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Abstract: Objective: To develop and validate a risk prediction model for lymph node metastasis (LNM) in stage 
IA2-IIA1 cervical cancer (CC) using laboratory parameters to aid in preoperative risk assessment and personalized 
treatment planning. Methods: A retrospective analysis was conducted on 624 patients treated between 2017 and 
2023, divided into a training group (418 patients) and a validation group (206 patients). Clinical and laboratory 
data, including squamous cell carcinoma antigen (SCC-Ag), carcinoembryonic antigen (CEA), cancer antigen 125 
(CA125), platelet count (PLT), fibrinogen (FIB), and C-reactive protein (CRP), were collected. Independent risk factors 
for LNM were identified using Least Absolute Shrinkage and Selection Operator (LASSO) regression. A predictive 
model was constructed and evaluated using receiver operating characteristic (ROC) curve analysis, decision curve 
analysis (DCA), and calibration curve. Results: SCC-Ag, CEA, CA125, PLT, FIB, and CRP were identified as significant 
predictors of LNM, with SCC-Ag demonstrating an AUC of 0.811 (sensitivity: 65.00%, specificity: 93.08%). The model 
achieved an AUC of 0.969 in the training group and 0.942 in the validation group, indicating robust generalizability 
and high predictive accuracy. DCA confirmed the model’s clinical utility across a wide range of risk thresholds, and 
the calibration curve showed a good agreement between predicted and observed outcomes. Conclusions: This labo-
ratory parameter-based risk prediction model is a reliable and practical tool for assessing LNM risk in stage IA2-IIA1 
CC patients, supporting better clinical decision-making and reducing unnecessary interventions.
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Introduction

With advancements in medical technology and 
increased health awareness, the global inci-
dence of cervical cancer (CC) has shown a 
notable decline [1]. However, in underdevel-
oped regions, limited CC screening programs 
and insufficient HPV vaccination have resulted 
in persistently high incidence and mortality 
rates [2]. In China, unequal distribution of me- 
dical resources remains a major challenge for 
early diagnosis and prevention. According to 
the 2022 Global Cancer Statistics, CC accoun- 
ts for approximately 6.6% of all new cancer 
cases worldwide, with an estimated 600,000 
new cases and 300,000 deaths annually [3]. 
These alarming figures highlight the urgent 

need for effective diagnostic tools and strate-
gies to manage CC, particularly in economically 
disadvantaged areas with limited access to 
advanced medical resources.

As outlined by the 2018 staging criteria from 
the International Federation of Gynecology and 
Obstetrics (FIGO), treatment options and prog-
nostic outcomes for CC vary significantly by  
disease stage [4]. Early-stage CC, particularly 
stages IA2-IIA1, represents a critical phase 
where lymph node metastasis (LNM) risk plays 
a pivotal role in treatment planning and prog-
nostic evaluation. Statistical evidence indicat- 
es that approximately 15%-20% of early-stage 
CC patients exhibit LNM, which is closely linked 
to poor outcomes [5]. Accurate preoperative 
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assessment of LNM is therefore essential for 
optimizing treatment strategies, selecting app- 
ropriate surgical interventions, and avoiding 
unnecessary lymph node dissections in low-
risk patients. By minimizing surgical trauma 
and related complications, a precise evalua- 
tion of LNM risk can significantly improve the 
overall prognosis and quality of life for CC 
patients.

Currently, various imaging modalities, such as 
positron emission tomography-computed to- 
mography (PET-CT), CT, and magnetic reso-
nance imaging (MRI), are widely used in clinical 
practice to assess LNM. Among these, PET-CT 
is often preferred for its relatively high specific-
ity; however, it is limited by low sensitivity and  
a non-negligible false-negative rate, which can 
affect clinical decision-making [6, 7]. To over-
come these limitations, sentinel lymph node 
biopsy (SLNB) has been introduced as an  
alternative for detecting LNM. While SLNB 
offers improved sensitivity, it is still hampered 
by procedural risks, false negatives, and tech-
nical challenges [8]. In response to these 
issues, there has been increasing interest in 
laboratory biomarkers, which are simpler, cost-
effective, and readily accessible. Several bio-
markers, including squamous cell carcinoma 
antigen (SCC-Ag), carcinoembryonic antigen 
(CEA), cancer antigen 125 (CA125), and inflam-
matory markers like C-reactive protein (CRP), 
have shown promise in predicting LNM [9, 10]. 
Among these, SCC-Ag is particularly notewor- 
thy due to its strong correlation with tumor bur-
den and metastatic progression. Despite prog-
ress, the lack of unified standards and optimal 
cut-off values for these markers has limited 
their widespread clinical use. Therefore, further 
research is needed to validate these biomark-
ers and develop standardized protocols for 
their clinical application.

Focusing on stage IA2-IIA1 CC patients is par-
ticularly significant, as this stage marks the 
emergence of LNM risk, which becomes a deci-
sive factor in treatment outcomes. Identifying 
LNM preoperatively in these patients is crucial 
to avoid overtreatment in low-risk cases and 
ensure timely intervention in high-risk cases. 
Given the impact of LNM on treatment strate-
gies and prognosis, there is a growing need for 
reliable predictive tools that provide accurate 
preoperative assessments.

In recent years, nomograms, which transform 
complex regression models into intuitive graph-
ical representations, have gained popularity in 
oncology. These tools help clinicians evaluate 
the influence of multiple variables on patient 
outcomes [11]. While some studies have devel-
oped nomogram-based models for LNM predic-
tion in CC, many of these models lack consis-
tency in predictive performance, and no univer-
sally accepted standard has been established 
[12]. This inconsistency underscores the need 
for further refinement and validation of predic-
tive models.

To address these gaps, the present study aims 
to develop and validate a robust LNM risk pre-
diction model for stage IA2-IIA1 CC patients. 
Using laboratory parameters and Least Ab- 
solute Shrinkage and Selection Operator 
(LASSO) regression analysis, this study inte-
grates multiple biomarkers to create an accu-
rate, practical, and user-friendly tool. By pro- 
viding reliable preoperative assessments, the 
model is expected to support clinicians in  
optimizing personalized treatment strategies, 
improving prognostic outcomes, and enhancing 
the overall quality of care for CC patients.

Methods and materials

Sample source

This retrospective study aimed to analyze the 
independent risk factors for LNM in patients 
with stage IA2-IIA1 CC and to construct an  
LNM risk prediction model based on multiple 
laboratory parameters. The study included CC 
patients who received treatment at The Se- 
cond Hospital of Shanxi Medical University 
from 2017 to 2023. The study adhered to the 
Helsinki Declaration [13] and was approved by 
the ethics committee of the Second Hospital  
of Shanxi Medical University.

Definition of LNM

LNM refers to the infiltration of cancer cells  
into pelvic or distant lymph nodes, confirmed 
by postoperative pathological examination. All 
patients underwent radical hysterectomy and 
pelvic lymphadenectomy, with the postopera-
tive pathological report serving as the defini- 
tive criterion for determining LNM presence. 
Metastatic lymph nodes typically exhibit fea-
tures such as enlargement, altered texture 
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(hardening), or tumor cell infiltration. The pres-
ence or absence of LNM was confirmed using 
pathological methods, including HE staining or 
immunohistochemistry. In this study, the LNM 
status was based on the final postoperative 
pathological diagnosis.

Inclusion and exclusion criteria

Inclusion criteria: (1) Patients diagnosed with 
stage IA2-IIA1 CC according to the FIGO 2018 
staging guidelines [14]; (2) Patients who under-
went radical hysterectomy and pelvic lymphad-
enectomy; (3) Patients who had relevant clini-
cal examinations (e.g., imaging, blood biochem-
ical tests) before surgery, with complete medi-
cal records and traceable data.

Exclusion criteria: (1) Individuals with other 
malignant neoplasms or severe comorbidities, 
such as cardiovascular disease, hepatic or 
renal insufficiency; (2) Patients with incomple- 
te clinical data or follow-up information; (3) 
Patients who had previously undergone other 
therapeutic modalities (e.g., radiotherapy or 
chemotherapy) before surgery.

Sample grouping

In strict adherence to the predefined eligibility 
criteria, a total of 744CC patient samples were 
collected. Of these, 624 valid samples were 
retained after applying the exclusion criteria. 
For the construction and validation of the risk 
prediction model, the samples were randomly 
divided into a training group and a validation 
group in a 67% to 33% ratio. The training gro- 
up, consisting of 418 samples, was used for 
model development and training. The valida-
tion group, consisting of 206 samples, was 
designated for model validation and perfor-
mance evaluation.

Clinical data collection

The clinical data of patients were retrospective-
ly collected through analysis of their electronic 
medical records. The data included the follow-
ing parameters: age, gender (male or female), 
body mass index (BMI), LNM status (with or 
without), menopausal status (yes or no), HPV 
infection status (positive or negative), differen-
tiation status (poorly differentiated or moder-
ately/well differentiated), maximum tumor dia- 
meter (≥ 2 cm or < 2 cm), pathological type 
(squamous cell carcinoma or other types), 

depth of mesenchymal infiltration (≥ 1/2 or < 
1/2), and pathological stage (stage IA2-IB, or 
IIA1). The laboratory parameters included  
SCC-Ag (ng/ml), carcinoembryonic antigen 
(CEA, ng/mL), cancer antigen 125 (CA125, U/
mL), neutrophil count (Neu, ×109/L), platelet 
count (PLT, ×109/L), neutrophil-lymphocyte 
ratio (NLR), platelet-lymphocyte ratio (PLR), 
fibrinogen (FIB, g/L), albumin (Alb, g/L), and 
C-reactive protein (CRP, mg/L). These parame-
ters were measured using standardized testing 
methods and dedicated equipment and were 
used in subsequent data analysis.

Laboratory testing

Laboratory data were obtained from peripheral 
blood samples collected from patients before 
surgery. All samples were processed within 24 
hours of collection. Routine blood tests, tumor 
markers, and other relevant biomarkers were 
measured. Routine blood tests were perform- 
ed using a fully automatic blood analyzer 
(Mindray BC-6800, Mindray, Shenzhen, China). 
Tumor markers, including SCC-Ag, CEA, and 
CA125, were assayed using chemilumines- 
cent immunoassay methodology (Roche Cobas 
e411, Roche Diagnostics, Switzerland). Other 
indices, such as FIB, CRP, and Alb, were mea-
sured using a Cobas 6000 automatic biochemi-
cal analyzer (Roche Diagnostics, Switzerland). 
All tests were conducted in strict accordance 
with standard operating procedures (SOP) to 
ensure the accuracy and reliability of the data.

Model construction

LASSO regression modeling: LASSO regression 
is a method specifically designed for variable 
selection and regularization. It is highly effec-
tive in identifying independent risk factors 
closely associated with LNM. In this study, 
LASSO regression analysis was employed to 
identify the most prognostically significant fac-
tors from a wide range of variables. The cv.glm-
net function was used for model training, with 
the following parameter settings: the indepen-
dent variable matrix (x) and dependent variable 
vector (y) were included in the regression analy-
sis. The regression type was set to family = 
“binomial”, suitable for binary classification 
tasks. LASSO regression (L1 regularization) 
was set with alpha = 1, and a 10-fold cross-
validation strategy (nfolds = 10) was applied to 
evaluate the model’s generalization ability.
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Nomogram construction: Based on the regres-
sion coefficients of the LASSO model, a nomo-
gram was constructed to visually represent  
the contribution of each variable to the risk of 
LNM. By converting regression coefficients into 
nomogram scores, clinicians can easily calcu-
late the risk score for individual patients, pro-
viding valuable guidance for clinical decision- 
making.

Outcome measurement

Primary outcome: The development of a risk 
prediction model for LNM in stage IA2-IIA1 CC.

Secondary outcome: An in-depth evaluation of 
the model’s stability and reliability, using multi-
ple evaluation metrics, including the receiver 
operating characteristic (ROC) curve, decision 
curve analysis (DCA), and calibration curve.

Statistical analysis

Statistical analyses were performed using 
SPSS 25.00 for data processing and descrip-
tive statistics. Initially, a normality test was  
conducted using the Shapiro-Wilk test to deter-
mine whether continuous variables followed a 
normal distribution. Variables conforming to a 
normal distribution were expressed as mean ± 
standard deviation (SD) and compared using 
an independent-sample t-test. Non-normally 
distributed variables were expressed as medi-
an (interquartile range, IQR) and analyzed using 
the Mann-Whitney U test. Categorical variabl- 
es were presented as frequencies (n) and per-
centages (%), with inter-group comparisons 
performed using the chi-square test or Fisher’s 
exact test, as appropriate. Spearman’s rank 
correlation was used to assess monotonic rela-
tionships between variables.

For model construction, R version 4.3.3 was 
employed. LASSO regression, specifically the 
cv.glmnet function, was used for feature selec-
tion to identify independent risk factors associ-
ated with LNM. The regularization parameters 
were optimized by cross-validation. The mod-
el’s predictive ability was assessed using ROC 
curves, DCA, and calibration curves. The De- 
Long test was used to compare the area under 
the curve (AUC) between different groups. 
Statistical significance was defined as P <  
0.05 to ensure the reliability and validity of the 
results.

Results

Comparison of baseline data between training 
and validation groups

No statistically significant differences were 
observed between the training and validation 
groups across all variables. Specifically, cha- 
racteristics such as age (P = 0.750), BMI (P = 
0.417), LNM status (P = 0.819), menopausal 
status (P = 0.576), HPV infection status (P = 
0.518), differentiation status (P = 0.852),  
maximum tumor diameter (P = 0.502), patho-
logical type (P = 0.540), depth of mesenchy- 
mal infiltration (P = 0.601), and pathological 
stage (P = 0.761) showed no significant differ-
ences. Hematological markers, including SCC-
Ag (P = 0.555), CEA (P = 0.446), CA125 (P = 
0.851), Neu (P = 0.552), and PLT (P = 0.979), 
also did not differ significantly between the 
groups. Similarly, inflammation-related indica-
tors, such as NLR (P = 0.917), PLR (P =  
0.700), FIB (P = 0.919), Alb (P = 0.755), and 
CRP (P = 0.964), showed no statistically signifi-
cant differences (Table 1).

Additionally, when comparing the clinical and 
laboratory parameters of patients with and 
without LNM, several significant differences 
were identified. The LNM group had higher 
rates of positive HPV infection (P < 0.001), 
lower differentiation status (P < 0.001), deeper 
mesenchymal infiltration (P < 0.001), and non-
squamous carcinoma (P = 0.033). However, no 
significant differences were found in factors 
such as age (P = 0.136), BMI (P = 0.867), meno-
pausal status (P = 0.636), maximum tumor 
diameter (P = 0.252), or pathological stage (P = 
0.656) (Table S1). Laboratory indices, such as 
SCC-Ag (P < 0.001), CEA (P < 0.001), CA125 (P 
< 0.001), Neu (P < 0.001), PLT (P < 0.001), PLR 
(P < 0.001), FIB (P < 0.001), and CRP (P < 
0.001), were significantly elevated in the LNM 
group. In contrast, no significant differences 
were observed in lymphocyte count (P = 0.348), 
NLR (P = 0.144), or Alb (P = 0.487) between the 
groups (Table S2).

Comparison of baseline data between LNM 
and non-LNM patients in training group

Table 2 presents a comparison of baseline 
data between patients with and without LNM in 
the training group. No significant differences 
were found in age, BMI, menopausal status, 
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maximum tumor diameter, pathological type, 
pathological stage, lymphocyte count (Lym), or 
Alb between patients with and without LNM 
(P-values: 0.673, 0.379, 0.373, 0.800, 0.059, 
0.779, 0.363, and 0.920, respectively). How- 
ever, patients with LNM exhibited significantly 
elevated levels in several indicators, including 
HPV infection status (P = 0.007), differentiation 
status (P < 0.001), depth of mesenchymal infil-
tration (P < 0.001), SCC-Ag (P < 0.001), CEA (P 
< 0.001), CA125 (P < 0.001), Neu (P < 0.001), 
PLT (P < 0.001), PLR (P < 0.001), FIB (P < 
0.001), and CRP (P < 0.001), compared to 

patients without LNM. These factors may be 
implicated in the occurrence of LNM (Table 2).

ROC curve characteristics of laboratory param-
eters associated with LNM

In this study, we evaluated the efficacy of sev-
eral laboratory indicators in predicting LNM 
using ROC curve analysis. First, each measure-
ment was binarized based on its cutoff value  
to standardize the data format, followed by 
LASSO regression using the binomial method. 
ROC analysis revealed that SCC-Ag had the 

Table 1. Comparison of baseline data between training and validation groups

Variable Total Training group  
(n = 418)

Validation group  
(n = 206) Statistic P

Age 52.679±10.117 52.770±10.034 52.495±10.305 0.319 0.750

Body mass index 24.005±2.994 24.073±2.979 23.866±3.028 0.812 0.417

Lymph node metastasis

    With 151 100 (23.92%) 51 (24.76%) 0.052 0.819

    Without 473 318 (76.08%) 155 (75.24%)

Pausimenia

    Yes 246 168 (40.19%) 78 (37.86%) 0.313 0.576

    No 378 250 (59.81%) 128 (62.14%)

HPV infection

    Positive 531 353 (84.45%) 178 (86.41%) 0.417 0.518

    Negative 93 65 (15.55%) 28 (13.59%)

Differentiation degree

    Poorly differentiated 200 135 (32.3%) 65 (31.55%) 0.035 0.852

    Moderately to well differentiated 424 283 (67.7%) 141 (68.45%)

Maximum tumor diameter

    ≥ 2 cm 444 301 (72.01%) 143 (69.42%) 0.452 0.502

    < 2 cm 180 117 (27.99%) 63 (30.58%)

Pathological type

    Squamous cell carcinoma 558 376 (89.95%) 182 (88.35%) 0.375 0.540

    Others 66 42 (10.05%) 24 (11.65%)

Depth of mesenchymal infiltration

    ≥ 1/2 333 220 (52.63%) 113 (54.85%) 0.274 0.601

    < 1/2 291 198 (47.37%) 93 (45.15%)

Pathological stage

    IA2-IB 402 271 (64.83%) 131 (63.59%) 0.093 0.761

    IIA1 222 147 (35.17%) 75 (36.41%)

SCC-Ag (ng/ml) 4.46 [3.05, 5.99] 4.58 [3.05, 6.09] 4.35 [3.03, 5.73] 0.590 0.555

CEA (ng/mL) 38.882±10.143 39.100±10.317 38.441±9.792 0.763 0.446

CA125 (U/mL) 10.14 [8.70, 11.95] 10.13 [8.70, 11.91] 10.19 [8.73, 12.08] 0.187 0.851

Neu (×109/L) 3.43 [2.75, 4.15] 3.42 [2.80, 4.15] 3.45 [2.67, 4.18] 0.595 0.552

PLT (×109/L) 196.00 [158.00, 232.00] 196.50 [158.00, 231.00] 195.50 [159.25, 233.00] 0.026 0.979

Lym (×109/L) 1.772±0.431 1.782±0.421 1.753±0.452 0.792 0.429

NLR 1.95 [1.46, 2.51] 1.95 [1.50, 2.49] 1.94 [1.41, 2.54] 0.104 0.917

PLR 109.22 [85.26, 138.97] 110.39 [85.27, 137.67] 108.83 [85.26, 144.52] 0.385 0.700

FIB (g/L) 2.437±0.536 2.436±0.552 2.440±0.502 -0.102 0.919

Alb (g/L) 41.954±3.703 41.921±3.625 42.020±3.864 -0.312 0.755

CRP (mg/L) 2.77 [1.67, 4.05] 2.77 [1.68, 4.09] 2.82 [1.65, 4.04] 0.045 0.964
Note: LNM, lymph node metastasis; SCC-Ag, squamous cell carcinoma antigen; CEA, carcinoembryonic antigen; CA125, cancer antigen 125; Neu, neutrophil count; PLT, 
platelet count; Lym, lymphocyte count; NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio; FIB, fibrinogen; Alb, albumin; CRP, C-reactive protein.
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highest predictive accuracy for LNM, with an 
AUC of 0.811, sensitivity of 65.00%, and spe- 
cificity of 93.08%. Other markers, such as 
CA125 (AUC = 0.801) and CEA (AUC = 0.696), 
also showed relatively strong predictive per- 
formance, with sensitivities of 80.00% and 
55.00%, respectively. Additionally, PLT, FIB, and 
CRP exhibited predictive potential, although 
with lower AUC values (Figure 1; Table 3).

Correlation analysis of characteristic variables

Spearman’s correlation analysis was perform- 
ed to examine the relationships among vari- 
ous clinical indicators. The results showed a 

significant positive correlation between PLR 
and PLT (r = 0.432, P < 0.001), as well as 
between SCC-Ag and CRP (r = 0.306, P < 
0.001). Since LASSO regression automatically 
selects features and mitigates the impact of 
redundant variables through the L1 regulariza-
tion term, we chose to retain all relevant vari-
ables without excluding any data (Figure 2).

LASSO regression model and confusion matrix 
analysis

The LASSO Regression Model and Confusion 
Matrix Analysis was constructed using the 1 
standard error (1 SE) approach. At a lambda 

Table 2. Comparison of baseline data between patients with and without lymph node metastasis in 
training group
Variable Total LNM group (n = 100) Non-LNM group (n = 318) Statistic P
Age 52.770±10.034 53.140±10.954 52.654±9.742 -0.422 0.673

Body mass index 24.073±2.979 24.302±2.954 24.001±2.987 -0.881 0.379

Pausimenia

    Yes 168 44 (44%) 124 (38.99%) 0.793 0.373

    No 250 56 (56%) 194 (61.01%)

HPV infection

    Positive 353 93 (93%) 260 (81.76%) 7.318 0.007

    Negative 65 7 (7%) 58 (18.24%)

Differentiation degree

    Poorly differentiated 135 49 (49%) 86 (27.04%) 16.772 < 0.001

    Moderately to well differentiated 283 51 (51%) 232 (72.96%)

Maximum tumor diameter

    ≥ 2 cm 301 73 (73%) 228 (71.7%) 0.064 0.800

    < 2 cm 117 27 (27%) 90 (28.3%)

Pathological type

    Squamous cell carcinoma 376 85 (85%) 291 (91.51%) 3.567 0.059

    Others 42 15 (15%) 27 (8.49%)

Depth of mesenchymal infiltration

    ≥ 1/2 220 79 (79%) 141 (44.34%) 36.659 < 0.001

    < 1/2 198 21 (21%) 177 (55.66%)

Pathological stage

    IA2-IB 271 66 (66%) 205 (64.47%) 0.079 0.779

    IIA1 147 34 (34%) 113 (35.53%)

SCC-Ag (ng/ml) 4.792±2.523 7.205±3.143 4.033±1.694 -12.987 < 0.001

CEA (ng/mL) 39.100±10.317 44.792±10.194 37.310±9.702 -6.645 < 0.001

CA125 (U/mL) 10.382±2.435 12.427±2.406 9.739±2.064 -10.901 < 0.001

Neu (×109/L) 3.491±1.152 3.824±1.688 3.386±0.900 -3.358 < 0.001

PLT (×109/L) 196.467±55.878 227.590±69.512 186.679±46.868 -6.715 < 0.001

Lym (×109/L) 1.782±0.421 1.815±0.430 1.771±0.418 -0.910 0.363

NLR 1.95 [1.50, 2.49] 2.11 [1.46, 2.72] 1.91 [1.51, 2.39] 1.330 0.184

PLR 110.39 [85.27, 137.67] 124.24 [97.30, 160.69] 106.03 [83.01, 130.61] 4.094 < 0.001

FIB (g/L) 2.436±0.552 2.651±0.684 2.368±0.486 -4.587 < 0.001

Alb (g/L) 41.921±3.625 41.889±3.390 41.931±3.701 0.100 0.920

CRP (mg/L) 2.77 [1.68, 4.09] 4.16 [2.25, 6.67] 2.57 [1.57, 3.49] 5.703 < 0.001
Note: LNM, lymph node metastasis; SCC-Ag, squamous cell carcinoma antigen; CEA, carcinoembryonic antigen; CA125, cancer antigen 125; Neu, neutrophil count; PLT, 
platelet count; Lym, lymphocyte count; NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio; FIB, fibrinogen; Alb, albumin; CRP, C-reactive protein.
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value of 0.0231 (indicated by the blue dots in 
Figure 3A), nine variables were selected: SCC-
Ag, CEA, CA125, Neu, PLT, FIB, CRP, differentia-
tion, and depth of mesenchymal infiltration 
(Figure 3B). Based on the regression coeffi-
cients of these selected variables, the risk 
model was formulated as follows:

Risk Score = 15.1419538 - 2.237099526 × 
SCC-Ag (ng/ml) -0.429975303 × CEA (ng/mL) 
- 1.46315786 × CA125 (U/mL) - 1.071651798 
× Neu (×109L) - 1.108481595 × PLT (×109L) - 
0.602152848 × FIB (g/L) - 1.683026492 × 
CRP (mg/L) - 0.388277279 × Differentiation - 
0.740627285 × Depth of mesenchymal in- 
filtration. During model validation, a confusion 
matrix (Figure 3C) was used to assess the mod-
el’s performance, illustrating the accuracy of 
predictions across various classification cate-
gories, including the number of correctly pre-
dicted positive and negative cases and mis-
classifications. This information is crucial for 

ROC curve, calibration curve, and DCA of the 
training group model

This study comprehensively evaluated the per-
formance of the training group model, demon-
strating its strong predictive ability. First, the 
ROC curve (Figure 5A) illustrated the model’s 
discriminatory capacity across various thresh-
olds. The AUC value provided a quantitative 
measure, indicating the model’s high classifica-
tion power. The calibration curve (Figure 5B) 
assessed the agreement between the predict-
ed and observed values, with a goodness-of-fit 
test yielding a chi-square value of less than 
0.001 and a P-value of 1, suggesting a favor-
able calibration. Additionally, the C-index was 
0.969 (95% CI: 0.951-0.987), further confirm-
ing the model’s accuracy in distinguishing dif-
ferent risk levels (P < 0.001). Lastly, the DCA 
curve (Figure 5C) demonstrated that the model 
provided benefits across a probability range of 
0% to 97%, with the maximum benefit reaching 

Figure 1. ROC curve analysis diagram. The ROC curve graph delineates the 
predictive capabilities of diverse laboratory indicators associated with lymph 
node metastasis, including SCC-Ag, CEA, CA125, Neu, PLT, PLR, FIB, and 
CRP. Note: ROC, receiver operating characteristic; AUC, area under the curve; 
SCC-Ag, squamous cell carcinoma antigen; CEA, carcinoembryonic antigen; 
CA125, cancer antigen 125; Neu, neutrophil count; PLT, platelet count; PLR, 
platelet-lymphocyte ratio; FIB, fibrinogen; CRP, C-reactive protein.

understanding the model’s 
predictive capacity and for gui- 
ding risk assessment in clini-
cal applications.

Nomogram construction and 
variable correlation analysis

A Nomogram was construct- 
ed based on the LASSO 
regression model to predict 
LNM risk. The regression coef-
ficients of individual variables 
were used to evaluate their 
contribution to the risk score. 
Based on the analysis, vari-
ables were categorized into 
three groups: strongly corre-
lated, moderately correlated, 
and weakly correlated. SCC-
Ag, CEA, and CA125 were 
strongly correlated with LNM 
and had the greatest impact 
on the model’s predictive 
capacity. PLT, FIB, and CRP 
were moderately correlated 
and contributed moderately to 
the prediction. Neu, differenti-
ation status, and depth of 
mesenchymal infiltration were 
weakly correlated, making a 
minor contribution to the risk 
score (Figure 4).
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Table 3. ROC curve characteristics of laboratory parameters related to lymph node metastasis
Marker AUC 95% CI Specificity Sensitivity Youden index Cut off
SCC-Ag (ng/ml) 0.811 0.750-0.873 93.08% 65.00% 58.08% 6.44
CEA (ng/mL) 0.696 0.638-0.755 76.10% 55.00% 31.10% 43.745
CA125 (U/mL) 0.801 0.752-0.851 67.61% 80.00% 47.61% 10.565
Neu (×109/L) 0.591 0.515-0.667 90.25% 35.00% 25.25% 4.49
PLT (×109/L) 0.689 0.624-0.754 91.51% 40.00% 31.51% 248.5
PLR 0.636 0.571-0.700 66.04% 58.00% 24.04% 119.768
FIB (g/L) 0.615 0.544-0.686 84.28% 42.00% 26.28% 2.815
CRP (mg/L) 0.689 0.618-0.760 94.34% 46.00% 40.34% 5
Note: ROC, receiver operating characteristic; AUC, area under the curve; SCC-Ag, squamous cell carcinoma antigen; CEA, car-
cinoembryonic antigen; CA125, cancer antigen 125; Neu, neutrophil count; PLT, platelet count; PLR, platelet-lymphocyte ratio; 
FIB, fibrinogen; CRP, C-reactive protein.

Figure 2. Spearman’s test correlation matrix for variables associated with lymph node metastasis. Note: HPV, hu-
man papillomavirus; CRP, C-reactive protein; FIB, fibrinogen; PLR, platelet-lymphocyte ratio; PLT, platelet count; Neu, 
neutrophil count; CA125, cancer antigen 125; CEA, carcinoembryonic antigen; SCC-Ag, squamous cell carcinoma 
antigen.
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Figure 3. LASSO regression model construction. A. Lambda selection diagram of LASSO regression. B. The selected nine variables. C. Confusion matrix diagram. 
Note: LASSO, Least Absolute Shrinkage and Selection Operator.
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76.07%. Together, these findings highlight the 
exceptional predictive performance of the 
model in the training group, underscoring its 
clinical value.

ROC curve, calibration curve, and DCA of the 
validation group model

In the validation cohort, the model’s perfor-
mance was thoroughly assessed, and the 
results confirmed its high accuracy. The ROC 
curve (Figure 6A) effectively depicted the  
model’s classification efficacy across different 

thresholds, with the AUC value reflecting its 
pronounced discriminatory capacity. The cali-
bration curve (Figure 6B) examined the align-
ment between predicted and observed values, 
with a goodness-of-fit test showing a chi-squ- 
are value less than 0.001 (P = 1), indicating 
excellent calibration. The C-index was 0.942 
(95% CI: 0.905-0.980), further supporting the 
model’s strong ability to distinguish among  
various risk levels (P < 0.001). The DCA curve 
(Figure 6C) revealed that the model was ben- 
eficial within a probability range of 0% to 94%, 

Figure 4. Nomogram construction diagram. The Nomogram diagram depicts the influence of each variable on the 
lymph node metastasis risk score. The variables are divided into strongly correlated, correlated, and weakly corre-
lated classifications in accordance with their contributions to the prediction.

Figure 5. ROC curve, calibration curve, and DCA of the training group model. A. ROC curve of the training group 
model, employed to evaluate the discriminatory power of the model. B. Calibration curve, utilized for assessing the 
calibration accuracy of the model. C. DCA curve, applied to evaluate the clinical benefits of the model under differ-
ent decision thresholds. Note: ROC, receiver operating characteristic; DCA, decision curve analysis.
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with a maximum benefit of 75.24%. Collectively, 
these results demonstrate that the model per-
formed excellently in the validation group as 
well, confirming its substantial clinical applica-
tion potential.

Comparison of ROC curve characteristics be-
tween training group and validation group

Table 4 presents a comparison of the ROC 
curve characteristics for the models in the 
training group (Risk_1) and the validation gro- 
up (Risk_2). The AUC for the training group was 
0.969 (95% CI: 0.951-0.987), while the valida-
tion group had an AUC of 0.942 (95% CI:  
0.905-0.980). This difference suggests that 
the model in the training group had slightly bet-
ter predictive performance. The sensitivity of 
the training group was 93.00%, compared to 

84.31% in the validation group. In contrast, the 
validation group had a higher specificity of 
94.84%, compared to 89.31% in the training 
group. The Youden index was 82.31% for the 
training group and 79.15% for the validation 
group, showing a minor difference between the 
two. The accuracy rates were 90.19% for the 
training group and 92.23% for the validation 
group. Precision and F1 scores were 93.00% 
and 81.94%, respectively, for the training 
group, and 84.31% and 84.31% for the valida-
tion group. To assess the statistical signifi-
cance of the AUC difference between the two 
groups, the DeLong test was conducted. The 
results showed a D value of 1.249, degrees  
of freedom (df) of 304.93, and a P-value of 
0.213. These findings indicate no statistically 
significant difference in AUC between the train-
ing and validation groups (Table 4).

Discussion

CC is the most prevalent malignancy among 
women globally, particularly in developing coun-
tries, where it has high incidence and morta- 
lity rates [15]. For patients with stage IA2-IIA1 
CC, early intervention often results in favorable 
outcomes. However, the presence of LNM sig-
nificantly worsens prognosis, making LNM a 
critical factor influencing survival and treat-
ment decisions. In this study, we developed 
and validated an LNM risk prediction model 
based on laboratory parameters (SCC-Ag, CEA, 
CA125, etc.) and clinicopathological features. 
The results show that this model can accurate-
ly predict LNM risk in patients with stage IA2-

Figure 6. ROC curve, calibration curve, and DCA of the validation group model. A. ROC curve of the validation group 
model, employed to evaluate the discriminatory power of the model. B. Calibration curve, utilized for assessing the 
calibration accuracy of the model. C. DCA curve, applied to evaluate the clinical benefits of the model at different 
decision thresholds. Note: ROC, receiver operating characteristic; DCA, decision curve analysis.

Table 4. Comparison of ROC curve character-
istics of training group and validation group
Marker Risk_1 Risk_2
AUC 0.969 0.942
CI_lower_upper 0.951-0.987 0.905-0.980
Specificity 89.31% 94.84%
Sensitivity 93.00% 84.31%
Youden_index 82.31% 79.15%
Cut_off 0.21 0.257
Accuracy 90.19% 92.23%
Precision 93.00% 84.31%
F1_Score 81.94% 84.31%
Note: ROC, receiver operating characteristic; DCA, deci-
sion curve analysis.
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IIA1 CC, aiding in preoperative decision-making 
and the tailoring of personalized treatment 
plans.

We employed the LASSO regression model to 
identify key prognostic factors. The advantage 
of the LASSO method is its ability to handle 
high-dimensional data efficiently. By using L1 
regularization, it controls variable selection  
and reduces the risk of overfitting. Laboratory 
markers such as SCC-Ag, CEA, and CA125  
were identified as independent prognostic fac-
tors with significant effects on LNM in CC. 
These markers offer valuable prognostic infor-
mation for LNM, enhancing the accuracy of pre-
operative LNM assessments.

The nine key variables identified in this study - 
SCC-Ag, CEA, CA125, Neu, PLT, FIB, CRP, dif-
ferentiation status, and depth of mesenchymal 
infiltration - encompass tumor markers, inflam-
matory and immune indices, platelet-related 
parameters, and histopathological features 
[16-18]. These factors not only shed light on 
the potential mechanisms underlying LNM in 
CC but also provide new clinical insights.  
Tumor markers, such as SCC-Ag, CEA, and 
CA125, directly reflect tumor burden and inva-
siveness. SCC-Ag promotes tumor cell mi- 
gration by inducing epithelial-mesenchymal 
transition (EMT) [19, 20], a process that all- 
ows tumor cells to become more invasive and 
metastatic. Similarly, CEA facilitates metasta-
sis by modulating inflammation and immune 
evasion [21], highlighting its role in the meta-
static cascade. CA125, on the other hand, 
alters the extracellular matrix, enhancing tumor 
cell invasiveness [22, 23], emphasizing the crit-
ical interaction between tumor cells and the 
surrounding stroma during metastasis.

Inflammatory and immune-related indices, 
such as Neu, CRP, and FIB, underscore the role 
of the tumor-associated inflammatory microen-
vironment in LNM formation. Tumor-associat- 
ed neutrophils (TANs) promote tumor invasion 
via cytokine release [24], while CRP enhances 
metastatic potential by activating the comple-
ment system, bridging inflammation and tumor 
invasion. FIB facilitates metastasis by protect-
ing tumor cells and promoting angiogenesis 
[25], creating favorable conditions for distant 
implantation. Platelets play a complex role in 
the metastatic microenvironment. By interact-
ing with tumor cells, platelets form a protective 

barrier, shielding tumor cells from immune 
clearance and promoting angiogenesis through 
the release of vascular growth factors [26]. This 
not only enhances tumor cell survival but also 
supports distant metastasis.

Histopathological features, including differenti-
ation status and depth of mesenchymal infil- 
tration, directly reflect tumor aggressiveness. 
Poorly differentiated tumors are often associ-
ated with higher malignancy, while deeper mes-
enchymal infiltration indicates that the tumor 
has breached local barriers, entering the lym-
phatic and vascular systems and significantly 
increasing the risk of LNM [16-18]. Further- 
more, depth of mesenchymal infiltration is 
strongly correlated with parametrial involve-
ment, further emphasizing its role in tumor 
spread and invasion [28]. These findings align 
with the study by Yang et al. [27], which show- 
ed an increasing trend in the conditional sur-
vival rate of high-risk patients with LNM over 
time, highlighting the importance of early diag-
nosis and risk stratification. Early intervention 
in patients with poor differentiation and deep 
mesenchymal infiltration could significantly im- 
prove prognosis.

Previous studies have highlighted the potential 
of integrating clinical, imaging, and laboratory 
characteristics into predictive models to en- 
hance the accuracy of LNM prediction in CC. 
Prognostic models, such as the Nomogram, 
have proven particularly effective in this re- 
gard. For example, the Nomogram developed 
by Deng et al. [29], which incorporated vari-
ables such as age, histological type, tumor 
grade, tumor size, and FIGO staging, demon-
strated strong discriminatory ability, achieving 
an AUC of 0.723. Its performance was consis-
tent across both training and validation datas-
ets, underscoring the utility of combining mul-
tiple clinical parameters for accurate LNM pre-
diction. Similarly, Dong et al. [30] integrated 
three-dimensional power Doppler ultrasono- 
graphy (3D-PDU) parameters with clinical fea-
tures to construct a Nomogram that achieved 
an AUC of 0.845, effectively predicting both 
LNM and lymphovascular space invasion (LVSI). 
These studies underscore the importance of 
multidimensional models in refining risk stra- 
tification and diagnostic precision, which aligns 
with the approach adopted in the current 
research.
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Building on these advancements, Wenzel et al. 
[31] introduced multiple laboratory parameters 
to address the limitations of traditional single-
factor prediction models. Their study empha-
sized the value of integrating laboratory mark-
ers, which provide dynamic insights into tumor 
biology and systemic inflammation, into pre- 
dictive frameworks. This approach aligns with 
the methodology used in the current study, 
where biomarkers such as SCC-Ag, CEA, and 
CA125 were incorporated to enhance predic-
tive performance. These markers not only 
reflect tumor burden and metastatic potential 
but also capture systemic and microenviron-
mental factors contributing to LNM, thereby 
enhancing the predictive model’s accuracy and 
applicability.

However, accurate LNM prediction extends 
beyond diagnostic utility to treatment implica-
tions. Matsuo et al. [32] revealed that, despite 
the widespread use of concurrent chemoradio-
therapy in early-stage CC patients with positive 
lymph nodes, its impact on survival rates 
remains limited. This finding underscores the 
need for precise risk stratification to avoid  
overtreatment and reduce unnecessary treat-
ment burdens, particularly for low-risk patients. 
Misclassification of low-risk patients can lead 
to unnecessary lymph node dissection, in- 
creased surgical trauma, and the adverse 
effects of overtreatment, emphasizing the 
value of highly accurate predictive models in 
clinical decision-making. In this context, the 
current study leverages a comprehensive 
approach by integrating laboratory parame- 
ters, clinical features, and histopathological 
characteristics to construct a robust predictive 
framework. This multidimensional methodolo-
gy not only addresses the limitations of tradi-
tional single-variable models but also aligns 
with prior evidence supporting the importance 
of combining clinical and laboratory data. By 
improving predictive precision, this model has 
the potential to guide individualized treatment 
strategies, minimizing unnecessary interven-
tions for low-risk patients while ensuring timely 
and appropriate care for high-risk patients.

The CC LNM prediction model proposed in this 
study has significant clinical potential. Early 
diagnosis of LNM is crucial for treatment deci-
sions. By predicting LNM risk preoperatively, 
physicians can more effectively assess the 
need for lymph node dissection and tailor  
treatment regimens to the specific condition of 
the patient. For high-risk patients, comprehen-

sive preoperative treatments can be planned, 
while low-risk patients can avoid unnecessary 
lymph node dissections, thereby reducing sur-
gical trauma and minimizing complications. 
Furthermore, the model’s simplicity and ease 
of use make it highly applicable in clinical prac-
tice. Laboratory parameters such as SCC-Ag, 
CEA, and CA125, which are widely used in clini-
cal settings, are simple to measure and cost-
effective. Therefore, this model not only sup-
ports decision-making in expert teams at large 
hospitals but can also be applied in resource-
limited regions, improving diagnostic and treat-
ment outcomes for CC in primary care settings. 
Previous studies [29, 30, 33], including this 
one, have suggested that models combining 
laboratory parameters and clinicopathological 
features enhance LNM prediction accuracy. 
Future research should aim to optimize these 
models and validate their clinical value in large-
scale, multi-center studies.

Although the prediction model developed in 
this study demonstrates relatively high accura-
cy in predicting LNM in CC, several limitations 
remain. First, the retrospective design may 
introduce selection bias. Despite efforts to 
select representative samples, retrospective 
studies inherently carry this risk. Second, the 
relatively small sample size may limit the mod-
el’s generalizability. Although cross-validation 
was employed to assess the model, large-
scale, multi-center prospective validation is 
necessary. Third, laboratory parameters may 
be influenced by individual differences and 
detection methods. Future research should 
optimize laboratory testing procedures to im- 
prove accuracy and consistency. To further 
improve the model’s reliability, future studies 
should expand the sample size, conduct multi-
center prospective research, and incorporate 
other clinical features (such as imaging and 
genomic data) to provide more accurate tools 
for predicting and treating CC.

In conclusion, the LNM risk prediction model 
for stage IA2-IIA1 CC developed in this study, 
based on laboratory parameters, demonstrates 
high predictive accuracy and provides valuable 
auxiliary decision-making support for clinicians. 
Despite its limitations, the model represents a 
significant advancement in the clinical manage-
ment of CC, laying the foundation for further 
refinement and enhancement in future re- 
search.
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Table S1. Clinical data of LNM and non-LNM patients

Variable Total LNM group  
(n = 151)

Non-LNM 
group (n = 473) Statistic P

Age 52.679±10.117 53.748±10.640 52.338±9.931 -1.493 0.136
Body mass index 24.005±2.994 23.969±3.023 24.016±2.988 0.168 0.867
Pausimenia
    Yes 246 62 184 0.223 0.636
    No 378 89 289
HPV infection
    Positive 531 143 388 14.493 < 0.001
    Negative 93 8 85
Differentiation degree
    Poorly differentiated 200 72 128 22.348 < 0.001
    Moderately to well differentiated 424 79 345
Maximum tumor diameter
    ≥ 2 cm 444 113 331 1.315 0.252
    < 2 cm 180 38 142
Pathological type
    Squamous cell carcinoma 558 128 430 4.564 0.033
    Others 66 23 43
Depth of mesenchymal infiltration
    ≥ 1/2 333 118 215 49.153 < 0.001
    < 1/2 291 33 258
Pathological staging
    IA2-IB 402 95 307 0.198 0.656
    IIA1 222 56 166
Note: LNM, lymph node metastasis.

Table S2. Laboratory parameters of LNM and non-LNM patients
Indicators Total LNM group (n = 151) Non-LNM group (n = 473) Statistic P
SCC-Ag 4.746±2.463 7.088±3.014 3.998±1.675 -15.905 < 0.001
CEA (ng/mL) 38.882±10.143 44.871±10.014 36.970±9.423 -8.833 < 0.001
CA125 (U/mL) 10.403±2.505 12.324±2.725 9.790±2.089 -12.001 < 0.001
Neu (×109/L) 3.471±1.152 3.757±1.674 3.380±0.910 -3.535 < 0.001
PLT (×109/L) 196.335±55.553 228.152±67.775 186.178±46.759 -8.537 < 0.001
Lym (×109/L) 1.772±0.431 1.801±0.478 1.763±0.415 -0.940 0.348
NLR 1.95 [1.46, 2.51] 2.11 [1.40, 2.82] 1.91 [1.49, 2.43] 1.459 0.144
PLR 109.22 [85.26, 138.97] 127.20 [97.42, 169.77] 105.68 [82.93, 132.78] 5.133 < 0.001
FIB (g/L) 2.437±0.536 2.611±0.639 2.382±0.486 -4.653 < 0.001
Alb (g/L) 41.954±3.703 41.771±3.759 42.012±3.687 0.695 0.487
CRP (mg/L) 2.77 [1.67, 4.05] 4.22 [2.48, 6.29] 2.56 [1.54, 3.51] 7.917 < 0.001
Note: LNM, lymph node metastasis; SCC-Ag, squamous cell carcinoma antigen; CEA, carcinoembryonic antigen; CA125, cancer 
antigen 125; Neu, neutrophil count; PLT, platelet count; Lym, lymphocyte count; NLR, neutrophil-lymphocyte ratio; PLR, platelet-
lymphocyte ratio; FIB, fibrinogen; Alb, albumin; CRP, C-reactive protein.


