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Abstract: Breast cancer is a disorder affecting women globally, and hence an early and precise classification is the 
best possible treatment to increase the survival rate. However, the breast cancer classification faced difficulties in 
scalability, fixed-size input images, and overfitting on limited datasets. To tackle these issues, this work proposes a 
Patho-Net model for breast cancer classification that overcomes the problems of scalability in color normalization, 
integrates the Gated Recurrent Unit (GRU) network with the U-Net architecture to process images without the need 
for resizing and computational efficiency, and addresses the overfitting problems. The proposed model collects and 
normalizes histopathology images using automated reference image selection with the Reinhard method for color 
standardization. Also, the Enhanced Adaptive Non-Local Means (EANLM) filtering is utilized for noise removal to 
preserve image features. These preprocessed images undergo semantic segmentation to isolate specific parts of 
an image, followed by feature extraction using an Improved Gray Level Co-occurrence Matrix (I-GLCM) to reveal fine 
patterns and textures in images. These features serve as input into the classification U-Net model integrated with 
GRU networks to improve the model performance. Finally, the classification result is expanded, and XAI is used for 
clear visual explanations of the model’s predictions. The proposed Patho-Net model, which uses the 100X BreakHis 
dataset, achieves an accuracy of 98.90% in the classification of breast cancer.
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Introduction

Breast cancer increases the death rate of 
women worldwide, which spreads abnormal 
cell growth in the human body on a gradual 
basis [1, 2]. Genetic factors and non-genetic 
characteristics like age, short breastfeeding 
periods, mammographic density, and drinking 
alcohol can contribute to the development of 
breast cancer. Common signs of breast tumors 
include swelling, breast lumps, tenderness, 
pain, and nipple discharge unrelated to breast 
milk [3]. The early diagnosis of breast cancer 
substantially reduces the death rate by enabling 
the timely selection of appropriate treatment. 
The imaging techniques of mammography, 
Breast Ultrasound (BUS), Computed Tomogra- 
phy (CT), Magnetic Resonance Imaging (MRI), 
and Positron Emission Tomography (PET) 
enhance the early identification of breast 

tumors [4, 5]. It can be treated through surgery, 
radiation, chemo, and gene therapies, which 
produce several side effects [6]. To combat 
these side effects, researchers are exploring 
advanced AI techniques to enhance early diag-
nosis. Deep learning (DL) algorithms [7] can 
detect subtle patterns and structures that 
might escape human observation, contributing 
to the early detection of breast cancer.

Histopathological analysis plays a crucial part 
in the diagnosis of Breast cancer. Image pro-
cessing techniques analyze the histopathologi-
cal images through color normalization, prepro-
cessing, segmentation, feature extraction, and 
classification [8]. Machine Learning (ML) en- 
compasses a Support Vector Machine (SVM), 
XGBoost, decision trees, random forest, and 
logistic regression models to classify and pre-
dict breast cancer. It provides a reference for 
early diagnosis of breast cancer, focusing on 
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recall as the primary evaluation index due to its 
importance in medical diagnosis for detecting 
malignant cells [9, 10]. The DL framework 
detects breast cancer using Immunohisto- 
chemistry (IHC) images. The DL architecture 
recognizes breast mass tumors with an object 
detection algorithm and a Convolutional Neural 
Network (CNN). It examines the mammogram 
to pinpoint specific regions with high accuracy 
[11, 12]. Automated detection of malignancy  
in breast tumors from mammography images 
using object detection models like YOLO and 
Mask R-CNN improves the accuracy of breast 
cancer detection by lowering false positive and 
false negative rates [13]. The DRD-UNet archi-
tecture detects and segments breast cancer 
tumors in histopathological images. It inte-
grates the dilation, residual, and dense blocks 
for precise segmentation. The efficient UNet 
method integrating ResNet18, a channel atten-
tion mechanism, and deep supervision add- 
resses the challenges in image analysis and 
enhances feature extraction capabilities [14, 
15]. Breast cancer detection still faces difficul-
ties due to the lack of datasets and the signifi-
cant diversity among tumors in terms of their 
shape, size, and location [16]. To overcome 
these problems a novel model has been pro-
posed, and the contributions of the proposed 
work are as follows.

1. The proposed work utilizing the 100X 
BreakHis Dataset of histopathological images 
indicates multiple types of breast cancer in the 
development of DL models proposed for breast 
cancer diagnosis. 2. This paper could resolve 
the problem of scalability for big datasets with 
multiple classes by proposing a novel frame-
work. This combines noise reduction using 
Enhanced Adaptive Non-Local Means (EANLM) 
technology for histopathology images to im- 
prove image quality, thereby obviating image 
enhancement processes. 3. This study of Gated 
Recurrent Unit (GRU) networks integrated with 
U-Net presents a solution for varying image 
sizes in imaging to make them flexible enough 
to record the intricate spatial features of tumors 
accurately. 4. This methodology focuses on Ex- 
plainable Artificial Intelligence (XAI) technolo-
gies for creating visual explanations of classifi-
cation conclusions, thus rendering the outputs 
more intelligible and corroborating the diagno-
ses based on obtained features.

This research is structured as follows: Section 
2 reviews related work on breast cancer clas-
sification methods and models. Section 3 de- 
tails the proposed Patho-Net to distinguish 
malignant and benign breast tumors. Section  
4 presents the findings, showcasing the effec-
tiveness of the proposed methodology. Finally, 
Section 5 offers conclusions.

Literature survey

The early research of the histopathological 
image classification of breast cancer using DL 
and ML has been listed below. Reshma et al. 
[17] created a classification strategy based on 
weighted feature selection, an improved genet-
ic algorithm, and a CNN classifier to detect 
breast cancer. This model increased the accu-
racy of breast cancer classification by add- 
ressing the challenges of low-density regions. 
Nevertheless, the model categorization perfor-
mance declined due to an insufficient initial 
training set. To address the problem of restrict-
ed data availability, Shah et al. [18] suggested 
a deep convolutional generative adversarial 
network. The synthetic mammograms generat-
ed by this approach faithfully replicate the 
inherent patterns found in the data. However, 
the model could benefit from additional datas-
ets and more Generative Adversarial Network 
(GAN) architecture for further validation. 

Mohanakurup et al. [19] suggested a Com- 
posite Dilated Backbone Network (CDBN) to 
identify breast cancer from histopathological 
images. Computer-aided design (CAD) phases 
improve the accuracy of early detection and 
decrease false diagnoses. However, the lack of 
label information in breast cancer histopatho-
logical images results in incorrect grouping. In 
the same way, Eltoukhy et al. [20] developed an 
automatic CAD system using Histopathology-
RDNet, a self-training DL model, to classify  
multiclass histopathological breast images. 
The model demonstrated strong performance 
while dealing with the intricate nature of histo-
pathological images. However, it was computa-
tionally expensive due to skip connections and 
numerous layers with different convolutional 
filter widths. For this, Sharma et al. [21] used a 
pre-trained Xception model to extract the dis-
tinguishable features from histopathological 
images for effective breast cancer treatment. 
The model preserved the spatial information to 
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enhance the classification performance. While 
this model prevents the problems of overfitt- 
ing, it does not address the issue of binary 
classification.

Lu et al. [22] proposed a paradigm for fine-
grained lesion zone segmentation in high-reso-
lution pathology using YOLOV4. The model 
effectively increased the segmented regions  
of interest’s average recognition precision. It 
could be further improved by reducing the false 
detection rate of the primary lesion region. 
Similarly, using the segmentation method, 
Tagnamas et al. [23] developed a Hybrid CNN 
transformer that integrates EfficientNetV2 and 
an Adaptive Vision Transformer (ViT) encoder to 
classify the breast tumor. The model success-
fully classified the segmented tumor regions as 
benign or malignant using a Multi-Layer Per- 
ceptron (MLP). However, it lacks contextual 
information about the tumor’s area. Hossain  
et al. [24] developed a fully automated RTC 
assessment method using the ViT to identify 
representative tumor regions and the Data-
efficient Image Transformer (DeiT) for evaluat-
ing tumor cellularity in those regions. However, 
the model supports automatic tumor selection, 
it was only trained and tested for 20X magnified 
images. 

Islam et al. [25] introduced an Ensemble deep 
CNN model that enhances breast cancer detec-
tion by incorporating the MobileNet, Xception 
models, and U-Net segmentation technique. 
The model utilized the GRAD-CAM XAI method 
to improve model interpretability and diagnosis 
accuracy. However, it could be further improved 
by integrating a CAD system for more effective 
detection of breast cancer. Correspondingly, 
Thakur et al. [26] developed a CNN model  
integrated with Early Stopping and Reduce- 
LROnPlateau callbacks for breast cancer clas-
sification. The model effectively harnessed the 
power of advanced DL models, thereby revolu-
tionizing the precision and reliability of breast 
cancer classification. Further inferential statis-
tical tests were needed to improve the model’s 
predictive performance.

The existing models struggle with the lack  
of label information, generalization problems, 
unbalanced datasets, real-time detection, and 
computer resources. This paper uses the inte-
gration of Gated Recurrent Unit (GRU) networks 

with the U-Net architecture to avoid overfitt- 
ing problems and improve generalizability and 
robustness. To avoid the scalability issue in 
color normalization, we used the Reinhard 
method to automatically select the reference 
image.

Proposed methodology

The proposed Patho-Net uses histopathology 
images that are taken from the Breakhis data-
set to classify malignant and benign tumors. 
The process begins with the color normaliza-
tion that selects the automatic reference ima- 
ge to improve the standardization and consis-
tency of the color normalization process. Then 
the preprocessed images enhance the image 
quality using the ENALM technique. Next, the 
images are segmented to identify and perform 
to extract the regions of interest. From these 
regions, extract the features to train the U-net 
model to be classified as cancers (malignant) 
or non-cancers (benign). Finally, XAI techniques 
visually explain the model’s predictions. Figure 
1 illustrates the architecture of the proposed 
framework.

Dataset

The 100X BreakHis Dataset contains a set of 
2048 histopathology images for breast cancer 
classification. This dataset confronts clinicians 
with such dilemmas as they look for adenosis, 
ductal carcinoma, lobular carcinoma, and other 
types of pathologies. The set provides the inte-
gration of a DL model for the classification of 
breast cancer from histopathological images.

Color normalization

The color normalization method involves stan-
dardizing the color distribution of histopatholo-
gy images to enhance the image analysis pro-
cesses. In the normalization framework, the 
process used an automated reference image 
selection method, which was combined with 
the Reinhard method. It selects a reference 
image for every class and then identifies the 
different staining color characteristics within 
particular categories like benign or malignant. 
To achieve this, the following mathematical 
equation is used:

1
D V1i,C j,Cj

D=n =
/                                             (1)
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Figure 1. The framework for the proposed breast cancer classification.

Where (μi) is the mean color vector for class (C), 
(D) represents the number of images within the 
class (dataset), and (Vj,C) is the color vector of 
the ( jth) image in class (C). This equation (1) is 
used to calculate the mean color vector as it 
averages the color vectors of all the images in a 
class. To measure the variation in color distri-
bution for the class, the Standard Deviation of 
the color vector for a given class (C) is calculat-
ed as:

1 ( )D V 2
1i,C i,Cj

D
j,C= -v n=

/                              (2)

Where, (σi,C) denotes the standard deviation of 
the color vector for class (C). This equation (2) 
is utilized to find out the dispersion of the color 
vectors around the mean color vector for the 
class by taking the corresponding product of 
two matrices and the transposition of one of 
them to be measured. 

Reference image selection: The reference 
image ( jmin) with the minimum Euclidean dis-
tance to the mean vector selected as the refer-
ence image for the class (C) and is calculated 
as: 

jmin=argmin(IIVj-μiII)                                                             (3)

Where ( jmin) is the image index with the mini-
mum Euclidean distance to the mean color vec-

tor (μi). Equation (3) will select the reference 
image via the detection of the image with the 
minimum Euclidean distance to the average 
color vector. After choosing the reference ima- 
ge, color normalization (equation 4) is per-
formed for each image (I’) from the class (C) to 
get the result of the reference image.

I'
I'
i,C

iC
ref ref=

-
+$

v

n
v n                                        (4)

Here, (μref) and (σref) are the mean and standard 
deviation of the color vector of the reference 
image, respectively. (I’) represents the normal-
ized image, as shown in Figure 2. 

Pre-processing

Following color normalization, the next step is 
to preprocess the data more efficiently by 
improving image quality and eliminating the 
noise using the EANLM technique. Non-local 
means noise reduction and is operated by 
image features like edges and details, identify-
ing similar patches throughout the entire ima- 
ge and then calculating weights for each pixel 
based on the similarity of their surrounding 
patch. Still, the quality is due to the interfer-
ence of noise, which might cause the blurring 
and loss of details. To address this, the work 
proposes EANLM for adjusting key parameters 
alteration of (h) (base filter), the setting of the 
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template window size, and the setting of the 
search window size to get an optimal balance 
for effective noise reduction and maintain a 
clear image. Mathematically, this is expressed 
as:

( , ) ( )
1w m n I' e

,II ( ) ( )II
h

v G v G
2

2
2

m n

= - - v

                           (5)

Where, (I’) is a normalization constant for the 
image, v(Gm)-v(Gn) measures the Euclidean dis-
tance between patches (Gm) and (Gn) with a 
Gaussian kernel parameterized by (σ), and (h) is 
the base filter strength for adjusting the sensi-
tivity to pixel differences. It determines the 
weight, w(m,n) for each pixel (m,n) based on  
the similarity of its patch (Gm) to neighboring 
patches (Gn). A higher weight is assigned to pix-
els with similar neighboring patches, ensuring 
noise reduction while preserving important 
details.

( )I' e
II ( ) ( )II ,

h
v G v G

2
2
2

m n

n= - - v/                                      (6)

This equation (6) computes the normalization 
constant (I’) to ensure that the weights sum up 
to one for each pixel for proper normalization. 
The following equation (7) calculates the fil-
tered value EANLM(m) for each pixel. And, v(n) 
represents the intensity value of the pixel in the 
image. 

( ) ( , ) ( )I' EANLM m w m n v n( ) j I=#
e

/             (7)

Figure 2. The left side shows the histopathological input images and the right side shows the color-normalized im-
ages using the Reinhard method.

Algorithm 1. Pseudocode for EANLM noise reduc-
tion method applied to histopathology images
Objective: To remove the noise from the color-
normalized image
Input: Histopathology Image (D)
Output: Pre-processed Image (P)
1: for each pixel (m,n) in D do 
2: Compute normalization constant I’ using Eq. (6)
3: Initialize EANLM(m) as the filtered value for 
pixel (m,n)
4: for each patch (Gm) in the template window 
around (m,n) do
5: Calculate weight w(m,n) based on Eq. (5)
6: Accumulate weighted intensity from patches 
(Gn) in the search window around (m,n) using Eq. 
(7)
7: Assign EANLM(m) to P(m,n) using Eq. (8)
8: end for
9: Return P as the pre-processed image after 
noise reduction

These equations describe the process by which 
the EANLM reduces noise while retaining criti-
cal image features such as edges and textures 
for accurate analysis. The following equation (8) 
representing the noise reduction image using 
the EANLM method is:

EANLM(m)=|P|= {p1, p2, … p∞}                       (8)

Here, |P| denotes the set of all patches in the 
image, and {p1, p2, … p∞} represents the pro-
cessed patches after noise reduction to pre-
serve important details to improve overall 
image quality, as shown in Figure 3.
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Figure 3. Pre-processed patches after noise reduction using the ENALM technique.

(P), noise (∈), and time (t). The term (∈θ) denot- 
es the predicted noise, and the loss function 
measures the difference between the predict-
ed and actual noise and (αt). It trains the seg-
mentation model by minimizing the difference 
between predicted and actual noise. The recur-
sive process of denoising can be calculated as:

t
( 1 ( , ))

1 ( , )

x
x x t

x t2
t

1
1

1

t
t t t t

t t t t

=
-

+

- - +

-

a

a a e

a v e v e

-
-

-

i

i

                        (11)

Where (xt-1) is the denoised patch at the previ-
ous time step. The terms (αt-1) and (σt) are 
parameters controlling the denoising process. 
This equation (11) iteratively refines the patch-
es, reducing noise and improving details at 
each step. In this process, the final segmenta-
tion is accurate and clear, as shown in the 
equation (12).

P’=f(xt, σ)                                                        (12)

This equation represents the final segmented 
output (P’), as depicted in Figure 4. Where (f) is 
a function applied to the denoised patches (xt) 
with parameter (σ). By accurately segmenting 
the images, the features can be extracted 
effectively and improve the performance of 
classification tasks.

Segmentation 

In segmentation, an image is divided into differ-
ent parts to isolate some objects of interest. In 
this particular instance, semantic segmenta-
tion sets a category for each pixel of an image, 
and every pixel is the provided information to 
which class it corresponds. It will isolate the 
malignant or benign regions to provide inputs 
for further feature extraction and classification. 
A set of mathematical formulas that are fol-
lowed in semantic segmentation is:

( | ) ( ; , (1 ))q x P x PN tt t t= -a a                         (9)

This equation (9) represents the probability dis-
tribution (q(xt|P) of a patch (xt) given to the pro-
cessed image (P) after noise reduction. Here, 
(N) denotes a Gaussian distribution, (αt) is a 
weight factor, and (1-αt) represents the vari-
ance. It captures the structure of the image. To 
train the segmentation model, the following 
equation (10) defines the loss function (L) used 
by the model to segment the image.

I [II ( 1 , ) II ]L P tE(P), ( ),
2

N 0,I t t t tt= + - -e a a e e+ ie    (10)

This equation defines the loss function and the 
expectation (IE) over the distribution of patches 
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Equation (14) represents the standard devia-
tion (τ) of the segmented image to provide a 
measure of the variation of the pixel intensi- 
ties. Here, the term (a-μ)2 measures the devia-
tion of each pixel value from the mean. The 
standard deviation provides information about 
the spread of pixel values, indicating the con-
trast and texture of the image.

Contrast ( ) ( )P' a b S.2
abba= -//               (15)

Equation (15) represents the contrast of the 
image, which measures the intensity contrast 
between a pixel and its neighbor over the entire 
image. This contrast indicates significant varia-
tions in the image for identifying different tis-
sue types.

Dissimilarity ( ) | |P' a b Sabba= -//            (16)

Equation (16) represents the dissimilarity of the 
image to measure the absolute differences 
between the pixel pairs. It highlights subtle vari-
ations in texture in the differentiation of tissue 
structures. By using I-GLCM, these equations 
allow for capturing more intricate patterns and 
detailed structures in the image to the feature 
extraction process. The extracted features can 
be expressed as:

(P’)=|R|={r1, r2, … r∞}                                     (17)

In equation (17), (R) is the extracted fea- 
tures from the segmented images. The set {r1, 
r2, … r∞} includes features, such as mean, stan-
dard deviation, contrast, and dissimilarity, pro-
viding information for accurate classification.

Classification

In this process, the extracted features are input 
into the U-Net model to distinguish malignant 
tumors and benign tumors, as shown in Figure 
5. The U-Net model works by introducing an 
encoder-decoder structure. The path to the 
encoder is made up of the convolutional layer, 
which repeats the function over and over each 
time, followed by the activation function as a 
rectified linear unit (ReLU) and the pooling layer 
to down-sample the input. This path captures 
the features of the input image. The process 
followed in the decoder path is the reverse one: 
at each stage, the feature map will be upsam-
pled in parallel, and then the convolutional 

Algorithm 2. Pseudocode for semantic segmenta-
tion
Objective: To set a category for each pixel in an 
image
Input: Pre-processed Image (P)
Output: Segmented image (P’)
1: Initialize αt, σ // Parameters
2: for each pixel xt in P do
3: Calculate q(xt|P) using Eq. (9)
4: Train segmentation model with the loss function 
L defined in Eq. (10)
5: Update xt-1 using Eq. (11) to refine patches 
iteratively
6: if the end of the iteration, then
7: Apply function f to xt with parameter σ // Final 
segmentation
8: Set the corresponding pixel in P’ to the seg-
mented result
9: end if
10: Output the final segmented image P’ using Eq. 
(12)
11: end for
12: Return P’ // Return segmented image

Feature extraction

Feature extraction is the most important pro-
cess in computer vision. This is a process of 
identifying and extracting the features from an 
image to facilitate classification. In this frame-
work, an Improved Gray Level Co-occurrence 
Matrix (I-GLCM), is used to extract the shape 
and color features from the segmented imag-
es. GLCM captures second-order statistical 
information by evaluating the spatial relation-
ships between the image pixels. However, 
GLCM cannot capture more intricate patterns 
and structures present in histopathology imag-
es. To fix this, the I-GLCM model is used. It 
includes higher-order statistics to create ma- 
trices that consider relationships among trip-
lets or quadruplets of pixels instead of pairs. 
I-GLCM is modeled on the following mathemati-
cal equations:

Mean ( ) . ( )P' Sb aba= =n //                         (13)

Equation (13) represents the mean (μ) of the 
segmented output (P’). Where (Sab) is the value 
of the co-occurrence matrix at position (a) and 
(b) are pixel intensities. To understand the over-
all intensity distribution, the mean measures 
the average pixel value in the segmented 
region.

SD ( ) . ( )P' a S2 abba= = -x n//                (14)
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Figure 5. U-Net architecture for tumor classification.

Figure 4. Final segmented images using the semantic segmentation method.
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Figure 6. Cancerous tumors (malignant) and non-cancerous tumors (benign) for 8 different classes from the Break-
His dataset.

layer is used to reconstruct the spatial dimen- 
sions.

To distinguish between malignant and benign 
tumors using a GRU U-Net structure. Nonethe- 
less, the U-Net architecture works with fixed-
size inputs, thus, medical imaging data pres-
ents the main possible issue for different 
whole-slide sizes. With the addition of the net-
work with GRU in the U-Net structure, GRU 
U-Net could deal with the sequence lengths for 
images that are not required to be resized or 
cropped, thus representing the accurate spa-
tial features and time details in the images  
for a precise classification of different tumors. 
The mathematical equations for the GRU inte-
grated into the U-Net architecture are:

Zt=ρ(WZ
•[kt-1, R(xt)]+bZ)                                   (18)

Equation (18) represents the update gate (Zt) in 
the GRU. Here, (ρ) denotes the ReLU activation 
function, (WZ) is the weight matrix, (kt-1) is the 
hidden state from the previous time step, (R(xt) 
represents the feature map at the current input 
step, and (bZ) is the bias term. The update gate 
controls the past information that needs to be 
passed to the future. The following equation 
(19) denotes the reset gate (rt) in the GRU. 

rt=ρ(Wr
•[kt-1, R(xt)]+br)                                        (19)

Similar to the update gate, the reset gate (r) 
determines the past information to forget. 

Following that, Equation (20) represents the 
candidate’s hidden state (kt+ ) in the GRU.

tanh ( [ * , ( )] )k W u k R x b1t t t t= +$ -
+                                 (20)

Here, (tanh) denotes the hyperbolic tangent 
function, and (ut*ht-1) represents the element-
wise multiplication of the reset gate with the 
previous hidden state with the current feature 
map R(xt). This candidate’s hidden state cap-
tures the new data to be added to the hidden 
state. The final hidden state (kt) in the GRU is:

(1 ) * *k z k z k1t t t t t= - +- +                              (21)

This equation (21) combines the previous hid-
den state (kt-1) and the candidate’s hidden state 
(kt+ ), weighted by the update gate (zt). This state 
captures the relevant data needed for the cur-
rent time step. The output (yi) of the GRU U-Net 
is represented as:

(yi)=ReLU (W•kt+b)                                          (22)

The (yi) represents the classification predic-
tions produced by the GRU U-Net model (malig-
nant or benign tumors) on the input image, as 
shown in Figure 6. The ReLU activation function 
holds a non-linear model for learning the com-
plexity of the data. In this way, the tumor inter-
face features are explicitly detected in the GRU 
U-Net, giving higher accuracy in malignant and 
benign tumors. Finally, XAI visual explanations 
of this model help clinicians understand the 
model’s decision-making process.
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by making the BreakHis dataset that consists 
of tumors of various types. This dataset was 
divided into training and testing sets. The 
details division of the dataset into different 
classes is shown in Table 1.

The performance metrics for the proposed 
Patho-Net model of classifying breast cancer, 
as shown in Figure 7. Accuracy measures the 
overall correctness of the model. Precision, 
sensitivity, and F-measure detecting of cancer-
ous cases by reducing false positives and nega-
tives. Specificity and negative predictive value 
(NPV) indicate correctly recognizing non-cancer 
cases. The Matthews correlation coefficient 
(MCC) further highlights the model perfor-
mance to class balance. Lastly, the false posi-
tive rate (FPR) and false negative rate (FNR) 
represent the model’s efficiency in reducing 
classification errors. Table 2 shows the pro-
posed Patho-Net model’s performance me- 
trics for breast cancer classification.

The training and testing loss curves for the 
evaluation of how well the model works and 
improves with time are shown in Figure 8.  
Loss reduction was a result of the value of 
being able to learn from the data and thus  
minimize error classification in breast cancer  
by the model. Both plots show a decrease in 
loss. Hence, the model works better and 
improves in generalization to new data. 

To evaluate the performance of a classification 
model, a confusion matrix is used, as shown in 
Figure 9. It shows the estimated classes for  
a total of eight diseases. The cells diagonal 
reflects that the prediction is correct ((TP)-True 
Positives and (TN)-True Negatives, while the 
cells off-diagonal represent the misclassifica-
tion ((FP)-False Positives and (FN)-False Ne- 
gatives. The matrix supports identifying the 
aspects where the model is capable of differen-
tiating these classes with the highest accuracy. 
The results of the confusion matrix are shown 
in Table 3.

Comparative analysis

The primary goal of this study is to measure  
the effectiveness of breast cancer classifica-
tion using U-Net-GRU. It is compared to seve- 
ral cutting-edge models like Extreme Gradient 

Table 1. Dataset distribution for training and 
testing
Class Total Train Test
Adenosis 113 79 34
Ductal Carcinoma 890 623 267
Fibroadenoma 260 182 78
Lobular Carcinoma 170 119 51
Mucinous Carcinoma 222 155 67
Papillary Carcinoma 142 99 43
Phyllodes Tumor 121 84 37
Tubular Adenoma 150 105 45

Algorithm 3. Pseudocode for tumor classification
Objective: To predict the classification type as 
benign or malignant
Input: Segmented image features (|R|)
Output: Classification predictions (yi)
1: Feature extraction using Improved GLCM (I-
GLCM)
2: Compute mean (μ) using Eq. (13)
3: Compute standard deviation (τ) using Eq. (14)
4: Compute contrast using Eq. (15)
5: Compute dissimilarity using Eq. (16)
6: Initialize U-Net architecture
7: for each time step t do
8: Calculate update gate zt using Eq. (18)
9: Calculate reset gate rt using Eq. (19)
10: Calculate the candidate’s hidden state kt+  
using Eq. (20)
11: Update hidden state kt using Eq. (21)
12: Generate classification predictions:
13: for each output unit i do
14: Compute predictions yi using ReLU activation 
on the final hidden state kt
15: end for
16: return Classification predictions (yi)

Results and discussions

This section presents the experimental results 
of the study. Implementation is done on a 
Python platform with CPU-Intel(R) Xeon(R) CPU 
E5-1650 v3 @ 3.50GHz GPU-NVIDIA Quadro 
M2000, Python 3.10, Windows 10 Pro for 
Workstations, 64-bit operating system, x64-
based processor. It shows the classification 
performance according to the relevant training, 
testing, and validation trends by the use of the 
BreakHis dataset.

Performance analysis

The performance of the proposed GRU U-Net 
model in classifying breast cancer is validated 
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Figure 7. Performance analysis of the proposed Patho-Net model.

Table 2. Performance metrics of the pro-
posed Patho-Net model
Metric Value
Accuracy 98.90244
Precision 98.60976
Sensitivity 98.60976
Specificity 99.37282
F measure 98.60976
MCC 96.98258
NPV 99.37282
FPR 0.627178
FNR 4.390244

Figure 8. Training and validation of accuracy and 
loss.

Boosting (XGBoost) [27], Support Vector Ma- 
chine (SVM) [28], A-Network (A-Net) [29], and 
Residual Network (ResNet50V2) [30]. 

Figure 10 exhibits the comparative values for 
the accuracy, precision, recall, and F1-score  
for each model. Among the other models, the 
proposed U-Net-GRU model is much better in 
terms of all indices. This strategy is based  
on U-Net architecture fused with GRU, which 
strengthens the model’s capability to capture 
complex patterns in the histopathology images 
to improve accuracy and performance. Table 4 
provides performance details of the classifica-
tion models.

Table 5 represents the comparison of the pro-
posed model against the literature survey in 



Breast cancer classification using deep learning and EAI

765	 Am J Cancer Res 2025;15(2):754-768

Table 3. Confusion matrix outcomes
Classes TP TN FP FN
Adenosis 32 748 2 1
Ductal Carcinoma 261 517 5 1
Fibroadenoma 74 710 1 1
Lobular Carcinoma 40 744 1 1
Mucinous Carcinoma 67 718 1 1
Papillary Carcinoma 32 748 1 1
Phyllodes Tumor 0 780 0 0
Tubular Adenoma 48 732 0 0

Figure 9. A Confusion matrix to evaluate the performance of a classification model.

terms of accuracy. Compared to other models 
in the literature, the proposed U-Net-GRU 
model is more accurate in classifying breast 
cancer diagnosis. 

Explainable artificial intelligence 

The paper is centered on XAI use to make the 
U-Net model in breast cancer diagnosis from 
histopathology images more interpretable. For 
cancerous tumors, the XAI models used Grad-
CAM and XRAI, and they are used for the class-

es Ductal, Lobular, Mucinous, and Papillary 
Carcinoma (shown in Figure 11). XAI techni- 
ques allow the doctors to visualize the paths  
of the model’s decision-making processes to 
medical professionals in bridging the gap 
between advanced AI technologies and the 
clinical meaning of it, hence yielding better 
patient results.

Conclusion 

In conclusion, this paper proposed a novel 
Patho-Net method for breast cancer classifica-
tion. This framework provides a precise classifi-
cation with clear visual explanations of the pre-
dictions. In the Patho-Net model, high-quality 
input data are ensured through the integration 
of the GRU network with the U-Net architecture. 
Also, the Reinhard method and EANLM filtering 
are used for noise removal in the color normal-
ization process. Additionally, the I-GLCM image 
texture features-based feature extraction tech-
niques were used to analyze the specific pat-
terns in the tumor regions. Hence, the model 
can distinguish the cancerous and non-cancer-
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Table 5. Accuracy comparison with literature models
References Model Used Accuracy (%)
Reshma et al. [17] (2022) CAD-CNN 92.44
Mohanakurup et al. [19] (2022) CDBN 92.00
Eltoukhy et al. [20] (2022) DL-NN 96.30
Sharma et al. [21] (2022) SVM 96.25
Lu et al. [22] (2023) YOLOv4 96.00
Tagnamas et al. [23] (2024) CNN 86.00
Hossain et al. [25] (2024) D-CNN 87.82
Islam et al. [26] (2024) BC-CNN 95.20
Proposed U-Net-GRU 98.90

Figure 10. Comparative performance analysis of breast cancer classification models.

Table 4. Performance comparison of classification models
Models Accuracy Precision Recall F1-Score
Xgboost [27] 92.17 88.1 96.1 92
SVM [28] 92.6 91 90 90
A-net [29] 95.33 95 96 96
ResNet50V2 [30] 95 94.86 94.32 94.57
Proposed U-Net-GRU 98.90 98.60 98.60 98.60

cant in the earlier classification of breast can-
cer treatment of patients to another level in  
the healthcare field, thus creating healthcare 
for better results and improved patient care. 
However, this model does not analyze the  
stage of the tumor. Future work will focus on 
improving the model to classify the tumor stage 

ous tissues. Finally, the use of XAI visualizes 
the model’s decision-making process by high-
lighting the tumor areas of histopathological 
images. The experimental results show that 
Patho-Net is effective in being able to reach an 
accuracy of 98.90% using the BreakHis datas-
et. The use of Patho-Net can become signifi-
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Figure 11. XAI visualization methods of Grad-CAM and XRAI. It highlights important regions in histopathology images 
in the diagnosis of cancerous tumors.

into intermediate, advanced stages, or deadly 
cancers. 
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