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Abstract: Objective: To construct a nomogram incorporating clinical-radiological and radiomics features from com-
puted tomography (CT) for distinguishing invasive adenocarcinoma (IAC) from adenocarcinoma in situ (AIS) and 
minimally invasive adenocarcinoma (MIA) in ground-glass nodules (GGNs). Methods: This retrospective study includ-
ed 473 GGN patients with postoperative pathological confirmation of AIS, MIA, or IAC. The training set comprised 
257 patients from Yantaishan Hospital, while the test set, used for external validation, included 216 patients from 
the Affiliated Hospital of Binzhou Medical College. Radiomics features were selected, and a radiomics model was 
constructed using least absolute shrinkage and selection operator (LASSO) and minimum redundancy maximum 
relevance (mRMR) methods. A clinical-radiological model was developed using univariate and multivariate logistic 
regression. The nomogram was generated by combining the two models. Its performance was evaluated via re-
ceiver operating characteristic (ROC) curve analysis, calibration curve analysis, and decision curve analysis (DCA). 
Results: The radiomics model included 11 features, while the clinical-radiological model incorporated lobulation, 
age, and long diameter. The nomogram outperformed both individual models in terms of accuracy and area under 
the curve (AUC) in both the training and test sets. Calibration curve analysis confirmed good consistency between 
actual and predicted outcomes, and DCA indicated the nomogram’s clinical utility. Conclusion: The nomogram is a 
non-invasive, accurate tool for preoperative differentiation of GGN types, providing valuable guidance for clinicians 
in treatment planning.
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Introduction

Lung adenocarcinoma, one of the most com-
mon types of lung cancer, often presents as 
ground-glass nodules (GGNs) in its early sta- 
ges [1-4]. GGNs are frequently the predominant 
manifestation in early-stage lung adenocarci-
noma and may indicate different pathological 
subtypes, including adenocarcinoma in situ 
(AIS), minimally invasive adenocarcinoma (MIA), 
and invasive adenocarcinoma (IAC) [5, 6]. 
Distinguishing between these subtypes is cru-
cial, as each has distinct biological behaviors 
and prognostic implications [7]. AIS typically 
appears as pure GGNs with a lower risk of pro-

gression, while MIA may show partial solid com-
ponents and a higher likelihood of local inva-
sion [8]. IAC, with more extensive solid com- 
ponents, is more aggressive and may involve 
lymph nodes or metastasize to distant organs 
[9-11]. However, differentiating between AIS, 
MIA, and IAC based solely on imaging remains 
challenging due to overlapping radiological fea-
tures. This highlights the need for advanced 
predictive tools, such as radiomics, to improve 
preoperative differentiation.

In routine clinical practice, radiological charac-
teristics are often used to assess the invasive-
ness of GGNs. However, due to overlapping fea-
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tures [12-14], making a definitive diagnosis 
before surgery is difficult. This underscores the 
need for tools like radiomics to assist in differ-
entiation. Radiomics, a quantitative approach 
to medical imaging analysis, has gained signifi-
cant attention since its introduction in 2012 
[15]. By extracting and analyzing large amounts 
of image data, radiomics identifies hidden pat-
terns and associations within medical images 
that are not visible through conventional in- 
spection [16].

The development of a nomogram that inte-
grates radiomics with clinical-radiological fea-
tures offers a promising approach to improving 
preoperative diagnostic accuracy [17, 18]. By 
providing a quantitative tool for individualized 
risk assessment, the nomogram can help cli- 
nicians tailor treatment strategies, optimize 
resource allocation, and ultimately improve pa- 
tient outcomes [17]. Moreover, the nomogram’s 
ability to predict the likelihood of specific patho-
logical types can inform decisions about surgi-
cal intervention, adjuvant therapy, and follow-
up management [19-21]. This study aims to 
construct such a nomogram to distinguish 
patients with GGNs, identifying whether they 
have AIS/MIA or IAC, thereby assisting clini-
cians in formulating appropriate treatment 
plans.

Additionally, the nomogram’s utility extends to 
surgical planning and outcomes. For instance, 
distinguishing between AIS/MIA and IAC can 
influence the choice of surgical procedures - 
such as lobectomy or sublobar resection - and 
guide decisions on the extent of lymph node 
dissection [22, 23]. By accurately predicting 
the type of GGN, the nomogram can aid sur-
geons in planning less invasive surgeries, 
potentially reducing morbidity and improving 
recovery times [24, 25]. Moreover, the nomo-
gram can help identify patients who may bene-
fit from neoadjuvant or adjuvant therapies, fur-
ther enhancing personalized care [26].

Radiomics is increasingly applied in various 
tasks, including tumor subtyping, clinical out-
comes prediction, tumor recurrence, treatment 
response gene expression, and lymph node 
metastasis prediction [27-32]. Several studies 
have used radiomics to differentiate IAC from 
AIS/MIA [33-35], demonstrating its potential  
to improve diagnostic accuracy and support 
clinical decision-making. Differentiating IAC 

from AIS and MIA is particularly important, as 
MIA shares similar prognosis and treatment 
approaches with preinvasive lesions. Despite 
extensive research on combining radiomics 
with clinical features to predict the invasive-
ness of lung adenocarcinoma, our study offers 
several novel contributions. First, we propose  
a comprehensive nomogram integrating both 
radiomics and clinical-radiological features, 
providing a robust predictive tool that clini- 
cians can easily use. Second, our study includ- 
es a larger, more diverse cohort, ensuring the 
generalizability and reliability of the findings. 
Third, we apply advanced statistical methods, 
such as least absolute shrinkage and selection 
operator (LASSO) and minimum redundancy 
maximum relevance (mRMR), to optimize fea-
ture selection and enhance the model’s predic-
tive performance. Finally, our decision curve 
analysis (DCA) demonstrates the clinical utility 
of the nomogram, contributing significantly to 
existing research.

In summary, this study aims to develop a nomo-
gram that integrates radiomics with clinical-
radiological features to distinguish patients 
with GGNs, identifying whether they have AIS/
MIA or IAC. This model will assist clinicians in 
formulating appropriate treatment plans.

Materials and methods

This study was reviewed and approved by the 
ethics committee of Yantaishan Hospital. The 
requirement for informed consent was waived, 
as the study was retrospective. Figure 1 illus-
trates the overall flow of the study.

Patients

Patients who underwent pulmonary nodule 
resection between February 2020 and No- 
vember 2022 at Yantaishan Hospital and the 
Affiliated Hospital of Binzhou Medical College 
were retrospectively included. The inclusion cri-
teria were: (1) chest CT performed within two 
weeks before surgery; (2) lesions presenting as 
subsolid nodules, including pure ground-glass 
nodules (pGGNs) and part-solid nodules (PSNs). 
A pGGN is defined as a lesion with no solid com-
ponent, where the underlying lung parenchyma 
is visible through the opacity, whereas a PSN 
(or mixed ground-glass nodule, mGGN) includ- 
es both solid and ground-glass components. 
Both pGGNs and PSNs were considered sub-
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Figure 1. The workflow of this retrospective study. ROI, region of interest; ROC, receiver operating characteristic; 
DCA, decision curve analysis.

solid nodules for this study; (3) lesions imag- 
ed using lung window settings [width: 1300 
Hounsfield units (HU), level: -650 HU]; (4) post-
surgical diagnosis of AIS, MIA, or IAC.

The exclusion criteria were: (1) a history of che-
motherapy, radiation therapy, or fine needle 
aspiration biopsy prior to CT examination; (2) 
multiple ground-glass nodules in the same lung 
lobe; (3) lesions > 30 mm in the longest diam-
eter; (4) poor quality CT images, including those 
with severe motion artifacts.

To ensure adequate statistical power for detect-
ing differences between the AIS, MIA, and IAC 
groups, the sample size was calculated based 
on previous studies with similar objectives [36, 
37]. Power calculations were performed aiming 
for 80% power at an alpha level of 0.05 to 
detect a meaningful difference in AUC values. 
Considering the complexity of the radiomics 
model, we adhered to the rule of including at 
least 10 events per variable for model stability 
and accuracy. This study ultimately included 

473 patients with 473 GGNs. The training set 
consisted of 257 patients from Yantaishan 
Hospital, while the test set included 216 
patients from the Affiliated Hospital of Binzhou 
Medical College (Figure 2). The test set served 
as an external validation cohort, providing an 
independent evaluation of the model’s per- 
formance.

CT protocols

CT scans were performed using one of three 
Philips Medical Systems CT scanners: Incisive 
64, Brilliance 128, and Brilliance 64 (Philips 
Medical Systems, Netherlands). To minimize 
potential batch effects from using different 
scanners, all CT images were acquired using 
standardized protocols. Specifically, non-en- 
hanced CT images were obtained with the 
parameters listed in Table 1.

Evaluation of clinical-radiological features

Clinical data, including sex, age, and smoking 
history, were extracted from electronic medical 
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Table 1. The CT scanning parameters of different scanners
Settings Brilliance 64 Brilliance 128 Incisive 64
Tube voltage 140 kVp 140 kVp 140 kVp
Tube current 300 mAs 300 mAs 300 mAs
Pitch 0.578 0.578 0.6
Collimation 0.625 mm ×64 0.625 mm ×64 0.625 mm ×32
Matrix size 1024×1024 1024×1024 1024×1024
Field of view 200 mm 200 mm 200 mm
Slice thickness of reconstruction 0.670 mm 0.670 mm 0.670 mm
Slice interval of reconstruction 0.340 mm 0.340 mm 0.335 mm
Reconstruction algorithm Standard Standard Standard
Scanning methods Plain scan Plain scan Plain scan

Figure 2. Flowchart of study population.

records. Radiological feature review was con-
ducted by two independent chest radiologists, 
each with at least 15 years of experience in 
lung imaging, and with no prior knowledge of 
the study’s details. Any disagreements were 
resolved through consensus. Thirteen radio-
logical features were analyzed from the CT 
images, including lesion location, short and 
long diameters, lobulation, spiculation, margin, 
vascular change, air bronchus sign, bubble 
lucency, pleural indentation, shape, nodule 
type, and CT value. Both long and short diame-
ters were included because they provide com-
plementary information about the morphology 
and potential invasiveness of the nodules. The 

long diameter represents the largest dimen-
sion, indicating invasion extent, while the short 
diameter provides insight into the nodule’s 
compactness or sphericity.

Segmentation and radiomics feature extrac-
tion

Manual segmentation of the nodules was per-
formed by a junior chest radiologist with five 
years of experience using the open-source soft-
ware 3D Slicer (Version 4.11; https://www.slic-
er.org) to define the region of interest (ROI) 
along the lesion’s boundaries. The segmenta-
tion was then confirmed by a senior radiologist 
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with 20 years of chest CT experience. Any dis-
crepancies were resolved through discussion 
between the two radiologists. During the seg-
mentation process, the radiologists were 
instructed to carefully delineate the nodule, 
avoiding adjacent tissue structures such as 
blood vessels and the pleura. Radiomics fea-
tures were extracted using Pyradiamics (http://
pyradiomics.readthedocs.io).

Repeatability assessment

Two weeks after the initial analysis, 20 samples 
were selected for repeat testing. Both the 
senior and junior radiologists independently 
segmented the nodules and extracted features 
using the same methods. The repeatability of 
the segmentation and feature extraction was 
assessed using intra- and intergroup correla-
tion coefficients (ICCs). Features with an ICC 
less than 0.75 were considered poorly repeat-
able and excluded from subsequent analysis.

Feature selection and radiomics model build-
ing

Before feature selection, the feature values of 
patients were normalized using the Z-score for-
mula: (x-µ)/σ, where x is the individual feature 
value, μ is the mean value of the feature across 
all patients, and σ is the standard deviation. For 
feature selection, two commonly used methods 
in radiomics studies were employed: (1) the 
mRMR method was used to remove redundant 
features and identify those with the highest 
correlation, and (2) an optimized subset of pre-
dictive features was selected, and a radiomics 
model was constructed using LASSO with 
10-fold cross-validation. After feature selec-
tion, the corresponding coefficients for the 
selected radiomics features were calculated, 
and the Rad-score for each sample was derived 
by performing a weighted summation based on 
these feature coefficients.

Clinical-radiological model and nomogram 
building

Clinical and radiological features were select- 
ed using univariate and multivariate logistic 
regression methods to build a clinical-radiolog-
ical model. Univariate analysis identified se- 
veral potential risk factors for IAC, including 
age, lobulation, spiculation, vascular change, 
air bronchus sign, shape, nodule type, CT value, 

short diameter, and long diameter. Multivariate 
analysis revealed that age, lobulation, and  
long diameter were statistically significant and 
were used to construct the clinical-radiological 
model.

Model evaluation

The predictive performance of the test and 
training sets was evaluated using receiver oper-
ating characteristic (ROC) curve indicators, 
including negative predictive value (NPV), posi-
tive predictive value (PPV), area under the curve 
(AUC), sensitivity, specificity, and accuracy. The 
DeLong test was employed to assess the sta- 
tistical significance of differences between the 
nomogram model developed in this study and 
other models. Calibration curves were used to 
evaluate the relationship between predicted 
and actual results of the nomogram model. The 
Hosmer-Lemeshow test assessed the model’s 
goodness of fit, and DCA evaluated the clinical 
applicability of the nomogram model.

Statistical analysis

Statistical analysis was performed using SPSS 
26.0 and the “One-key AI” platform (https://
www.medai.icu). For data conforming to a nor-
mal distribution, continuous variables were pre-
sented as mean ± standard deviation (

_
x±SD), 

and group comparisons were made using the 
t-test. Categorical data were presented as fre-
quencies (%), and the chi-square test was used 
for comparisons between two groups. A two-
tailed p-value of less than 0.05 was considered 
statistically significant for all tests.

Results

Comparison of general data

A total of 473 patients were included in the 
study, with a mean age of 56.2±11.0 years 
(range: 24-77 years). The cohort comprised 
333 females (70.40%) and 140 males 
(29.60%). Among the GGNs, there were 219 
cases of IAC (46.30%), 165 cases of MIA 
(34.88%), and 89 cases of AIS (18.82%). 
Statistical analysis of patients’ characteristics, 
including sex, age, smoking history, and radio-
logical features, revealed no significant differ-
ences between the test and training sets (all > 
0.05, Table S1). Table 2 compares the clini- 
cal-radiological characteristics of the IAC group 
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Table 2. Comparison of clinical-radiological features between AIS/MIA and IAC groups
Items Training set (n = 257)

P
Test set (n = 216)

P
Features AIS/MIA (n = 143) IAC (n = 114) AIS/MIA (n = 111) IAC (n = 105)
Age (years) 53.32±10.61 61.03±9.87 <0.001 50.67±10.45 59.29±10.26 <0.001
Sex [n (%)] 0344 0.336
    Male 48 (33.57%) 32 (27.98%) 34 (30.63%) 26 (24.76%)
    Female 95 (66.43%) 82 (72.02%) 77 (69.37%) 79 (75.24%)
Smoking history [n (%)] 0.440 0.160
    Absent 133 (92.99%) 103 (89.47%) 101 (%) 89 (84.76%)
    Present 10 (7.01%) 11 (10.53%) 10 16 (15.24%)
Location [n (%)] 0.118 0.401
    Right upper lobe 34 (23.78%) 38 (33.33%) 30 (27.03%) 30 (28.57%)
    Right middle lobe 15 (10.49%) 10 (8.77%) 12 (10.81%) 11 (10.48%)
    Right lower lobe 32 (22.38%) 26 (22.81%) 27 (24.32%) 21 (20.00%)
    Left upper lobe 42 (29.37%) 19 (16.67%) 25 (22.52%) 17 (16.19%)
    Left lower lobe 20 (13.99%) 21 (18.42%) 17 (15.32%) 26 (24.76%)
Lobulation [n (%)] <0.001 <0.001
    Absent 108 (75.52%) 35 (30.70%) 87 (78.38%) 48 (45.71%)
    Present 35 (24.48%) 79 (69.30%) 24 (21.62%) 57 (54.29%)
Spiculation [n (%)] <0.001 0.074
    Absent 128 (89.51%) 82 (71.93%) 96 (86.49%) 81 (77.14%)
    Present 15 (10.49%) 32 (28.07%) 15 (13.51%) 24 (22.86%)
Margin [n (%)] 0.175 0.450
    Clear 111 (77.62%) 80 (70.18%) 74 (66.67%) 75 (71.43%)
    Unclear 32 (22.38%) 34 (29.82%) 37 (33.33%) 30 (28.57%)
Vascular change [n (%)] <0.001 0.006
    Absent 44 (30.77%) 7 (6.14%) 37 (33.33%) 18 (17.14%)
    Present 99 (69.23%) 107 (93.86%) 74 (66.67%) 87 (82.86%)
Air bronchus sign [n (%)] <0.001 <0.001
    Absent 110 (76.92%) 50 (43.86%) 105 (94.59%) 45 (42.86%)
    Present 33 (23.08%) 64 (56.14%) 6 (5.41%) 60 (57.14%)
Bubble lucency [n (%)] 0.102 0.213
    Absent 129 (90.21%) 95 (83.33%) 94 (84.69%) 82 (78.09%)
    Present 14 (9.79%) 19 (16.67%) 17 (15.31%) 23 (21.91%)
Pleural indentation [n (%)] 0.372 0.211
    Absent 77 (53.85%) 55 (48.25%) 57 (51.35%) 45 (42.86%)
    Present 66 (46.15%) 59 (51.75%) 54 (48.65%) 60 (57.14%)
Shape [n (%)] <0.001 0.148
    Round 105 (73.43%) 38 (33.33%) 71 (63.96%) 57 (54.29%)
    Irregular 38 (26.57%) 76 (66.67%) 40 (36.04%) 48 (45.71%)
Nodule type [n (%)] 0.002 <0.001
    pGGN 92 (64.34%) 51 (44.74%) 77 (69.37%) 46 (43.81%)
    mGGN 51 (35.66%) 63 (55.26%) 34 (30.63%) 59 (56.19%)
CT value (HU) -449.81±181.12 -349.80±163.23 <0.001 -495.21±152.80 -349.86±137.37 <0.001
Short diameter (mm) 5.94±2.62 8.11±3.08 <0.001 5.46±1.63 8.43±2.70 <0.001
Long diameter (mm) 8.66±3.68 14.20±5.73 <0.001 7.97±2.37 13.39±4.65 <0.001
CT, computed tomography; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; pGGN, pure 
ground-glass nodule; mGGN, mixed ground-glass nodule; HU, Hounsfield units.

and the AIS/MIA group in both the training  
and test sets. Significant differences were 
observed in CT values, vascular changes, age, 

short diameter, long diameter, lobulation, air 
bronchus sign, and nodule type across patient 
groups in both sets.
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Figure 3. Feature selection using the least absolute shrinkage and selection operator (LASSO). A. Coefficients of 
10-fold cross-validation; B. Mean squared error of 10-fold cross-validation; C. Selected features weight coefficients.

Radiomics model building and diagnostic 
validation

Each lesion’s region of interest (ROI) was calcu-
lated with 1,834 features: 360 first-order fea-
tures, 14 shape features, and 1,460 texture 
features. The texture features included 100 
neighborhood gray tone difference matrix 
(NGTDM) features, 320 gray level size zone 
matrix (GLSZM) features, 440 gray level co-
occurrence matrix (GLCM) features, 280 gray 
level dependence matrix (GLDM) features, and 
320 gray level run length matrix (GLRLM) fea-
tures. Features with an ICC greater than 0.75 
were retained for further analysis, resulting in 
1,463 radiomics features. The mRMR method 
was applied to remove irrelevant and redun-
dant features, selecting the top 20 features 

based on correlation coefficients for LASSO 
screening. These 20 features were used to 
train the LASSO classifier on the training set. 
The LASSO logistic model contained 11 fea-
tures with non-zero coefficients, forming the 
basis of the radiomics model (Figure 3). The 
Rad-score for each sample was calculated 
based on the selected features, with relevant 
formulas provided in the Supplementary Ma- 
terials. In the training set, the AUC of the 
radiomics model for predicting IAC was 0.869 
(95% CI: 0.841-0.897), while in the test set, it 
was 0.846 (95% CI: 0.818-0.874) (Table 4).

Development and predictive performance of 
the clinical-radiological model

Univariate logistic regression analysis identi-
fied age, lobulation, spiculation, vascular chan- 
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Table 3. Univariate and multivariate analysis of clinical-radiological features

Features
Univariate logistic regression Multivariate logistic regression
OR (95% CI) P OR (95% CI) P

Age 1.077 (1.049-1.108) <0.001 1.071 (1.032-1.111) <0.001
Lobulation 6.965 (4.056-12.234) <0.001 6.640 (3.287-13.413) <0.001
Spiculation 3.330 (1.725-6.684) 0.001
Vascular change 6.794 (3.100-17.138) <0.001
Air bronchus sign 4.267 (2.513-7.368) <0.001
Shape 5.526 (3.255-9.562) <0.001
Nodule type 2.228 (1.351-3.703) 0.002
CT value 1.001 (1.001-1.001) <0.001
Short diameter 1.074 (1.054-1.093) <0.001
Long diameter 1.289 (1.206-1.389) <0.001 1.339 (1.226-1.462) <0.001
OR, odds ratio; CI, confidence interval.

Table 4. Comparison of diagnosis efficiency of different models
AUC (95% CI) Sensitivity Specificity PPV NPV Accuracy

Training set
    Clinical-radiological 0.845 (0.817-0.873) 0.846 0.733 0.773 0.846 0.786
    Radiomics 0.869 (0.841-0.897) 0.815 0.813 0.791 0.836 0.814
    Nomogram 0.887 (0.869-0.905) 0.831 0.813 0.794 0.847 0.821
Test set
    Clinical-radiological 0.823 (0.795-0.851) 0.571 0.970 0.941 0.727 0.787
    Radiomics 0.846 (0.818-0.874) 0.857 0.758 0.750 0.862 0.803
    Nomogram 0.865 (0.837-0.893) 0.857 0.818 0.800 0.871 0.836
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value. The Clinical-radiological model in-
cludes age, lobulation, and long diameter as significant predictors identified through multivariate logistic regression analysis.

ge, air bronchus sign, shape, nodule type, CT 
value, short diameter, and long diameter as risk 
factors for IAC. Multivariate analysis revealed 
that age, lobulation, and long diameter were 
statistically significant and were included in  
the clinical-radiological model (Table 3). In the 
training set, the AUC of the clinical-radiological 
model was 0.845 (95% CI: 0.817-0.873), and 
0.823 (95% CI: 0.795-0.851) in the test set 
(Table 4).

Radiomics nomogram building and evaluation

To enhance usability, a nomogram was con-
structed using multivariate logistic regression, 
incorporating age, lobulation, long diameter, 
and Rad-score (Figure 4). The AUC of the nomo-
gram in the training set was 0.887 (95% CI: 
0.869-0.905), with an accuracy of 0.821; in the 
test set, the AUC was 0.865 (95% CI: 0.837-
0.893), with an accuracy of 0.836 (Table 4). 

The radiomics nomogram exhibited the highest 
accuracy and AUC in both the test and train- 
ing sets. Figure 5 displays the ROC curves for 
the clinical-radiological model, the radiomics 
model, and the nomogram. The DeLong test 
indicated that the nomogram outperformed the 
clinical-radiological model in the training set 
(P<0.05). Figure 6 shows the calibration cur- 
ve of the integrated nomogram. The Hosmer-
Lemeshow test revealed no significant differ-
ence between the actual and predicted results 
in both the training set (P = 0.620) and the test 
set (P = 0.096), indicating good model fit. 
Specifically, DCA demonstrated that the nomo-
gram provided a higher net benefit than both 
the radiomics and clinical-radiological models 
across threshold probabilities ranging from 0.1 
to 0.9 (Figure 7). This suggests that the nomo-
gram offers superior clinical utility compared to 
the other models, highlighting its potential for 
clinical application.
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Figure 4. The integrated nomogram incorporating the age, lobulation, long diameter, and rad-score.

Figure 5. ROC curves of the clinical-radiological model, radiomics model, and nomogram in the training test and 
the test set. receiver operating characteristic (ROC). A. ROC curves for the clinical-radiological model, radiomics 
model, and nomogram in the training set. B. ROC curves for the clinical-radiological model, radiomics model, and 
nomogram in the test set.

Discussion

This study developed a nomogram model incor-
porating both the Rad-score and clinical-radio-
logical features to differentiate patients with 
GGNs before surgery and determine whether 
they are AIS/MIA or IAC. The model demonstrat-
ed excellent discrimination, achieving an AUC 
of 0.887 in the training set and 0.865 in the 
test set. This model offers clinicians a valuable 
tool for designing tailored treatment plans, 
potentially improving patient outcomes.

Clinical-radiological features are commonly 
used to identify IAC in GGNs. Lee et al. [38] 

found that larger lesion size and lobulated bor-
ders are significant independent indicators of 
IAC. Another study [39] on pulmonary adeno-
carcinoma invasiveness reported that males 
over 60 have a significantly higher risk of IAC, 
and that nodule diameter significantly differs 
between the IAC cohort and the AAH/AIS/MIA 
cohort, with smaller diameters increasing the 
likelihood of an AAH/AIS/MIA diagnosis. In line 
with these findings, this study selected age, 
lobulation, and long diameter as predictive fac-
tors for IAC. The clinical-radiological model 
demonstrated an AUC of 0.845 in the training 
set and 0.823 in the test set, outperforming 
the model by Feng et al. [40], which reported 
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Figure 6. The calibration curve of the integrated nomogram in the training set and test set. A. Calibration curve for 
the integrated nomogram in the training set. B. Calibration curve for the integrated nomogram in the test set. The 
dashed line represents perfect calibration, and the solid line shows the actual performance of the nomogram.

Figure 7. The decision curve analysis (DCA) of the nomogram model in the 
test set.

AUCs of 0.729 and 0.652, respectively. This dif-
ference may stem from our inclusion of both 
pure and mixed GGNs, while Feng et al. [40] 
focused solely on pure GGNs, which lack a solid 
component indicative of invasion [41-43], mak-
ing them more challenging to assess based on 
clinician experience alone. Despite its overall 
efficiency, the model’s sensitivity in the test set 

was only 0.571, which may 
result in IAC being misdiag-
nosed as AIS/MIA, potentially 
delaying treatment and reduc-
ing survival. Therefore, subjec-
tive methods remain challeng-
ing, as accurate evaluations 
require substantial experience 
and skill. Consequently, this 
study explored the use of ra- 
diomics features to develop a 
model with improved perfor- 
mance.

Radiomics is a rapidly advanc-
ing field that offers a non-inva-
sive, cost-effective method for 
extracting high-throughput qu- 
antitative features from routine 
images. It captures intra-tumor 
heterogeneity, providing mark-
ers that aid clinical decision-
making [44-46]. In a previous 

retrospective study, researchers developed a 
radiomics signature with five features to differ-
entiate IAC from indolent lesions, demonstrat-
ing good efficacy (AUC = 0.89 in the validation 
cohort) [47]. Additionally, a model predicting 
invasiveness in lung adenocarcinoma based on 
seven features showed excellent performance 
(AUC = 0.924 in the external validation set) 
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[48]. In this study, 11 radiomics features were 
selected to construct the model, with texture 
features comprising the majority. This under-
scores the importance of texture features in 
distinguishing the invasiveness of GGNs, as 
they provide insights into the spatial relation-
ships and heterogeneity within tumors [49, 50]. 
IAC, being more malignant than AIS/MIA, re- 
sults in more complex and heterogeneous 
image textures. Notably, no shape features 
were included in the model, likely due to the 
morphological similarities between AIS/MIA 
and IAC, which complicate their differentiation. 
Overall, the findings of this study indicate that 
the radiomics model outperforms the clinical-
radiological model in terms of accuracy and 
AUC.

To enhance the predictive performance of the 
model, we constructed a nomogram integrat- 
ing the Rad-score and clinical-radiological fea-
tures using multiple regression analysis. Com- 
bining multiple predictive factors allows for 
more accurate predictions of clinical outcom- 
es, potentially accelerating the development of 
personalized medicine [51]. The nomogram in 
this study achieved the highest AUC and accu-
racy, demonstrating its effectiveness in distin-
guishing IAC from AIS/MIA. Additionally, the tool 
showed excellent calibration performance. We 
also evaluated its clinical practicality and found 
that, across most probability thresholds, the 
nomogram outperformed the treat-none or 
treat-all strategies. These results suggest that 
the nomogram could support clinicians in deci-
sion-making and help facilitate individualized, 
precision medicine.

However, several limitations need to be add- 
ressed. First, the retrospective design introduc-
es the potential for selection bias. Despite rig-
orous methodology, retrospective studies are 
inherently prone to biases that may not be fully 
controlled. Second, the sample size in this 
study was limited to 473 patients. While this is 
adequate for initial model development and 
validation, a larger sample size would improve 
the robustness and generalizability of our find-
ings. Future studies with larger datasets are 
necessary to confirm the reliability and app- 
licability of the nomogram across diverse 
populations.

In conclusion, the radiomics nomogram is  
an accurate, non-invasive predictive tool that 

effectively differentiates between AIS/MIA and 
IAC. This capability allows clinical teams to 
develop more personalized treatment plans for 
patients.
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Table S1. Comparison of clinical-radiological features between the training and test set
Features Training set (n = 257) Test set (n = 216) P
Age (years) 56.90±10.94 55.62±11.15 0.213
Sex [n (%)] 0.427
    Male 80 (31.13%) 60 (27.78%)
    Female 177 (68.87%) 156 (72.22%)
Smoking history [n (%)] 0.162
    Absent 236 (91.83%) 190 (87.96%)
    Present 21 (8.17%) 26 (12.04%)
Location [n (%)] 0.711
    Right upper lobe 72 (28.01%) 60 (27.78%)
    Right middle lobe 25 (9.73%) 23 (10.65%)
    Right lower lobe 58 (22.57%) 48 (22.22%)
    Left upper lobe 61 (23.74%) 42 (19.44%)
    Left lower lobe 41 (15.95%) 43 (19.91%)
Lobulation [n (%)] 0.131
    Absent 143 (55.64%) 135 (62.50%)
    Present 114 (44.36%) 81 (37.50%)
Spiculation [n (%)] 0.948
    Absent 210 (81.71%) 177 (81.94%)
    Present 47 (18.29%) 39 (18.06%)
Margin [n (%)] 0.167
    Clear 192 (74.71%) 149 (69.00%)
    Unclear 65 (25.29%) 67 (31.00%)
Vascular change [n (%)] 0.144
    Absent 51 (19.84%) 55 (25.46%)
    Present 206 (80.16%) 161 (74.54%)
Air bronchus sign [n (%)] 0.101
    Absent 160 (62.26%) 150 (69.44%)
    Present 97 (37.74%) 66 (30.56%)
Bubble lucency [n (%)] 0.089
    Absent 224 (87.16%) 176 (81.48%)
    Present 33 (12.84%) 40 (18.52%)
Pleural indentation [n (%)] 0.370
    Absent 132 (51.36%) 102 (47.22%)
    Present 125 (48.64%) 114 (52.78%)
Shape [n (%)] 0.428
    Round 143 (55.64%) 128 (59.26%)
    Irregular 114 (44.36%) 88 (40.74%)
Nodule type [n (%)] 0.776
    pGGN 143 (55.64%) 123 (56.94%)
    mGGN 114 (44.36%) 93 (43.06%)
CT value (HU) -428.49±162.10 -428.49±162.10 1.000
Short diameter (mm) 6.82±2.63 6.82±2.63 0.995
Long diameter (mm) 11.23±5.48 10.46±4.49 0.092
CT, computed tomography; pGGN, pure ground-glass nodule; mGGN, mixed ground-glass nodule; HU, Hounsfield units.
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The formula of rad-score: 
Rad-score = 0.464-0.043 * wavelet_HLL_ngtdm_Contrast 
+0.875e-0.3 * wavelet_LHL_firstorder_10Percentile 
+0.077 * log_sigma_1_0_mm_3D_glszm_SmallAreaHighGrayLevelEmphasis 
+0.002 * wavelet_HLH_ngtdm_Strength 
+0.079 * lbp_3D_m1_glcm_Imc1 
+0.028 * exponential_glszm_SmallAreaHighGrayLevelEmphasis 
+0.013 * wavelet_LLH_glcm_Imc2 
-0.068 * exponential_ngtdm_Coarseness 
+0.074 * lbp_3D_k_glcm_ClusterShade 
+0.044 * log_sigma_2_0_mm_3D_glcm_InverseVariance 
+0.006 * wavelet_HLL_firstorder_Kurtosis.


