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Abstract: Colorectal cancer (CRC) is a common malignant tumour and a serious global health issue. Glycosylation, 
a type of posttranslational modification, has been extensively studied in relation to cancer growth and metastasis. 
Aberrant glycosylation alters how the immune system in the microenvironment perceives the tumour and drives 
immune suppression through glycan-binding receptors. Interestingly, specific glycan signatures can be regarded 
as a new pattern of immune checkpoints. Lectins are a group of proteins that exhibit high affinity for glycosylation 
structures. Lectins and their ligands are found on endothelial cells (ECs), immune cells and tumour cells and play 
important roles in the tumour microenvironment (TME). In CRC, glycan-lectin interactions can accelerate immune 
evasion promoting the differentiation of tumour-associated M2 macrophages, altering T cell, dendritic cell (DC), 
natural killer (NK) cell, and regulatory T (Treg) cell activity to modify the functions of antigen-presenting cells func-
tions. Here, we review our current knowledge on how glycan-lectin interactions affect immune-suppressive circuits 
in the TME and discuss their roles in the development of more effective immunotherapies for CRC.
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Introduction

Cancer is the second most common disease 
worldwide. In 2024, an estimated 2,001,140 
new cancer cases and 611,720 cancer deaths 
are expected in the United States [1]. CRC was 
the fourth most common cause of cancer death 
in both men and women younger than 50 years 
in the late 1990s but is now the second most 
common cause of cancer death in men and 
women [2]. Currently, the treatment methods 
for CRC include surgery in combination with 
multiple targeted therapies, such as those that 
target K-ras, EGFR, and VEGF [3]. Although 
overall CRC mortality continues to decline, the 
epidemiology of CRC is rapidly shifting; it is 
being diagnosed at a younger age, at a more 
advanced stage, and in the left colon/rectum 
[2]. Recently, immunotherapy has emerged as 
a promising option for CRC treatment [4, 5]. 
Compared with traditional standard treat-

ments, immunotherapy utilizes and attacks 
cancer cells more effectively by interfering with 
the immune system of patients. Current immu-
notherapeutic treatments for CRC include im- 
mune checkpoint inhibitors, monoclonal anti-
bodies, adoptive cell therapy, oncolytic viruses, 
anticancer vaccines, and cytokines [6]. To date, 
many immune checkpoint inhibitors, such as 
PD-1, PD-L1, LAG-3, CTLA-4, and TIM-3, have 
been used to treat CRC [7]. Inhibiting immune 
checkpoints can prolong the efficacy of antitu-
mour therapy, improve the host’s immunity 
against cancer by enhancing T-cell activation, 
and potentiate the cytotoxic killing of tumour 
cells [8]. Therefore, more immune checkpoints 
may need to be explored to offer promising 
solutions for the treatment of CRC with immune 
therapy.

Glycosylation is a common posttranslational 
modification whereby glycans connect with a 
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protein for glycoconjugate synthesis. It gener-
ally occurs on the cellular membrane and may 
play a role in various biological processes, in- 
cluding signal transduction [9], cell apoptosis 
[10], transcriptional regulation [11], the immune 
response [12], inflammation [13], and the 
development of tumours [14]. Indeed, recent 
research has demonstrated that alterations in 
glycosylation, which are a hallmark of cancer, 
modulate the immune microenvironment [15-
17]. Immune cells recognize abnormal glycosyl-
ation on cancer cells, and this recognition con-
tributes to the modulation of immune pro- 
cesses. For example, some immune checkpoint 
molecules, such as B7 family members (PD-L1, 
PD-L2, B7-H3, and B7-H4), are known to be 
highly glycosylated, which prevents cytotoxic 
activity in infiltrated T cells [18]. Targeting can-
cer glycosylation repolarizes tumour-associat-
ed macrophages and enhances the efficacy of 
immune checkpoint blockade [19]. Combining 
anchoring DCs with recombinant prosaposin 
protects patients from tumours and improves 
the efficacy of immune checkpoint therapy [20]. 
The majority of proteins involved in glycan rec-
ognition are glycan-binding receptors ex- 
pressed on the immune cell surface, which are 
generally referred to as lectins. Lectins are a 
large family of proteins that contain a represen-
tative carbohydrate recognition domain (CRD) 
that binds to specific glycosylation structures 
[21]. Recent studies have validated that glycan-
lectin interactions can be utilized to improve 
cancer immunotherapy [22-24].

Here, we review the current state of research 
based on the microenvironment in CRC. We 
investigate the glycosylation changes in CRC 
and the impacts of lectin-glycan interactions on 
CRC cells and stromal or immune cells. Finally, 
we discuss the glycan-lectin axis as an immune 
checkpoint, which is expected to be a potential 
target for CRC treatment.

Tumour microenvironment in colorectal can-
cer

Tumour development and malignant progres-
sion are correlated not only with cancer cells 
but also with interactions with the surrounding 
microenvironment. The TME is the environment 
surrounding tumour cells and consists of a syn-
thetic array of immune cells, fibroblasts, endo-
thelial cells, etc. [25]. Cancer cells rely on pro-
survival and proliferative signals from the 
abnormal environment that they create and 
reside in. The interactions between tumour 

cells and TME are important in tumour develop-
ment and progression. Below, we summarize 
the functions of the main cell components of 
the CRC microenvironment (Figure 1).

Extracellular matrix and stromal cells in 
colorectal cancer

Extracellular matrix in colorectal cancer: The 
extracellular matrix (ECM), which consists of a 
sophisticated network of molecules, is com-
monly defined as the noncellular component of 
tissue. The ECM in mammals consists of many 
proteins, such as laminin, collagen, fibronectin, 
and proteoglycans. Thus, the majority of extra-
cellular and transmembrane proteins are glyco-
sylated [26]. It provides necessary biochemical 
and structural support for its cellular constitu-
ents. In cancer, a crucial feature of cancer cells 
is their ability to migrate through surrounding 
tissues and penetrate the adjacent basement 
membrane. Elevated deposition of ECM pro-
teins in the TME increases the stiffness of the 
ECM, which affects cellular functions, such as 
proliferation, adhesion, migration, invasion and 
metastasis. Laminins are significantly more 
abundant in the serum of CRC patients than in 
that of healthy individuals [27]. The deposition 
of collagen is a common feature of CRC, and 
Type I, VI, VII, VIII, X, XI, and XVIII collagen accu-
mulate in CRC. Recently, collagen has been 
associated with the immunoscore in the TME 
[28]. Fibronectin promotes the proliferation of 
CRC cells and drug resistance via a CDC42-
YAS-dependent signalling pathway [29]. The 
heparin sulfate proteoglycan syndecan-2 (Sdc-
2) plays an oncogenic role via epithelial-mesen-
chymal transition (EMT) and the MAPK pathway 
in CRC [30]. Nevertheless, a loss of Sdc-1 en- 
hances colon cancer stem cell function via the 
activation of β-integrins and focal adhesion 
kinase [31]. Moreover, ECM remodelling inter-
feres with pathological processes as a key 
determinant in CRC. Remodelling enzymes, in- 
cluding matrix metalloproteinases (MMP-1, 
MMP-2, MMP-7, MMP-9, MMP-13, and MMP-
14) and LOX family oxidases, are correlated 
with both CRC development and progression. 
Thus, studies have demonstrated that these 
ECM components act as vital indicators of the 
tumorigenesis of CRC.

Endothelial cells in colorectal cancer: Endo- 
thelial cells (ECs) are a type of stromal cell pres-
ent in the TME. They are involved in many pro-
cesses, including angiogenesis, vascular per-
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meability, cancer cell migration, and invasion 
[32]. They are crucial components of the vascu-
lar wall required for angiogenesis via interac-
tions with tumour cells [33]. In the TME, ECs 
exhibit increased permeability, which increases 
vascular leakage. Tumour cells infiltrate the nor- 
mal epithelium and interact with surrounding 
ECs to produce various cytokines and growth 
factors that impact the function of cells in the 
TME. Liver ECs promote CRC cell growth and 
chemoresistance by acting on human epider-
mal growth factor receptor 3 (HER3)-AKT in a 
paracrine fashion [34]. Vascular ECs release 
many proangiogenic interleukins (ILs), such as 
IL-1, IL-6, IL-8, IL-17, IL-22, IL-33, IL-34, and IL- 
37. These upregulated ILs are potential drivers 
of the CRC angiogenesis process [35]. Adipo- 
cyte enhancer-binding protein 1 (AEBP1) ex- 

pressed in human umbilical vein ECs contrib-
utes to tumour angiogenesis by regulating aqu- 
aporin 1 and periostin in CRC [36]. Kallikrein-
related peptide 10 (KLK10) produced by ECs fa- 
cilitates colon cancer cell proliferation and hae-
matogenous liver metastasis formation [37]. EC- 
derived sphingosine-1-phosphate (S1P) facili-
tates GPR63 binding to Src to stimulate the 
JAK2/STAT3 pathway and therefore promotes 
the migration and metastasis of CRC cells [38]. 
These findings suggest that ECs are potential 
biomarkers of angiogenesis in CRC.

Immune cells in colorectal cancer

Neutrophils in colorectal cancer: Neutrophils 
were originally considered the first responders 
to acute infection or inflammation. Neutrophils 

Figure 1. Schematic representation of CRC microenvironment. The TME is composed of various components, includ-
ing ECM, endothelial cells and immune cells (neutrophil, macrophage, dendritic cell, NK cell, mast cell, regulatory 
T cell). Those components secrete soluble and insoluble factors, facilitate communication between tumor cells and 
their surroundings, regulate the development and progression of CRC. Created with BioRender.com.
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are involved in the regulation of the innate and 
adaptive immune systems and can be polar-
ized towards different phenotypes in response 
to environmental signals [39]. Tumour-asso- 
ciated neutrophils exhibit considerable plastic-
ity and affect the TME as either an antitumouri-
genic “N1” phenotype or a protumourigenic 
“N2” phenotype. They can facilitate tumour cell 
growth and metastatic progression via the se- 
cretion of protumour cytokines [40], modula-
tion of the extracellular matrix [41], and enhan- 
cement of tumour angiogenesis [42]. Neutro- 
phils can also form neutrophil extracellular 
traps (NETs), which promote the invasion and 
metastasis of tumour cells. In CRC, neutrophils 
may also play dual roles in cancer progression. 
CD177+ neutrophils suppress epithelial cell 
tumourigenesis and may act as therapeutic tar-
gets in the prognosis of colitis-associated can-
cer and CRC [43]. In contrast, neutrophils pro-
mote CRC cell proliferation, migration, angio- 
genesis and metastasis. An increase in the 
number of neutrophils in the peripheral blood 
has been identified as a poor prognostic factor 
for advanced cancer, especially left-sided colon 
cancer [44]. Li et al. revealed a strong relation-
ship between dynamic changes in the neutro-
phil-to-lymphocyte ratio (delata-NLR) and over-
all survival in patients with colon cancer [45]. 
Tumour-associated neutrophils release anterior 
gradient-2 (AGR2) to promote CRC cell migra-
tion and metastasis through its receptor, CD- 
98hc-xCT [46]. Neutrophil extracellular trap-as- 
sociated carcinoembryonic Ag cell adhesion 
molecule 1 (CEACAM1) is important for CRC cell 
adhesion, migration, and metastasis [47]. Ne- 
utrophils promote CRC liver metastasis through 
fibroblast growth factor 2 (FGF2)-dependent 
angiogenesis in mice [48]. Indeed, many stud-
ies support that high neutrophil infiltration may 
be a hallmark of poor prognosis in CRC patients.

Macrophages in colorectal cancer: Macrop- 
hages are versatile immunocytes that perform 
a broad spectrum of functions in immune and 
inflammatory processes, including defending 
against pathogens, governing tissue haemosta-
sis and facilitating wound healing. Furthermore, 
the roles of macrophages in the TME are more 
widely recognized. They participate in ECM 
transformation, angiogenesis, proliferation, im- 
munosuppression, chemotherapeutic resistan- 
ce, and metastasis in cancer [49]. They consti-
tute the most abundant immune population of 
the TME and are a double-edged sword with 

both antitumourigenic (M1-like macrophages) 
and protumourigenic (M2-like macrophages) 
functions. Tumour-associated macrophages 
(TAMs), which have a phenotype similar to that 
of M2-like macrophages, have been reported to 
be crucial contributors to CRC. Vayrynen et al. 
reported that a high tumour stromal density of 
M2-like macrophages was correlated with wo- 
rse colorectal cancer-specific survival, whereas 
the tumour stromal density of M1-like macro-
phages was not statistically associated with 
better survival in patients with colorectal can-
cer [50]. TAMs exhibit immunosuppressive fea-
tures by generating the chemokines CCL5, CC- 
L18, and CCL22 [51, 52] in CRC. TAM-specific 
CD155 contributes to M2 phenotype transition 
and promotes migration and invasion in CRC 
[53]. CD163+ TAMs accelerate the EMT pro-
gram to promote CRC cell migration, invasion 
and metastasis via the JAK2/STAT3/miR-506-
3p/FoxQ1 axis [54]. Transforming growth fa- 
ctor-β (TGF-β) derived from TAMs increases 
CRC progression in a hypoxia-inducible factor 
1α (HIF1α)/Tribbles pseudokinase 3 (TRIB8)-
dependent manner [55]. These studies support 
the idea that macrophages usually play tumour-
promoting roles in the CRC microenvironment.

Dendritic cells in colorectal cancer: Dendritic 
cells (DCs) serve as the key sentinels of the 
immune response in innate and adaptive immu-
nity, playing significant roles in the TME through 
their ability to recognize, present, and activa- 
te antigens, as well as coordinate and regulate 
immune responses [56]. The receptors ex- 
pressed on the surface of DCs enable them to 
recognize and bind antigens released by tumour 
cells or their degradation products. The pro-
cessed antigens are transferred by DCs to their 
organelles for “antigen presentation”. Addition- 
ally, DCs promote immune responses by secret-
ing a variety of immunomodulators, such as 
chemokines and cytokines. In CRC, the prog-
nostic value of DCs is still unclear, perhaps due 
to the interchangeable expression of immunos-
timulatory and immunoinhibitory molecules by 
DCs. A greater number of tumour-infiltrating 
plasmacytoid DCs significantly correlates with 
increased progression-free survival and overall 
survival in colon cancer patients [57]. Colon 
cancer patients with a lower density of CD83+ 
DCs in the stroma and invasive margins had a 
worse prognosis than those with greater CD83+ 
DC infiltration [58]. Conversely, interactions be- 
tween tumour-associated DCs and CRC cells 
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promote tumour progression via CXCL1 [59]. 
Suppressing cytotoxic T lymphocyte-associated 
protein (CTLA-4) expression on DCs along with 
loading CRC cell lysate increased antitumoral-
specific T-cell responses, resulting in the pro-
duction of IFN-γ and IL-4 [60]. MGLs are ex- 
pressed by dendritic cells, and glycan chang- 
es in MUC1 are detected in colon carcinoma, 
which is correlated with poor prognosis in  
CRC patients [61]. Dendritic cell-specific inter-
cellular adhesion molecule 3-grabbing noninte- 
grin (DC-SIGN) recognizes Mac-2-binding pro-
tein and carcinoembryonic antigen (CEA) on 
CRC cells [62, 63]. These interactions signifi-
cantly inhibited DC functional maturation and 
suppressed DC functions. These data suggest 
that DCs are multifaceted immune cells that 
play a role in CRC progression.

Natural killer cells in colorectal cancer: Natural 
killer (NK) cells, an essential component of the 
immune system, play a pivotal role in the regu-
lation of infection resistance and cancer [64]. 
In terms of infection resistance, NK cells can 
kill susceptible target cells, secrete cytokines 
to recruit DCs, promote the maturation of DCs 
and enhance adaptive immune responses. In 
cancer, NK cells interact with DCs through TR- 
AIL binding to TRAIL-R2, which not only induces 
the expression of immunomodulatory mole-
cules such as IL-10, iNOS and arginase-1 in DCs 
but also directly affects the activation and func-
tion of T cells. The mechanism by which NK ce- 
lls contribute to antitumour immunity is closely 
related to the characteristics of their surface 
receptors, namely, activating receptors, inhibi-
tory receptors, and some auxiliary receptors 
[65]. Activating receptors are crucial for the 
ability of NK cells to identify damaged or abnor-
mal cells. NK cells recognize stress ligands ex- 
pressed by tumour cells, such as MICA and 
ULBPs, through their surface receptors, there-
by activating the cytotoxic mechanism of NK 
cells [66]. NKG2D is a C-type lectin receptor, 
and the interaction of NKG2D and MICA en- 
hances NK cell sensitivity and NKG2D-me- 
diated immunosurveillance in CRC [67]. Many 
NKp46+ NK cells are detected in the normal 
mucosa, but their numbers are reduced in CRC 
tissue and liver metastases [68]. Conversely, 
inhibitory receptors serve to prevent NK cells 
from targeting normal cells. TIGIT correlates 
with NK cell exhaustion in tumour-bearing mice 
and colon cancer patients. Blocking TIGIT inhib-
its the exhaustion of NK cells and promotes 
antitumour immunity [69]. Auxiliary receptors, 

including CD16 and CD56, are integral to NK 
cell functionality. The percentage of circulating 
CD16+CD56+ NK cells is negatively related to 
CRC occurrence and stage [70]. In addition, NK 
cells directly kill tumour cells by releasing cyto-
toxic granules, secrete IFN-γ, inhibit the prolif-
eration of tumour cells and promote their apop-
tosis [71]. T-cell immunoglobulin and mucin 
domain 3 (TIM-3) are downregulated on periph-
eral NK cells in CRC patients and are signi- 
ficantly associated with the TNM stage [72]. 
These studies demonstrate the importance of 
NK cells in modulating the immune response 
against CRC.

Mast cells in colorectal cancer: Mast cells 
(MCs) are innate immune cells that originate 
from bone marrow stem cells [73]. These cells 
play crucial roles not only in allergic reactions 
by releasing cytokines, chemokines, proteases, 
leukotrienes, and bioactive polyamines but 
also in innate immune functions, participating 
in the host’s defence mechanisms [74]. MCs 
are crucial for adaptive immune responses; 
they influence the functions of dendritic cells, T 
cells, and B cells, thereby triggering the immune 
response [75]. In addition, MCs are involved in 
the establishment of immune tolerance by pre-
venting the occurrence of excessive or inappro-
priate immune responses [74]. Moreover, MCs 
play dual roles in tumour development. On the 
one hand, they recruit immune cells, release 
cytokines, promote inflammatory responses 
and potentially inhibit tumour growth or induce 
apoptosis. On the other hand, MCs act as po- 
tent protumourigenic factors in tumours via the 
production of VEGF, FGF, and matrix metallo-
proteinases [76, 77]. They may also inhibit T 
cells and NK cells by releasing adenosine into 
the microenvironment [78]. In CRC, the role of 
MCs is complex and remains controversial [79]. 
A high density of mast cells is associated with a 
better prognosis, and the density of mast cells 
is negatively correlated with the level of Cys- 
LTR1 [80]. MCs induce endoplasmic reticulum 
stress by secreting cystatin C, thereby inhibiting 
the development of colorectal cancer [81]. 
Nonetheless, additional studies have suggest-
ed that mast cells are correlated with a poor 
prognosis in CRC patients [82-84]. Depending 
on the interaction between regulatory T cells 
(Tregs) and MCs in CRC, MCs may lead to im- 
mune suppression or a reduction in Treg func-
tion [85]. MCs can activate protease-activated 
receptor-2 (PAR-2) and promote the invasion 
and metastasis of tumour cells [86]. TLR2 stim-
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ulation of MCs promotes colon cancer spheroid 
growth. Compared with MCs cultured only in 
the ECM, MCs cocultured with colon cancer 
HT29 spheroids presented increased expres-
sion of five genes (NOTCH1, PTGS2, PTGER4, 
VEGFA, and MMP2) and decreased expression 
of one gene (ITGA3) [87]. These data imply that 
MCs have contradictory effects throughout 
CRC development.

Regulatory T cells in colorectal cancer: Re- 
gulatory T cells (Treg) play a pivotal role in the 
immunomodulation of CRC, predominantly faci- 
litating tumour progression and immune eva-
sion [88-90]. The degree of Treg cells infiltra-
tion within tumour tissues is significantly corre-
lated with poor prognosis. An increase in tu- 
mour-infiltrating CD4+ Treg cells predicts tu- 
mour development, immunotherapy inefficacy, 
and adverse outcomes [88, 91, 92]. These Treg 
cells can robustly suppress the activation and 
proliferation of effector T cells in the CRC TME 
[93]. Cytokines such as TGF-β and metabolic 
byproducts secreted by CRC cells can induce 
the differentiation and proliferation of Treg cells 
[94, 95]. CRC organoids are capable of induc-
ing the differentiation of CD4+ T cells into Treg 
cells with enhanced immunosuppressive capa-
bilities [96]. Specifically, CCR8+ Treg cells ex- 
hibit a high degree of infiltration in the TME  
and are associated with unfavorable progno-
ses [93, 96]. Moreover, Treg cells mediate tu- 
mour immunosuppression through multiple me- 
chanisms, including the secretion of immuno-
suppressive cytokines like IL-10 and IL-35, the 
expression of metabolic enzymes such as CD- 
39 and CD73 to deplete local adenosine nucle-
otides, and the upregulation of co-inhibitory 
molecules like CTLA-4 and TIGIT, thereby inhib-
iting the functionality of antigen-presenting ce- 
lls (APCs) and reducing the activation of effec-
tor T cells [92, 97-99]. Collectively, these find-
ings suggest that Treg cells play a critical role in 
tumour immune escape in CRC.

Glycosylation pathways in colorectal cancer

Glycosylation is a common type of microenvi-
ronment posttranslational modification (PTM) 
of proteins and lipids. It is a process regulated 
by complex mechanisms, including glycosyl-
transferase expression, localization and the 
ratio of activity to donor substrate availabili- 
ty. Some specific glycosyltransferases, such  
as fucosyltransferases, sialytransferases and 
N-acetylglucosaminyltransferases, coordinate 

the addition of glycan structures to proteins 
and lipids. They participate in certain phases of 
the glycosylation process, carbohydrate chain 
core extension, elongation, branching and cap-
ping [22]. Furthermore, aberrant expression of 
glycosyltransferases, altered subcellular local-
ization of glycosyltransferases and mutations 
in genes that encode glycosyltransferases may 
be associated with CRC occurrence and devel-
opment (Table 1) [100-117]. For example, N- 
acetylgalactosamine transferase 2 (GALNT2) is 
overexpressed in colorectal tumours and pro-
motes CRC cell migration and invasion through 
AXL [106]. Fucosyltransferase 3 (FUT3) overex-
pression mediates the fucosylation of TGFβR-I 
and drives the EMT that occurs during CRC pro-
gression [109]. ST6GALNAC1 upregulation 
results in MUC1-sTn glycoform production and 
is related to ulcerative colitis and colitis-associ-
ated colon cancer [113]. In contrast, high 
B4GALNT2 expression is considered a poten-
tial predictor of good prognosis in CRC, sug-
gesting its relationship with a low-malignancy 
molecular signature, including bone marrow 
stromal cell antigen 2 (BST2), intelectin-1 
(ITLN1) and so on [105]. FUT2 is found to be 
downregulated in CRC tissues and correlated 
with CRC patient survival [110]. Sialytransferase 
ST6GAL1 knockdown leads to increased rectal 
cancer cell apoptosis and decreased survival 
after chemoradiation treatment [116]. Thus, 
altered glycosyltransferases contribute to the 
progression and prognosis of CRC.

In addition, approximately 50% of human pro-
teins are glycosylated for maturation [118]. 
Protein glycosylation contributes to a multitude 
of biological processes, such as protein stabili-
ty, protein folding, protein clearance, cell-cell 
homotypic interactions and cell-matrix adhe-
sion [119]. Glycosylation greatly expands the 
proteome by generating various protein iso-
forms that exhibit diverse characteristics and 
functions [120]. Recently, aberrant glycosyl-
ation has been identified as a hallmark of can-
cer. Generally, aberrant glycosylation consists 
of increased N-glycan branching, increased 
O-glycan density, incomplete synthesis of gly-
cans, glycan neosynthesis, and increased fu- 
cosylation and sialylation (Figure 2). In CRC, 
altered glycosylation is a universal feature of 
tumorigenesis, metastasis, immunity modula-
tion and therapy. For example, altered glycosyl-
ation of serum IgG is considered an early diag-
nostic biomarker in CRC [121]. N-glycosylation 
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of CD82 at Asn157 may inhibit CRC cell adhe-
sion and lung metastasis [122]. Aberrant O- 
glycosylation contributes to CRC development 
by directly inducing oncogenic properties [123]. 
Furthermore, modifying the fucosylation of mel-
anoma cell adhesion molecule (MCAM) might 
be an underlying therapeutic target for CRC 
patients, especially those with FUT2 gene de- 
fects [124]. Terminal α2,6-sialylation of EGFR 
plays an important role in regulating the sus-
ceptibility of CRC cells to antibody therapy 
[125].

Furthermore, aberrant glycosylation can affect 
the interactions between cancer cells and com-
ponents of the TME, such as the extracellular 
matrix, stromal cells and immune cells. β1,3-
galactosyltransferase alters the O-glycosylation 
profile of some cellular proteins and thus recip-
rocally affects tumour cell-cell and tumour-
macrophage interactions regulated by galec-
tin-3 and MGL in the context of colon cancer 
development and progression [126]. Galectin-2, 
-4 and -8 increase colon cancer cell adhesion 
to monolayers of macro- and microvascular 
endothelial cells [127]. The interactions of DC- 
SIGN and colorectal tumour-associated Lewis 
glycans mediate the function and differentia-
tion of DC cells, which cause a series of effec-
tive antitumour responses [128]. Furthermore, 
Lewis-type antigens are another type of non-
specific glycosylation in CRC. Lewis (X) and 
sialyl Lewis (X) were detected in 65.4% and 
73.3% of CRC patients, respectively, and sialyl 
Lewis (X)-expressing patients had more advan- 
ced cancer [129].

These findings demonstrate that interactions 
with glycan-binding proteins can be affected 
and participate in various biological processes 
in CRC.

Overall, the current data highlight the impor-
tance of aberrant glycosylation in CRC, whi- 
ch involves many cellular substrates, thus con-

tributing to CRC progression and immune 
escape.

Glycan-lectin interactions in colorectal cancer

Lectins are a family of proteins with specific 
affinities towards particular glycan structures. 
They are classified into C-type lectins, I-type 
lectins (including siglecs), S-type lectins (known 
as galectins) and so on. Glycan-lectin interac-
tions play crucial roles in different cellular pro-
cesses. Lectins participate in the immune res- 
ponse to pathogens or inflammation [130]. By 
recognizing specific glycosylation structures, 
they serve as ligands of glycan-binding proteins 
and impact glycoprotein function by enabling 
glycan-dependent signalling in the TME [21, 
131, 132]. Currently, growing evidence sup-
ports the role of aberrant tumour glycosylation 
in dismantling antitumour defences through 
interactions with lectins on endothelial cells or 
immune cells (Figure 3 and Tables 2-5).

It has been extensively elucidated how glycan 
structures can influence immune responses in 
cancer. One key mechanism is the alteration  
of interactions with lectins expressed in TME. 
Stromal and immune cells are equipped with 
various lectins that sense and decode the mul-
tiplicity of the cellular glycome. ECs, as a type of 
stromal cell, express several lectins, highlight-
ing a strong correlation among TME, immunity 
and vascularization in CRC. C-type lectins E- 
selectin and P-selectin, expressed on ECs, bind 
to specific glycan ligands on the surface of 
tumour cells. This binding promotes the adhe-
sion between tumour cells and ECs, thereby in- 
fluencing the migration and invasion processes 
of tumour cells [133-135]. Additionally, incre- 
ased expression of galectin-8 on ECs enhances 
adhesion to CRC cells, an effect that is depen-
dent on the presence of lactose [127].

In CRC, the immune microenvironment is pri-
marily composed of neutrophils, macrophages, 
DCs, NK cells, MCs and Treg cells. Neutro- 

Table 1. Dysregulated glycosyltransferase genes in CRC
Glycosyltransferase Genes Ref.
β 3-glycosyltransferases B3GNT8↑, B3GNT6↓ [101-103]
β 4-glycosyltransferases B4GALNT3↑, B4GALNT2↓ [104, 105]
Polypeptide N-acetylgalactosaminyl transferases GALNT2↑, GALNT6↓ [106, 107]
Fucosyltransferases FUT1↑, FUT3↑, FUT4↑, FUT5↑, FUT6↑, FUT8↑, FUT2↓ [108-112]
Sialyltransferases ST6GALNAC1↑, ST6GALNAC6↓, ST6GAL1↓ ST6GAL3↓ [113-117]
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phil lectins mainly include selectins/selectins 
ligands and Siglec-9. L-selectin, expressed on 
leukocytes, binds to CD44v isoforms and medi-
ates tumour cell adhesion to leukocytes. P- 
selectin glycoprotein ligand (PSGL-1), a mucin-
like protein located on the leukocyte surfa- 
ce, serves as the ligand of P-selectin and 

linked N-acetylgalactosamine (GalNAc) termi-
nal residues on CRC cell surfaces [141]. 
Furthermore, galectin-3 participates in DC acti-
vation, contributing to tumour immune escape 
[142]. The cytotoxic potentical of NK cells 
against CRC is regulated by receptors NK group 
2, member D (NKG2D) and NKp30 [143]. 

Figure 2. Aberrant glycosylation patterns in CRC. A. Four types of N-glycans 
frequently altered in CRC are shown as high-mannose, pauci-mannose, 
hybrid-type and β-1,6-branching(poly-)LacNAc core-fucosylation. B. O-glycan 
structures in CRC frequently exhibit the truncated Tn, T and sialylated Tn 
antigen (sTn). C. The Lewis antigens encompass Lewis X/A and Lewis Y/B 
structures. Created with BioRender.com.

E-selectin on ECs [136]. The 
Siglec-9 ligand, Lectin Galac- 
toside-binding Soluble 3 Bin- 
ding Protein (LGALS3BP), may 
exert immunomodulatory effe- 
cts on neutrophils through 
Siglec-9 engagement. Macro- 
phages express various lec-
tins on their surface, including 
C-type lectins such as dectin- 
2, dectin-3, Siglecs (Siglec-1, 
Siglec-7, Siglec-9, Siglec-15) 
and galectins (galectin-3, ga- 
lectin-9). Members of the ga- 
lectin family and dectin-2 can 
bind to glycans on the surface 
of tumour cells or other cells, 
thereby influencing the polar-
ization state and functions of  
macrophages. Once the lec-
tins on the surface of M2-like  
macrophages bind to specific 
glycans, they promote the for-
mation of an immunosuppres-
sive microenvironment [137, 
138]. In addition, Siglecs typi- 
cally transmit signaling throu- 
gh the immunoreceptor tyro-
sine-based inhibition motif 
(ITIM), leading to the TAM phe-
notype polarisation [139]. 
DCs play a crucial role in initi-
ating and mediating immune 
responses. Immature DCs ex- 
press various C-type lectin 
receptors, such as MGL and  
DC-SIGN [140]. DCs interact 
with CRC cells in a DC-SIGN-sp- 
ecific manner by recognizing 
glycan changes, which influ-
ences their antigen-present-
ing function [61, 128]. Concur- 
rently, these glycostructural al- 
terations also serve as specif-
ic recognition markers for 
MGL, enhancing DC-mediated  
tumour antigen uptake by tar-
geting overexpressed α/β-

Figure 3. The diagram of lectin-mediated networks in CRC. Glycan-lectin me-
diated interactions take place between CRC cells and endothelial cells or 
immune cells in TME. The diverse molecular interactions highlight the intri-
cate network that influences the progression and immune response of CRC. 
Created with BioRender.com.
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Table 2. The characteristic and role of C-type lectins in CRC

C-type 
lectin Expression

Recognized  
Carbohydrate 
Motif

Glycosylated  
Ligand Molecular Mechanism Role in CRC Ref.

MGL DCs
Macrophages

Tn-antigen MUC1
MET
PTK7
SORL1
PTPRF
ITGB1
ITGA3

glycosylation pathway
CDX-2 regulation

Immunosuppression
Poor prognosis

[61, 141]

DC-SIGN DCs Lewisa/Lewisb Mac-2BP 
CEA
CEACAM1

Increases PI3K/Akt/β-catenin signaling
Induces
TCF1/LEF1-mediated suppression-of miR-185

Cell invasion
Metastasis

[62, 128, 154]

Dectin-2 Kupffer cell High-mannose  
N-glycan

Mucin
Galectin-3 

Mediates phagocytosis- 
of cancer-cells-by Kupffer cells

Suppression of liver metastasis [155, 156]

MBP CRC cells Lewisa

Lewisb
CD26
CD98hc
CA199

MBL/MASP complement activation pathway Recurrence 
Poor survival

[157-159]

Dectin-1 MDSCs N-glycan Galectin-3 Promotes PGE2 production  
and suppresses IL-22BP

Tumor development [156, 165]

Dectin-3 DCs
Neutrophils
Macrophages

α - mannan TDM
Dectin-2

Promotes Kupffer cells to phagocytize cancer cells Inhibits metastasis [271, 275]

CLEC-2 Activated platelets 
Megakaryocytes

sialylated O-glycans Podoplanin Promotes platelet - tumor cell aggregation Cell motility
Cell invasion

[167]

NKp30 NK cells N-glycan Galectin-3 Modulates-the phenotype-of  
circulating NK- and NKT cells

MDSCs mediated  
immunosuppression

[144]

NKG2D NK cells
T cells

Sialyl LewisX rG7S-MICA
MICB

Activates NK cell cytotoxicity Enhances NK cell sensitivity 
and immunosurveillance

[67, 169]

L-Selectin Leukocytes Sialylated  
carbohydrates

CD44
Podocalyxin-like 
protein

Local induction of endogenous  
ligands via fucosyltransferase-7

Adhesion of cancer cells-to-
vascular endothelium
Angiogenesis
Metastasis

[170, 171,  
175-178, 180]

E-Selectin Endothelial cells Sialyl LewisX

Sialyl Lewisa
LAMP-1
LAMP-2
Mucin-1Podocalyxin- 
like protein
PSGL-1

Activation-of-the p38/Hsp27/actin  
reorganization pathway

Cell motility
Adhesion of cancer cells-to-
vascular endothelium
Angiogenesis
Metastasis

[136, 170-172, 
174, 175, 177, 178, 

181]

P-Selectin Activated platelets
Endothelial cells

Sialyl LewisX

Sialyl Lewisa
CD44
Mucin
PSGL-1

Activation of p38 and PI3K signaling Adhesion of cancer cells-to-
vascular endothelium
Angiogenesis
Metastasis 

[136, 170, 171, 
173, 175, 176, 

178, 179]

Lewisa: Fuc α1-4(Gal β1-3)GlcNAc-R structure. Lewisb: Fucα1-2Galβ1-3(Fucα1-4)GlcNAc structure. LewisX: Gal(β1-4)[Fuc(α1-3)]GlcNAc structure.
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Table 3. The characteristic and role of Siglecs in CRC

Siglec Expression Recognized Carbohydrate Motif Glycosylated 
Ligand Molecular Mechanism Role-in CRC Ref.

Siglec-1
(CD169)

Macrophages α2,3-linked sialic acid CD43 Promote CD8(+)  
T-cell-mediated antitumor immunity 

Antitumor immunity [184]

Siglec-2
(CD22)

Mast cells
B cells

α2,3-linked sialic acid Mucin SHP-1 recruitment
Phosphorylation of ERK-1/2 

Downr-egulates signal transduction [189, 298]

Siglec-5 Mast-cells  
Neutrophils
Eosinophils

α2,3-linked sialic acid LGALS3BP Tumor immune evasion Metastasis [195, 299]

Siglec-7 Mast cells-
Macrophages 
CD8+ T cell

α2,3-linked sialic acid
α2,8-linked disialic acids
Disialyl-Lewisa-Sialyl 6-sulfo Lewisx

GD3-SIA--IgG Exerts-a suppressive effect  
on COX expression 
Suppresses BGN/TLR4/NF-κB pathway

Immunosuppression [115, 139,  
191-194, 300]

Siglec-9 Mast cells
Macrophages
Neutrophils

α2,3-linked sialic acid
α2,6-linked sialic acid
α2,8-linked disialic acids
Disialyl Lewisa 
Sialyl 6-sulfo Lewisx

MUC1
LGALS3BP

Inhibits-neutrophil-mediated tumor 
cell-killing-
Induces-the recruitment-of β-catenin

Cell growth [139, 192, 195, 
 196, 300, 301]

Siglec-10 Mast cells α2,3-linked sialic acid LGALS3BP
CD24

Increases-in KRAS/TP53  
dual-mutant tumors

Immunosuppressive signaling [195, 197, 298]

Siglec-15 Mast cells
Macrophages

α2,3-linked sialic acid
α2,6-linked sialic acid
Sialyl-Tn

PD-L1 Secrets-some inhibitory  
cytokines-N-glycosylation pathway

Inhibits-T-cell-proliferation
Correlates with-the microsatellite  
instability status-Decreases its- 
lysosome-dependent degradation
Metastasis

[185-188]

Lewisa: Fuc α1-4(Gal β1-3)GlcNAc-R structure. LewisX: Gal(β1-4)[Fuc(α1-3)]GlcNAc structure.
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Table 4. The characteristic and role of galectins in CRC

Galectin Expression Recognized  
Carbohydrate Motif Glycosylated Ligand Molecular Mechanism Role in CRC Ref.

Galectin-1 CRC cells β-galactosides CEA
Lamp-1
Lamp-2→
CD44
CD326
90K/Mac-2BP

Recalibrate CD8+ Tregs Immunosuppression 
Lung metastasis

[148, 212,  
218, 223]

Galectin-2 Gastrointestinal epi-
thelial cells

N-acetyl- 
lactosamine 

ASF STAT3 phosphorylation Cell proliferation
Adhesion of cancer cells to 
blood vascular endothelium
Metastasis→

[127, 206]

Galectin-3 CRC cells
Macrophages
DCs
T cells

β-galactoside TF 
LAG3
CEA
Laminin Lysosome-associated 
membrane glycoproteins
Haptoglobin-related glycoprotein

EGFR activation, 
ERK1/2 signaling
STAT3/Galectin-3/
LAG3 pathway 

Adhesion cancer cells to 
endothelium
Cell proliferation

[208, 213, 
214, 219, 
220, 224]

Galectin-4 CRC cells Galβ1→4(3)
GlcNAc 
Fucα1→2Galβ 
1→3(4)-GlcNAc 

CEA
ABM

Downregulation the 
function of Wnt  
signaling pathway

Tumor suppressor
Cell motility
Cell proliferation
Cell migration
Cell cycle

[204, 215]

Galectin-8 Vascular endothelial 
cells
Lymphatic endothelial 
cells

α-galactoside
β-galactoside
α-glucose
lactose residues

LILRB4 STAT3 activation and 
NF-κB inhibition

Cell migration
MDSCs mediated 
immunosuppression 

[205, 209, 
216]

Galectin-9 CRC cells
Macrophages 

β-galactosides CD44
Tim-3
E-selectin

Mature DCs infiltration
T cell immune re-
sponse

Tumor suppressor
Cell proliferation
Cell apoptosis
Inhibits the binding of 
tumor cells to ECM  
components
Metastasis

[207, 221,  
222, 225]

Galectin-12 CRC cells β-galactoside
lactose

SLC3A2 
SLC1A5

Promoter  
hypermethylation

Tumor suppressor [203, 217]
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Table 5. The characteristic and role of other lectins in CRC

Other lectins Expression Recognized Carbohydrate Motif Glycosylated  
Ligand Molecular Mechanism Role-in CRC Ref.

HPA CRC cells O-linked N-acetylgalactosamine
N-acetylglucosamine

Integrin av
Integrin a6
Annexin 2
Annexin 4
Annexin 5
CLCA1

Recognize  
antiapoptotic pathway

Cell migration
Metastasis

[226-228]

ZG16p CRC cells Mannose PD-L1 Promote T-cell  
mediated immunity

Inhibits
Proliferation and cell cycle

[229-231]

PNA Colon epithelial cells
CRC cells

Galactose beta1-3N-acetylgalactosamine alpha CD44 Activate c-Met  
and MAPK

Cell proliferation [232, 233]
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NKG2D activates NK cell-mediated immuno-
surveillance by binding to its ligand, major his-
tocompatibility complex (MHC) class I-related 
chain A (MICA), which is expressed on CRC cells 
[67]. NKp30 specifically interacts with soluble 
galectin-3 present on antitumour T cells [144]. 
MCs predominantly express lectins from the 
Siglecs family, including Siglec-2, Siglec-5, Sig- 
lec-7, Siglec-9 and Siglec-10. Siglecs are a fam-
ily of immunoglobulin-like receptors that bind to 
sialic acids and modulate the immune response 
against cancer cells. In CRC, cancer cells se- 
crete sialylated glycans such as sialyl-Tn and 
sialyl-Lewis X, which serve as “camouflage  
signals” [145]. These glycan signals facilitate 
MCs interaction with cancer cells through 
Siglecs expression. For instance, Siglec-2 binds 
to α2,6-sialic acid, while Siglec-7 binds to α2,8-
sialic acid [146]. Different Siglecs can collab-
oratively recognize distinct glycosyl epitopes. 
Moreover, CRC cells promote the infiltration of 
MCs and establish a multi-layer immune sup-
pression network. Specifically, Siglec-5 and Sig- 
lec-9 inhibit antigen presentation, while Sig- 
lec-7 and Siglec-10 block the cytotoxicity of NK 
cells [147]. Treg cells gain prominence through 
the expression of cell surface markers and 
their immunosuppressive profiles. The galectin 
family significantly influences the functionality 
and distribution of Treg cells. Galectin-1 recog-
nizes the LacNAc structure on the surface of 
Treg cells and selectively expands CD8+CD- 
122+PD-1+ Treg cells, thereby facilitating tu- 
mour immune evasion [148]. Galectin-9 binds 
directly to CD44 situated on the surface of Treg 
cells, forming a complex with TGF-β receptor I 
(TGF-βRI), which activates the Smad3 signaling 
pathway. This interaction markedly enhances 
the stability and functionality of Treg cells. Fur- 
thermore, the galectin-9 signaling pathway reg-
ulates the induction of induced Treg (iTreg) cells 
by specifically targeting the CNS1 region of the 
Foxp3 locus [91, 149]. Consequently, the gly-
can signatures of CRC can be recognized by 
various lectins expressed on stromal cells or 
immune cells within the TME. 

In CRC, a variety of lectins have been charac-
terized, and their potential roles have been 
investigated. The primary glycan-lectin interac-
tions in CRC are outlined as follows.

C-type lectins in colorectal cancer

C-type lectins are a superfamily of proteins that 
contain conserved C-type lectin-like domains 
(CTLDs) that recognize a broad range of carbo-

hydrate motifs. These genes have been subdi-
vided into 17 subgroups based on their phylog-
eny and domain organization [150]. C-type 
lectins act as secreted molecules or transmem-
brane proteins in mammals. They mediate im- 
mune responses and participate in the immune 
escape of pathogens and tumours [151]. In 
CRC, much attention has been given to the ex- 
pression of C-type lectins and their interactions 
with the TME via the glycan-lectin pattern. Type 
II, III, IV and V C-type lectins are known for their 
roles in the stabilization of immune networks in 
CRC.

The type II C-type lectins in CRC are mainly 
MGL, DC-SIGN and dectin-2. MGL on DCs spe-
cifically binds to MUC1 derived from primary 
colon carcinoma via the Tn antigen [61]. N- 
acetylgalactosamine-transferase 3 (GALNT3) 
affects BRAFV600E mutations, resulting in 
aberrant glycosylation and increasing the num-
ber of MGL ligands in CRC [152]. In CRC cell 
lines, HCT116 and HT29 cells are high MGL-
binding cells, and the cell surfaces contain 
MGL ligands, such as MET, PTK7, SORL1, PT- 
PRF, ITGB1, and ITGA3 [141]. N-glycans play a 
major role in MGL binding to CRC cell lines 
[153]. DC-SIGN is restricted to the most potent 
antigen-presenting cells, namely, DCs. DC-SIGN 
promotes CRC cell invasion and metastasis by 
increasing PI3K/Akt/β-catenin signalling and 
inducing TCF1/LEF1-mediated suppression of 
miR-185 [154]. Moreover, DC-SIGN is involved 
in the correlation between DCs and CRC cells in 
situ by recognizing the cancer-related Lea/Leb 
glycans CEA and CEA-related cell adhesion 
molecule 1 (CEACAM1) [128]. The α1-3,4-fu- 
cose moieties of Le glycans expressed on Mac-
2-binding protein (Mac-2BP) are binding sites 
for DC-SIGN recognition [62]. Dectin-2 is ex- 
pressed on Kupffer cells and enhances the 
phagocytosis of cancer cells by Kupffer cells to 
suppress liver metastasis [155]. Furthermore, 
Leclaire et al. reported interactions between 
galectins and C-type lectins in mice. Galectin-3 
can bind to three C-type lectins, namely, mDec-
tin-1, mDectin-2 and SIGNR1. These C-type lec-
tins are decorated with N-glycan structures 
that can be recognized by galectin-3 [156].

Mannose-binding protein (MBP) belongs to the 
type III group of C-type serum lectins. MBP is 
upregulated in CRC patients compared with 
healthy individuals [157]. CD26 and CD98hc 
have been identified as MBP ligands, which in- 
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clude high-mannose-type or hybrid-type oligo-
saccharides [158]. The MBP staining pattern in 
CRC mucosae significantly overlaps with that of 
Lewis b [Fucα1-2Galβ1-3(Fucα1-4)GlcNAc] sta- 
ining and carbohydrate antigen (CA199) Lewis 
b [Fucα1-2Galβ1-3(Fucα1-4)GlcNAc] staining 
[159].

The C-type lectin genes in the NK cell receptor 
gene complex belong to the II and V groups of 
the C-type lectin superfamily [160]. In CRC, the 
main NK cell receptor gene complex includes 
members of the immunoglobulin superfamily, 
such as KIRs (killer-cell immunoglobulin-like 
receptors), which can recognize MHC Class I 
molecules and regulate the activation and inhi-
bition of NK cells [161, 162]; natural cytotoxici-
ty receptors (NCRs), such as NKp30, NKp44, 
and NKp46, which are involved in the direct 
cytotoxic effect of NK cells [162, 163]; and non-
NK cell receptors, such as LOX-1, Dectin-1, 
CD69 and CLEC2, which can recognize a variety 
of stress-induced ligands [164-167]. According 
to research findings, the number of KIR3DL1-
positive NK cells is significantly greater in CRC 
patients than in healthy controls [162]. The 
Dectin-1 signalling pathway might promote the 
development of colorectal tumours by increas-
ing the production of prostaglandin E2 (PG- 
E2) in myeloid-derived suppressor cells (MD- 
SCs) and inhibiting the expression of antitu-
mour IL-22 binding protein (IL-22BP) [165]. In 
contrast, Vδ1 CD69+ tumour-infiltrating lym-
phocytes have strong antitumour effects and 
are related to better clinical outcomes in pa- 
tients, as indicated by fewer liver metastatic 
lesions and longer overall survival [166]. The 
NKp46+ Vδ1 T-cell subset exhibited high antitu-
mour activity against colorectal cancer in the 
human intestine [163]. Furthermore, glycosyl-
ation is an important modification of NK cell 
receptors in the CRC microenvironment. First, 
these glycan-binding proteins can interact with 
the glycosylation structures of NK cell recep-
tors, thereby affecting the function of NK cells. 
For example, the interaction of oat beta-glu-
cans with the Dectin-1 receptor and the pat- 
tern recognition Toll-like receptors impacts the 
apoptosis and autophagy of colonocytes [168]. 
Second, NK cell receptors can recognize cer-
tain glycoproteins that are expressed on CRC 
cells. In primary CRC tissues, high expression 
of the NKp30 ligand galectin-3 correlated with 
low NKp30 expression on circulating natural 
killer T cells [144]. Third, the ligands of the NK 

cell receptor may interact with glycoproteins 
and affect the functions of NK cells in the TME. 
Wang et al. demonstrated that the ligand of the 
NK cell receptor NKG2D immunoligand rG7S-
MICA binds to both CD24 and NKG2D, which 
promoted NK cell sensitivity and NKG2D-me- 
diated immunosurveillance in CRC [67]. Mori- 
moto et al. reported that MUC1-C, a regulator of 
the NKG2D ligand MICA/B, promoted NK cell-
mediated killing [169].

Selectins are Group IV C-type lectin. The selec-
tin family includes L-selectin (leukocyte selec-
tin), E-selectin (endothelial selectin) and P-se- 
lectin (platelet selectin). Studies have shown 
that the expression of selectins is significantly 
increased in CRC tissues and closely related to 
the metastatic and invasive capabilities of 
tumour cells [170-172]. Selectins interact with 
various cellular components in the microenvi-
ronment of CRC, jointly regulating the growth 
and metastatic processes of the tumour [173]. 
Furthermore, selectins may be involved in the 
occurrence and development of CRC via glyco-
sylation. Selectins can recognize many glyco-
proteins or glycans as ligands on colon cancer 
cells [174-179]. The interactions between E- 
selectin and its glycoprotein ligands could be 
conducive to the communication between co- 
lon tumour cells and endothelial cells. Selectin-
binding effects are thought to be associated 
with CRC metastasis and angiogenesis. L- 
selectin facilitates metastasis via leukocyte-
endothelial interactions, which are facilitated 
by FUT-7-mediated ligands [180]. Moreover, con- 
siderable knowledge has been gained regard-
ing the therapeutic implications of targeting 
this cell adhesion system. 5-Substituted UDP-
Gal analogues inhibit the activity of the β-1,4-
galactosyltransferase-1 enzyme toeffectively 
prevent the synthesis of the core 2 structural 
domain of selectin ligands, such as sLex and 
sLea. This process markedly reduces the adhe-
sive interactions between colon cancer cells 
and vascular endothelial cells [170]. NEU4, the 
sole neuraminidase capable of effectively tar-
geting sialyl Lewis ligand mucins, substantially 
reduces the adhesion, migration, and prolifera-
tion of cancer cells bearing sialylated Lewis 
structures to E-selectin [181].

In summary, C-type lectins play pivotal roles in 
CRC progression. The interactions between 
C-type lectins and their ligands are junctions 
that enhance the communication between can-
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cer cells and immune cells. By precisely regu-
lating the aberrant glycosylation process, new 
methods for the treatment of CRC could be 
developed.

Siglecs in colorectal cancer

Sialic acid-binding immunoglobin-like lectins 
(Siglecs) are animal cell surface glycan-binding 
proteins. They either are secreted into the 
extracellular environment or interact with sialic 
acid on glycan structures. In humans, 14 genes 
are expressed on overlapping subsets of im- 
mune system cells, which serve as important 
regulators of inflammatory responses, leuko-
cyte proliferation, and host-microbe interac-
tions [182]. Moreover, single genes are also 
expected to be novel targets for cancer immu-
nity [183].

In CRC, Siglec-1 (CD169) is expressed in macro-
phages in regional lymph nodes and is associ-
ated with overall survival in CRC patients [184]. 
Siglec-15 is closely related to the aggressive-
ness of the tumour poor prognosis, which may 
further promote tumour progression by sup-
pressing the activity of immune cells in CRC 
[185, 186].

Siglecs function as immunomodulatory recep-
tors and play important roles in the regulation 
of immune homeostasis. Siglec-15, which is 
highly structurally homologous to PD-L1, is gly-
cosylated at the N172 residue (N173 in mice). 
Targeting the N-glycosylation of Siglec-15 might 
be a promising target for cancer immunothera-
py [187, 188]. In CRC, glycan-siglec interactions 
may trigger inhibitory signals in immune cells, 
such as macrophages, CD8+ T cells, and MCs. 
The sialyltransferase ST8Sia6, which gener-
ates α2,8-linked disialic acids, binds to murine 
Siglec-E and human Siglec-7 and Siglec-9. 
ST8Sia6 promotes cancer cell growth, and the 
altered polarization of macrophages depends 
on host Siglec-E expression [139]. Most Siglec-
1-positive macrophages in regional lymph no- 
des, which express the Siglec-1 ligand CD43, 
are in direct contact with infiltrating CD8+ T 
cells in CRC tissues [184]. Mucins isolated from 
colon cancer cells can bind to Siglec-2 ex- 
pressed on splenic B cells, thus leading to de- 
creased signal transduction [189]. Siglec-6 
was upregulated on MCs in coculture with colon 
cancer cells, negatively regulated the activa-
tion of MCs and suppressed the degranulation 

of MCs, thus exerting an inhibitory effect on tu- 
mour growth and metastasis. Moreover, ligands 
of Siglec-6 are present in CRC tissues [190]. 
Disialyl Lewisa and sialyl 6-sulfo Lewisx are 
expressed in nonmalignant colonic epithelial 
cells and act as ligands for Siglec-7 and Sig- 
lec-9. The interactions between glycan and sig- 
lec suppress COX expression in colonic mu- 
cosal macrophages [191, 192]. Siglec-7 can 
recognize glycosphingolipid structures and bind 
to the ganglioside GD3 expressed on colon can-
cer cells [193]. Additionally, SIA-IgG, which ex- 
hibits an extremely high degree of sialylation, 
was recently investigated as a ligand of Siglec-7 
in the TME [194]. The interaction of Siglec-7 
with glycans may be mediated by the BGN/
TLR4/NF-κB pathway in the early stage of colon 
cancer carcinogenesis [115]. LGALS3BP, a tu- 
mour-associated immunomodulatory ligand for 
CD33-related Siglecs (Siglec-5, Siglec-9 and 
Siglec-10), inhibits neutrophil-mediated tumour 
cell killing via Siglec-9 engagement [195]. Sig- 
lec-9 also binds to MUC1 expressed on colon 
cancer cells, and the ligation induced the re- 
cruitment of β-catenin, leading to cell growth 
[196]. The protumoural interaction of CD24-
Siglec-10 induces immunosuppressive signal-
ling, which is dramatically increased in KRAS/
TP53 dual-mutant tumours and highly consis-
tent with the poor prognosis of CRC [197].

Overall, Siglecs can function as immunomodu-
latory molecules via glycan-Siglec interactions 
in CRC. These findings shed new light on Siglecs 
as a new generation of immune checkpoints.

Galectins in colorectal cancer

Galectins, a superfamily of lectins that recog-
nize β-galactosides, participate in the regula-
tion of cellular biological processes by binding 
to glycan structures through their CRDs. Ga- 
lectins are located in the nucleus, cytoplasm, 
and extracellular space. Twelve galectin mem-
bers are expressed in humans, including galec-
tin-1, galectin-2, galectin-7, galectin-10, galec-
tin-13, galectin-14, and galectin-16 (prototypic), 
galectin-3 (chimeric type), galectin-4, galectin- 
8, galectin-9, and galectin-12 (tandem repeats). 
Galectins are generally recognized as crucial 
regulators of innate and adaptive immune res- 
ponses [198], inflammation [199], and autoim-
mune diseases [200]. Moreover, increasing da- 
ta are available concerning the role of galectins 
in cancer progression, especially in CRC [201-
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203]. Galectins participate in many steps of 
cancer development by recruiting immune 
cells, such as neutrophils, monocytes, and lym-
phocytes, to inflammatory sites. Notably, both 
tumour cell- and stromal cell-derived galec- 
tin-1 affect the immunosuppressive capacity of 
CD8+ Tregs in CRC [148]. Galectin-2, galec-
tin-3, galectin-4, and galectin-8 are significant-
ly upregulated in colon cancer patients com-
pared with healthy individuals and promote 
cancer cell adhesion to the blood vascular 
endothelium [127, 204-206]. Galectin-8 is an 
important component of the angiogenesis net-
work [205]. Galectin-9 expression is correlated 
with mature DC infiltration and the CD8+ T-cell 
immune response in CRC [207].

In recent years, galectins have been shown to 
engage many glycan determinants to affect 
various processes of CRC. β-Galactosides pro-
duced by papaya chelate-soluble pectin bind to 
galectin-3, which suppresses the proliferation 
of colon cancer cells [208]. Galectin-8 was do- 
wnregulated in vivo compared with in vitro hu- 
man colon cancer models, and this feature was 
not only specific to galectin-8 but also occurred 
with α- and β-galactoside, α-glucose, and lac-
tose residues [209]. Glycosyltransferases, 
such as β-1,3-N-acetylglucosaminyltransfera 
se (β3GnT8) and β1,3-galactosyltransferase 
(C1GalT1), also play key roles in the glycan-
galectin axis. β3GnT8 indirectly promotes the 
invasiveness of colon cancer cells by increas-
ing the expression of galectin-3 [210]. Sup- 
pression of C1GalT1 expression not only led to 
substantial changes in the glycosylation of 
galectin-3 ligands but also decreased galectin-
3-mediated tumour cell-cell interactions and 
activities in CRC [126]. Galectin-1 and β1,6-N-
acetylglucosaminyltransferase V (GnTV) may 
have coordinated effects on CRC progression 
[211].

Furthermore, evidence suggests that galectins 
recognize many glycoproteins in CRC. Circula- 
ting galectin-1 and its ligand 90K/Mac-2BP are 
related to tumour stage in patients with CRC 
[212]. CEA, laminin and lysosome-associated 
membrane glycoproteins act as ligands for ga- 
lectin-3 in human colon carcinoma KM12 cells 
[213]. The levels of the circulating ligand galec-
tin-3 haptoglobin-related glycoprotein were sig-
nificantly elevated in patients with colon cancer 

[214]. Galectin-4 bound to CEA on the cell sur-
face of human colon adenocarcinoma CCK-81 
and LS174T cells [215]. Galectin-8, an LILRB4 
ligand, induces MDSCs by activating STAT3 and 
inhibiting NF-κB [216]. ISLC3A2 and SLC1A5 
interact in the glycosylation-dependent binding 
of galectin-12 in CRC [217]. Galectins and their 
glycoproteins act as physiological modulators 
of cell adhesion. CEA, lamp-1, and lamp-2 have 
emerged as endogenous galectin-1 ligands and 
have been shown to be crucial for colon cancer 
cell adhesion and metastasis [218]. Terminal 
Thomsen-Friedenreich (TF) disaccharides on 
cancer-associated MUC1 are involved in galec-
tin-2-, galectin-3- and galectin-4-mediated can-
cer cell adhesion to the endothelium. The 
TF-expressing glycoprotein asialofetuin (ASF)  
is the strongest ligand for galectin-2, whereas 
asialo bovine mucin (ABM) is the strongest 
ligand for galectin-4 [127]. The interaction be- 
tween galectin-3 and TF promotes colon can-
cer cell adhesion to the endothelium, facilitates 
EGFR activation, and induces ERK1/2 signal-
ling in colon cancer [219, 220]. Galectin-9 can 
interact with CD44 on the surface of Colon26 
colon cancer cells and lead to the suppression 
of tumour cell adhesion to the vascular endo-
thelium and ECM [221]. Galectin-9 isoforms 
modulate the adhesion of colon cancer cells to 
human umbilical vein endothelial cells by influ-
encing the expression of E-selectin [222]. 
Galectins have also been implicated in the sup-
pression of T-cell-mediated immune respons-
es. Inhibiting the interactions between galec-
tin-1 and its ligands CD44 and CD-326 reduces 
cell adherence, increases T-cell responses and 
suppresses murine lung metastasis [223]. APS 
promotes CD8+ T-cell function and inhibits CRC 
development via the STAT3/galectin-3/LAG3 
pathway [224]. The interaction between galec-
tin-9 derived from colon cancer cells and TIM-3 
on CD8+ T cells increases the apoptosis of tu- 
mour-infiltrating TIM-3+CD8+ T cells in a CT26 
mouse colon tumour model [225].

In conclusion, galectin-glycan interactions have 
emerged as reliable predictors of cell adhesion, 
cell proliferation, cell invasion, metastasis and 
the regulation of T-cell responses in CRC. These 
findings will contribute to the design of novel 
therapeutic strategies aimed at regulating their 
function via immunotherapeutic treatment in 
CRC.
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Other lectins in colorectal cancer

Lectin from Roman snail Helix pomatia aggluti-
nin (HPA) recognizes O-linked glycan structures 
and has been shown to be related to metastat-
ic breast cancer [226]. Recent studies have 
demonstrated its utility in identifying other met-
astatic solid tumours, such as CRC, gastric can-
cer. In CRC, HPA exhibits minimal binding to 
nonmetastatic SW480 cell but shows con-
versely intense binding to metastatic HT29 cell. 
Proteome analysis reveals HPA recognizes met-
astatic CRC cells membrane proteins, such as 
integrin av/a6 and annexin A2/A4 [227]. Fur- 
thermore, pooled proteins from metastatic CRC 
tissues are fractionated using HPA affinity chro-
matography and identify O-linked glycoproteins 
annexin 5 and calcium activated chloride chan-
nel protein 1(CLCA1) [228]. Zymogen granule 
protein 16 (ZG16), a soluble lectin highly ex- 
pressed in mucus-secreting cells, binds to 
mannose [229]. Overexpression of ZG16 inter-
acts with Caco-2 cell surface and inhibits cell 
proliferation via Asp151 [230]. ZG16 promotes 
T-cell mediated immunity and may directly  
bind to glycosylated PD-L1 via its lectin domain 
[231]. Plant lectin peanut agglutinin lectin 
(PNA) is a galactose-binding lectin and overex-
pressed by ~90% cancers in human. PNA exhib-
its mitogenic activity in colon epithelial cellls 
and CRC cells [232]. It binds to the TF antigen 
and the interaction stimulates CRC cells prolif-
eration by activating c-Met and MAPK signaling 
pathways [233]. Overall, it is outlined the criti-
cal relationship between non-typical lectins, 
such as PNA and aberrant glycan expression 
profiles in CRC. These data highlight that these 
lectins can modulate glycan profiles and con-
tribute to CRC progression. Overall, the pro-
cesses of glycan-lectin interactions are com-
plex and multifaceted, playing pivotal roles in 
the development and progression of various 
cancers. These interactions can promote tu- 
mour growth, immune evasion, and metasta-
sis. Multiple types of cancer cells exhibit differ-
ent glycan profiles on their surfaces, which is a 
feature related to malignancy. Glycan-lectin in- 
teractions are observed not only in CRC, but 
also in other cancer types, including breast 
cancer [199, 234-251], ovarian cancer [146, 
242, 252-262], and glioblastoma [22, 199, 
263-269]. In Table 6, we will highlight the differ-
ent aspects of glycan-lectin interactions in vari-
ous cancer types compared to CRC, focusing 
on expression, regulation, target glycan/ligand, 
and effect.

The glycan-lectin interactions in intestinal 
microbiota-inflammation-colorectal cancer 
axis

In human bodies, the intestinal environment 
provides a shelter for a large number of micro-
organisms. Once the balance in the crosstalk 
between the host and gut micobiota is disrupt-
ed and affects the function of intestinal barrier, 
it will lead to inflammatory diseases and CRC. 
Pathogenic bacteria reach intestinal epithelial 
cells and they adhere to the abundant layers in 
the intestinal epithelial cells via glycan-lectin 
interactions [270]. Then, intestinal epithelial 
cells glycosylation promotes malignant trans- 
formation.

C-type lectins, as a subset of pattern recogni-
tion receptors (PRRs), contribute to the patho-
genesis of intestinal inflammation, thereby be- 
coming a significant risk factor for CRC. These 
lectins function as a critical link between micro-
biota, intestinal epithelial barrier, and immune 
system [271]. Specifically, C-type lectins play a 
key role in mediating immunity against fungal 
pathogens in the gut microbiota by binding to 
glycans expressed on the surface of pathogen-
ic fungi cell wall in the gastrointestinal tract 
[272]. For example, myeloid DCs can recognize 
β-1, 3-glucan from Aspergillus fumigatus via 
dectin-1 [273]. Dectin-3, which is expressed on 
macrophages, recognizes α-mannan from Can- 
dida albicans and plays an important role 
involved in the pathogenesis of colitis [274].

Moreover, fungal dysbiosis and its associated 
immune responses may play a significant role 
in CRC pathogenesis. The mycobiota/dectin-3/
IL-22 axis is involved in the progression of coli-
tis-associated colon cancer (CAC) progression. 
Compared to wild type mice, dectin-3-deficient 
mice display significantly more severe colitis, 
more tumour lesions and increase IL-22 expres-
sion [275]. In the immune response induced by 
dectin-1 and dectin-2, caspase recruitment do- 
main 9 (CARD9) acts as a central adaptor for 
signal transduction [276]. These C-type lectins 
are coupled with Syk kinase and activate the 
NF-κB pathway via CARD9. The Syk-CARD9  
signaling pathway plays a protective role in  
the interaction between fungal microbiota and  
CAC [277]. CARD9-deficient mice exhibit an 
increased incidence of CAC, attributed to the 
differentiation of myeloid cells into myeloid-de- 
rived suppressor cells, accompanied with in- 
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creased Candida tropicalis [278]. Therefore, 
the glycan-lectin interactions appear to be  
crucial in the molecular mechanism underly- 
ing intestinal microbiota-inflammation-colorec-
tal cancer axis.

The glycan-lectin axis in colorectal cancer im-
munotherapy

Tumour growth is followed by tumour cell eva-
sion of the immune system. Aberrant tumour 
glycosylation has not only been investigated in 
relation to tumour growth and metastasis but 
also enables tumour cells to escape immuno-
surveillance mechanisms via glycan-lectin in- 
teractions [279]. Our understanding of the ro- 
les of glycan-lectin interactions in immunity has 
expanded substantially to include the regula-
tion of every stage of immune responses in the 
TME.

Microsatellite instability (MSI) is a molecular 
phenotype resulting from mismatch repair defi-
ciency (dMMR). In CRC, dMMR/MSI is observed 
in about 5% of metastatic CRC and considered 
as an essential biomarker for the efficacy of 
immune checkpoint inhibitors. Therefore, gly-
can-lectin interactions may be correlated with 
dMMR/MSI status in CRC. Specifically, Tn anti-
gen on CRC cells interacts with MGL on anti-
gen-presenting cells, leading to an immune 
inhibitory signaling through IL-10 production 
and affecting T cell apoptosis. Clinical trials 
have shown that tumours exhibiting Tn-nega- 
tive/weak are predominantly mismatch repair 
proficient (pMMR). And dMMR colorectal can-
cers are divided into Tn-strong dMMR (40%) 
and Tn-negative/weak dMMR tumours (60%). 
Patients with Tn-strong dMMR CRC may benefit 
significantly from immune checkpoint inhibitors 
targeting Tn antigen [280]. Galectin-9 levels are 
upregulated in dMMR tumours and the right 
colon, which is strongly related to immune cell 
infiltration and immunomodulators. Additionally, 
higher densities of CD208+ DCs are more fre-
quently observed in dMMR tumours compar- 
ed to pMMR tumours [207]. C-type lectin-like 
receptor 2 (CLEC-2) belongs to the C-type lectin 
superfamily. The expression of CLEC-2 is signi 
ficantly higher among CRC patients with MSI 
status. The mechanism by which CLEC-2 con-
tributes to MSI CRC may be correlated with 
platelet activation. While, CLEC-2 and its ligand 
podoplanin may co-activate platelets, thereby 
promoting thrombosis and metastasis CRC 

[167]. Peanut agglutinin is a galactose-binding 
lectin and binds to the TF antigen. TF antigen is 
indicated as a biomarker of better prognosis in 
MSI CRCs [281]. Thus, glycan-lectin interac-
tions are likely to be pronounced in dMMR & 
MSI compared to lower CRC.

Currently, emerging research has explored how 
glycan-lectin modifies immunity and is consid-
ered a novel immune checkpoint for cancer. 
Below, we discuss how glycan-lectin interac-
tions can be utilized for CRC therapy (Figures 4, 
5).

Removal of branched N-glycans

The aberrant expression of N-glycans is corre-
lated with a protumoural role in immune eva-
sion. N-glycan expression hinders the immune 
recognition of tumour cells. Glycan-targeting 
strategies serve as efficient methods for en- 
hancing the antitumour immune response. The 
removal of N-glycans contributes to accelerat-
ing immune recognition and improving cancer 
immunotherapy. Madureira et al. reported that 
the N-glycan biosynthesis inhibitors swainso-
nine and tunicamycin induced anticancer activ-
ity and appeared to be a potential therapeutic 
tool for CRC treatment [282]. Owing to the 
immunosuppressive activity of Siglec-15, re- 
moval of N-glycosylation with PNGase-F (PNG-
F) facilitated the detection of Sigle15, which 
bound to the sugar recognition domain of 
Siglec-15, blocked its binding to sugar mole-
cules on the surface of tumour cells, released 
the inhibitory signals of immune cells, and led 
to an effective antitumour response [187]. Re- 
moving branching N-glycosylation on CRC can-
cer cells via kifunensine (KF) exposes the rele-
vant glycoepitopes and promotes immune rec-
ognition by DC-SIGN-expressing immune cells 
[283]. These data confirm that the removal of a 
“glycan mask” may be a tool for immune diag-
nostic purposes.

Cellular immunotherapy

Recent research has demonstrated that spe-
cific surface molecules on CAR-T cells under- 
go glycosylation modifications. These glycosyl-
ation modifications can influence the interac-
tions between CAR-T cells and lectins on tu- 
mour cell surfaces. For instance, alterations in 
the glycan structures on CAR-T cells may affect 
their binding affinity to lectins within the TME, 
thereby affecting the infiltration, activation, and 
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Table 6. The list of lectins along with their sugar specificity in different cancer types versus CRC

Lectin Cancer Expression
Regula-

tion (up: ↑; 
down: ↓)

Target Glycan/Ligand Effect Ref.

MGL Colorectal cancer DCs
Macrophages

↑ Tn antigen
MUC1, MET
PTK7, SORL1
PTPRF, ITGB1
ITGA3

Immunosuppression [61, 141]

Breast cancer DCs
Macrophages

↓ Sialyl-Tn antigen
MUC1

Antiproliferative [234, 235]

Ovarian cancer DCs
Macrophages

↑ Tn antigen
MUC1, MUC16
MUC24, ERP44

Enhances metastasis [252-254]

Glioblastoma DC and cDC2 
Macrophages 
CD163+ cells  
Activated 
MG

↑ Sialyl-Tn antigen
CD45RA, VCAN
SDC3, PODXL NID-2, FN1, DAG1, APP, AGRN, ERP44, 
LAMP1/2, QSOX1, SEL1L,  
LRR8CD
MUC1, MUC16
MUC24

Promotes invasion
Immunosuppression

[199, 263-265]

Siglec-9 Colorectal cancer Mast cells
Macrophages
NK cells
Neutrophils

↑ α2,3-linked sialic acid
α2,6-linked sialic acid
α2,8-linked disialic acids
Disialyl Lewisa 
Sialyl 6-sulfo Lewisx

MUC1
LGALS3BP

Proliferation [139, 192, 195, 
196, 300, 301]

Breast cancer MacrophagesMyeloid cells ↑ (triple - 
negative)

↓ (estrogen 
receptor - 
positive)

Sialic acid
MUC1-ST

Enhances immune evasion
Immunosuppression

[236-241]

Ovarian cancer Leukocytes
NK cells
T cells

↑ Sialic acid
MUC16

Inhibits antitumour [255]

Glioblastoma NK cells 
DCs 
T cells 
Neutrophils 
Macrophages 
Monocytes

↑ α-(2-3)-Sialic acid 
α-(2-6)-Sialic acid 
α-(2-8)-Sialic acid
Glycophorin 
Hyaluronic acid 
MUC1/5

Immunosuppression [22, 266]
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Galectin-1 Colorectal cancer CRC cells ↑ β-galactosides 
CEA
Lamp-1
Lamp-2
CD44
CD326
90K/Mac-2BP

Immunosuppression [148, 212, 218, 
223]

Breast cancer Macrophages
T cells

↑ β-galactosides
Selectin
FOXP3
α-2-macroglobulin, Haptoglobin

Immunosuppression [199, 242-246]

Ovarian cancer Ovarian cancer cells ↑ β-galactosides
MUC16

Enhances tumour progression
Immunosuppression

[242, 256-260]

Glioblastoma Endothelial cells 
Astrocytes 
APCs 
Treg

↑ Lactose 
poly-N-acetyllactosamine
CD3, CD4, CD7, CD43, CD45, CD69

Activates tumour progression 
Angiogenesis 

[22, 267]

Galectin-3 Colorectal cancer CRC cells
Macrophages
DCs
T cells

↑ β-galactosides
TF 
LAG3
CEA
Laminin Lysosome-associated membrane glycoproteins
Haptoglobin-related glycoprotein

Promotes tumour immune 
escape

[208, 213, 214, 
219, 220, 224]

Breast cancer Breast cancer cells 
Macrophages

↑ β-galactosides
GPVI
AnxA2

Enhances tumour  
progression

[247-250]

Ovarian cancer Ovarian cancer cells ↑ β-galactosides
GPVI

Immunosuppression [146, 261]

Glioblastoma ECs
Activated microglia 
Activated astrocytes 
Myeloid cells
Fibroblasts

↑ Lactose 
Acetyllactosamine
Laminin, Vitronectin, Collagen I/IV, MCAM
TCR complex, CD7, CD29, CD45, CD71, LFA-1, TLR-4, 
LAG-3, CTLA-4
VEGF-R2

Proliferation [22, 268]

Galectin-9 Colorectal cancer CRC cells
Macrophages 

↓ β-galactosides
TIM-3
PD-1
CD44
DR3

Enhances antitumour [207, 221,  
222, 225]

Breast cancer Breast cancer cells ↑ β-galactosides
TIM-3

Promotes tumour immune 
escape

[251]

Ovarian cancer Ovarian cancer cells ↓ β-galactosides
TIM-3

Antiproliferative
Induces apoptosis 

[255, 262]

Glioblastoma Activated astrocytes 
Microglia 
ECs

↑ Lactose 
N-acetyllactosamine 
Forssman pentasaccharide 
TIM3, DECTIN-1, CD44, VISTA, CD274, PD-L1, IDO1, LAG3
β3-interini 
Glut-2

Enhances immune response [22, 269]

Lewisa: Fuc α1-4(Gal β1-3)GlcNAc-R structure. LewisX: Gal(β1-4)[Fuc(α1-3)]GlcNAc structure.
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Figure 4. The glycan-lectin axis in CRC immunotherapy via N-glycan removal and cellular immunotherapy. A. Removal 
N-glycan of Siglec-15 by PNGase-F contributes to an effective antitumour response. B. Removing N-glycosylation via 
KF facilitates immune recognition by DC-SIGN-expressing immune cells. C. The NKG2D-DAP12 complex recognizes 
the ligand on CRC cells, activates NK cells and promotes the antitumour process.

Figure 5. The glycan-lectin axis in CRC immunotherapy via blocking tumour-associated glycan-lectin interactions. A, 
B. NEU4 and hsa-miR-370 inhibit the attachment of sLea and sLex to E-selectin. C. C-3-substituted N,N0-diacetyl-
lactosamine glycomimetics hinder the binding of cancer cells and epithelial cells via galectin-3-ASF interaction. D. 
Galectosyl prevents the growth and metastasis of CRC cells by inhibiting galectin-3. E. Anti-galectin-9 leads to an 
increased frequency of CD8 T cells and Treg cells. F. TDG or G1KD blocks the binding of galectin-1 with CD44 and 
CD306, increases the expression of CD4+ and CD8+ cells and prevents CRC lung metastasis. 

cytotoxicity of CAR-T cells on tumour cells [284, 
285]. Simultaneously, the glycan-lectin interac-

tions on tumour cells may also interfere with 
the recognition of tumour cells by CAR-T cells. 
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For example, when certain lectins bind to the 
glycans on tumour cells, they can mask tumour 
antigens, hindering CAR-T cells recognition. It is 
shown that optimizing the glycosylation pat-
terns on CAR-T cells to facilitate their interac-
tion with the lectins on tumour cells holds 
promise for improving the efficacy of CAR-T cell 
therapy in CRC treatment [284, 286, 287]. 
Hence, understanding glycan-lectin interac-
tions provides valuable insights into the mech-
anisms and therapeutic potential of CAR‑T cell 
therapy in CRC. 

To improve the efficiency of NK cell therapy in 
cancer, chimeric antigen receptors (CARs) have 
been introduced to modify immune cells via 
gene transfer. NKG2D is an activating immuno-
receptor and plays an antitumour role in CRC. 
NKG2D ligands are typically expressed on tu- 
mour cells or stressed cells and are absent in 
healthy tissues, suggesting that they are prom-
ising CAR candidates. Xiao et al. constructed a 
CAR that contained the extracellular domain of 
NKG2D with the cytoplasmic domain of DAP12. 
The CAR identified NKG2D ligands on cancer 
cells and activated NK cells, thus boosting the 
antitumour immunity of the cells [143]. Zarein 
et al. combined a second-generation NKG2D-
CAR construct with lenalidomide, resulting in 
high potential for removing CRC cells in vitro 
[288]. Indeed, a number of clinical trials that 
are based on NKG2D CAR-T cells are under- 
way [289]. Therefore, NKG2D CAR therapy has 
shown excellent antitumour effects and repre-
sents a rapidly growing area of tumour ther- 
apy.

Blocking tumour-associated glycan-lectin 
interactions

Strategies that prevent the interaction between 
lectins and glycans with inhibitory immune 
receptors may be considered therapeutic inter-
ventions for cancer. A broad spectrum of inhibi-
tors, such as glycosidases, metabolic mimetics 
and blocking antibodies specific for lectin 
receptors or for glycans, have been generated. 
The suppressive effect of these inhibitors is 
due to inhibited endothelial cell adhesion, pro-
moted T-cell-mediated antitumour responses, 
and enhanced NK cell activity. NEU4 is a unique 
sialidase, and its validated substrates are sLea 
and sLex. NEU4 can downregulate tumour cell 
surface sLea and sLex and inhibit the attach-
ment of these glycans to the endothelium via 

E-selectin [181]. Hsa-miR-370 blocks selectin-
induced cell adhesion by inhibiting the expres-
sion of the sLea and sLex gene, providing a new 
approach for colorectal cancer treatment [290].

In addition, galectin inhibitors include small-
molecule carbohydrate inhibitors, natural poly-
saccharides and their derivatives, peptides, 
peptidomimetics, and biological agents. These 
inhibitors affect the CRD of galectin via com-
petitive or allosteric inhibition to block the bind-
ing of galectin to glycans [291-294]. For exam-
ple, C-3-substituted N,N0-diacetyllactosamine 
glycomimetics inhibit galectin-3 binding to their 
glycoprotein ligand ASF on DLD-1 cells [295]. 
Galectosyl, a main component of modified cit-
rus pectin, significantly inhibits the growth and 
metastasis of colon cancer cells in nude mice 
by inhibiting the activity of galectin-3 [296]. 
Anti-galectin-9 therapy selectively increases in- 
tratumoral TIM-3+ cytotoxic CD8+ T cells and 
Treg cells [297]. Synthetic disaccharide thiodi-
galactoside (TDG) or shRNA galectin-1 knock-
down (G1KD) might block galectin-1 binding to 
CD44 and CD326, upregulate the expression of 
CD4+ and CD8+ cells and reduce murine colon 
cancer lung metastasis [223].

Thus, the data imply that glycan-lectin interac-
tions are immune checkpoints, and these inter-
actions may result in the design of improved 
immunotherapies for antitumour treatment.

Conclusions

In summary, characterizing changes in the TME 
and glycan components in CRC may help eluci-
date the mechanisms of tumour progression. 
Exploring the relationship between tumour cells 
and the immune system is crucial for identify-
ing novel therapeutic strategies in CRC. Accord- 
ingly, several inhibitory glycan-lectin interac-
tions have emerged and are considered im- 
mune checkpoints for tumour immunotherapy. 
More investigations and experiments are need-
ed to explore new strategies that target glycan-
lectin interactions, which are significantly ben-
eficial for patients who do not respond to cur-
rent immunotherapy regimens.
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ctor Beta; TIM-3, T-Cell Immunoglobulin and 
Mucin Domain 3; TLR2, Toll-Like Receptor 2; 
TME, Tumour Microenvironment; TNM, Tumour 
Node Metastasis; Tregs, Regulatory T Cells; 
TRIB8, Tribbles Pseudokinase 3; TRAIL, Tumour 
Necrosis Factor-Related Apoptosis-Inducing 
Ligand; TRAIL-R2, Tumour Necrosis Factor-Re- 
lated Apoptosis-Inducing Ligand Receptor 2; 
TIGIT, T Cell Immunoreceptor with Ig and ITIM 
Domains; VEGF, Vascular Endothelial Growth 
Factor; VEGFA, Vascular Endothelial Growth 
Factor A; YAS, Yes1 Associated Transcriptional 
Regulator; ZG16, Zymogen Granule Protein 16.
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