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Abstract: Introduction: The relationship between interstitial lung disease (ILD) and lung cancer in nonsmokers 
(LCINS) has garnered increasing interest. However, the causal associations and underlying pathogenesis between 
ILD and LCINS remain poorly understood. Methods: This research utilized a bidirectional two-sample Mendelian ran-
domization (MR) method, utilizing forward MR analysis to assess the causal impact of ILD on LCINS and reverse MR 
analysis to evaluate the causal effect of LCINS on ILD. Additionally, transcriptome data and bioinformatics analyses 
were used to explore the associations between ILD and LCINS. An ILD-related gene signature (ILD risk score) was 
identified to examine its influence on the hallmark signaling pathways and the immune microenvironment in LCINS. 
Results: The study revealed a significant causal relationship between ILD and LCINS, with ILD increasing the risk of 
lung cancer in nonsmoking European populations. We developed a 5-gene risk model, which includes CD1A, CDH3, 
KRT6B, MMP1, and MMP10, via least absolute shrinkage and selection operator (LASSO) regression. The ILD risk 
score independently influences the prognosis of nonsmoking patients with lung cancer, and these five genes are 
also significantly associated with overall survival (OS) rates. Patients in the high-ILD risk subgroup exhibited signifi-
cantly poorer survival rates. A highly accurate nomogram was developed to increase the clinical applicability of the 
ILD risk score. Additionally, the ILD risk scores were significantly correlated with hallmark signaling pathways and 
immune cell infiltration. Conclusions: This study suggested that ILD may have a positive causal effect on LCINS, with 
the ILD risk score serving as an effective predictor of the prognoses in LCINS patients. It is associated with tumor 
proliferation and the activation of metabolism-related signaling pathways. These findings also indicate that ILD may 
contribute to the occurrence and progression of LCINS through its influence on immune cell infiltration.

Keywords: Interstitial lung disease (ILD), lung cancer in never smokers (LCINS), Mendelian randomization (MR), 
transcriptomic data

Introduction

Lung cancer is the most common type of can-
cer worldwide and accounts for the highest 
number of cancer-related deaths [1, 2]. Al- 
though cigarette smoking is the predominant 
risk factor associated with lung cancer, 10% to 
25% of lung cancer cases are observed in indi-
viduals who are nonsmokers [1, 3-5]. Lung can-

cer may be related to gene mutations, the 
tumor microenvironment, and inflammatory fac-
tors [6-9]. The incidence of lung cancer among 
individuals who have never smoked (LCINS) is 
notably elevated in East Asia, accounting for 
approximately one-third of all lung cancer cases 
[10]. In the USA, approximately 20,500 deaths 
from lung cancer not attributed to smoking rank 
as the eighth most prevalent cause of cancer-
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related death [4]. LCINS is histologically and 
epidemiologically distinguishable from smok-
ing-related lung cancer. It predominantly pres-
ents as adenocarcinoma and is most common-
ly found in women and individuals of Asian 
descent. This subtype also exhibits a relatively 
high prevalence of genetic mutations. Risk fac-
tors for LCINS include exposure to secondhand 
smoke, occupational hazards, family history of 
lung cancer, hormonal infuences, and preexist-
ing diseases [11].

ILD is a group of various diffuse parenchymal 
lung diseases with increasing incidence. Idio- 
pathic pulmonary fibrosis (IPF) is a typical form 
of ILD. In a retrospective study involving 938 
patients with IPF, 135 (14.5%) developed lung 
cancer during follow-up, and the cumulative 
incidence rates of lung cancer at 1, 3, 5, and 
10 years were 1.1%, 8.7%, 15.9%, and 31.1%, 
respectively [12]. HUBBARD [13] demonstrated 
that the occurrence of lung cancer in individu-
als diagnosed with cryptogenic fibrosing alveo-
litis is increasing, with an incidence ratio of 
7.31, and this effect was found to be indepen-
dent of smoking. Individuals diagnosed with IPF 
are found to develop lung cancer approximately 
3.34 times more frequently than those in the 
general population. Furthermore, their progno-
sis is poorer than that of IPF patients without 
lung cancer. However, research has revealed 
no evidence of an increased risk of lung cancer 
among individuals who never smoke [14].

The association between ILD and lung cancer 
has been explored in observational studies and 
meta-analyses. However, conflicting conclu-
sions have been derived from observational 
studies due to the potential influence of numer-
ous confounding factors. Therefore, a more 
carefully designed approach is needed to ass- 
ess the causal relationship between ILD and 
lung cancer risk. This research employed Men- 
delian randomization to discover specific sin-
gle-nucleotide polymorphisms (SNPs) linked to 
ILD by analyzing summary-level data from previ-
ous genome-wide association studies (GWASs). 
The SNPs were then utilized to assess the 
impact of ILD on susceptibility to LCINS. Fur- 
thermore, transcriptome data and bioinformat-
ics analyses were employed to explore the rela-
tionship between ILD and LCINS, as well as to 
investigate the hallmark signaling pathways 

and immune infiltration in LCINS. These find-
ings contribute to an enhanced understanding 
of the correlation between ILD and LCINS, pro-
viding potential targets and predictive models 
for nonsmoking-related lung cancer patients 
with coexisting ILD.

Method

The overview design of our work is depicted in 
Figure 1. The data sources for MR and tran-
scriptome data are accessible to the public 
online.

Mendelian randomization analysis

We performed a bidirectional two-sample  
MR analysis following the latest STROBE-MR 
(Strengthening the Reporting of Observational 
Studies in Epidemiology Using Mendelian 
Randomization) guidelines [15]. We employed a 
rigorous quality control procedure to identify 
relevant SNPs from the results of GWASs. We 
used MR analysis to assess the causal relation-
ship between ILD and LCINS. With SNPs as 
Instrumental variables (IVs), MR studies need 
to satisfy three hypotheses: (1) IVs directly 
impact exposure; (2) IVs do not correlate with 
confounding factors; and (3) IVs influence out-
come solely by influencing exposure [16].

Data sources: The GWAS summary dataset for 
ILD (finn-b-ILD), derived from the FINNGEN re- 
search, consists of 1,969 cases and 196,986 
controls of European ancestry. The GWAS sum-
mary data for LCINS (ebi-a-GCST004747) origi-
nate from a comprehensive meta-analysis of 
GWAS, encompassing 2,355 cases of LCINS 
and 75,044 controls of European descent.  
The MRC IEU Open GWAS Project database 
(https://gwas.mrcieu.ac.uk/) provides access 
to the summary statistics for these GWASs 
(Table 1).

Selection of genetic instruments: For forward 
MR analysis, two-sample MR analysis was per-
formed, with ILD as the exposure and LCINS as 
the outcome. We obtained genetic variants 
related to ILD, totaling 16380417 SNPs, from 
the GWAS summary data (GWAS ID: finn-b-ILD). 
Owing to the limited number of available SNPs, 
to guarantee an adequate quantity of IVs and  
to maintain the robustness of our research 
results, we used a more lenient threshold of a p 
value of 5×10e5. The impact of linkage disequi-
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librium was addressed by choosing a clumping 
distance of 10,000 kb and setting a threshold 
of <0.001 for R2. Furthermore, the potential 
instrumental bias was evaluated by assessing 
the F statistic via the formula, 

k (1 R )

R (N k 1)
F 2

2

=
-

- -
 

[17]. Here, the sample size, number of SNPs 
and fraction of variance explained by IVs are 
represented by N, k and R2, respectively. When 
the F statistic was less than 10, the influence of 
IVs in this study was considered weak. COPD, 
asthma and EGFR mutations have been identi-
fied as potential confounding factors in the 
association with LCINS [11]. We excluded four 
SNPs associated with outcome and exposure 
after a manual review of potential confounding 
factors. We subsequently identified 90 SNPs 
that are associated with ILD as IVs.

Data harmonization: We harmonized the alle- 
lic orientation of the filtered SNPs in both the 
exposure and outcome datasets to guaran- 

tee compatibility and uniformity. We removed 
incompatible SNP (rs12934985) and palin-
dromic SNPs (rs11126629 and rs9613668) to 
ensure that the effector alleles (and corre-
sponding β and effector allele frequencies) in 
the outcome dataset were the same as the 
effector alleles reflected in the exposure data. 
After the harmonization analysis, the MR analy-
sis included 75 SNPs in the study.

Two-sample MR analysis: To investigate the 
causal impact of ILD on the risk of LCINS, we 
employed five different analysis methods, in- 
cluding inverse variance weighting (IVW) [18], 
MR-Egger [19], and weighted median (WM) [20] 
approaches, as well as simple mode and wei- 
ghted mode [21] methods. The IVW method 
served as our primary analysis, given its effi-
ciency when all instrumental variables (IVs) are 
valid and the absence of horizontal pleiotropy is 
assumed. However, as IVW requires that the 

Figure 1. Overview of research design.
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intercept is constrained to zero, estimates can 
be biased if even minor pleiotropy exists [18]. 
To complement IVW, we implemented sensitiv-
ity analyses using MR-Egger regression and 
weighted median approaches [19]. MR-Egger 
accounts for horizontal pleiotropy under the 
Instrument Strength Independent of Direct 
Effect (InSIDE) assumption, offering flexibility in 
scenarios with pleiotropic effects. The weight-
ed median method provides robust estimates 
even when up to half of the IVs violate the core 
assumptions of validity. By integrating these 
complementary methods, we ensured that our 
causal estimates remained reliable under vary-
ing conditions of pleiotropy or heterogeneity.

Sensitivity analyses: By utilizing IVW and MR 
Egger regression methods to identify heteroge-
neity, Cochran’s Q statistic was computed to 
measure the level of heterogeneity [22]. A P 
value lower than 0.05 suggested the existence 
of heterogeneity, and a random effects model 
was applied to the MR analysis. The detection 
of horizontal pleiotropy can be achieved by as- 
sessing the intercept of MR-Egger regression 
[19]. A P value less than 0.05 indicated horizon-
tal pleiotropy, which may compromise the reli-
ability of the MR results. The MR-PRESSO glob-
al test can be utilized to identify potential outli-
ers [23]. A P value lower than 0.05 indicated 
the existence of an outlier that should be re- 
moved before further MR analysis. Further- 
more, we performed leave-one-out analyses to 
assess the impact of individual SNPs on our 
Mendelian randomization findings [24].

Reverse MR analysis: A reverse MR analysis 
was conducted to elucidate the causal relation-
ship between ILD and LCINS. SNPs related to 
LCINS at a threshold of P<5×10e5 were select-
ed as IVs, and we conducted a reverse MR 
study using the same MR methodology utilized 
in the forward analysis.

Transcriptomic analyses

Data acquisition: High-throughput sequencing 
count data from the GSE231693 dataset (20 

ILD patients and 20 normal controls) were 
obtained from the Gene Expression Omnibus 
(GEO) database. We also acquired RNA se- 
quencing data and clinical details of lung ade-
nocarcinoma (LUAD) and lung squamous cell 
carcinoma (LUSC) from The Cancer Genome 
Atlas (TCGA). Following the exclusion of dupli-
cate records and patients lacking follow-up 
data, we incorporated 85 samples of LCINS 
(comprising 13 squamous cell carcinoma and 
72 adenocarcinoma cases) along with 7 normal 
tissue RNA sequencing datasets as the training 
cohort for this study. Additionally, two GEO  
RNA-sequence datasets (GSE81089 and GSE- 
87340), containing 46 LCINS cases with sur-
vival data, were used as an external validation 
cohort after removing batch effects among 
GEO datasets via the “Combat” function in the 
“sva” R package.

Detection of common DEGs: We utilized the 
“Deseq2” package within R software (version 
4.3.6) to identify differentially expressed genes 
(DEGs) between ILD tissue and normal con-
trols, as well as between LCINS tissue and nor-
mal controls. The predetermined criteria for 
determining DEGs were an adj. P value <0.05 
and |fold change| ≥2. In addition, a volcano 
plot was subsequently generated via GraphPad 
Prism. Venn diagrams were employed to delin-
eate the intersections of genes that are upregu-
lated in both ILD and LCINS, as well as genes 
that are downregulated in these conditions, 
with the aim of identifying the genes that are 
commonly expressed.

Functional enrichment and protein-protein 
interaction: We further explored the biological 
functions of the DEGs via Gene Ontology (GO) 
analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) annotation via the R package 
“ClusterProfiler”. We utilized the STRING data-
base (https://string-db.org) for predicting pro-
tein-protein interaction (PPI) networks. Cyto- 
scape was employed to visualize and further 
experimentally investigate the PPI network. 
Additionally, we used the cytoHubba plugin to 
identify critical hub genes.

Table 1. Information of GWASs analyzed in the current MR analyses
Phenotype First author Ncase Ncontrol Number of SNPs Ethnicity Trait ID in GWAS Year
ILD NA 1,969 196,986 16,380,417 European finn-b-ILD 2021
LCINS McKay JD 2,355 7,504 7,993,812 European ebi-a-GCST004747 2017
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Development and verification of the ILD-related 
prognostic model: The LASSO algorithm, im- 
plemented via the ‘glmnet’ R package, was 
employed to resolve redundancy issues among 
the 50 hub genes identified via PPI network 
analysis in the ILD-related DEGs from the TCGA 
dataset. The optimal set of DEGs that was 
associated with the prognoses of LCINS pa- 
tients was determined by compressing the 
regression coefficients. We constructed an ILD-
related prognostic model (ILD risk score) com-
posed of five genes (CD1A, CDH3, KRT6B, 
MMP1 and MMP10). The ILD risk score was 
defined as follows: Risk score = ∑i Coefficient(i) 
× Expression of gene(i). The TCGA-LCINS cohort 
was separated into low- and high-ILD risk 
groups in light of the median ILD risk score, and 
Kaplan-Meier analysis was employed to com-
pare the OS between these two subgroups. 
Multivariate Cox regression analysis was em- 
ployed to assess the discriminative capacity of 
the clinical variables and the ILD risk score. 
Receiver operating characteristic (ROC) analy-
sis combined with the area under the curve 
(AUC) were used to evaluate the prognostic per-
formance of the ILD risk score. Additionally, a 
validation set containing 46 cases from the 
GEO dataset was used to validate the predic-
tive value of the ILD risk score. The same for-
mula derived from the TCGA cohort was used to 
estimate the ILD risk scores for the LCINS 
patients in the GEO cohort, which were then 
divided into two subsets, low ILD risk and high 
ILD risk, derived from the same cutoff value 
from the training set.

Nomogram based on the ILD score: We utilized 
the “rms” R package to construct a nomogram 
that integrates survival time, survival status, 
and 7 features obtained from the multivariate 
Cox analysis. This was done to evaluate the 
prognostic significance of these features in 85 
samples from the TCGA. This allows for the esti-
mation of the likelihood of OS at 1, 3, and 5 
years. The calibration curve serves as an indi-
cator of agreement between the predicted 
probabilities from the graph and the observed 
probabilities.

Pathways and molecular mechanisms: A  
collection of 50 hallmark gene sets (h.all.v7. 
4.symbols.gmt) was obtained from the Mole- 
cular Signatures Database (MSigDB) (http://
www.gsea-msigdb.org/gsea/downloads.jsp). 
The “clusterProfiler” package was used to con-

duct gene set enrichment analysis (GSEA) on  
all genes in the high- and low-ILD risk groups, 
aiming to explore the functional and pathway 
variances between the two groups. The gene 
set sizes ranged from 5 to 5000, and one  
thousand resampling iterations were per-
formed. If the P value was less than 0.05 and 
the NES was greater than 1, the result was  
considered statistically significant. Additionally, 
we conducted GSVA enrichment analysis on  
the genes from samples in the high- and low-
ILD risk groups and employed the “limma” 
package to compare the differences in GSVA 
scores between these two groups. Further- 
more, Spearman correlation analysis was per-
formed to investigate the associations between 
the ILD risk scores and pathway enrichment 
scores.

Estimation of immune infiltration cells: The 
ESTIMATE algorithm was employed to com- 
pute the stromal score and immune score, 
allowing for the estimation of tumor purity by 
assessing the levels of stromal cell and im- 
mune cell infiltration [25]. The CIBERSORT algo-
rithm utilizes support vector regression princi-
ples and is widely employed for assessing the 
presence of various immune cell types within 
the tumor microenvironment by deconvoluting 
the expression matrix of immune cell subtypes. 
This matrix consists of 547 biomarkers and  
can distinguish 22 human immune cell pheno-
types [26]. In this study, the CIBERSORT algo-
rithm was used to process the LCINS data from 
TCGA to estimate the relative proportions of 22 
infiltrating immune cells in tumor tissue. The 
Wilcoxon test was used to assess the differ-
ence in immune cell abundance between the 
high- and low-ILD risk groups. Furthermore, 
Spearman correlation analysis was used to 
evaluate the correlations between the risk 
scores and the expressions of the 5 prognostic 
genes with immune cell abundance.

Statistics

In this study, the data analyses were conducted 
via R software (version 4.3.6). The MR study 
was performed following recommended guide-
lines, and all MR analyses utilized the “Two-
Sample MR” and “MR-PRESSO” packages. We 
calculated odds ratios (ORs) and hazard ratios 
(HRs) with corresponding 95% confidence inter-
vals (CIs). A result was considered statistically 



Causal effect of interstitial lung disease on never-smokers of lung cancer

860	 Am J Cancer Res 2025;15(3):855-875

significant when the two-sided p value was less 
than 0.05.

Results

Genetic susceptibility to ILD and LCINS

In the forward MR analysis, IVW, MR-Egger re- 
gression, the weighted model, and the weight-
ed median indicated a remarkable causal  
association between ILD and increased risk of 
LCINS (IVW: OR: 1.084, 95% CI: 1.038-1.132, 
P=0.0002; MR-Egger: OR: 1.096, 95% CI: 
1.028-1.169, P=0.007; weighted mode: OR: 
1.104, 95% CI: 1.024-1.191, P=0.012; and 
weighted median: OR: 1.098, 95% CI: 1.025-
1.176, P=0.007). The results of the simple 
mode also indicated the same direction of 
causal estimation but did not find a significant 
correlation between ILD and the occurrence  
of LCINS (OR: 1.004, 95% CI: 0.872-1.156; 
P>0.05) (Figures 2, 3A).

Sensitivity analyses for MR estimates

The heterogeneity in IVW and MR Egger regres-
sion was assessed via Cochran’s Q test, where-
as horizontal pleiotropy was identified via the 
MR Egger intercept. The p values for the Co- 
chrane Q test all exceeded 0.05 (Q value for  
the IVW test: 59.832, P=0.884 and Q value  
for the MR-Egger test: 59.626, P=0.87), indi-
cating the absence of heterogeneity in the  
analyses (P>0.05) (Table 2). A funnel plot was 
used to assess the study heterogeneity (Figure 
3B). Horizontal pleiotropy was not identified by 
the MR Egger intercept test (P>0.05) (Table 2). 
The outcome of the MR-PRESSO test agreed 

with the results of the IVW method without out-
liers, suggesting the reliability of the original 
results (Table 2). The results of the leave-one-
out analysis indicated that no single SNP drove 
the outcomes of the MR analysis. A variety of 
sensitivity analyses confirmed the reliability of 
the MR results in this study. Additionally, forest 
plots illustrating the causal effect on outcome 
risk for each SNP as an instrumental variable 
(IV) were included in this study (Figure 3C, 3D).

Results of the reverse MR analysis

A reverse MR analysis revealed that none of  
the five methods (IVW, MR-Egger regression, 
weighted median, weighted mode, and simple 
mode) were significantly correlated with LCINS 
and ILD risk (Figures 2, 4A). The Cochran’s Q 
test and MR-Egger intercept provided no evi-
dence of heterogeneity or horizontal pleiotropy 
(P>0.05) (Table 2; Figure 4B). The leave-one-
out analysis did not reveal any SNPs with a  
significant impact on the overall estimation 
(Figure 4C, 4D). Overall, these results suggest 
that there is no significant reverse causality 
between ILD and LCINS.

Identification of ILD-related DEGs in patients 
with LCINS

The analysis of the differences revealed that 
there were 1799 differentially expressed genes 
(DEGs) in the LCINS cancer tissues compared 
with the normal adjacent tissues, with 1207 
genes being upregulated and 592 genes being 
downregulated (Figure 5A). Compared with 
those in normal tissues, 1210 DEGs were iden-
tified in ILD tissues, with 988 genes upregulat-

Figure 2. The forest plot displays the causal associations between ILD and LCINS.
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Figure 3. Causality of ILD on LCINS via Mendelian randomization. A. Scatter plot: The slope of each line represents 
the estimated causal effect derived from the five MR methods. B. Funnel plot: Vertical lines indicate the estimates 
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for all SNPs. Symmetry in the plot suggests no evidence of horizontal pleiotropy. C. Forest plot: Red points represent 
the overall causal estimate using all SNPs with the IVW method, while horizontal lines depict the 95% confidence 
intervals (CIs). D. Leave-one-out analysis: Black points represent the IVW estimates obtained by excluding one SNP 
at a time, while the red point indicates the IVW estimate using all SNPs.

Table 2. Reults of sensitivity analyses for MR estimates

Exposure Outcome
Heterogeneity Pleiotropy

MR Egger IVW MR Egger
Q Q_df Q_pval Q Q_df Q_pval egger_intercept se pval

ILD LCINS 59.626 73 0.87 59.832 74 0.884 -0.004 0.01 0.651
LCINS ILD 113.1 93 0.077 113.14 94 0.087 -0.002 0.013 0.853

ed and 222 genes downregulated (Figure 5B). 
We identified ILD-related DEGs in LCINS pa- 
tients through intersection analysis. A total of 
262 genes were identified as upregulated, and 
61 were recognized as downregulated in both 
diseases simultaneously, resulting in a total of 
323 intersecting genes (Figure 5C, 5D).

Analysis of functional characteristics

We performed GO and KEGG enrichment analy-
ses to gain a deeper understanding of the 
underlying function of the 323 ILD-DEGs in 
LCINS. The results of the GO analysis indicated 
that the DEGs were enriched primarily in cellu-
lar components (such as the collagen trimer, 
cornified envelope, and lamellar body); biologi-
cal processes (including epidermis develop-
ment, extracellular matrix organization, extra-
cellular structure organization, and cornifica-
tion); and molecular function (such as neu-
rotransmitter receptor activity, metallopepti-
dase activity, and retinol binding) (Figure 6A). 
The results of the KEGG pathway analysis re- 
vealed that these genes were enriched primar-
ily in neuroactive ligand - receptor interactions, 
the PI3K-Akt signaling pathway, and the cAMP 
signaling pathway (Figure 6B).

PPI network and analysis of the hub genes

The PPI network was first created from 323 
common DEGs. Next, the Cytuhubba plug-in in 
Cytoscape was used to compute the top 50 
hub genes (namely, KRT6B, KRT6A, DSG3, 
KRT17, KRT14, KRT16, SPRR1B, IVL, KRT5, 
DSC3, KRT13, SPRR1A, COL17A1, KRT15, 
TP63, SERPINB5, SPRR2D, CD19, CD79A, 
MS4A1, CXCR5, CR2, TNFRSF13C, S100A2, 
PAX5, CXCL13, FCRLA, MME, FCRL5, VPREB3, 
IGLL5, FCGR3B, CDH3, IGLL1, SERPINB13, 
MMP13, MMP3, MMP1, SPP1, MMP7, 

COL10A1, COMP, COL7A1, CD1A, MMP12, 
MMP10, MUC5AC, IBSP, KLK6, and COL9A1) 
(Figure 7A).

Construction and verification of the prognostic 
model

The LASSO regression method was employed 
to refine 50 hub genes, ultimately selecting the 
top five predictive genes (CD1A, CDH3, KRT6B, 
MMP1, and MMP10) for constructing the ILD 
risk score (Figure 7B, 7C). The ILD risk score 
was calculated as follows: [-0.104 × Expres- 
sion of CD1A] + [0.012 × Expression of CDH3] 
+ [0.050 × Expression of KRT6B] + [0.023 × 
Expression of MMP1] + [0.124 × Expression of 
MMP10]. Patients in the training set with LCINS 
were stratified into two subgroups on the basis 
of their ILD risk scores. Elevated expression  
levels of four prognostic molecules, with the 
exception of CD1A, were associated with high 
ILD risk (Figure 7D). The expression levels of  
all 5 hub genes associated with the ILD risk 
score were markedly elevated in tumor tissues 
(Figure 8A). These 5 genes can be categoriz- 
ed into two groups: harmful factors (CDH3, 
KRT6B, MMP1 and MMP10) and a protective 
factor (CD1A). Elevated expression levels of 
CDH3, KRT6B, MMP1, and MMP10 were sig- 
nificantly associated with poor survival out-
comes (CDH3: P=2.0e-3, KRT6B: P=3.9e-5, 
MMP1: P=2.3e-3, and MMP10: P=9.2e-4). 
Patients with elevated expression levels of 
CD1A, in turn, demonstrated significant im- 
provements in survival (P=5.8e-4) (Figure 
8B-F). The multivariate Cox regression analysis 
revealed that the ILD risk score was an inde-
pendent prognostic factor for patients with 
LCINS (HR 1.722, 95% CI: 1.284-2.309; P= 
0.0003) (Figure 9A). Compared with the low-
ILD risk group, the high-ILD risk group exhibited 
poorer overall survival rates (P=2.5e-4) (Figure 
9B). Furthermore, the ROC curve suggested 
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Figure 4. Causality of LCINS on ILD via Mendelian randomization. A. Scatter plot: The slope of each line represents 
the estimated causal effect derived from five MR methods. B. Funnel plot: Vertical lines indicate the estimates for 
all SNPs. Symmetry in the plot suggests no evidence of horizontal pleiotropy. C. Forest plot: Red points represent 
the overall causal estimate using all SNPs with the IVW method, while horizontal lines depict the 95% confidence 
intervals (CIs). D. Leave-one-out analysis: Black points represent the IVW estimates obtained by excluding one SNP 
at a time, while the red point indicates the IVW estimate using all SNPs.
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Figure 5. Identification of differentially expressed genes (DEGs). A. Volcano plot illustrating DEGs in LCINS from the 
TCGA dataset. Green dots represent downregulated genes, while red dots indicate upregulated genes. B. Volcano 
plot showing DEGs in ILD from the GEO dataset. Green dots represent downregulated genes, and red dots indicate 
upregulated genes. C. Venn diagram displaying intersecting upregulated genes between LCINS and ILD. D. Venn 
diagram displaying intersecting downregulated genes between LCINS and ILD.

that ILD risk scores have the potential to serve 
as a sensitive indicator for predicting OS in  
individuals with LCINS (AUC at 1 year: 0.82, 
AUC at 3 years: 0.77, and AUC at 5 years: 0.88) 
(Figure 9C). Further validation in the GEO cohort 
confirmed that the ILD risk scores obtained 
from the TCGA database were related to poor 
prognoses in LCINS patients (P=0.01) (Figure 
9D). The nomogram was subsequently used to 
evaluate the prognostic significance of 7 fea-
tures in 85 TCGA samples. The model showed 
strong predictive ability for the 1-, 3-, and 5- 
year overall survival rates in LCINS patients, 
with a C-index of 0.746 (95% CI: 0.628-0.863,  
p value =4.281e-05) (Figure 9E). The calibra-
tion curve demonstrated a strong correlation 
between the predicted values of the model and 
the observed values (Figure 9F).

Molecular pathway for the risk model

The GSEA results revealed significant enrich-
ment of the MTORC1_SIGNALING, GLYCOLYSIS, 

G2M_CHECKPOINT, MYC_TARGETS_V1, E2F_
TARGETS, MYC_TARGETS_V2, and ESTROGEN_
RESPONSE_LATE pathways in the high-risk 
group (Figure 10A-G). The GSVA analysis indi-
cated that the primary differences between  
the two cohorts were concentrated in the 
G2M_CHECKPOINT, E2F_TARGETS, MTORC1_
SIGNALING, CHOLESTEROL_HOMEOSTASIS, GL- 
YCOLYSIS, ESTROGEN_RESPONSE_LATE and 
MYC_TARGETS_V2 signaling pathways (Figure 
10H). Spearman correlation analysis reveal- 
ed that the ILD risk score was positively co- 
rrelated with 22 signaling pathways, such  
as G2M_CHECKPOINT, MTORC1_SIGNALING, 
E2F_TARGETS, and CHOLESTEROL_HOMEOS- 
TASIS but negatively correlated with the BILE_
ACID_METABOLISM pathway. The expressions 
of MP10, MMP1, KRT6B and CDH3 were posi-
tively correlated with most pathways, negative-
ly correlated with the BILE_ACID_METABOLISM 
pathway, and consistent with the impact of risk 
scores. In contrast, CD1A had the opposite 
effect (Figure 10I).



Causal effect of interstitial lung disease on never-smokers of lung cancer

865	 Am J Cancer Res 2025;15(3):855-875

Figure 6. Functional enrichment analysis of the intersected DEGs. A. Gene Ontology (GO) analysis of intersected 
DEGs, highlighting enrichment in biological processes (e.g., epidermis development, extracellular matrix organiza-
tion), cellular components (e.g., collagen trimer, lamellar body), and molecular functions (e.g., neurotransmitter 
receptor activity, metallopeptidase activity). B. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analy-
sis, showing significant enrichment in pathways such as Neuroactive ligand-receptor interaction, PI3K-Akt signaling 
pathway, and ECM-receptor interaction.
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Figure 7. Identification and validation of the ILD risk score model using hub genes. A. Protein-protein interaction 
(PPI) network depicting interactions among the top 50 hub genes. B. C. LASSO regression analysis to minimize 
overfitting and refine key ILD-related DEGs for the prognostic model. D. Risk score distribution, survival status scat-
ter plot, and heatmap of gene expression in the prognostic model, with stratification into high- and low-risk groups 
based on the ILD risk score.

Relationship between ILD risk and the immune 
microenvironment

The findings from the ESTIMATE analysis sug-
gest that there are no notable disparities in the 
stromal score, immune score, or ESTIMATE 
score between the high- and low-ILD-risk 
groups (Figure 11A). The CIBERSORT results 
revealed differential levels of tumor-infiltrating 
immune cells between the low- and high-ILD 
risk groups. Specifically, in the high-ILD risk 
group, there were lower levels of memory B 
cells, activated NK cells, monocytes, resting 
dendritic cells, and resting mast cells, while 
higher levels of resting NK cells and M0 macro-
phages were observed (Figure 11B). Spearman 

correlation analysis revealed that the ILD risk 
score was negatively correlated with the pro-
portions of memory B cells, activated NK cells, 
monocytes, resting dendritic cells and resting 
mast cells; moreover, it was positively correlat-
ed with the proportions of resting NK cells, M0 
macrophages, M1 macrophages and plasma 
cells. The expressions of MP10, MMP1, KRT6B, 
and CDH3 were positively correlated with the 
proportions of resting NK cells and M0 macro-
phages. Conversely, the expression of CD1A 
was negatively correlated with these two cell 
types but positively correlated with the propor-
tions of memory B cells, activated NK cells, 
monocytes, resting dendritic cells, and resting 
mast cells (Figure 11C).
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Figure 8. Expression of ILD-related genes and their impact on overall survival. (A) Comparison of expression levels 
of the five prognostic genes (CDH3, KRT6B, MMP1, MMP10, and CD1A) in normal tissues and cancer samples. (B-
F) Kaplan-Meier survival curves showing the association between high (red) and low (blue) expression levels of the 
prognostic genes and overall survival. Each panel corresponds to a specific gene: (B) CD1A, (C) MMP10, (D) MMP1, 
(E) CDH3, and (F) KRT6B.

Discussion

The factors affecting LCINS are complex. In 
addition to genetic mutations, preexisting lung 
disease is a common risk factor [11]. Currently, 
there is no substantial evidence to suggest a 
direct link between ILD and lung cancer occur-
rence. To minimize potential confounding vari-
ables and reverse causality, this MR analysis 

aims to assess the causal relationship between 
ILD and LCINS. The findings of our MR analysis 
suggest that genetic susceptibility to ILD is 
causally associated with lung cancer in non-
smoking European populations. Additionally, 
ILD-related DEG risk markers (ILD risk scores) 
can be used to categorize LCINS patients into 
two groups and predict clinical outcomes. 
Additional validation confirmed the correlation 
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Figure 9. Prognostic analysis and validation of the ILD risk score model. A. Multivariate Cox regression analysis 
showing that the ILD risk score is an independent prognostic factor for overall survival. B. Kaplan-Meier survival 
analysis for high- and low-ILD risk score groups in the TCGA cohort. Red indicates the high-risk group, while blue 
represents the low-risk group. C. ROC curve demonstrating the predictive accuracy of the ILD risk score for 1-year 
(AUC=0.82), 3-year (AUC=0.77), and 5-year (AUC=0.88) overall survival. D. Kaplan-Meier survival analysis for high- 
and low-risk groups in the GEO cohort. Blue represents the low-risk group, and red indicates the high-risk group. E. 
Nomogram constructed to predict 1-, 3-, and 5-year overall survival in patients with LCINS. F. Calibration plot show-
ing the agreement between predicted and observed survival probabilities at 1 and 3 years, indicating moderate 
predictive performance of the nomogram.
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Figure 10. Correlations between signal transduction pathways and ILD risk. A-G. GSEA analysis of high and low ILD 
risk score groups, highlighting pathways such as G2M_CHECKPOINT, MTORC1_SIGNALING, MYC_TARGETS_V1, GLY-
COLYSIS, ESTROGEN_RESPONSE_LATE, E2F_TARGETS, and MYC_TARGETS_V2. H. GSVA analysis comparing signal-
ing pathway enrichment scores between high and low ILD risk groups. I. Spearman correlation analysis illustrating 
the association between 50 hallmark gene sets and prognostic genes. Purple represents a positive correlation, 
while yellow indicates a negative correlation. Significance levels are denoted as ***, P<0.001; **, P<0.01; *, 
P<0.05.
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Figure 11. Associations between the tumor microenvironment (TME) and ILD risk scores. A. Comparison of ESTI-
MATE scores (stromal score, immune score, and total ESTIMATE score) between high and low ILD risk groups. B. 
Proportion of immune cell types compared between high and low ILD risk groups as determined by the CIBERSORT 
algorithm. Green bars represent the high ILD risk group, while purple bars represent the low ILD risk group. Sig-
nificance levels: ***, P<0.001; **, P<0.01; *, P<0.05. C. Spearman correlation analysis between 21 immune cell 
types and the five key genes in the ILD risk model. Green indicates a positive correlation, while pink indicates a 
negative correlation. Significance levels: ***, P<0.001; **, P<0.01; *, P<0.05.

between ILD risk and hallmark signaling path-
ways and the level of tumor-infiltrating immune 
cells.

Our study revealed a robust genetic association 
between these two diseases, suggesting that 
poor prognoses in LCINS patients are associat-



Causal effect of interstitial lung disease on never-smokers of lung cancer

871	 Am J Cancer Res 2025;15(3):855-875

ed with a high ILD risk, which aligns with find-
ings from previous retrospective analyses.  
Sara Tomassetti and her colleagues [27] con-
ducted a retrospective study of 260 patients 
with IPF, in which the incidence of lung cancer 
was 13%. The OS of LC-IPF patients was signifi-
cantly shorter than that of IPF patients without 
lung cancer (mOS 38.7 m vs. 63.9 m; HR 5.0; 
95% CI: 2.91-8.57; P<0.001). In the study gr- 
oup, the causes of death included respiratory 
failure (43%), progression of lung cancer (13%), 
and complications related to lung cancer treat-
ment (17%). A study conducted in China [28] 
examined the characteristics, clinical and path-
ological features, and prognoses of non-small 
cell lung cancer (NSCLC) patients with intersti-
tial lung abnormalities (ILA). During the study, 
ILA was detected in 101 out of 765 patien- 
ts (13.2%) when they were diagnosed with 
NSCLC. The analysis revealed a significant 
association between the presence of ILA in 
NSCLC patients and a shorter OS period (751 
days vs. 445 days, HR 0.6, P=0.001). Addition- 
ally, individuals with usual interstitial pneumo-
nia (UIP) had a shorter OS than did those with-
out UIP (HR 1.82, P=0.037). Patients with lung 
cancer and ILD who received platinum-based 
doublet chemotherapy had significantly shorter 
median progression-free survival (PFS) and 
overall survival (OS) times than did those with-
out ILD (mPFS: 3.0 m vs. 7.0 m, P<0.001; mOS: 
7.0 m vs. 15.0 m, P<0.001, respectively) [29]. 
The median survival times were not significant-
ly different between the IPF-LC and non-IPF 
ILD-LC groups (26 m vs. 20 m, P=0.530) [30]. 
Currently, there is a lack of statistical data on 
the relationship between ILD and LCINS. In our 
study, we constructed an ILD risk score on the 
basis of ILD-related DEGs and constructed a 
nomogram to predict the prognoses of pa- 
tients with LCINS. The results indicated that the 
high-ILD risk group had poor OS, and the ILD 
risk score was determined to be an indepen-
dent prognostic factor for LCINS (HR 1.722, 
95% CI: 1.284-2.309; P=0.0003). The nomo-
gram and ROC curves exhibited robust predic-
tive power for 1-, 3-, and 5-year OS in LCINS 
patients.

Currently, there is a lack of laboratory research 
that has investigated the molecular mecha-
nisms by which ILD impacts LCINS. We identi-
fied 323 ILD-related differentially expressed 
genes (DEGs) in the LCINS samples, which are 
enriched in KEGG pathways, including neuroac-

tive ligand - receptor interactions, the PI3K-Akt 
signaling pathway, and the cAMP signaling 
pathway. The top 50 genes with close interac-
tions were selected from the PPI network in 
LCINS. By employing the LASSO algorithm, a 
5-gene risk model related to ILD was developed 
in this study for predicting the prognoses of 
patients with LCINS. These genes can be  
categorized into two groups: harmful factors 
(CDH3, KRT6B, MMP1, and MMP10) and a pro-
tective factor (CD1A). Several experiments 
have demonstrated the roles of these five 
genes in cancer. MMP1 and MMP10 are mem-
bers of the matrix metalloproteinase (MMP) 
family. In addition to their involvement in extra-
cellular matrix remodeling and cancer cell 
migration, MMPs also play a role in regulating 
the signaling pathways that control cell growth, 
inflammation or angiogenesis and may even 
function through nonproteolytic mechanisms 
[31]. CDH3 is upregulated in LUAD tissue and  
is associated with poorer OS. Additionally, 
CDH3 expressions are positively correlated 
with the infiltration of CD4+ T cells, Treg cells 
and exhausted T cells but negatively correlated 
with B-cell infiltration. Furthermore, downregu-
lation of CDH3 has been shown to inhibit cell 
proliferation and migration [32]. KRT6B expres-
sions are elevated in bladder cancer and are 
inversely correlated with the infiltration of B 
cells and macrophages [33]. PDE3B can down-
regulate KRT6B expression, thereby suppress-
ing the invasion and migration of bladder can-
cer cells [34]. CD1a molecules are capable of 
presenting glycolipid antigens, and the expres-
sion of CD1a on dendritic cells may play a cru-
cial role in presenting tumor-derived glycolipid 
antigens to T cells. This process can lead to the 
generation of effective antitumor responses, 
potentially improving the prognoses of cancer 
patients [35].

There are many pathogenic similarities be- 
tween ILD and lung cancer, with abnormal  
activation of multiple signaling pathways, such 
as the Wnt/β-catenin, transforming growth 
factor-β, phosphoinositide 3-kinase (PI3K)/pro-
tein kinase B and tyrosine kinase pathways, 
which are collectively involved in the pathogen-
esis of IPF and lung cancer [36-38]. Abnormally 
activated pathways overexpress their target 
genes and have been implicated in cancer inva-
sion, lung remodeling, and epithelial-mesen-
chymal transition. In our study, we demonstrat-
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ed that numerous pathways, including MT- 
ORC1_SIGNALING, GLYCOLYSIS, G2M_CHE- 
CKPOINT, MYC_TARGETS_V1, E2F_TARGETS, 
MYC_TARGETS_V2 and ESTROGEN_RESPO- 
NSE_LATE, were significantly enriched in the 
high-ILD risk group. In addition, we found a  
positive correlation between the ILD risk scor- 
es and the G2M_CHECKPOINT, MTORC1_
SIGNALING, E2F_TARGETS, CHOLESTEROL_
HOMEOSTASIS, MYC_TARGETS_V2, GLYCOLY- 
SIS, UNFOLDED_PROTEIN_RESPONSE, MIT- 
OTIC_SPINDLE, HYPOX IA, MYC_TARGETS_ 
V1, ESTROGEN_RESPONSE_LATE, WNT_BETA_
CATENIN_SIGNALING, and PI3K_A KT_MTOR_
SIGNALING pathways. On the basis of these 
findings, ILD may contribute to the develop-
ment and progression of LCINS by modulating 
the cell cycle, proliferation, and glucose metab-
olism pathways.

The inflammatory microenvironment may pro-
mote the formation and progression of lung 
cancer [39], and fibrotic alterations in pulmo-
nary fibrosis result in an overabundance of col-
lagen and other components of the extracellu-
lar matrix, causing tissue restructuring and  
the formation of scars. This environment may 
facilitate the proliferation of cancer cells [37, 
40]. In our study, the ESTIMATE results reveal- 
ed no differences in the tumor stromal score or 
immune score between the high- and low-ILD 
risk groups. Moreover, we observed a signifi-
cant inverse relationship between the ILD risk 
score and several TME infiltrates, such as B-cell 
memory, activated NK cells, monocytes, rest-
ing dendritic cells, and resting mast cells, while 
a positive correlation with resting NK cells, M0 
macrophages, M1 macrophages, and plasma 
cells was detected. The results of our analysis 
suggest that ILD contributes to the occurrence 
and development of LCINS through its impact 
on immune cell infiltration rather than the level 
of stromal cells.

The use of MR in this research provides a sig-
nificant advantage over traditional observation-
al studies by reducing bias and reversing cau-
sality. Our findings have important implications 
for the prevention and treatment of ILD and 
LCINS. As the number of ILD and LCINS cases 
is increasing, understanding their causal rela-
tionship could lead to targeted interventions 
aimed at reducing the risk of lung cancer in 
nonsmoking ILD patients.

Our research has several limitations. First, our 
results are specific to the European population 
and may not be applicable to other ethnic popu-
lations. In addition, while MR can significantly 
reduce confounding factors, it cannot eliminate 
pleiotropy, which refers to genetic variations 
that influence outcomes through pathways 
unrelated to the exposure. Fortunately, the 
assessments of horizontal pleiotropy and sen-
sitivity in this research produced dependable 
and consistent outcomes, with no indication of 
heterogeneity detected, validating the conclu-
sions drawn from the MR analysis. The direc-
tions and magnitudes of the MR estimates in 
the IVW, weighted median, and MR-Egger 
methods were consistent with each other. 
Third, the results of the bidirectional MR meth-
od may be impacted by the availability and 
quality of GWAS data, which could influence 
their reliability. Finally, while a genetic associa-
tion between ILD and an increased risk of lung 
cancer has been demonstrated in nonsmoking 
European populations, our results are currently 
limited to data analyses, and there are insuffi-
cient experimental data to confirm our findings. 
Therefore, it is necessary to carry out reason-
able assays to verify our conjecture step by 
step.

Conclusion

The results of the bidirectional MR study indi-
cate that ILD may have a positive causal effect 
on LCINS. A risk score model was developed in 
this study to accurately predict the prognoses 
of patients with LCINS and gain insight into the 
underlying molecular mechanisms. These find-
ings enhance our understanding of the interac-
tions between ILD and LCINS, potentially iden- 
tifying targets for personalized treatments. 
Nevertheless, additional experimental valida-
tions and clinical studies are necessary to con-
firm these findings and address any potential 
limitations of the study.
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