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Abstract: The human microbiome plays a pivotal role in host health and disease, with emerging evidence underscor-
ing its significant influence on the development and progression of breast cancer. Studies have revealed that dysbio-
sis in both the gut and breast tissue microbiota is strongly associated with an elevated risk of breast cancer. Distinct 
microbial profiles have been identified among healthy individuals, patients with benign breast conditions, and those 
with malignant tumors, with further variations observed across different ethnic groups and breast cancer subtypes. 
The complex interplay between breast cancer risk factors and microbial populations, coupled with the direct impact 
of microbial communities and their metabolites on inflammatory pathways and immune responses, underscores 
the importance of this field. Additionally, the interaction between gut microbiota and therapeutic modalities such 
as chemotherapy and radiotherapy is of particular interest, as these interactions can significantly influence treat-
ment outcomes, either enhancing or diminishing efficacy. This review explores the effects of the Mediterranean diet, 
probiotics, prebiotics, and natural medicinal products on gut microbiota, emphasizing their potential as innovative 
therapeutic strategies. Notably, the use of engineered probiotics within the tumor microenvironment represents a 
promising frontier in breast cancer treatment. In conclusion, research on the human microbiome not only deepens 
our understanding of breast cancer pathogenesis but also lays the groundwork for the development of novel and 
targeted therapeutic interventions.
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Introduction

In 2020, breast cancer surpassed lung cancer 
as the most commonly diagnosed cancer world-
wide, with approximately 2.3 million new cases, 
accounting for 11.7% of all cancer cases. It is 
also the fifth leading cause of cancer-related 
deaths globally, resulting in approximately 
685,000 deaths (6.9%). Among women, breast 
cancer represents one-quarter of all cancer 
cases and one-sixth of cancer-related deaths, 
making it the second leading cause of cancer 
mortality in females. Globally, the age-stan-
dardized incidence rate of breast cancer is 
approximately 48/100,000, with significantly 
higher rates observed in economically devel-
oped countries compared to other regions [1]. 
Risk factors for breast cancer can be broadly 
categorized into reproductive and non-repro-
ductive factors. Reproductive factors encom-

pass the age at menarche, age at menopause, 
age at first childbirth, and number of childbir- 
ths. Non-reproductive factors include lifestyle 
elements such as obesity, alcohol consump-
tion, and smoking, etc. [2-4]. Moreover, about 
5-10% of breast cancer patients harbor heredi-
tary genetic mutations, such as BRCA1, BRCA2, 
TP53, PTEN, and PALB2, etc. [5]. With the con-
tinuous advancement in diagnostic and thera-
peutic approaches, significant progress has 
been made in the fields of endocrine therapy 
and radio chemotherapy, leading to greatly 
improved cure rates and survival rates for 
breast cancer. However, given the vast patient 
population, we still need to seek more effective 
strategies to control the occurrence and pro-
gression of breast cancer.

The origin of microorganisms and cancer can 
be traced back to more than 4,000 years ago 
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[6]. Although the number of microorganisms 
known to have carcinogenic potential is limit- 
ed, their intricate connections with cancer risk 
factors are complex. An increasing body of 
research posits that bacteria, viruses, and 
fungi are key participants in cancer treatment. 
Recent studies suggest that the microbiome 
may be involved in the development of host 
breast cancer and may influence the response 
to cancer treatment and the efficacy of radio 
chemotherapy through chronic inflammation 
and immune responses [7-10].

The purpose of this review is to explore the 
mechanisms of host-microbiome interactions 
by summarizing existing research findings, 
thereby revealing the key role of the gut micro-
biota in the development and metastasis of 
breast cancer. In this article, we also discuss 
the dual nature of the microbiome and metabo-
lites in chemotherapy and radiotherapy and 
outline the currently known methods that are 
beneficial for cancer treatment. We hope that 
these findings can provide new perspectives 
and breakthroughs to address the current bot-
tlenecks in breast cancer treatment.

Microbiota is always present

The origins of microorganisms date back to 3.5 
billion years ago, long before the emergence of 
humanity. Since Antonie van Leeuwenhoek first 
observed bacteria through a microscope, and 
Louis Pasteur coined the term “microbe”, the 
study of microorganisms by humans has been 
relentless and has deepened with technologi-
cal advancements. Humans share a close sym-
biotic relationship with microorganisms, with 
more than 90% of our cells hosting them; bac-
teria and fungi are found throughout our skin, 
oral cavity, intestines, and other areas. These 
microorganisms aid in the digestion of food  
and the synthesis of essential nutrients in our 
intestines, establishing a mutually beneficial 
relationship with our body’s organs, thereby 
impacting both physical and mental health. 
However, despite the many benefits that micro-
organisms offer to the environment, a minority 
of pathogens, such as bacteria, fungi, para-
sites, and viruses, can lead to disease. Among 
carcinogenic microorganisms, viruses are par-
ticularly notorious; for instance, Human Pa- 
pillomavirus (HPV) can cause cervical cancer, 
hepatitis viruses can lead to liver cell cancer, 

and HIV can result in various types of cancer.  
In recent years, researchers have discovered 
an increasing number of bacteria that are as- 
sociated with the occurrence of tumors [11], 
such as Helicobacter pylori with gastric cancer, 
Salmonella typhi with gallbladder cancer, and 
Fusobacterium nucleatum with Bacteroides 
fragilis (ETBF) with colorectal cancer [12, 13]. 
These bacteria primarily exist within cells, in- 
cluding cancer cells and immune cells tumors 
[14], and bacterial DNA, RNA, and lipopolysac-
charides have been found in many human solid 
tumors [11].

In humans, the gut microbiota has the most 
microorganisms and the largest number of spe-
cies [15] compared to the rest of the body. The 
formation and reproduction of the gut microbi-
ome begins at birth, and changes in its compo-
sition depend primarily on a variety of genetic, 
nutrient, and environmental factors. Changes 
in gut microbiota composition and function  
can alter intestinal permeability, digestion and 
metabolism, and immune response. Pro-in- 
flammatory states caused by alternating bal-
ance of gut microbiota lead to the onset of 
many diseases, from gastrointestinal and met-
abolic diseases to immune and neuropsychiat-
ric disorders [16], to tumorigenesis, which can 
be said to be involved in most disease process-
es in humans. Therefore, the exploration of the 
gut microbiome may be a key to solving human 
life science problems.

Gut microbiota in breast tumors

Breast cancer is the second most common can-
cer in the world and the most common malig-
nancy in women [17]. Breast tumors have a 
richer and more diverse microbiome than all 
other tumor types. The bacterial load and ab- 
undance in breast tumor samples was higher 
than in normal breast samples from healthy 
subjects. In contrast, the normal breast tissue 
adjacent to the tumor has intermediate bacte-
rial load and abundance, between the breast 
tumor and normal samples [11].

Health and malignancy, health and survivors, 
benign and malignant

Healthy VS Cancer patients. Highly represen- 
tative populations in gut microbiota include 
Firmicutes, Bacteroides, Actinomycetes, and 
Proteus. Breast cancer patients have relative 
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abundance of Bacillus and Staphylococcus 
(Firmicutes) and Enterobacteriaceae (Proteus 
phylum) [18]. Among these, Escherichia coli 
and Staphylococcus can induce DNA double-
strand breaks and promote chromosomal in- 
stability. Both mechanisms are closely linked  
to initiation and progression of cancer. In con-
trast, Micrococcus, a dominant microbial gen- 
us in the gut of healthy individuals, lacks such 
cancer-promoting capabilities. An unhealthy 
gut microbiome is prevalent in breast cancer 
patients, and in an analysis of 162 pre-opera-
tive faecal samples, delay in diagnosis was sig-
nificantly associated with reduced α-diversity, 
variations in β-diversity, increased abundance 
of Enorma massiliensis species, and reduced 
abundance of E. polymorphis faecalis [19].

Healthy individuals exhibited considerably high-
er abundance of Lactobacillus, Thermal anaer-
obic bacilli, Candida, Cygnus, Anaerobic bacil-
lus, Leuconostoc lactis, Lactococcus, Bacillus 
earthiformis and Methylbacterium compared  
to cancer patients containing large amounts  
of bacillus thermobacillus, Escherichia coli, 
Bacillus cereus and Shewanella. The normal 
tissues around tumors also exhibit similar 
microbiomes as tumorous tissue, with a signifi-
cant difference compared with the healthy con-
trols. In addition, it has been shown that histo-
logical grade of BC influences the microbial 
profile of tumors. As the tumor grade increases, 
the constituent abundance of the bacteria 
decreased [20]. Interestingly, using the same 
approach, Urbaniak C et al. did an analysis of 
different stages of tumour and degree of infil-
tration and found no significant differences in 
microbiome profiles by stage [18]. Based on 
studies of healthy populations versus patients 
with breast cancer and benign versus malig-
nant breast cancers, we are more inclined to 
believe that the abundance of the microbiota is 
different for different grades of breast cancer, 
and that as the grading increases, the abun-
dance decreases. The different results may be 
due to the fact that the microbiota is currently 
less measurable or less abundant and cannot 
be fully detected at the time of testing. Explor- 
ing more sensitive methods of measuring bac-
terial abundance may provide more definitive 
conclusions about the relationship between 
grade and changes in microbiota abundance.

Healthy VS Survivors. Neisseria, Ruminococci, 
Lachnospiraceae, Faecalibacterium prausnit-

zii, Dolosigranulum pigrum, Corynbacterium 
durum, Mycobacterium kansasii, Clostridium 
baratii, and Rothia mucilaginosa are mainly 
found only in survivors, while other bacteria 
such as Lactobacillus salivarius are abundant 
in healthy women [21]. In the gut microbial pop-
ulations associated with survivors, the abun-
dance of β-glucuronidase is significantly elevat-
ed. This enzyme modulates the bioavailability 
of estrogen, potentially contributing to the in- 
itiation and progression of breast cancer [22]. 
Compared to breast cancer survivors, the 
healthy control group had a higher proportion 
of Firmicutes and Bacteroides, and the ratio of 
Firmicutes/Bacteroides seems to be a risk fac-
tor for breast cancer [23]. Futhermore, com-
pared with non-pathological complete response 
(non-PCR), PCR in patients with triple negative 
breast cancer who received neoadjuvant che-
motherapy has more abundant α-diversity [24].

Malignant VS Benign patients. There is a signifi-
cant difference in the composition of the micro-
biota between breast tissue from invasive can-
cer and benign disease [25]. Malignant breast 
tissue is rich in Lactobacillus, Hydrogenophaga, 
Gluconacterobacter, Atopobium and Fusobac- 
terium, while the abundance of MGS-260, Por- 
phyromonas macacae, Staphylococcus epider-
mis, Prevotella timonensis, Clostridium sp  
ASF 356 and Atopobium vaginae is lower com-
pared to benign disease [21]. Fusobacterium 
has been implicated in the development of  
various cancers, potentially through the secre-
tion of virulence factors that induce a pro-
tumorigenic and pro-inflammatory microenvi-
ronment. Additionally, Fusobacterium may 
contribute to cancer progression by engaging  
in multiple methionine-dependent metabolic 
pathways. Compared with benign breast can-
cer patients, malignant tumors have a higher 
ratio of Firmicutes to Bacteroides. This seems 
to contradict the higher proportion of Firmi- 
cutes and Bacteroides in the healthy control 
group previously obtained. We consider wheth-
er it is related to other factors such as the age 
and weight of the sample.

Different subtypes of breast cancer

According to the immunohistochemical classi- 
fication of hormone receptor status in cancer-
ous breast cells, there are 4 categories of 
breast cancer: endocrine receptor-positive (es- 
trogen or progesterone receptors) (abbreviated 
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as BRER), human epidermal growth factor re- 
ceptor 2-positive (HER2) (abbreviated BRHR), 
triple-positive (positive for estrogen, progester-
one, and HER2 receptors) (abbreviated as 
BRTP), and triple-negative (lack of estrogen, 
progesterone, and HER2 receptors) (abbreviat-
ed as BRTN). These four types have specific 
prognosis and response to treatment. Endo- 
crine therapy is effective against BRER, BRTP 
but not BRHR, BRTN, so BRER, BRTP shows a 
better prognosis, while BRHR, BRTN is more 
aggressive and has a poor prognosis [26]. 
BRTN is found in 15-20% of breast cancer 
patients, is non-responsive to treatment, highly 
angiogenic, proliferative, and has the lowest 
survival rate. It is the most aggressive type of 
all breast cancers [17].

Sagarika Banerjee and colleagues used 
genome-wide and transcriptome amplifica- 
tion and pan-pathogen microarray (PathoChip) 
strategies to summarize the microbial cha- 
racteristics of different breast cancer types, 
revealing significant and decisive differences 
between the four breast cancer types. BRHR 
has the simplest microbial characteristics, 
while BRTP has the most complex microbial 
characteristics. Based on the status of estro-
gen receptors, BRER and BRTP with positive 
receptors have higher intestinal bacterial abun-
dance. As previously reported, the main bacte-
rial population in the cancer samples were 
Proteus species, followed by Firmicutes spe-
cies. Brevibacterium and Monera are abun- 
dant in all subtypes. Bacterial characteristics  
of Actinomyces and Bartonella have been 
detected in all four cancer types, the hybridiza-
tion signal intensity of Actinomyces in BRTN 
samples is significantly lower and the highest  
in BRHR, while the hybridization signal intensity 
of Bartonella in BRER samples is significantly 
lower. BRTN had the highest lactobacillus ac- 
tivity among all types, the breast carcinogene-
sis genes phospholipase A2, histone cluster 2, 
Crk-like, and cyclin D1, were significantly posi-
tive associated with the activity of Lactobacill- 
us. In addition to bacteria, the presence and 
abundance of viruses, fungi, and parasites in 
breast cancer samples have also been 
observed, but the current research focuses on 
bacterial pathogens, so the impact of other 
microorganisms is still poorly understood. 
Fungi, in particular, can interact with bacteria 
through both physical and biochemical mecha-

nisms [27]. Research by Narunsky-Haziza L et 
al. found that 96.5% of significant fungal- 
bacterial symbioses in breast cancer were  
positive, with Aspergillus and Malassezia being 
the center of inter-domain symbiosis [28]. 
Therefore, research on microorganisms such 
as fungi is also essential as they may be able to 
uncover new treatments and targets.

Racial disparities

According to statistics, black women have a 
lower lifetime risk of breast cancer than white 
or Asian women, yet they have the highest 
death rates. By performing genome and me- 
tagenomic analysis, Parida and others found 
that ethnic differences exist in both the im- 
mune microenvironment and the microbiota. 
Compared with white women, black women 
have higher activated dendritic cells (aDCs), B 
cells, epithelial cells, megakaryocytic-erythroid 
progenitors (MEPs), and lower endothelial cells, 
hematopoietic stem cells (HSCs), and smooth 
muscle cells. There is no clear difference be- 
tween Asian women and black or white counter-
parts. Similarly, the α-diversity of Asian women 
was not significantly different from that of black 
and white women. In contrast, there were sig-
nificant differences in both microbial α-diversity 
and β-diversity between blacks and whites. In 
this study, Pseudomonas and Methylobacter  
et al. were identified as biomarkers for breast 
tumors in Asian women, while Genus Amy- 
colatopsis and Anaerovorax were identified as 
biomarkers for breast tumors in black women, 
white women were not mentioned [29]. Pseu- 
domonas aeruginosa-mannose-sensitive hem-
agglutinin (PA-MSHA) exhibits significant anti-
proliferative effects on breast cancer cells and 
has been validated in clinical trials for breast 
cancer treatment. Furthermore, anaerobic bac-
teria may promote the initiation and progres-
sion of breast cancer by metabolizing putres-
cine into metabolites such as acetate, butyrate, 
hydrogen molecules, and ammonia.

Gut microbiota associated with risk factors

According to List of breast cancer risk factors 
as indicated by Cancer Research UK (January 
2020), there are 25 factors that can influence 
the risk of developing breast cancer and they 
are either beneficial or harmful. Some of the 
more influential or well-known factors are age 
at menarche, menopausal status, unmarried 
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and infertile or having children at a later age, 
obesity, drinking and smoking.

There was no significant difference in the rela-
tive abundance of species in the gut microbiota 
of premenopausal breast cancer patients and 
premenopausal controls. In contrast, the rela-
tive abundance of 45 species differed sig- 
nificantly between postmenopausal patients 
and postmenopausal controls: postmenopaus-
al patients were enriched for 38 species, in- 
cluding Escherichia coli, Klebsiella, Prevotella, 
Enterococcus gallinarum, and Actinobacteria, 
and seven species were less abundant in the 
postmenopausal period. Characterization of 
macrogenomic function showed that the intes-
tinal macrogenomes of postmenopausal breast 
cancer patients were enriched in lipopolysac-
charide biosynthesis, iron complex transport 
system, PTS system, secretion system, and 
β-oxidation encoding genes [30]. And the mi- 
crobiota composition of postmenopausal bre- 
ast cancer patients had higher β-diversity and 
lower α-diversity compared to premenopausal 
patients [31]. Thus, it is evident that microbi-
ome changes in breast cancer patients occur 
mainly in the postmenopausal period and that 
the microbiome genes enriched in the post-
menopausal period encode substances in- 
volved in multiple pathways that accelerate 
tumor progression.

The established literature identifies obesity  
as an important factor in the development of 
breast tumors, and a meta-analysis has shown 
that if women exercise regularly, their risk of 
breast cancer can be significantly reduced by 
approximately 25% [32]. The gut microbiota of 
obese patients has been found to be different 
from that of normal-weight populations. Mörkl 
et al. performed a 16S rRNA gene analysis of 
fecal DNA from normal-weight, overweight, and 
obese populations, as well as athletes, respec-
tively, and demonstrated that obese subjects 
had exceptionally low α-diversity when com-
pared to normal-weight subjects, while ath- 
letes exhibited the highest α-diversity [33]. 
α-diversity appears to be associated with a 
lower incidence rate and a higher survival peri-
od of breast cancer. Wiley Barton et al. also 
compared the microbiomes of athletes with 
those of sedentary healthy individuals at the 
metabolic level, with a relative increase in met-
abolic pathways (e.g., amino acid and antibiotic 

biosynthesis and carbohydrate metabolism) 
and fecal metabolites (e.g., microbially-pro-
duced short-chain fatty acid (SCFA) acetate, 
propionate, and butyrate) in the athletes and  
a significant difference in fecal microbiota  
differed significantly, with greater separation 
ratios at the macrogenomic and metabolomic 
levels [34]. The study by Wiley Barton et al. also 
showed that the microbiomes of different typ- 
es of athletes are different. In addition, a meta-
study showed that beta-glucuronidase was 
positively correlated with body mass index and 
total fat mass, and that beta-glucuronidase 
could increase circulating estrogen. Increased 
physical activity not only eliminates the risk of 
obesity for breast cancer, but also increases 
the diversity of the gut microbiome as well as 
improves metabolic levels, keeping the body in 
a healthier state.

There are many other factors that are also 
strongly associated with breast cancer, alcohol 
has been shown to increase the relative abun-
dance of Aspergillus, Enterobacter, and Stre- 
ptococcus and decrease the abundance of 
Anaplasma and E. faecalis [35]. The effects of 
smoking on the gut microbiome are multifa- 
ceted; on the one hand, tobacco contains a 
variety of potential pathogens such as Fuso- 
bacterium, Bacillus, Burkholderia, Clostridium, 
Klebsiella and Pseudomonas aeruginosa, who 
not only cause a wide range of diseases but 
also disrupt normal microbiota homeostasis 
[36]; on the other hand, the immunosuppres-
sive substances contained in tobacco lead to 
an inhibition of the bacterial defense system is 
impaired, thus causing dysbiosis [37, 38]. Mice 
with vitamin D receptor (VDR) deficiency are 
more susceptible to breast cancer because 
VDR deficiency changes the microbiota profile 
from normal to oncogenic, disrupting intestinal 
permeability, causing inflammation, and ecto-
pic bacteria [39]. Chronic diarrhea or constipa-
tion is positively associated with the risk of 
death from breast cancer [40] (Figure 1).

Regardless of the risk factors, their impact on 
the gut microbiome is not monolithic, so explor-
ing treatments for breast cancer through a par-
ticular microorganism or class of microorgan-
isms as an entry point is unrealistic, and 
searching for mechanisms of action between 
risk factors, the gut microbiome, and breast 
cancer from the macrogenome, the transcrip-
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Figure 1. The impact of breast cancer-related risk factors on the gut microbiota (By Figdraw). Menopause, smoking, 
alcohol consumption, obesity, and vitamin D receptor (VDR) deficiency contribute to an increase in the abundance 
of harmful bacteria and a reduction in α-diversity, shifting the microbial profile from a normal to an oncogenic state 
and influencing the initiation and progression of breast cancer.

tome, and the clinical outcomes is the key to 
solving the problem.

β-glucuronidase and estrogen metabolism

In the liver, estrogens and their metabolites  
are bound either by glucuronidation or by sulfo-
nation to permit excretion through bile, urine, 
and feces [41, 42]. Hepatic-bound estrogens 
excreted in the bile can be deconjugated by 
bacterial species with β-glucuronidase (BGUS) 
activity in the gut and thus reabsorbed into  
the circulation [43-45]. A variety of bacterial 
β-glucuronidase genes have been described in 
the human gut microbiota, most notably the 
Bacteroidetes and Firmicutes [45]. Fecal BGUS 
functional activity correlates directly with uri-
nary estrogen and negatively with fecal total 
estrogen [46]. In addition, it is known that the 
activity of this enzyme can be modulated by 
diet and bacterial environment. Studies have 
shown that healthy individuals consuming high-
fat and/or protein-rich diets exhibit increased 
fecal BGUS activity. In contrast, high-fiber diets 
significantly decreased BGUS activity [47-49]. 

Fat- and protein-rich diets stimulate symbiotic 
bacteria to metabolize bile acids to deoxycholic 
acid and lithocholic acid, which favors the 
growth of Clostridium nucleatum, Aspergillus 
phylum, Escherichia coli, Enterobacteriaceae, 
Citrobacter, and Klebsiella, whose dominance 
leads to the production of BGUS, which in turn 
leads to a significant increase in β-glucuroni- 
dase activity, resulting in estrogenic disorders. 
Studies have shown that the activity of 
β-glucuronidase is significantly elevated in  
both the gut and tumor microenvironment of 
breast cancer patients, which is associat- 
ed with tumor aggressiveness and poor prog-
nosis. Additionally, β-glucuronidase may indi-
rectly promote the progression of breast can-
cer by modulating local inflammatory respons- 
es and the tumor microenvironment [50]. We 
believe that β-glucuronidase is a potential tar-
get for drug therapy, and it has been demon-
strated that β-glucuronidase inhibitors inhibit 
the enzyme activity in gastrointestinal tumors, 
while attenuating the side effects of cancer 
drugs without affecting the metabolism kinet-
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ics of the drugs [10]. Modulating probiotic lev-
els to inhibit the reactivation of estrogen-relat-
ed proteins has also demonstrated potential in 
reducing the risk of breast cancer [51]. Althou- 
gh the role of the microbiota in the pathophysi-
ological mechanisms linking β-glucuronidase 
and breast cancer has not yet been fully eluci-
dated, its significant contribution to these pro-
cesses has been widely recognized. Future 
research should further explore and validate 
the development of β-glucuronidase inhibitors, 
as well as probiotic modulation strategies 
based on individual microbiota differences.

Metabolism of the gut microbiota in breast 
cancer

Nejman et al. showed that the most significant 
enrichment pathways in bacteria within ER + 
breast tumors are arsenate detoxification and 
mycothiol biosynthesis [11]. Arsenic, a class 1 
carcinogen associated with lung, liver, bladder 
cancers, and others [52, 53], activates estro-
gen receptors, promotes the proliferation of 
estrogen-dependent breast cancer cells and 
increases the expression of estrogen-regulated 
genes. Additionally, arsenic may induce muta-
tions that impair DNA repair, thereby elevating 
breast cancer risk [54]. Although the role of 
enzyme thiols in cancer remains unclear, myco-
bacteria utilize mycothiols to detoxify reactive 
oxygen species [55]. These findings suggest a 
functional link between intratumoral bacteria 
and their tumor microenvironment. The gut 
microbiota influences tumor progression by 
modulating the production of metabolites with 
either carcinogenic or anticarcinogenic proper-
ties. For instance, cadaverine (CAD), produced 
through lysine decarboxylation by the enzyme 
lysine decarboxylase (LDC), reverses endotheli-
al-to-mesenchymal transition, inhibits cell mo- 
tility and invasion, and reduces stem cell-like 
properties by decreasing mitochondrial oxida-
tion [56]. Notably, genes associated with CAD 
and LDC are downregulated in early-stage 
breast cancer compared to healthy individuals, 
suggesting their potential role in regulating 
breast carcinogenesis. Lithocholic acid (LCA), 
another key metabolite, induces oxidative st- 
ress and reverses lipid metabolism, there- 
by slowing breast cancer cell proliferation.  
LCA activates the G-protein-coupled receptor 
(TGR5) and the constitutive androstane recep-
tor (CAR), leading to decreased expression of 

nuclear factor-2 (NRF2) and increased ex- 
pression of Kelch-like ECH-binding protein 1 
(KEAP1). This imbalance reduces the expres-
sion of the antioxidant enzyme glutathione per-
oxidase 3 (GPX3) and increases inducible nitric 
oxide synthase (iNOS) expression, resulting in 
elevated lipid and protein oxidation and exert-
ing a cytostatic effect [57]. Reduced serum  
LCA levels and a lower ratio of deoxycholic  
acid to LCA in early-stage breast cancer 
patients further support the role of LCA in 
tumor suppression [58].

Indolepropionic acid (IPA), a bacterial trypto-
phan metabolite, has been found to be inhibit-
ed in synthesis in early-stage breast cancer, 
especially at stage 0. Increased IPA levels 
reduce cancer stem cell populations, inhibit 
cancer cell proliferation and metastasis, and 
enhance antitumor immune responses by sup-
pressing epithelial-to-mesenchymal transition 
and inducing oxidative and nitrosative stress 
[59]. Succinic acid, which accumulates ab- 
normally in various cancers, reduces global 
5-hydroxymethylcytosine (5hmC) levels and 
represses the transcription of epithelial-mes-
enchymal transition (EMT)-associated genes, 
promoting a mesenchymal phenotype and can-
cer stemness [60]. Additionally, succinic acid 
stabilizes the transcription factor HIF1α and 
reprograms cellular metabolism toward gly- 
colysis [61]. In triple-negative breast cancer 
(TNBC), Wang et al. identified that the metabo-
lite trimethylamine N-oxide (TMAO), derived 
from Clostridium spp., is significantly enriched 
in the immunomodulatory subtype (IM). Pa- 
tients with higher TMAO levels exhibit better 
responses to immunotherapy, as TMAO acti-
vates the endoplasmic reticulum stress kinase 
PERK, inducing tumor cell pyroptosis and 
enhancing CD8+ T cell-mediated immune 
responses [62] (Figure 2). 

Evidently, even if certain microorganisms do 
not come into direct contact with breast cancer 
cells, their metabolites can influence cancer 
development through various pathways. The 
important role of microbial metabolites in the 
process of tumorigenesis and development 
was revealed. Overall, the microbiota-metabo-
lite-therapeutic axis would be a promising ther-
apeutic strategy, and the possibilities of micro-
biota metabolism deserve further exploration.
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Figure 2. The regulatory network of gut microbiota and metabolism on tumor microenvironment and cancer cell be-
havior (By Figdraw). Cadaverine (CAD) inhibits tumor cell invasion and stem cell-like properties; indolepropionic acid 
(IPA) reduces cancer stem cells and enhances anti-tumor immunity; succinic acid promotes a mesenchymal pheno-
type and metabolic reprogramming; and trimethylamine N-oxide (TMAO) enhances the efficacy of immunotherapy; 
pathogenic microbe-associated molecular patterns (PAMPs) stimulate immune cells to produce pro-inflammatory 
cytokines, including IL-6, IL-12, and TNF-α.

Inflammatory and immune responses

One of the mechanisms by which gut bacteria 
promote BC is through chronic inflammation, 
which is associated with tumor development 
[63]. On the one hand, certain species of micro-
organisms digest nutrients such as cellulose, 
which the body is unable to digest and assimi-
late, into short-chain fatty acids, which have 
anti-inflammatory and immunomodulatory ef- 
fect [64, 65]. On the other hand, the lipopoly-
saccharide and endotoxin of microorganisms 
can also react with the body to cause inflam- 
mation and immune response. When “leaky 
gut” occurs, the bacteria or metabolites associ-
ated with the bacteria travel with the blood-
stream to all tissues of the body, causing a sys-
temic reaction [66, 67]. Intestinal bacteria can 
upregulate Toll-like receptors (TLR) along with 
activation of NF-kB, which leads to the release 
of IL-6, IL-12, IL-17, and IL-18 as well as Tumor 

Necrosis Factor alpha (TNF-α), triggering an 
inflammatory mechanism in the tumor microen-
vironment [68-70]. It has been shown that  
symbiotic bacteria accelerate toll-like recep-
tor-5 (TLR-5)-dependent malignant progression 
in IL-6-responsive tumors [71]. Systemic inter-
actions between gut microbes, interleukin-6 
(IL-6), and neutrophils have been reported in 
breast cancer patients. IL-6 can also drive 
inflammation by promoting insulin resistance 
and metabolic dysregulation [72]. In addition, 
IL-6 was positively correlated with the abun-
dance of Lactobacillus species and the abun-
dance of E. faecalis was negatively correlated 
with IL-6 levels [73].

Studies in early breast cancer have shown that 
the ratio of neutrophils to lymphocytes is posi-
tively correlated with the risk of breast can- 
cer recurrence and the risk of death [74, 75]. 
Cytotoxic T-lymphocytes (CD8+ T) are consid-
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ered to be the most effective immune cells for 
tumor eradication [76], and a significant reduc-
tion in the proportion of Sphingomonas sphae- 
ricus in the inflammatory process prevents the 
differentiation and functioning of CD8+ T cells 
[77, 78]. It is clear that neutrophils and lympho-
cytes are affected by the host microbiota and 
inflammation. Similarly, TLRs are able to acti-
vate pro-inflammatory cytokines produced by 
innate response cells by recognizing patho- 
genic microbe-associated molecular patterns 
(PAMPs), such as bacterial lipopolysaccharide 
(LPS), flagellin, lipoic acid, and peptidoglycan. 
Chronic activation of TLRs promotes tumor cell 
proliferation, invasion, and migration through 
the modulation of cytokines, metalloproteinas-
es, and pro-inflammatory integrins [79]. Rather, 
Bifidobacterium bifidum upregulates immuno-
regulatory galactoglucan lectin-1 in Th2 and 
Th17 cells, providing a functional link between 
beneficial microbes and immunoregulation 
early in life [80].

Therefore, there are clear indications that the 
human microbiota is involved in the regulation 
of chronic inflammation and the host immune 
system during breast cancer development, and 
that they can be both anti-inflammatory and 
pro-inflammatory, and can inhibit as well as 
augment the immune response, and that better 
utilization of this feature of the microbiota to 
exploit its strengths and avoid its weaknesses 
will lead to great breakthroughs in the treat-
ment of breast cancer.

Chemotherapy and radiotherapy

Intratumoral and gut microbiota have been 
shown to modulate the efficacy of chemothera-
peutic agents through diverse mechanisms, 
thereby influencing therapeutic outcomes in 
breast cancer. Cyclophosphamide, a widely 
used chemotherapeutic agent for breast can-
cer, primarily exerts its anti-tumor effects by 
activating immune responses and modulating 
Th1 and Th17 cells [81, 82]. However, antibiotic 
use can lead to resistance by impairing Th1  
and Th17 responses. Interestingly, supplemen-
tation with Enterococcus and Barnesiella can 
restore cyclophosphamide’s anti-tumor effi- 
cacy by stimulating tumor-specific CD8+ and 
CD4+ T cells, as well as Th1 and Th17 cells 
[83]. Notably, cyclophosphamide administra-
tion reduces the abundance of Thickettsia, 
Lactobacillales, and Enterococcaceae species 

[83], underscoring the importance of timely 
supplementation with beneficial bacteria like 
Enterococcus during chemotherapy. Additi- 
onally, ectopic bacteria, particularly Gram-
positive species, can migrate from the gut to 
lymphoid organs, inducing Th17 cell production 
and enhancing anti-tumor immune responses 
[83].

The enrichment of Clostridium nucleatum and 
other bacterial species has been observed in 
the feces of patients resistant to 5-fluorouracil 
chemotherapy, with higher C. nucleatum abun-
dance correlating with poorer clinical outcomes 
in colorectal cancer [84-86]. Adriamycin, anoth-
er chemotherapeutic agent used in breast can-
cer, is limited by its toxic side effects. However, 
gut Streptomyces species can inactivate ad- 
riamycin into a non-toxic form [87], offering a 
potential strategy to protect normal tissues 
during treatment. Recent studies using 16S 
rRNA sequencing in breast tumor tissues from 
patients undergoing neoadjuvant chemothera-
py revealed that chemotherapy significantly 
increased Pseudomonas aeruginosa levels. 
Treatment with P. aeruginosa-conditioned me- 
dium enhanced the chemotherapeutic effects 
on breast cancer cells [88]. Conversely, in 
patients resistant to paclitaxel-based neoadju-
vant chemotherapy, tumors harbored entero-
toxin-producing Bacteroides fragilis (ETBF). 
Despite its low biomass, ETBF secretes the 
toxin BFT-1, which binds to NOD1, activates  
the NOTCH1-HEY1 signaling pathway, and pro-
motes stemness and chemoresistance in bre- 
ast cancer stem cells (BCSCs) [89]. These find-
ings highlight the potential of targeting the 
microbiota to mitigate chemoresistance and 
optimize therapeutic outcomes.

Radiotherapy, a cornerstone of cancer treat-
ment, exerts its effects by directly damaging 
tumor DNA and inducing reactive oxygen spe-
cies (ROS)-dependent DNA damage. However, 
its efficacy varies among individuals, and em- 
erging evidence suggests that the microbiota 
plays a critical role in modulating radiotherapy 
outcomes. Although research on the microbio-
ta-radiotherapy relationship is less extensive 
than that on chemotherapy, significant prog-
ress has been made. Radiotherapy disrupts the 
gut microbiota, leading to dysbiosis, which in 
turn diminishes treatment efficacy and ex- 
acerbates gastrointestinal toxicity [90, 91].  
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For instance, Kim et al. observed that radiation 
treatment in mice significantly altered micro- 
biome composition, increasing Alistipes and 
Corynebacterium while reducing Mucispirillum 
spp. [92]. Shiao et al. demonstrated the oppos-
ing roles of commensal bacteria and fungi in 
radiotherapy. Antibiotic treatment in mice with 
breast cancer cells (E0771) impaired radiother-
apy efficacy and promoted fungal overgrowth, 
whereas antifungal treatment enhanced radio-
therapy outcomes, delayed tumor growth, and 
improved survival [93].

A major side effect of chemotherapy and radio-
therapy is mucositis, which compromises tre- 
atment efficacy and increases morbidity and 
mortality. The gut microbiota plays a pivotal 
role in regulating mucositis severity through 
mechanisms involving inflammation, oxidative 
stress, and intestinal barrier integrity [94]. 
Beneficial bacteria such as Mucinobacteria, 
Bacteroides fragilis, Bifidobacterium spp., 
Corynebacterium, and E. faecalis have been 
shown to mitigate chronic inflammatory diseas-
es. In murine models of mucositis, elevated 
pro-inflammatory cytokines were associated 
with a reduced Firmicutes/Bacteroides ratio 
[95]. Radiotherapy-induced changes in gut 
microbiota composition have been linked to 
gastrointestinal toxicity. Patients with radiation-
induced diarrhea exhibited reduced microbial 
diversity compared to those without diarrhea 
[96, 97]. Furthermore, pre-chemotherapy gut 
microbiota diversity was inversely correlated 
with the risk of severe hematological toxicity 
and neutropenia. Specific microbial taxa, such 
as Synergistetes and Paenibacillales, were 
associated with increased or decreased risks 
of severe neutropenia [98].

In conclusion, the microbiota plays a dual role 
in modulating the efficacy and toxicity of che-
motherapy and radiotherapy in breast cancer. A 
deeper understanding of microbiota functions 
and their interactions with cancer therapies is 
essential for developing complementary treat-
ments that mitigate adverse effects, improve 
patient quality of life, and enhance cure rates. 
Future research should focus on identifying 
promising microbial targets and optimizing 
microbiota-based interventions to maximize 
therapeutic benefits.

Treatments related to the gut microbiota

Mediterranean diet

In January 2020, U.S. News & World Report, 
the authoritative ranking organization in the 
U.S., released the new issue of the national  
diet ranking list, in which the “Mediterranean 
Diet” won the first place in the best diet rank-
ing. The “Mediterranean Diet”, named after 
some countries around the Mediterranean Sea 
in Spain, Italy, France and Greece, is a healthy, 
light, simple and nutritious style of eating, 
which is known as a diet rather than a struc-
tured diet. It is characterized first and foremo- 
st by an adequate intake of fruits, vegetables 
and whole grains, and the diet will also include 
legumes, nuts, skim milk, olive oil and some 
fish, as well as small amounts of red meat, salt 
and carbohydrates. The Mediterranean diet 
has been shown to play a role in delaying and 
controlling cardiovascular and metabolic dis-
eases, as well as certain cancers.

Adherence to the Mediterranean diet has been 
consistently associated with a reduced inci-
dence of all breast cancer subtypes and a low- 
er risk of breast cancer recurrence [99-101].  
In contrast, findings from a Spanish cohort 
study indicate that a predominantly Western 
dietary pattern is positively correlated with an 
elevated risk of breast cancer [102]. Com- 
parative studies in non-human primates have 
shown that monkeys consuming a Mediter- 
ranean diet exhibit significantly greater gut 
microbiota diversity, characterized by higher 
abundances of Lactobacillus, Clostridium, E. 
faecalis, and Helicobacter spp., and lower 
abundances of Ruminococcus and E. faecalis 
spp. compared to those on a Western diet 
[103]. These results suggest that long-term 
adherence to a Mediterranean diet can pro-
foundly reshape the gut microbiome. Moreover, 
monkeys fed a Mediterranean diet displayed 
increased levels of bile acid metabolites and 
enhanced bacterial metabolism of bioactive 
compounds in their mammary glands [104], 
pointing to a potential connection between 
dietary patterns and the breast tissue microen-
vironment. Analysis of samples from women 
who adhered to the Mediterranean diet for 
three months revealed elevated fecal concen-
trations of short-chain fatty acids (SCFAs), par-
ticularly propionate and butyrate, which play a 



Interactions between breast cancer and the microbiota

1394	 Am J Cancer Res 2025;15(4):1384-1409

crucial role in maintaining intestinal barrier 
integrity [105]. Notably, butyrate has been 
demonstrated to slow or inhibit tumorigenesis 
[106], underscoring the potential of dietary 
interventions in modulating cancer risk. 
Collectively, these findings suggest that diet 
can exert a direct influence on microbiota at 
distal sites, including the breast. Furthermore, 
the combination of probiotics with the 
Mediterranean diet significantly enhanced 
microbial biodiversity and reduced the 
Bacteroides/Firmicutes ratio compared to the 
Mediterranean diet alone [107], highlighting 
the synergistic benefits of integrating dietary 
and probiotic strategies.

Probiotics

Probiotics, defined as live microorganisms that 
confer health benefits to the host by colonizing 
the body, modulating mucosal and systemic 
immune responses, or regulating gut flora bal-
ance, have shown promising potential in breast 
cancer research. At the preclinical level, stud-
ies in animal models have demonstrated that 
administration of Lactobacillus species in bre- 
ast cancer-implanted mice leads to increased 
serum and mammary cell levels of IL-10 and 
IL-12, reduced IL-6 cytokine levels, and sup-
pressed tumor growth rates [108, 109]. 
Notably, regular Lactobacillus supplementa- 
tion prior to tumor transplantation significantly 
improved overall survival in mice, suggest- 
ing its role in enhancing immune responses 
and potentially augmenting anti-tumor activity 
[110]. Specific strains, such as Lactobacillus 
faecalis, have been shown to inhibit breast 
tumor growth and metastasis by suppressing 
the IL-6/JAK/STAT3 signaling cascade, althou- 
gh its relative abundance is significantly 
reduced in breast cancer patients [111]. Other 
probiotics, including Enterococcus faecalis  
and Staphylococcus mansoni, exhibit anti-can-
cer properties by reducing cell proliferation, 
inducing apoptosis, and arresting the cell cycle 
at the G0/G1 phase in breast cancer cells 
[112].

Among the most extensively studied probiotics, 
Lactobacillus rhamnosus GG (LGG) is renown- 
ed for its anti-inflammatory properties, which 
include downregulating pro-inflammatory fac-
tors such as CXCL-2, IL-6, and IL-8 [113, 114]. 
In murine models, LGG administration mitigat-
ed 5-FU chemotherapy-induced intestinal epi-

thelial damage and inflammation, preserved 
intestinal barrier integrity, and maintained 
microbiota homeostasis [115]. Additionally, 
Saccharomyces boulardii, a probiotic yeast 
used in food and pharmaceutical industries, 
has demonstrated anti-cancer potential by  
promoting apoptosis in breast cancer cells 
through inhibition of survivin gene expression 
in the MCF-7 cell line [116]. Despite these 
promising findings, clinical evidence remains 
limited. A Japanese study reported that regular 
consumption of Lactobacillus casei Hakuta 
and soy isoflavones from puberty was associ-
ated with a reduced risk of breast cancer in 
Japanese women, highlighting its chemopre-
ventive potential [117]. However, only two regis-
tered clinical trials are currently ongoing, under-
scoring the need for further research to 
elucidate the role of probiotics in breast cancer 
prevention and control.

Probiotics have also been explored as adjunc- 
ts to chemotherapy. For instance, Lactobacillus 
acidophilus combined with cisplatin enhanced 
the expression of IFN-γ, GZMB, and PRF1, 
resulting in reduced tumor size and improved 
survival in mouse models [118]. Similarly, the 
combination of Lactobacillus casei CRL431 
with capecitabine reduced chemotherapy-in- 
duced side effects, such as intestinal mucositis 
and mortality, while maintaining the anti-can-
cer and anti-metastatic efficacy of capecitabine 
[119]. Furthermore, the gut microbiome has 
been shown to influence the toxicity and effica-
cy of chemotherapeutic agents [120]. A recent 
randomized trial demonstrated that probiotics 
containing Bifidobacterium, Lactobacillus, and 
Enterococcus faecalis significantly reduced 
chemotherapy-associated cognitive deficits in 
women undergoing adjuvant chemotherapy 
[121]. Emerging evidence also suggests that 
the gut microbiota modulates the response to 
immune checkpoint inhibitors, such as CTLA4 
and PD-L1/PD-1 [122]. For example, mice har-
boring specific microbiota (e.g., Akkermansia 
and Bifidobacterium bifidum) exhibited enhan- 
ced responses to anti-PD-L1 therapy, while 
patients with Bifidobacterium anisopliae sh- 
owed reduced susceptibility to immune check-
point inhibitor-induced colitis [123]. These find-
ings suggest that microbiota modulation may 
enhance the efficacy of both chemotherapy 
and immunotherapy in breast cancer treat- 
ment.
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Despite these potential benefits, the use of 
probiotics is not without risks. In severely 
immunocompromised individuals or patients 
with multiple organ failure, probiotics may 
increase the risk of bacterial translocation 
[124]. Additionally, a study on triple-negative 
breast cancer revealed that antimicrobial drug 
use negatively impacts survival outcomes 
[125]. The effects of different probiotic strains 
and dosages on breast cancer treatment effi-
cacy remain poorly understood, and the poten-
tial side effects of probiotics are often over-
looked. Future preclinical and clinical studies 
are needed to address these gaps. Never- 
theless, the current evidence suggests that  
the benefits of probiotic therapy may outweigh 
the associated risks, highlighting its potential 
as a complementary strategy in breast cancer 
management.

Probiotics and symbiotics

Prebiotics are defined as “substrates that are 
selectively utilized by host microorganisms to 
confer health benefits”. Common prebiotics 
include fructooligosaccharides (FOS), isomal- 
tooligosaccharides (IMO), and xylo-oligosac-
charides (XOS) [126], which are abundant in 
foods such as onions, asparagus, garlic, chico-
ry, bananas, inulin, oats, wheat, and barley. 
These compounds have been shown to increa- 
se the abundance of beneficial gut bacteria, 
particularly Lactobacillus and Bifidobacterium 
[126-128]. FOS, a type of dietary fiber found in 
inulin and neosugar, enhances fecal volume, 
alleviates constipation, and increases fecal 
acidity. It is readily metabolized by Bifidobac- 
terium and other microorganisms, promoting 
their growth [129, 130]. Preclinical studies in 
mouse models have demonstrated that inulin 
can inhibit the growth of melanoma and 
colorectal cancer [131]. Clinical trials have fur-
ther revealed that IMO not only stimulates the 
growth of Bifidobacterium and Lactobacillus 
but also enhances local and systemic Th-1-like 
immune responses [132]. XOS, naturally pres-
ent in fruits, bamboo shoots, vegetables, milk, 
and honey, is efficiently utilized by Bifidobac- 
terium adolescentum, Lactococcus lactis, Lac- 
tobacillus rhamnosus, and Lactobacillus plan-
tarum, highlighting its potential as a functional 
prebiotic.

Symbiotics, which combine probiotics and pre-
biotics, exhibit either complementary or syner-

gistic effects. In symbiotic formulations, probi-
otics selectively utilize prebiotics as substrates 
for growth [133], thereby overcoming challeng-
es related to probiotic survival in the gastroin-
testinal tract. Studies have shown that the 
combined use of probiotics and prebiotics is 
more effective than their individual application 
[134, 135]. Symbiotics have been observed to 
increase the abundance of Bifidobacteria and 
Lactobacillus in fecal samples while reducing 
coliforms. Additionally, they enhance the activi-
ty of digestive enzymes, such as lactase, li- 
pase, sucrase, and isomaltase [136]. Currently, 
the combination of Bifidobacterium or Lact- 
obacillus spp. with oligofructose is among the 
most widely studied symbiotic formulations. 
Research on prebiotics and synbiotics remains 
in its early stages, with no dedicated studies 
yet exploring their specific benefits in breast 
cancer. However, based on findings from 
research on other cancers, it is hypothesized 
that increased intake of prebiotics and synbiot-
ics may enhance host health by reducing sys-
temic inflammation, improving treatment effi-
cacy, and maintaining microbial ecological 
balance in breast cancer patients during thera-
py. These potential mechanisms warrant fur-
ther investigation to establish their role in 
breast cancer management.

Fecal mushroom transplantation

Fecal Microbiota Transplantation (FMT) was ini-
tially developed for the treatment of infecti- 
ous and inflammatory diseases of the gastroin-
testinal tract. As research on FMT has adv- 
anced, its potential applications in extra-intes-
tinal diseases have become increasingly evi-
dent. Currently, FMT has proven highly effective 
in treating Clostridium difficile infections [137, 
138] and shows promise in managing condi-
tions such as irritable bowel syndrome, inflam-
matory bowel disease, insulin resistance, and 
multiple sclerosis [139]. Although no experi-
mental studies have directly investigated the 
relationship between FMT and breast cancer, 
FMT has demonstrated efficacy in alleviating 
intestinal symptoms and mucosal damage in 
patients with chronic radiation enteritis [140]. 
Furthermore, transferring microbiota from 
patients who have responded positively to anti-
PD-1 therapy to non-responders or those with 
resistance has been shown to enhance anti-
PD-1 efficacy and overcome treatment resis-
tance [141, 142].
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Despite these promising findings, the thera- 
peutic benefits of FMT in cancer, particularly 
breast cancer, remain largely unexplored. Se- 
veral critical questions need to be addressed: 
the optimal methods for transplantation, the 
potential use of alternative delivery carriers to 
enhance efficacy, the specific mechanisms of 
action post-transplantation, and the potential 
side effects or adverse reactions associated 
with the procedure. Addressing these ques-
tions will be essential to fully understand and 
harness the potential of FMT in breast cancer 
treatment.

Natural medicines and Chinese medicine

Numerous studies have shown that Chinese 
medicine can significantly regulate the intesti-
nal flora, promote the growth of beneficial bac-
teria and inhibit the over-proliferation of harm-
ful bacteria, thus maintaining a healthy in- 
testinal environment [143, 144]. Natural medi-
cines are also receiving more and more interna-
tional attention, and the role it plays in the pre-
vention and control of diseases is being more 
and more deeply explored, and a large number 
of natural medicines have been found to have  
a role to play in the treatment of cancer. 
Berberine has anticancer effects on a variety  
of cancers. In addition to inhibiting cell prolifer-
ation and metastasis, and inducing apoptosis 
and autophagy, berberine exerts anticancer 
effects by modulating the intestinal microbiota, 
such as increasing the ratio of Thick-walled 
Phylum Firmicutes/Bacteroides, and increas-
ing the relative abundance of Clostridium, 
Lactobacillus, and anabolic bacilli. Berberine 
also improves the effects of antitumor drugs 
such as cisplatin and 5-fluorouracil, and 
increases radiation therapy sensitivity [145]. 
Ginseng and red rhizome extracts promoted 
the growth of probiotics such as Lactobacillus 
and Bifidobacterium and inhibited the growth 
of Staphylococcus and Salmonella, among  
others, in vitro [146]. Ganoderma lucidum 
extract reduced the high-fat diet-induced ele-
vated percentage of Bacteroides/anaplasma 
phylum and the level of Aspergillus species, 
and also maintained the integrity of the intesti-
nal mucosal barrier [147]. A natural nanothera-
peutic agent derived from tea can directly treat 
breast tumors by promoting apoptosis and 
modulating the microbiota [148]. A study found 
that the classic Chinese medical formula Four 

Mow Formula significantly altered the composi-
tion of the gut microbiota and modulated fac-
tors associated with fat synthesis and inflam-
matory storms [149]. All of these studies 
provide favorable evidence that natural medi-
cines are not limited to a single therapeutic 
pathway in oncology, and perhaps linking natu-
ral medicines to microbes will lead to surprising 
discoveries (Figure 3).

Conclusion and further directions

The gut microbiota, a complex and dynamic 
ecosystem within the human body, plays a piv-
otal role in maintaining host health. Its compo-
sition and functional alterations are closely 
linked to various diseases, including breast 
cancer. Recent studies have increasingly dem-
onstrated a strong association between gut 
microbiota dysbiosis and the initiation, progres-
sion, metastasis, and invasiveness of breast 
cancer [7, 9]. While certain microbial imbalanc-
es may promote tumor development, other spe-
cific bacterial species exhibit significant tumor-
suppressive effects, highlighting the dual role 
of the gut microbiota in breast cancer patho- 
genesis.

Risk factors such as diet, lifestyle, and genetic 
predisposition can induce dynamic changes in 
the gut microbiota during breast cancer devel-
opment. These changes not only disrupt gut 
metabolic processes but may also exert sys-
temic effects through circulating microbial 
metabolites, thereby influencing host biological 
functions. Chronic inflammation and immune 
dysregulation are two key mechanisms through 
which the gut microbiota impacts breast can-
cer. Chronic inflammation, a well-established 
driver of breast cancer, is closely modulated by 
the gut microbiota via its effects on the host 
immune response, underscoring the microbio-
ta’s role in cancer progression.

Despite advancements in surgical, chemother-
apeutic, and radiotherapeutic interventions 
that have improved breast cancer survival 
rates, the disease remains a significant global 
health threat to women. Current diagnostic  
and therapeutic strategies require further 
refinement to address the needs of a large  
and diverse patient population. Emerging 
microbiota-targeted interventions, such as the 
Mediterranean diet, probiotics/prebiotics, fecal 
microbiota transplantation (FMT), and herbal 
therapies, have shown promising preliminary 
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Figure 3. Pathogenesis and treatment options with gut microbiota as the intervention point (By Figdraw). The Medi-
terranean diet, probiotics and prebiotics, fecal transplantation, and natural medicines and traditional Chinese medi-
cines modulate the composition and function of the gut microbiota, affects the production of metabolites and the 
inflammatory and immune responses, thereby exerting positive effects in the treatment and prevention of breast 
cancer.

results in cancer management. These approa- 
ches are cost-effective, associated with fewer 
side effects, and exhibit high patient compli-
ance. Integrating these strategies with conven-
tional therapies (e.g., chemotherapy and immu-
notherapy) holds potential for improving pa- 
tient outcomes, reducing drug resistance, and 
mitigating chemotherapy-induced toxicity. How- 
ever, large-scale, standardized clinical trials are 
essential to validate the efficacy and safety of 
such combinatorial approaches.

To fully harness the therapeutic and preventive 
potential of gut microbiota modulation in breast 
cancer, it is crucial to elucidate the underlying 
mechanisms of microbiota-breast cancer inter-
actions. Current research primarily focuses on 
characterizing microbiota alterations in breast 
cancer patients, with limited exploration at the 
functional level. Key questions remain unan-
swered, including how specific microbial com-
munities influence breast cancer pathogenesis 

and how gut microbiota modulation can sup-
press inflammation and enhance anti-tumor 
immunity. The rapid advancement of high-
throughput technologies, such as metagenom-
ics and metabolomics, offers unprecedented 
opportunities to explore these mechanisms, 
paving the way for innovative strategies in 
breast cancer management. Although this field 
remains underexplored, it represents a pro- 
mising frontier in oncology research with the 
potential to revolutionize breast cancer treat-
ment and prevention.
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