
patterns where appropriate: singlet (s), dou- 
blet (d), triplet (t), quartet (q), multiplet (m), and 
broad resonances (BR). All reactions were  
monitored by TLC (silica gel GF254, Merck, 
Kenilworth, New Jersey), and spots were visual-
ized with UV light. Flash column chromatogra-
phy on silica gel (200-300 mesh) was used for 
the routine purification of reaction products. 
Elemental analysis was done by Atlantic 
Microlab (Norcross GA).

4-amino-1-((2R,4R,5R)-5-(((tert-butyldimethyls-
ilyl)oxy)methyl)-3,3-difluoro-4-hydroxytetrahy-
drofuran-2-yl)pyrimidin-2(1H)-one: To a solu-
tion of GemHCl (3.0 g, 10 mmol) in pyridine  
(20 mL) was added TBDMSCl (1.7 g, 11.3 
mmol) at room temperature. After stirring for 
12 hrs at room temperature, the reaction solu-
tion was diluted with EtOAc (300 mL) and 
washed with 10% HCl solution (200 mL), water 
(2 × 200 mL), sat. NaHCO3 (50 mL). The organic 
layer was dried over Na2SO4 and filtered. The 
filtrate was concentrated in vacuo and follow- 
ed by column chromatography on silica gel 
afforded Gem 5’-TBDMS silyl ether, 3.76 g, in a 
yield of 100%.

1H NMR (DMSO-d6): δ 7.60 (1H, d, J = 6.9 Hz), 
7.35 (2H, s), 6.30 (1H, d, J = 6.0 Hz), 6.11 (1H, 
t, J = 8.1 Hz), 5.73 (1H, d, J = 7.5 Hz), 4.02-4.14 
(1H, m), 3.92 (1H, d, J = 11.2 Hz), 3.76-3.85 
(2H, m), 0.88 (9H, s), 0.07 (6H, s).

Scheme 1. Synthesis of GemAGY. Reagents and conditions: a) Pyridine, TBDMSCl, rt, 12 hrs; b) DMF-DMA, Toluene, 
reflux, 2 hrs; c) NH2OH·HCl, Butanol/H2O (1:1), reflux, 12 hrs; d) con. HCl, MeOH, rt.
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1-((2R,4R,5R)-5-(((tert-butyldimethylsilyl)oxy)
methyl)-3,3-difluoro-4-hydroxytetrahydrofu-
ran-2-yl)-4-(((dimethylamino)-l3-methylene)
amino)pyrimidin-2(1H)-one: A solution of Gem 
5’-TBDMS silyl ether (1.9 g, 5 mmol) and DMF-
DMA (1.2 g, 10 mmol) in toluene (20 mL) was 
refluxed for 2 hrs. After cooling to room tem-
perature, the reaction was directly purified 
through column chromatography on silica gel 
afforded 4-dimethylamino imine Gem 1, 1.92 
g, in a yield of 90%.

1H NMR (CDCl3): δ 8.80 (1H, s), 7.84 (1H, d, J = 
7.8 Hz), 7.26 (1H, s), 6.40 (1H, dd, J = 6.6, 8.7 
Hz), 6.03 (1H, d, J = 7.2 Hz), 4.37 (1H, td, J = 
7.5, 11.7 Hz), 3.95-4.04 (2H, m), 3.90 (1H, dd, 
J = 1.5, 11.4 Hz), 3.16 (3H, s), 3.12 (3H, s), 0.92 
(9H, s), 0.10 (6H, s).

1-((2R,4R,5R)-3,3-difluoro-4-hydroxy-5-(hydro- 
xymethyl)tetrahydrofuran-2-yl)-4-(hydroxya- 
mino)pyrimidin-2(1H)-one hydrochloride: A mix-
ture of 4-dimethylamino imine Gem 1 (2.15 g,  
5 mmol), hydroxylamine hydrochloride (2 g, 30 
mmol) in butanol-H2O (1/1) (15 mL) was reflu-
xed with stirring. After refluxing for 12 hours, 
the solid was filtered off, the solvent was 
removed in vacuo. The residue was purified 
through column chromatography on silica gel, 
producing a free base of 4-N-hydoxylGem,  
converted into hydrochloride salt, and further 
recrystallized with MeOH/EtOAc to produce 
GemAGY.

1H NMR (DMSO-d6): δ 10.04 (1H, s), 9.76 (1H, 
brs), 6.88 (1H, d, J = 8.1 Hz), 6.18 (1H, brs), 
5.90 (1H, t, J = 9.0 Hz), 5.54 (1H, d, J = 8.1 Hz), 
5.12 (1H, s), 4.00-4.10 (1H, m), 3.62-3,69 (2H, 
m), 3.48-3.56 (1H, m).

4-N-hydoxyl Gem, hydrochloride: 1H NMR 
(DMSO-d6): δ 10.49 (1H, brs), 7.31 (1H, d, J = 
8.1 Hz), 6.09 (3H, brs), 5.98 (1H, t, J = 8.7 Hz), 
7.31 (1H, d, J = 8.1 Hz), 5.98 (1H, t, J = 8.7 Hz), 
4.13 (1H, dt, J = 8.1, 12.9 Hz), 3.76-3.80 (1H, 
m), 3.73 (1H, d, J = 12.9 Hz), 3.59 (1H, dd, J = 
3.6, 12.3 Hz).

13C NMR (DMSO-d6): δ 148.84, 148.10, 
135.35, 123.46 (t, J = 256.5 Hz), 95.37,  
83.64 (t, J = 33.5 Hz), 81.40, 68.93 (t, J = 21.9 
Hz), 59.30.

Micro elemental analysis of GemAGY

GemAGY (C9H11F2N3O5 ·HCl) Calculated: (C) 
34.25, (H) 3.83, (N) 13.31; Found: (C) 34.06, 
(H) 3.93, (N) 13.09.

Human liver microsome stability of GemAGY

The metabolic stability of GemAGY was evalu-
ated using PBS (Phosphate-buffered Saline) 
and human liver microsomes purchased from 
Thermo Fischer Scientific. Usually, microsomes 
are used as the enzyme source for measuring 
metabolic stability [24]. Liver microsomes or 
PBS were used to spike GemAGY in concentra-
tions of 10 µM. The samples were incubated in 
a water bath set at a temperature of 37°C for  
7 hours. At designated time points of 0, 15,  
30, 60, 120, 180, 220, and 240 minutes of 
incubation, 100 µL aliquots were taken, recon-
stituted with cool methanolic solution which 
contained an internal standard, vortexed for 4 
minutes, and centrifuged (11,000×g, 12 min-
utes). The supernatants were immediately col-
lected. The test and blank samples were pre-
pared instantly and analyzed using HPLC. 
Triplicates of all samples were prepared [25].

Cell viability studies

The cell viability assays used pancreatic cancer 
cell lines (MiaPaCa-2, PANC-1, and BxPC-3). 
PANC-1 and MiaPaCa-2 cells were cultured with 
Dulbecco’s modified Eagle medium (DMEM) 
with high glucose and L-glutamine and aug-
mented with 10% fetal bovine serum (FBS),  
1% penicillin-streptomycin (PenStrep) and 2.5% 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES). BxPC-3 cells were cultured with 
Roswell Park Memorial Institute (RPMI)-1640 
medium with high glucose, L-glutamine, and 
HEPES. T75 flasks were used to plate the cells 
for the cell culture process. Thereafter, the cells 
were seeded in 96-well flat bottom plates after 
attaining 75-80% confluency.

2D-cell-viability studies

MiaPaca-2, PANC-1, and BxPC-3 cells were 
seeded in 96-well plates at 8,000 cells/well 
density and incubated at 5% CO2 and 37°C. 
Stock solutions of GemHCl and GemAGY were 
prepared in 200 μM concentrations, and using 
the supplemented DMEM, the stock solutions 
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were serially diluted to obtain the following  
concentrations: 100, 50, 25, 12.5, 6.25, and 
3.125 μM. 200 μL of each drug concentration 
in triplicates was used to treat all cells, follow- 
ed by a 48-hour incubation at 37°C. At the  
termination of the treatment, 20 μL of 0.15% 
resazurin sodium salt (Alamar blue®) was add- 
ed to each well, and the plates were incubated 
for 4 hours under optimal conditions (5% CO2, 
37°C). Fluorometric analysis was determined 
at an excitation wavelength of 560/580 nm 
and an emission wavelength of 590/610 nm, 
and the percent of viable cells per concentra-
tion was calculated [26].

3D-cell viability studies

Nunclon Sphera® 96-well plates were used to 
seed PANC-1 and MiaPaCa-2 cells at a seeding 
density of 10,000 cells/well using 100 μL of 
fresh complete media per well. The plates  
were incubated at conditions of 5% CO2 and 
37°C for 48 hours to form the 3D spheroids. A 
hundred microliter (100 μL) of each drug in the 
growth medium prepared following the proce-
dure described for the 2D viability studies  
was used during treatment [26]. At the termina-
tion of treatment, 50 μL of 0.15% resazurin 
sodium salt (Alamar blue®) in growth medium 
was added to each well and carefully dispers- 
ed by pipetting before being incubated for 4 
hours [26]. After that, fluorometric analysis was 
measured as described above.

Cell cycle studies

Cell cycle assay was carried out to investigate 
underlying basic mechanisms and evaluate  
the therapeutic efficacies of GemAGY [27]. 
MiaPaCa-2 and PANC-1 cells (1 × 106 cells per 
flask) were seeded in T-25 flasks and cultured 
using DMEM medium supplemented with 10% 
FBS, 10 mM HEPES, and 1% penicillin/strepto-
mycin followed by incubation at 37°C [25]. At 
75% confluency, the cells were treated using 3 
concentrations (0.35 μM, 0.7 μM, and 1.5 µM) 
of GemHCl and GemAGY for MiaPaCa-2 and 
0.5, 1.0 and 2.0 μM of GemAGY and GemHCl 
for PANC-1 cells. After 24 hours of drug treat-
ment, the cells were harvested, washed with 
PBS, centrifuged at 350×g for 5 minutes, then 
resuspended the pellets in 100 μL of PBS, and 
passed through a 29-gauge needle to disper- 
se the cells singly. Thereafter cells were fixed 
using ice-cold 70% ethanol whilst steadily vor-

texing. The cells were stored at a temperature 
of -20°C overnight [25]. After that, the cells 
were resuspended in 0.1 mg/mL RNase, 
stained with 200 µL of 50 µg/mL Propidium 
Iodide, and the phase distribution was exam-
ined using flow cytometry (FACScalibur-Becton 
Dickinson) [25].

Cell migration assay

A cell migration assay was conducted to deter-
mine the effect of GemAGY on the motility of 
MiaPaCa-2 and PANC-1 cells. Cell culture in- 
serts obtained from Ibidi were used for this 
assay. The cells were grown in such a way as to 
have two confluent monolayers separated by a 
“wound” that was created by the inserts [25]. 
The cells were seeded into 12-well plates at a 
seeding density of 4 × 104, per well in 140 µL of 
serum-free media for 24 hours at 37°C. After 
24 hours, adherent monolayers were formed 
on the two sides of the tissue culture insert. 
Hence, the inserts were removed gently to cre-
ate a gap or “wound” between the two conflu-
ent layers of cells, and the monolayers were 
gently washed with experimental media [25]. 
Subsequently, the cells were treated with dif-
ferent concentrations of GemHCl and GemAGY 
treatments. The cells invading the wound area 
were imaged after 24 hours with a Nikon Ti 
Eclipse microscope [28].

Clonogenic assay

To carry out the colony formation assay, Mia- 
PaCa-2 cells were seeded into T-25 cm2 culture 
flasks at a density of 1 × 106 cells and cultured 
in DMEM medium supplemented with 2 mM 
L-glutamine, 10 mM HEPES, 10% FBS, and 1% 
penicillin/streptomycin [25]. On attaining 75% 
confluency, the cells were exposed to two con-
centrations of (1 µM and 3 µM) of GemHCl and 
GemAGY and incubated for 48 hours. Controls 
were also used, which had none of the treat-
ments. After 48-hour exposure, treatment was 
terminated, cells harvested, then re-plated 
onto 6-well plates at a density of 1,000 cells 
per well, and incubated with a growth medium. 
The controls were used to monitor the conflu-
ency of the cell. At 75% confluency of the cells, 
the experiment was terminated, and the cells 
were fixed for 30 minutes using a methanol and 
acetic acid mixture in a 7:1 ratio. After that, the 
plates were stained with 0.5% crystal violet 
solution for 2 hours [25]. The stained colonies 
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(fifty per colony) were counted using a Jenco™ 
Stereomicroscope [25]. The plating efficiency 
(PE) and survival fraction (SF) were calculated, 
and a graph of the percentage of the survival 
fraction versus the concentration was obtained 
[29].

3D spheroid assays

To determine the effects of GemAGY on a 3D 
spheroid culture, MiaPaCa-2 and PANC-1 cells 
(10,000 cells/well) were seeded into 96 U 
round bottom Nunclon Sphera plates and incu-
bated for 48 hours for the spheroids to form 
[28]. Thereafter, two treatments with GemHCl 
and GemAGY at 24 and 48 hours, respectively, 
were introduced into the cells. Three replicates 
were prepared for each treatment concentra-
tion. After 72 hours of the spheroids retaining 
the treatment, the spheroids were stained with 
5 µg/mL of an acridine orange/ethidium bro-
mide (AO/EB) solution. The spheroid cultures 
were observed for 72 hours for signs of degen-
eration, and images of the spheroids were  
captured using a Nikon Ti Eclipse microscope. 
Using the NIS Element software version  
4.30.02 (Nikon Instruments Inc., Melville, NY, 
USA), the ratio of the fluorescent intensities of 
AO over EB for each GemHCl and GemAGY 
treatment concentration was computed, ana-
lyzed using Microsoft Excel, and plotted using 
GraphPad Prism version 10.0 for Windows [28].

Western blot assay

Western blot assay was performed as previ-
ously described [30]. Briefly, MiaPaCa-2 cells 
were seeded in T-75 culture flasks containing 
DMEM supplemented with 10% FBS at a cell 
density of 1.5 × 106 cells per flask [31]. Cells 
were exposed to drug treatment at IC50/2 and 
IC50 concentrations of GemHCl and GemAGY for 
12 hours upon attaining optimum confluency. 
Further, cell culture flasks were washed in PBS, 
and whole cell lysate was prepared using RIPA 
buffer containing protease and phosphatase 
inhibitor (1:100) (Sigma Aldrich, Louis, MO, 
USA) while the cell culture flasks were placed 
on ice. Incubation on ice was done for 30 min-
utes, and subsequently, the supernatant was 
collected in 2 ml Eppendorf tubes after centri-
fuging at 12,000 rpm for 15 minutes. There- 
after, the protein content of the supernatant 
was estimated using the BCA protein assay pro-
tocol [32]. To proceed with gel electrophoresis, 

a loading sample was prepared by heating at 
98°C for 10 minutes using a heating block [31]. 
Samples containing 40 µg equivalent of the 
extracted proteins were allowed to run on a gel 
electrophoresis machine and then transferr- 
ed onto a Polyvinylidene fluoride membrane 
(PVDF). Following the transfer, blocking was 
performed for 1 hour using 5% BSA (Bovine 
Serum Albumin) in Tris-Buffered Saline Tween 
20 (TBST). Then the blots were cut according to 
their appropriate molecular sizes and incubat-
ed in a fridge overnight on a shaker in the pri-
mary antibodies prepared in TBST. Primary anti-
bodies used were p53 (1:1,000), PARP (Poly 
(ADP-ribose) polymerase) (1:1,000), β-actin 
(1:1,000), HER2 (1:1,000), BAX (1:1,000) and 
EGFR (1:1,000).

The next day, the blots were washed 3 times (5 
minutes for each wash) and subsequently in- 
cubated with Horseradish peroxidase (HP) - 
conjugated secondary antibodies (Cell signal-
ing technology, USA) (1:20,000) for 1 hour [31]. 
After that, the blots were washed with the wash 
buffer, prepared for detection using a chemilu-
minescence solution (Thermo Fisher), and visu-
alized using the ChemiDocTM XRS+ imaging sys-
tem (Bio-Rad).

Statistical analysis

Statistical analysis of the data obtained from 
experiments was performed using GraphPad 
Prism 10 Software. ANOVA followed by Tukey’s 
Multiple Comparison Test or ANOVA with post 
hoc Dunnett’s tests was used to analyze  
the GemHCl and GemAGY treatment groups. 
Statistical significance was considered for 
p-value < 0.05. We ensured that we repeated 
all experiments at least three times.

Results

Considering the pyrimidine analogs, Gem 
(2’,2’-difluorodeoxycytidine, dFdC; Gemzar®) is 
one of the most widely used drugs in clinical 
oncology and ranked third as the most pre-
scribed anticancer agent worldwide [15]. Gem 
enters the tumor cell to exert its effect and 
becomes activated by phosphorylation [33]. 
However, Gem is rapidly cleared from the body 
through renal excretion and undergoes enzy-
matic conversion to the inactive and more  
soluble metabolite 2’,2’-difluorodeoxyuridine 
(dFdU) by the enzyme Cytidine deaminase 
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ed by evidence in the literature that points out 
that inhibiting or delaying the deamination of 
Gem by cytidine deaminase increases the sen-
sitivity of Gem and its cytotoxicity in human 
cancer cell lines [40, 41].

Synthesis and characterization of GemAGY

GemAGY was successfully synthesized and had 
a good yield of 90%. GemAGY was character-
ized using NMR and micro elemental analysis. 
GemAGY’s NMR spectra were observed using 
1H and 13C NMR (See Figures S1 and S2).

Micro-elemental analysis

The elemental analysis of GemAGY is present-
ed in Table 1 and Figure S3. It shows that 
34.06% of carbon, 3.93% of hydrogen, and 
13.09% of Nitrogen were found in GemAGY, 
which was comparable with the theoretical val-
ues of 34.25% carbon, 3.83% hydrogen, and 
13.31% nitrogen. The data presented in Table 
1 showed that the purity of GemAGY was 99.6% 
based on the elemental analysis.

Human liver microsome stability of GemAGY

We investigated the in-vitro metabolic stability 
of GemAGY in human liver microsomes using 
HPLC. The graph (Figure 1) shows our findings 
at the end of the experiment. The percentage  
of drug remaining or intact GemAGY against  
the different time points was plotted. The HPLC 
analysis of the percentage of GemAGY remain-
ing was 60% after 2 hours. However, on per-
forming the same study to determine the  
stability of GemHCl in vitro using the liver  
microsomes, less than 45% of intact GemHCl 
remained after 2 hours. Our findings suggest 
that GemAGY may have better metabolic stabil-
ity than GemHCl.

Cytotoxic effect of GemAGY on MiaPaCa-2, 
PANC-1 and BxPC-3 cells

The cytotoxic activity of GemAGY was evaluated 
in comparison to the standard drug GemHCl in 
MiaPaCa-2, PANC-1, and BxPC-3 via 2D culture 
and 3D spheroids using the Resazurin assay. 
As shown in Table 2, GemAGY exhibited higher 
cytotoxic activity in MiaPaCa-2 culture with an 
IC50 value of 1.6 ± 0.2 μM, compared to GemHCl 
after 48-hour treatment with a greater than 
two-fold increase for GemHCl (4.0 ± 1.7 μM) 

Table 1. Micro-elemental analysis of GemAGY
Element Theory (%) Found (%)
C 34.25 34.06
H 3.83 3.93
N 13.31 13.09

Figure 1. In-vitro metabolic stability of GemAGY and 
GemHCl in human liver microsomes after exposure 
for 4 hours.

(CDA) expressed in blood, liver, kidney, and va- 
rious tumor tissues [34, 35]. CDA deaminates 
and deactivates Gem, thereby transforming 
Gem into inactive metabolites [36, 37]. More 
so, high CDA activity in patients who are on 
Gem activity correlates with disease progres-
sion [37]. Gem (< 10%) and its main metabolite, 
dFdU, account for 99% of the excreted dose 
after administration. As a result of this rapid 
metabolism and inactivation by CDA, Gem has 
a very short plasma half-life (8-17 min) [38, 39], 
and to attain therapeutic drug levels, Gem is 
currently administered at a high dose of 1,000 
mg/m2 as a 30-minute intravenous infusion 
[34].

To counter these limitations of rapid metabo-
lism and short half-life associated with Gem, 
we designed and synthesized GemAGY. Our 
rationale for modifying GemHCl to obtain 
GemAGY was to improve GemHCl’s metabolic 
stability and cytotoxic activity. We hypothesiz- 
ed that the hydroxyl group at the 4NH2 position 
would shield the amine group and delay Gem’s 
rapid deamination by the enzyme CDA. Our aim 
is that if the amine is shielded by the hydroxyl 
group, deamination by CDA is delayed, and cir-
culation time will be increased, leading to 
improved metabolic stability and therapeutic 
efficacy. Our aim in this modification is support-
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arrested in the G1 phase (72.80%) compared to 
GemHCl treatment (55%). Similarly, in PANC-1 
cells, GemAGY increased the percentage of 
cells arrested in the G1 phase (58.20% at 2.0 
μM) compared to GemHCl treatment (52.70%), 
as shown in Figure 3C and 3D. The GemAGY-
treated groups exhibited a significant con- 
comitant reduction in MiaPaCa-2 cells entering 
the S and G2 phases (Figure 3B). GemAGY stim-
ulated a decrease in cell population entering 
the G2 phase at 1.50 µM concentration in 
MiaPaCa-2 cells (0.26%) compared to GemHCl 
treatments, which showed a higher cell popula-
tion of 7.20% and 9.54%. Our findings in this 
assay indicated that GemAGY induced G1-phase 
cell cycle arrest at low concentrations (0.35, 
0.7, 1 μM), impeding cell transition to the S and 
G2 phases.

GemAGY cell migration assay

The mobility of cells or migration towards a 
gap/wound uniformly made in confluent mono-
layer cultures of MiaPaCa-2 and PANC-1 cells 
was evaluated. The mobility of the cells toward 
the wound was evaluated at 0, 1.56, 3.125, 
and 6.25 µM after 24 hours. As seen in Figure 
4A and 4C, the controls (untreated MiaPaCa-2 
and PANC-1 cells) migrated towards the wound 
and covered the entire surface area of the Ibidi 
cell culture inserts, which was expected. 
GemAGY-treated MiaPaCa-2 cells at 3.12 and 
6.25 μΜ concentration significantly reduced 
cell mobility towards the wound area with 
(102.3 ± 4.1) and (65.7 ± 6.0) number of cells 
migrating respectively compared to GemHCl 
treatments which showed (192 ± 3.0) and 
(174.3 ± 4.0) MiaPaCa-2 cells at 3.12 and 6.25 
μΜ concentrations (Figure 4B). Analogous to 
our findings in MiaPaCa-2 cells, GemAGY-
treated PANC-1 cells at 3.12 and 6.25 μΜ con-
centrations significantly reduced the migration 
of the cells towards the wound area with (232.0 
± 15.5) and (97.7 ± 5.6) number of cells migrat-
ing respectively compared to GemHCl treat-
ments which showed (392 ± 4.0) and (253.7 ± 
6.7) at 3.12 and 6.25 μΜ concentrations 
(Figure 4C, 4D and Table 4).

Clonogenic assay of GemAGY

The colony formation assay assessed the pro- 
liferative property of MiaPaCa-2 cells after ex- 
posure to two concentrations of GemHCl and 
GemAGY. This assay was conducted to assess 

Table 2. IC50 values of GemHCl and GemAGY 
treated 2D MiaPaCa-2, PANC-1 and BxPC-3 
cells
Drug/Analog MiaPaCa-2 PANC-1 BxPC-3
GemHCl 4.0 ± 1.7 5.6 ± 1.3 5.5 ± 1.0
GemAGY 1.6 ± 0.2 1.7 ± 0.2 3.2 ± 1.1

treated groups, respectively. A similar trend 
was observed in PANC-1 and BxPC-3 treated 
cells. In PANC-1 cells, GemAGY exhibited a high-
er cytotoxic effect with an IC50 value of 1.7 ± 
0.2 μM compared to GemHCl (5.6 ± 1.3 μM) 
after 48-hour treatment. Similarly, in 3D spher-
oids, GemAGY exhibited a higher cytotoxic eff- 
ect when compared to GemHCl. While IC50 val-
ues were expectedly higher in the 3D treated 
MiaPaCa-2 cultures compared to that of 2D 
MiaPaCa-2 cultures (Figure 2A, 2B and Table 
3), GemAGY treated 3D MiaPaCa-2 culture  
(IC50 = 9.46 ± 1.1 μM) showed lower IC50 values 
compared to GemHCl treated 3D MiaPaCa-2 
culture (IC50 = 24.12 ± 1.6 μM). A similar trend 
was observed for studies performed with  
PANC-1 cells, in which even though the IC50 val-
ues were higher in 3D models than in 2D mod-
els, the IC50 values for the 3D cultures treated 
with GemAGY were still lower than those of 
GemHCl-treated cultures. Comparing the IC50 
values, as shown in Table 3, indicates that 
GemAGY demonstrated a significantly higher 
cytotoxic activity compared to GemHCl in 2D 
and 3D cultures.

Cell cycle assay

To evaluate the stages in the cell cycle promot-
ing a decreased cell proliferation rate, the cell 
cycle assay was conducted using MiaPaCa-2 
and PANC-1 cells. The cells were cultured in 
T-25 flasks and thereafter divided into four 
groups, corresponding to the treatment con-
centrations, which were 0, 0.35, 0.70, and  
1.50 μM concentrations for MiaPaCa-2 cells 
and 0, 0.5, 1.0, and 2.0 μM for PANC-1 cells. 
Treatment lasted for 24 hours, as previously 
described. Our findings indicated that GemAGY 
significantly impeded the cell cycle progression 
by increasing the percentage of cells arrested 
at the G1 phase (Figure 3A). As shown in Figure 
3A, at 0.70 μM, GemAGY-treated cells revealed 
a higher G1 population (60.24%) in MiaPaCa-2 
cells compared to the corresponding GemHCl 
treatment (53.24%). At 1.50 μM, GemAGY sig-
nificantly increased the percentage of cells 



Gemcitabine analog as anticancer agent

692 Am J Cancer Res 2025;15(2):684-704

Figure 2. Cytotoxic activity of GemHCl and GemAGY on MiaPaCa-2 and PANC-1 spheroid cultures using Resazurin 
assay. A and B. 3-D spheroid cultures showing GemHCl and GemAGY-treated MiaPaCa-2 and PANC-1 cells, respec-
tively.

Table 3. Comparison of IC50 values of GemHCl 
and GemAGY treated 2D and 3D MiaPaCa-2, 
PANC-1 cells

Cell line GemHCl ± 
SD (μM)

GemAGY ± 
SD (μM) p-value

MiaPaCa-2 (2D) 4.0 ± 1.7 1.6 ± 0.2 < 0.01
PANC-1 (2D) 5.6 ± 1.3 1.7 ± 0.2 < 0.01
BxPC-3 (2D) 5.5 ± 1.0 3.2 ± 1.1 < 0.05
MiaPaCa-2 (3D) 24.1 ± 1.6 9.5 ± 1.1 < 0.001
PANC-1 (3D) 30.2 ± 1.8 12.6 ± 1.0 < 0.001
Data represented as ± SEM, n = 3.

GemAGY’s ability to prevent tumor relapse aft- 
er treatment. As shown in Figure 5A, GemAGY 
induced concentration-dependent inhibition of 
clonogenic cell survival on MiaPaCa-2 cells. 
The difference in percent survival of GemHCl 
and GemAGY-treated MiaPaCa-2 cells revealed 
a reduction in colony formation for GemAGY-
treated cells at different concentrations. This 
assay establishes GemAGY’s ability to disrupt 
the proliferation of cancer cells compared to 
GemHCl (Figure 5A). As shown in Figure 5B, the 
survival curve depicts the differences in both 
treatment groups. The clonogenic assay result 
specifies the effectiveness of GemAGY and its 
potential to significantly inhibit the proliferation 
and survival of cancer cells when compared to 
GemHCl.

GemAGY induces degeneration of 3D spheroid 
of MiaPaCa-2 and PANC-1 cells

To elucidate drug response characteristics in a 
system that proffers a simulation of the tumors 

in an in vivo environment, the effect of GemAGY 
was studied using 3D spheroids. MiaPaCa-2 
and PANC-1 cells were seeded in Nunclon 
Sphera 96-well, U-shaped-bottom microplates 
and were allowed to grow and form compact 
spheroids. The spheroid cultures were then 
treated with varying concentrations of GemHCl 
and GemAGY. The effects of GemHCl and 
GemAGY were captured using the Nikon Ti 
Eclipse microscope (4× magnification) with the 
Nikon DS Qi2 camera. As seen in Figure 6, the 
spheroids disintegrate at higher concentrations 
of GemHCl and GemAGY. The effects of the two 
drugs on the spheroid cultures of MiaPaCa-2 
and PANC-1 were analyzed by measuring the 
areas of the spheroid bodies using the NIS-
Element software. GemAGY induced higher dis-
integration in PANC-1 and MiaPaCa-2 spheroids 
when compared to GemHCl. The results are the 
mean ± SEM, n = 3. Statistical significance (*P 
< 0.05, **P < 0.01 and ***P < 0.001) was 
determined using one-way ANOVA with post 
hoc Dunnett’s tests.

GemAGY induces concentration-dependent 
cell death in MiaPaCa-2 and PANC-1 spheroids

Following our results from the degeneration of 
MiaPaCa-2 and PANC-1 spheroids, we demon-
strated the induction of cell death by GemAGY 
in MiaPaCa-2 and PANC-1 spheroids. The 
spheroids were stained with Acridine Orange/
Ethidium Bromide (AO/EB) (5 µg/mL), and the 
fluorescent images were taken at 4× magnifi- 
cation using the Nikon Ti Eclipse microscope. 
Following the capture of images, the mean fluo-
rescence intensity ratios were calculated (AO 
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Figure 3. Cell cycle assay on MiaPaCa-2 and PANC-1 cells following treatment with GemHCl and GemAGY. A and C. 
Flow cytometry images of MiaPaCa-2 and PANC-1 cells arrested at different cell cycle phases. B and D. MiaPaCa-2 
and PANC-1 cells show the percentage of cells at different cell cycle phases, respectively.

Figure 4. Cell migration study of GemAGY compared to GemHCl using MiaPaCa-2 and PANC-1 cells. (A and C) show 
the MiaPaCa-2 and PANC-1 cells that migrated when treated with 1.56, 3.125 and 6.25 µM of GemHCl and Gem-
AGY for 24 hours. GemAGY exhibited higher inhibition of the migration of cells toward the wound area compared to 
GemHCl. closures of wounds were captured at 40× magnification using the Nikon Eclipse Ti inverted fluorescent 
microscope. (B and D) are the plots of the means of the number of cells that migrated ±SD, n = 3. Significance 
(GemHCl and GemAGY ***P < 0.01) was determined by t-test.

(FITC)/EB (TRITC)) and analyzed using the Two-
Way ANOVA with Tukey’s Multiple Comparison 
Test. Statistical significance (*P < 0.05 and 
***P < 0.001) was established following the 
analysis. As shown in Figure 7, a significant  
disruption of already compact spheroids gener-

ated with MiaPaCa-2 and PANC-1 cells was 
induced by GemAGY when compared to Mia- 
PaCa-2 or PANC-1 cells treated with GemHCl. 
More so, acridine orange/ethidium bromide 
(AO/EB) staining at 48 h post-GemHCl and 
GemAGY-treatments revealed significant cell 
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hydroxylamine-containing inhibitors of ODC 
(1-aminooxy-3-aminopropane, APA) and SAMDC 
(S-(5’-deoxy-5’-adenosyl)-methylthioethyl-hydro- 
xylamine, AMA) induced growth arrest and 
enhanced the antiproliferative actions of stan-
dard cytostatic drugs such as 5-FU [45]. Also, 
hydroxylamine-containing ODC and SAMDC 
blockers APA and AMA are potent cytostatic 
agents in colon cancer cells [45]. Additionally, 
Lianshuang Zhang and colleagues, in their 
study on human carcinoma cell lines, reported 
that in evaluating the biological activity of a 
series of hydroxyl-substituted double Schiff-
base 4-piperidone/cyclohexanone derivatives, 
they showed better anticancer activity than 
cyclohexanone derivatives [46].

In this study, we began by confirming the struc-
ture and purity of GemAGY using NMR and 
micro-elemental analysis. NMR was used to 
determine molecular identity and structure, 
confirm the hydroxylamine linkage, and charac-
terize GemAGY. The micro-elemental analysis 
matched GemAGY’s calculated carbon, hydro-
gen, and nitrogen presence, confirming the 
compounds’ purity to be 99.6% as shown in 
Table 1. The purity of GemAGY was within the 
acceptable range. Usually, the measured val-
ues have to fit the gold standard of ± 0.40% of 
the calculated values to guarantee that suffi-
cient purity has been attained [47].

Following characterization, we determined 
GemAGY’s in vitro metabolic stability. Our find-
ings indicated that GemAGY was very stable 
both in vitro and in human liver microsomes,  
as we reported that over 60% of the drug 
remained intact after the 2-hour exposure, sug-
gesting that GemAGY had higher metabolic sta-
bility in comparison to GemHCl as reported in 
previous studies [48, 49].

The 2D cell viability data obtained after treat- 
ing MiaPaCa-2, PANC-1, and BxPC-3 cells with 

Table 4. Estimation of GemHCl and GemAGY treated cells that 
migrated toward the wound area

The quantification of migrated cells

Concentration (µM)
MiaPaCa-2 PANC-1

GemHCl GemAGY GemHCl GemAGY
0 (control) 420 ± 9 430 ± 5 525 ± 10 555 ± 2
1.56 248 ± 10 128 ± 7 452 ± 16 311 ± 4
3.12 192 ± 3 102 ± 4 392 ± 4 232 ± 15
6.25 174 ± 4 66 ± 3 254 ± 7 98 ± 6

death in the spheroids as the concentration 
increased (Figure 7A and 7B). On evaluating 
the spheroids’ mean AO/EB intensity, concen-
tration-dependent decreases could be obser- 
ved in MiaPaCa-2 and PANC-1, respectively 
(Figure 7C, 7D). GemAGY significantly induced 
higher cell death in both cell lines as the con-
centration increased compared to GemHCl.

Western blot analysis

The level of tumor suppressor protein p53 
expression significantly increased with an 
increase in the concentration of GemAGY-
treated MiaPaCa-2 cells compared to GemHCl-
treated cells and the controls, which had no 
treatment (Figure 8). Similarly, the expression 
of the pro-apoptotic protein BAX was signifi-
cantly more upregulated with an increase in the 
concentration of MiaPaCa-2 cells treated with 
GemAGY compared to cells treated with Gem- 
HCl. The PARP protein was significantly down-
regulated in GemAGY-treated MiaPaCa-2 cells 
compared to GemHCl-treated cells. Similarly,  
a significant concentration-dependent down-
regulation was observed for the EGFR and 
HER2 proteins in GemAGY-treated cells com-
pared to GemHCl-treated cells. Inhibition of the 
EGFR signaling pathway is an attractive thera-
peutic target. Hence, GemAGY may be useful in 
targeting the inhibition of EGFR.

Discussion

In recent decades, Gem has become a first-line 
treatment for pancreatic cancer chemotherapy 
and a critical target drug for research [42-44]. 
The ability of Gem to suppress tumor growth in 
pancreatic cancer cell lines has been well docu-
mented. However, the use of Gem in clinical 
practice is limited by its short half-life, systemic 
toxicity, and high doses needed to attain thera-
peutic levels [34, 38, 39]. Despite the issues 

associated with Gem, this drug 
remains an important drug in 
cancer therapy. This study 
highlights the importance and 
benefits of a synthesized  
Gem analog (GemAGY) in in 
vitro studies using MiaPaCa-2, 
PANC-1, and BxPC-3 pancreat-
ic cancer cell lines.

Milovica and colleagues pro-
vided evidence that non-toxic 
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Figure 5. Colony formation studies of GemHCl and GemAGY against MiaPaCa-2 cells. A. Colony formation assay 
post-treatment images of GemHCl and GemAGY treated MiaPaCa-2 cells. B. The Survival curve of GemHCl and 
GemAGY treated MiaPaCa-2 cells. Data represents mean ± SD, n = 3 with 20× magnification.

GemAGY suggested that this compound could 
be a potential therapeutic agent in treating 
pancreatic cancer (Table 2). The IC50 values for 
GemAGY were significantly lower than those of 
GemHCl for all three cell lines. This suggests 
that GemAGY has a higher cytotoxic effect than 
GemHCl (Table 3). In MiaPaCa-2 and PANC-1 
cells, GemAGY exhibited a higher anticancer 
effect, with over 2-fold and 3-fold increased 
effects over GemHCl. Since MiaPaCa-2 and 
PANC-1 cells were more sensitive to GemAGY 
when compared to the BxPC-3 cell line based 
on our 2D cell viability data, we decided to 
exclude the BxPC-3 cell line from future stud-
ies. More so, some studies have shown that 
BxPC-3, Capan-1, and PancTu-1 cells resist 
Gemcitabine-induced apoptosis. Therefore, for 
the 3D assays on spheroids and most of the in 
vitro experiments, we focused on MiaPaCa-2 
and PANC-1 cell lines, and in the western blot 
and clonogenic assays, we focused only on 
MiaPaCa-2 due to its high sensitivity to Gem 
when compared to the other two cell lines [50].

In 3D spheroids of MiaPaCa-2 and PANC-1, 
GemAGY exhibited higher cytotoxic activity and 
spheroid structure degeneration than GemHCl. 
3D spheroids were used to simulate the tumor 
environment in vivo closely, and our results pro-
vide evidence of GemAGY’s superior cytotoxic 
activity over GemHCl.

In comparing the IC50 values of GemAGY in 
MiaPaCa-2 and PANC-1 cells after 48-hour 
treatment to other studies on modified Gem- 
citabine, we observed that GemAGY had a 
lower IC50 value than reported in the literature 
for other modified Gemcitabine compounds 

[51-55]. A higher cytotoxicity was expected. 
This is because we theorized that improved 
metabolic stability of GemAGY will inherently 
lead to improved cytotoxic activity. Based  
on our in vitro metabolic assay in liver micro-
somes, it was evident that GemAGY was more 
stable than GemHCl. This means that GemAGY 
is not rapidly metabolized and will potentially 
have more contact time in vivo, leading to a  
longer half-life and improved therapeutic effi-
cacy compared to GemHCl. However, the exact 
mechanism GemAGY uses to inhibit cell prolif-
eration is unknown.

The cell cycle is a highly regulated process th- 
at enables cell growth, duplication of genetic 
material, and cell division [56, 57]. This regula-
tion of the cell cycle progression in cancer 
metastasis is a promising strategy to control 
tumor growth [25]. Gem, as reported in the lit-
erature, is a cell cycle-specific and antimeta-
bolic chemotherapeutic drug [58]. Gem can 
arrest the cell cycle in the G1/S phase and 
inhibit DNA synthesis [58, 59]. Our research 
findings on the cell cycle are in line with the lit-
erature. Our results show that GemAGY-treated 
MiaPaCa-2 and PANC-1 cells at 1.5 μΜ and 2 
μΜ concentrations, respectively, exhibited a 
significant arrest of cell cycle progression at the 
G1-phase. This cell cycle arrest at the G1-phase 
observed at 1.5 μΜ and 2 μΜ concentrations 
suggests a cell-cycle-specific nature observed 
in Gem treatments. This cell cycle arrest at  
the G1-phase shown in this experiment could 
explain the increased cell count at the G1-pha- 
se, which blocked the cells from advancing to 
the S-phase for DNA replication. Hence, this 
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Figure 6. Degeneration of MiaPaCa-2 and PANC-1 spheroid cultures. GemHCl and GemAGY induce degeneration of MiaPaCa-2 and PANC-1 (A, C) spheroid cultures. 
The effects of GemHCl and GemAGY were captured using the Nikon Ti Eclipse microscope (4× magnification) with the Nikon DS Qi2 camera. (B) shows graph of 
mean areas of formed MiaPaCa-2 spheroids as concentration was increased and (D) shows graph of mean areas of formed PANC-1 spheroids as concentration was 
increased.
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Figure 7. GemAGY treatment significantly induced higher cell death in MiaPaCa-2 and PANC-1 spheroids. A, B. Images were captured at 4× magnification using a 
Nikon Ti Eclipse microscope. The mean intensity ratios AO/EB equivalent to the viable-to-dead cells in the spheroids were determined. C, D. Images are obtained 
from three replicates. Statistical significance (*, P < 0.05; ***, P < 0.001) was determined by Two-way ANOVA with Tukey’s Multiple Comparison Test.
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Figure 8. Protein bands after treatment of MiaPaCa-2 cells with GemHCl and GemAGY. GemAGY treatment significantly increased the expression of p53 and BAX 
and decreased/downregulated the expression of PARP, HER2, and EGFR.
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assay provides evidence to support our claim 
that GemAGY exhibited a higher anticancer 
effect than GemHCl.

Cell migration is crucial in many biological func-
tions [60] and is involved in pathophysiological 
processes such as cardiovascular diseases 
and cancer metastasis [60, 61]. The cell migra-
tion assay explored the ability of GemAGY to 
inhibit cell mobility and proliferation. Our re- 
search findings indicated that GemAGY signifi-
cantly inhibited cell mobility towards the ‘wound 
area’ in MiaPaCa-2 and PANC-1 cells. GemAGY-
treated MiaPaCa-2 and PANC-1 cells at 3.125 
and 6.25 μM concentrations had a small num-
ber of cells present in the wound area, and this 
suggested that GemAGY’s potential to inhibit 
motility of cells was higher in comparison to 
GemHCl at the same concentration.

The clonogenic assay is an in vitro cell survival 
assay based on the ability of a single cell to 
grow into a colony. The colony is defined as  
consisting of at least 50 cells [62]. This assay  
is useful for quantifying reproductive cell sur-
vival in vitro [63]. Our findings suggested that 
GemAGY was more effective in inhibiting the 
cells’ ability to proliferate when compared to 
GemHCl (Figure 5A and 5B).

Generally, cells are exposed to various cellular 
stresses, such as DNA damage. These cellular 
stresses finally introduce genomic aberrations, 
including mutation, deletion, and/or transloca-
tion into the cellular genome, thereby inducing 
genomic instability. Accumulation of genomic 
aberrations often results in the development  
of cancers [64]. p53 is a nuclear transcrip- 
tion factor with a pro-apoptotic function, i.e., it 
is an inducer of cell cycle arrest and pro-
grammed cell death. Since over 50% of human 
cancers carry loss of function mutations in the 
p53 gene, p53 has been considered a classical 
type of tumor suppressor [64, 65].

Similarly, BAX is a pro-apoptotic protein, and 
overexpression of the BAX gene has been found 
to induce apoptotic death in pancreatic cancer 
cells [66]. In our western blot studies, GemAGY 
exhibited a significantly higher expression of 
p53 and BAX proteins in MiaPaCa-2 cells than 
GemHCl. We postulate that the improved  
metabolic stability observed in GemAGY may 
account for the higher expression of p53 and 
BAX proteins compared to GemHCl in this 
assay. Moreover, PARP activity has been report-

ed to be upregulated in certain types of cancer 
[67]. Studies have revealed that patients suf-
fering from hepatocellular carcinoma tumors 
presented with significantly increased levels of 
ADP ribosylated PARP in their tumor tissues 
than their adjacent non-cancerous tissues  
[67]. The PARP pathway and its inhibition pro-
vide several avenues for therapeutic interven-
tion in metastasis and other diseases [67, 68]. 
Our results indicated that in MiaPaCa-2 cells, 
GemAGY significantly inhibited PARP as evi-
denced by a lower expression of the PARP pro-
tein compared to GemHCl.

Also, in pancreatic cancer and various solid 
tumors, HER2 and EGFR, which is a subclass of 
tyrosine kinase receptors, are highly expressed 
[69]. Several studies have demonstrated that 
EGFR is over-expressed in pancreatic cancer 
[70], and over-expression correlates with mo- 
re advanced disease [71] or poor clinical out-
comes in the case of overexpression of HER2 
protein [72]. In this study, EGFR and HER2 pro-
teins had lower expressions in GemAGY-treated 
MiaPaCa-2 cells when compared to GemHCl-
treated MiaPaCa-2 cells (Figure S4). In the lit-
erature, EGFR signaling and expression in pan-
creatic cancer is a promising field for developing 
new and improved treatment strategies [73], as 
inhibiting this protein may be beneficial. Based 
on our results from the western blot assay, we 
could suggest that treatment with GemAGY 
may have resulted in significant inhibition of 
EGFR and HER2 proteins.

Conclusion

In this study, we successfully designed and syn-
thesized GemAGY, a novel analog of GemHCl. 
GemAGY demonstrated significantly higher an- 
ticancer activity against pancreatic cancer cells 
than GemHCl. GemAGY significantly reduced 
cell viability, cell migration, and the formation 
of colonies compared to GemHCl. Further stud-
ies will be focused on determining the pharma-
cokinetics and biodistribution profile as well as 
the in vivo antitumor activity of GemAGY using 
PDX (Patient Derived Xenograft) mouse models 
of pancreatic cancer.
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Figure S1. 1H NMR spectra for GemAGY.

Figure S2. C-13 NMR spectra for GemAGY.
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Figure S3. Micro-elemental analysis of GemAGY showing the percent by mass of the elements carbon, hydrogen, 
and nitrogen in the structure of GemAGY compared to theoretical estimates.
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Figure S4. Full-length blots of B-actin, BAX, p53, PARP, 
HER2 and EGFR expression after treatment of MiaPaca-2 
cells with IC50 and IC50/2 concentrations of GemAGY and 
GemHCl.


