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Abstract: The Endoplasmic reticulum (ER), an organelle present in various eukaryotic cells, is responsible for protein 
synthesis, modification, folding, and transport, as well as for the regulation of lipid metabolism and Ca2+ homeo-
stasis. ER stress plays a pivotal role in the pathogenesis and therapeutic response of non-small cell lung cancer 
(NSCLC), significantly influencing cellular fate decisions through its unique sensing and regulatory mechanisms. 
This review aims to elucidate the key role of ER stress sensors and to explore how they mediate cell autophagy, 
apoptosis, and non-apoptotic modes of cell death in the context of drug-treated NSCLC. This investigation lays a 
solid foundation for optimizing future treatment strategies for NSCLC.
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Introduction

Non-small cell lung cancer (NSCLC)

According to the Global Cancer Statistics 2020, 
lung cancer remains the leading cause of can-
cer-related deaths, accounting for 18% of total 
deaths from all malignancies globally [1-3]. 
NSCLC comprises the vast majority of lung can-
cers, approximately 85%, with 30% of patients 
presenting with locally advanced (Stage III) dis-
ease at the time of diagnosis. Clinically, the 
prognosis for NSCLC has consistently been 
poor, with a 5-year survival rate of only 15.9% 
[4-6]. Historically, definitive surgery was the  
primary treatment for early-stage NSCLC pa- 
tients; however, 25-70% of these patients ulti-
mately experience recurrence following com-
plete resection [7]. For patients with advanced 
NSCLC, surgical intervention is often not feasi-
ble, leading to the use of platinum-based che-
motherapy as the standard treatment in clini- 
cal practice. Nevertheless, chemotherapy lacks 
specificity in targeting cancer cells, resulting in 

a range of adverse reactions [8-11]. There- 
fore, it is crucial to identify the molecules 
responsible for the development and progres-
sion of NSCLC to facilitate the early discovery 
and development of new molecular targeted 
therapies.

Endoplasmic reticulum (ER) stress

The ER is a perinuclear organelle found in all 
eukaryotic cells, where one-third of human pro-
teins are folded and assembled to attain their 
native conformation. These proteins are subse-
quently transported to various secretory envi-
ronments, including lysosomes, the plasma 
membrane, and the extracellular space, to per-
form their full functions [12, 13]. Additionally, 
the ER plays a crucial role in regulating lipid, 
and steroid metabolism, as well as calcium 
homeostasis. It contributes to cellular homeo-
stasis through the ER quality control system 
(ERQC), which prevents protein aggregation by 
either facilitating the correct folding of misfold-
ed peptides or triggering their selective degra-
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Table 1. Differences in ER stress between normal cells and tumor cells
Difference Normal cells Cancer cells Reference
Reason for 
activation

Physiological factors such as transient hypoxia, mild 
oxidative stress, nutritional fluctuations, cellular 
differentiation, and circadian rhythms.

Pathologic factors such as hypoxia, low glu-
cose, growth factor deficiency, lactic acidosis, 
oxidative stress, and amino acid starvation.

[19-22]

Duration ER stress duration is generally transient, but may 
be continuously activated during certain physi-
ological activities as a means of fine-tuning cellular 
conditions in real time, such as circadian rhythms.

Sustained activation. [19, 22]

Result of 
activation

Maintain cellular homeostasis and initiate apoptotic 
program to remove abnormal cells if stress cannot 
be relieved.

Protect against cell death and keep cells 
alive.

[19, 22, 23]

Metabolic 
effects

Does not alter the basic metabolic pathways of the 
cell.

Glycolysis and lipid synthesis are enhanced 
to provide energy for rapid proliferation.

[22]

Long-term 
effects

Maintain tissue homeostasis and remove poten-
tially cancerous cells.

Promote tumor microenvironment remodeling 
(such as angiogenesis, immunosuppression) 
and distant metastasis.

[22, 24]

dation [14]. This process modulated by mo- 
lecular chaperones, folding enzymes and deg-
radation factors associated with the ERQC [14]. 
However, various physiological and pathologi-
cal stimuli, such as gene mutations, synthesis 
errors, cellular microenvironment, molecular 
crowding, inefficient post-translational mecha-
nisms, Ca2+ depletion, nutrient deficiency, oxi-
dative stress and hypoxia, can lead to disorders 
in the ERQC, resulting in protein misfolding 
within the ER [14-16]. This phenomenon is re- 
ferred to as ER stress. The occurrence of ER 
stress can lead to the compromise of the in- 
tegrity and functionality of the downstream 
secretory proteome [14-16]. In response to ER 
stress, eukaryotes facilitate the proper confor-
mation of proteins through mechanisms of  
folding, assembly, and disaggregation. Initially, 
the primary objective of the unfolded protein 
response (UPR) is to safeguard cellular func- 
tion by reducing or eliminating unfolded/mis-
folded proteins and restoring ER homeostasis, 
the process known as the “Adaptive/Cytopro- 
tective” UPR [17]. However, if these corrective 
measures are insufficient to restore homeosta-
sis, the UPR may become excessively activat-
ed, prompting ER sensors to initiate signals for 
cellular destruction, the process known as the 
terminal UPR [18].

Studies have shown that ER stress is activated 
in a variety of solid tumors. Compared to nor-
mal cells, ER stress in cancer cells is different 
from that in normal cells due to the local micro-
environment of the tumor and the high demand 
for protein synthesis [19-23] (Table 1). Emerging 
evidence suggests that significant ER stress 

and maladaptive UPR contribute to NSCLC. The 
UPR is involved in various biological processes 
in NSCLC that are closely associated with apop-
tosis [25-27], paraptosis [28, 29], ROS [30], 
mitochondrial dysfunction [31], drug resistance 
[32], autophagy [33-36], the cell cycle [37], 
senescence [38], gluconeogenesis [39] (Figure 
1). This review synthesizes contemporary re- 
search that connects the ER to NSCLC and 
explores potential pharmacological targets and 
therapeutic strategies.

The UPR signaling and activation mechanism

The initiation of the UPR signaling pathway is 
mediated by three ER transmembrane recep-
tors: inositol-requiring enzyme (IRE) 1, protein 
kinase RNA-like ER kinase (PERK), and activat-
ing transcription factor 6 α (ATF6α), commonly 
referred to as UPR sensors. Under resting con-
ditions, the luminal domains of these three ER 
stress receptors interact with and bind to resi-
dent ER-resident chaperone the glucose regu-
lated protein 78 (GRP78)/binding immunoglob-
ulin protein (BiP) to maintain an inactive state 
[40]. Upon accumulation of unfolded/misfolded 
proteins, the three receptors dissociate from 
GRP78. There is also evidence that unfolded 
proteins bind directly to the luminal domains of 
IRE1α and PERK [41]. Either mechanism allows 
for the oligomerization and activation of the 
sensors and UPR signaling.

IRE1

IRE1, a type I ER transmembrane protein 
kinase/RNase, represents the most evolution-
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Figure 1. Critical roles of UPR in NSCLC. The UPR is involved in various biological processes in NSCLC. ROS: reactive 
oxygen species; NSCLC: non-small cell lung cancer; UPR: unfolded protein response.

arily conserved arm of the UPR, present across 
all eukaryotes from yeast to mammals [42, 43] 
(Figure 2). IRE1 is comprised of four distinct 
domains: the N-terminal luminal domain (NLD), 
the linker region, the kinase domain, and the 
RNase domain, with each domain serving a 
critical function in the overall activity of the pro-
tein. There are two IRE1 genes in the mamma-
lian genome: IRE1α and IREβ. While IRE1α is 
ubiquitously expressed broadly across various 
cell types that possess ER, IRE1β expression is 
restricted to intestinal epithelial cells and lung 
cells, seemingly playing a specialized role in 
mucus production [44, 45]. Additionally, IRE1β 
functions as a dominant-negative suppressor 
of IRE1α, influencing how barrier epithelial cells 
manage the response to stress at the host-
environment interface [46]. When sufficient 
protein-folding capability exists within the ER, 
IRE1α maintains a monomeric state by binding 
to the molecular chaperone GRP78 through its 
NLD in the ER lumen, thereby maintaining an 
inactive state. During ER stress, GRP78 binds 

to unfolded proteins, thereby releasing IRE1α. 
Subsequently, NLDs form homodimers and 
possibly oligomers, and then, IRE1α auto-phos-
phorylates itself at residue Ser724 via its 
kinase activity, activating the C-terminal RNase 
domain and leading to conformational changes 
[17, 46-48].

Active IRE1α excises a 26-nucleotide intron 
from the un-spliced mammalian basic region/
leucine zipper motif (bZIP) transcription factor 
X-box binding protein 1 (XBP1) mRNA (in yeast, 
a 252-nucleotide intron is removed from the 
HAC1 precursor mRNA), and the RNA ligase 
RtcB then mediates the ligation of the remain-
ing 5’ and 3’ fragments and shifts the reading 
frame to result in translation of a stable and 
active transcription factor termed spliced XBP1 
(XBP1s) [49-51]. XBP1s translocates to the 
nucleus, upregulates multiple UPR genes en- 
coding ER chaperones and activates UPR ele-
ments (UPREs) to reduce the protein load with-
in the ER and restore cellular homeostasis [49]. 
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XBP1s regulates the expression of numerous 
UPR target genes involved in ER folding,  
glycosylation, and ER-associated degradation 
(ERAD) [17, 52]. Furthermore, non-XBP1 targets 
of IRE1 possess properties to maintain homeo-
stasis or induce cell death [53, 54]. Non-XBP1 
targets, including mRNA, microRNA, and cir-

cRNA, are primarily degraded by IRE1 through 
the regulated IRE1-dependent decay (RIDD), a 
novel UPR regulatory pathway that influences 
cell fate under ER stress and alleviates the 
need for ER chaperones by reducing the syn-
thesis of secretory proteins [55-58]. A shared 
characteristic of RNAs regulated by XBP1 and 

Figure 2. The IRE1α signaling arm of the UPR. In response to ER stress, IRE1α is activated after dissociation from 
GRP78. Once activated, IRE1 emits signals through three mechanisms. (a) Activated IRE1α RNase splices XBP1 
mRNA, which encodes a potent transcription factor XBP1s, which activates the expression of multiple genes in-
volved in the ERAD pathway (1) (2). (b) Active IRE1α can also cleave ER-associated mRNAs or non-coding functional 
RNAs, leading to their degradation through regulated RIDD, thus reducing the endoplasmic reticulum protein load 
(1) (3). (c) When activated over time, the cytoplasmic domain of IRE1α also serves as a scaffold to recruit adaptor 
proteins such as TRAF2, activating the ASK1-JNK signaling cascade, thereby regulating inflammatory or apoptotic 
responses under atypical ER stress conditions (4). ASK1: apoptosis signal-regulating kinase 1; GRP78: glucose 
regulated protein 78; ER: endoplasmic reticulum; ERAD: ER-associated degradation; IRE1α: inositol requiring en-
zyme 1 α; JNK: c-Jun N-terminal kinase; MAPK: mitogen-activated protein kinase; NF-κB: nuclear factor-κB; RIDD: 
IRE1-dependent decay; TRAF2: tumor necrosis factor receptor-associated factor 2; UPR: unfolded protein response; 
XBP1: X-box binding protein 1.
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RIDD is the CUGCAG sequence located within 
stem-loop structures, which is a key feature of 
the IRE1α cleavage site [55]. Beyond activating 
ribonuclease activity, IRE1α can also activate 
apoptosis signal-regulating kinase 1 (ASK1) by 
recruiting tumor necrosis factor receptor-asso-
ciated factor 2 (TRAF2). ASK1 phosphorylates 
c-Jun N-terminal kinase (JNK), thereby activat-
ing the pro-apoptotic protein Bim while inhibit-
ing the anti-apoptotic protein Bcl2 [59-61]. 
IRE1α/JNK signaling can also activate nuclear 
factor-κB (NF-κB) and MAPK pathways under 
ER stress, which can initiate inflammatory or 
apoptotic responses to varying degrees de- 
pending on the specific context [62-65] (Figure 
2).

In addition, IRE1α signaling is regulated by vari-
ous factors that influence IRE1α dimerization, 
oligomerization, phosphorylation, and dephos-
phorylation. Under conditions of high or chronic 
ER stress, the tyrosine-protein kinase ABL1 
stabilizes IRE1α oligomers, promoting subse-
quent autophosphorylation of IRE1α, splicing  
of XBP1 mRNA, RIDD, and cell apoptosis [66]. 
The pro-apoptotic proteins BAX and BAK form a 
complex with the cytoplasmic domain of IRE1α, 
further activating IRE1α and thereby sustaining 
UPR signaling [67]. BI-1 and Fortilin act as neg-
ative regulators of IRE1α. BI-1 forms a complex 
with the cytoplasmic domain of IRE1α, inhibit-
ing its phosphorylation rate and attenuating 
IRE1α signaling during ER stress [68]. Fortilin 
directly interacts with phosphorylated IRE1α, 
inhibiting both its kinase and RNase activities, 
thus protecting cells from apoptosis [69]. 
However, in yeast, the serine/threonine phos-
phatase Ptc2 was found to negatively regulate 
IRE1. Ptc2 directly interacts with IRE1 in a Mg2+ 
or Mn2+-dependent manner to dephosphorylate 
IRE1. Dephosphorylation inactivates IRE1 and 
prevents HAC1 splicing, thus dampening the 
UPR [70]. Notably, cell survival ER stress-medi-
ated is unaffected by the loss of Ptc2, indicat-
ing that Ptc2 is not essential for cell survival 
during ER stress, implying that other phospha-
tases compensate for the loss of Ptc2 or that 
phosphorylation is not required for IRE1 in- 
activation.

ATF6

ATF6, a second class of ER stress sensor, is a 
type II transmembrane protein exclusive to 
metazoans. It consists of three functional 

domains: a bZIP transcription factor domain at 
the N-terminus of the cytoplasmic region, a 
transmembrane domain, and an ER stress-
sensing luminal domain. Mammals express  
two distinct isoforms of ATF6 proteins: ATF6α 
and ATF6β, which share a conserved bZIP 
domain at the N-terminus [71]. In the absence 
of ER stress, GRP78 binds to the lumenal re- 
gion of ATF6, anchoring it to the ER via the  
ER retention sequence at the C-terminus of 
GRP78, thereby keeping ATF6 inactive [72, 73]. 
Under ER stress conditions, ATF6α is the pre-
dominant isoform responsible for regulating 
the expression of ER stress-response genes.  
In response to ER stress, the association be- 
tween GRP78 and ATF6α is disrupted, which 
causing ATF6α to expose two Golgi-localization 
signals (GLS1 and GLS2). Then this signal initi-
ates the translocation of ATF6α to the Golgi 
apparatus where it undergoes proteolytic  
cleavage by two resident proteases [72]. Site  
1 protease (S1P) and Site-2 protease (S2P) 
sequentially remove the lumenal domain and 
transmembrane anchor of ATF6α. This cleav-
age releases the N-terminal 50-kDa cytosolic 
portion of ATF6, which has a nuclear localiza-
tion sequence and promotes its movement to 
the nucleus, where it acts as a transcription 
factor to activate ER stress target genes [72, 
73]. The transcriptional upregulation of XBP1 
mRNA, which is non-canonically spliced by 
IRE1α, is also mediated by activated ATF6, 
thereby allowing the translation and activation 
of XBP1 [49, 74] (Figure 3).

While ATF6α and ATF6β share structural simi-
larities, the role of ATF6β remains less clear 
compared to that of ATF6α. Previous studies 
have suggested that ATF6β may function as an 
endogenous repressor of ATF6α, finetuning  
the intensity and duration of ATF6α signaling 
during ER stress [73, 75]. Furthermore, ATF6β 
has been found to play a role in ER stress 
through Ca2+. Calreticulin, a molecular chaper-
one with a high Ca2+ binding capacity in the ER 
is specifically regulated by ATF6β [76]. Defi- 
ciency of ATF6β reduces Ca2+ storage in the ER 
and enhances ER stress-induced cell death 
[76]. However, a recent in vitro study has fur-
ther demonstrated the activation of ATF6β 
under ER stress conditions [77]. In fact, anoth-
er study corroborated this finding. During ER 
stress, ATF6β dissociates from GRP78 and is 
cleaved by the proteases S1P and S2P. The 
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Figure 3. The ATF6 signaling arm of the UPR. Upon ER stress, GRP78 dissociates from the ER intraluminal domain of 
ATF6α, which allows the 90 kD form of ATF6α to translocate to the Golgi apparatus (1) (2). It is cleaved by S1P and 
S2P, releasing the N-terminal approximately 400 amino acids (50 kD) of ATF6α (3). Activated ATF6 translocates to 
the nucleus, inducing transcription and expression of ERAD-related genes (4). ATF6: activating transcription factor 
6; GRP78: glucose regulated protein 78; ER: endoplasmic reticulum; ERAD: ER-associated degradation; S1P: Site-1 
protease; S2P: Site-2 protease; XBP1: X-box binding protein 1.

active fragment of cleaved ATF6β translocates 
to the nucleus, enhancing the expression of the 
C/EBP homologous protein (CHOP) and cleaved 
caspase-3, thereby promoting apoptosis [78]. 
Therefore, the distinct roles of ATF6α and 
ATF6β under ER stress conditions warrant fur-
ther investigation.

PERK

PERK is a type I ER transmembrane protein 
exclusive to metazoans. It consists of a luminal 
ER stress-sensing domain and a cytoplasmic 
kinase domain. Similar to IRE1, PERK is main-
tained in an inactive conformation by the bind-
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Figure 4. The PERK signaling arm of the UPR. The presence of misfolded proteins leads to the dissociation of GRP78 
from PERK, resulting in PERK activation (1). PERK phosphorylates eIF2α to attenuate protein translation (2). Given 
that PERK activation is sustained, ATF4 is upregulated by phosphorylated eIF2α, which then promotes transcription 
of target genes involved in autophagy, amino acid metabolism, protein folding and redox homeostasis (3) (4). Under 
long-term ER stress, the pro-apoptotic protein CHOP is activated (5). As a result, CHOP upregulates GADD34, which 
in turn dephosphorylates eIF2α (6). ATF4: activating transcription factor 4; GRP78: glucose regulated protein 78; 
ER: endoplasmic reticulum; ERAD: ER-associated degradation; PERK: protein kinase RNA-like ER kinase; eIF2α: 
eukaryotic initiation factor 2 alpha; CHOP: C/EBP Homologous Protein; GADD34: growth arrest and DNA damage-
inducible 34.

ing of GRP78 to its luminal domain [79]. PERK 
initiates immediate adaptive responses to ER 
stress.

In response to ER stress, GRP78 dissociates 
from the luminal region of PERK, triggering its 
oligomerization and autophosphorylation. The 
luminal domain of PERK oligomerizes to form 
stable dimers, which subsequently undergo a 
helix swap or intertwining of two dimers via  
helical subunits, leading to a transient tetra-
meric state [80]. This tetrameric state facili-
tates enhanced phosphorylation efficiency 

[80]. Activated PERK, through its cytoplasmic 
domain (which possesses Ser/Thr kinase ac- 
tivity), phosphorylates serine 51 of the eukary-
otic initiation factor 2α (eIF2α). Phosphorylated 
eIF2α inhibits the GTP-exchange activity of the 
initiation factor eIF2B, leading to a significant 
reduction in cap-dependent translation initia-
tion in response to ER stress, ultimately de- 
creasing the load on the ER [81] (Figure 4).

On the other hand, phosphorylated eIF2α initi-
ates the translation of activating transcription 
factor 4 (ATF4), a member of the basic leucine 
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zipper protein family. mRNA of ATF4contains an 
overlapping upstream open reading frame in  
its 5’ untranslated region, which is required or 
preferential for ATF4 translation when eIF2α is 
phosphorylated [81]. ATF4 is a stress-inducible 
transcription factor that promotes cell survival 
and enhances resistance to oxidative stress by 
inducing genes involved in amino acid meta- 
bolism, redox reactions, and protein secretion 
[82]. Additionally, ATF4 induces autophagy-
related genes that are crucial for autophago-
some formation and function [83]. However, 
not all genes induced by ATF4are anti-apoptot-
ic. It is well known that the induction of the  
transcription factor CHOP is strongly depen-
dent on ATF4, leading to the expression of  
multiple pro-apoptotic molecules that promote 
apoptosis [84]. The apoptosis-related targets 
of CHOP are as follows: (a) Tribbles homolog 3 
(TRB3), identified as a novel ER stress-induced 
gene that involved in autophagic cell death by 
inducing ER stress and activating the UPR [85]; 
(b) Death receptor 5 (DR5), a caspase-activat-
ed cell surface death receptor belonging to the 
tumor necrosis factor receptor family [86]; (c) 
Ero1α (ER oxidoreductase-1), which causes ER 
hyperoxidation and promotes cell death [87]; 
and (d) Growth arrest and DNA damage-induc-
ible 34 (GADD34), a phosphatase regulatory 
subunit that dephosphorylates eIF2α to re- 
store protein translation following ER damage 
[88]. Another potential mechanism by which 
CHOP induces apoptosis is through the direct 
inhibition of Bcl-2 transcription and the induc-
tion of Bim expression [89]. Activating tran-
scription factor 3 (ATF3) is also a critical mole-
cule induced by ATF4, participating in the 
feedback control of the eIF2 kinase stress 
response by binding to the promoter region of 
GADD34 [90] (Figure 4).

The PERK signaling pathway is crucial for main-
taining mitochondrial structural and functional 
integrity, calcium dynamics, and metabolic reg-
ulation. As a key component of the mitochon-
dria-associated ER membrane (MAM), PERK 
facilitates physical and functional connections 
between the ER and mitochondria. Under con-
ditions of ER stress, thePERK-ATF4-CHOP path-
way mediates mitochondrial apoptosis by up- 
regulating BH3 proteins. Conversely, during 
reactive oxygen species (ROS)-induced oxida-
tive stress, the reduction of mitochondrial 
fusion protein 2 (Mfn2) can activate PERK, 
leading to a decrease in MAM, which triggers 
mitochondrial dysfunction and subsequent cell 

apoptosis [91, 92]. Moreover, the PERK-ATF4 
signal can induce the expression of Parkin, a 
protein that mediates mitophagy, promoting 
cell survival by maintaining mitochondrial ho- 
meostasis [93]. Furthermore, the PERK-de- 
pendent eIF2α phosphorylation-induced trans-
lational attenuation mechanism can promote 
protective stress-induced mitochondrial hyper-
fusion (SIMH), which can prevent pathological 
mitochondrial fragmentation and promote mi- 
tochondrial metabolism in response to ER 
stress, but this process is independent of the 
transcriptional activity of ATF4 [94]. In addition 
to eIF2α, the transcription factor nuclear factor 
erythroid 2-related factor 2 (NRF2) is also a 
direct substrate of PERK. PERK phosphorylates 
threonine 80 of NRF2 for activation, a process 
that does not require the accumulation of ROS. 
Phosphorylated NRF2 dissociates from Kelch-
like ECH-associated protein 1 (Keap1), translo-
cates to the nucleus, and activates the expres-
sion of its target genes to facilitate cellular 
redox regulation during ER stress [95].

Summary of components engaged in ER 
stress signaling in NSCLC

ER-resident components engaged in NSCLC

The ER is enriched with various molecular chap-
erones that ensure the proper folding of newly 
synthesized proteins. The expression of GRP78, 
a major ER chaperone, is closely associated 
with the differentiation and development of 
NSCLC, with elevated levels predicting poor 
prognosis in patients [96]. Increased GRP78 
has also been shown to promote epithelial-to-
mesenchymal transition (EMT) in A549 under 
hypoxic conditions [97]. In addition, GRP78 
expression is elevated in epidermal growth fac-
tor receptor tyrosine kinase inhibitor (EGFR-
TKI)-resistant NSCLC, and the inhibition of 
GRP78 can enhance ER stress and the subse-
quent generation of reactive oxygen species 
(ROS), leading to growth suppression [98]. 
Ribosome-binding protein 1 (RRBP1), an ER 
membrane-bound protein, exhibits elevated 
expression in human NSCLC tissues, correlat-
ing positively with adverse patient prognosis 
[25, 99].

The role of UPR signaling in NSCLC has been 
well established. For instance, icariin II can 
activate ER stress, including the three branch-
es of UPR signaling: PERK, IRE1, and ATF6. This 
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activation also involves the downstream of 
PERK-eIF2α-ATF4-CHOP pathway, which enhan- 
ces cisplatin-induced apoptosis in NSCLC cells 
[26]. Butein mediates apoptosis in NSCLC cells 
through the generation of ROS and apoptotic 
pathways that depend on the PERK/eIF2α/
CHOP signaling cascade. Notably, the inhibition 
of ER or oxidative stress can partially eliminate 
the tumor growth-inhibitory effects induced by 
Butein [100]. In addition, XBP1s has also been 
reported to be overexpressed in patients with 
lung adenocarcinoma (LUAD), indicating a poor 
prognosis in patients [101], and the splicing of 
XBP1 is a valuable biomarker of NSCLC inva-
siveness, and this process is closely related to 
RE1α endoribonuclease activity [102]. Another 
study also finds that overexpressed XBP1s pro-
tein correlates with the Tumor-Node-Metastasis 
(TNM) stage, lymph node metastasis and poor 
prognosis of NSCLC [103, 104]. XBP1s protein 
can upregulate the expression of insulin-like 
growth factor binding protein 3 (IGFBP3) and 
regulate the invasion and metastasis of NSCLC 
cells by regulating IGFBP3 [103]. Thus, XBP1s 
not only serves as a potential biomarker for 
metastasis and prognosis but also represents 
a promising therapeutic target for NSCLC. In 
addition, increased expression of PERK down-
stream targets has been observed in various 
subtypes of NSCLC and is associated with a 
more aggressive phenotype, high risk of recur-
rence, and poor prognosis [105, 106], suggest-
ing involvement of the PERK pathway in NSCLC 
development. Although many PERK inhibitors 
have been studied as potential anticancer 
drugs, there are few reports on their applicabil-
ity in the treatment of NSCLC [107, 108]. 
Recently, it’s found that treatment with the 
selective PERK inhibitor NCI 159456 signifi-
cantly reduced apoptosis and increased DNA 
damage levels in normal and ER-stressed 
NSCLC cells [109]. Importantly, this inhibitor 
does not exert any detrimental effects on nor-
mal human lung cells [109]. The results of this 
investigation endorse the prospective utiliza-
tion of PERK inhibitors in the targeted treat-
ment of NSCLC. In brief, precise analysis of ER 
stress in NSCLC may uncover new therapeutic 
strategies.

Molecules engaged in ER stress signaling in 
NSCLC

In addition to the ER-resident components 
engaged in NSCLC, multiple molecules have 

been shown to engaged in NSCLC through ER 
signaling. Inactivating mutations of liver kinase 
B1 (LKB1) occur with a high frequency in sub-
types of NSCLC [110, 111]. Loss of LKB1 in 
NSCLC cells increases sensitivity to pharmaco-
logical compounds that exacerbate ER stress 
[110]. Ficolin 3 (FCN3) functions as a tumor 
suppressor in LUAD. Studies have shown that 
downregulation of FCN3 is significantly corre-
lated with increased mortality in LUAD pa- 
tients. FCN3 contributes to LUAD by inducing 
ER stress [112]. The knockdown of tissue trans-
glutaminase 2 (TG2) triggers ER stress and dis-
rupts redox homeostasis, activating both in- 
trinsic and extrinsic apoptotic pathways, which 
ultimately leads to NSCLC cell death [113]. In 
A549 NSCLC cells, the interaction between the 
TOR signaling pathway regulator-like (TIPRL) 
protein and eIF2α results in the phosphoryla-
tion of eIF2α and activation of the eIF2α-ATF4 
pathway. This activation enhances the ability of 
cancer cells to withstand metabolic stress and 
may facilitate the development of malignant 
tumors through autophagy [114]. Conversely, 
the ablation of TIPRL significantly reduces au- 
tophagy induction, leading to decreased cancer 
cell survival and increased cell death [114]. 
Therefore, targeting genetically induced meta-
bolic and ER stress may become a novel thera-
peutic approach for treating various types of 
cancer. As an important regulatory subunit of 
protein phosphatase 4 (PP4), high expression 
levels of protein phosphatase 4 regulatory sub-
unit 1 (PP4R1) are associated with poor prog-
nosis of NSCLC and are closely related to the 
TNM stage and clinical stage of NSCLC patients 
[115]. PP4R1 promotes malignant progression 
in NSCLC by upregulating HSPA6 expression, 
further activating ER stress [115]. P21-activat- 
ed kinase (PAK), a member of the serine/threo-
nine protein kinases family, exhibits mutation-
ally activated or overexpressed PAK isoforms in 
numerous human solid malignancies. Elevated 
levels of P21-activated kinase 4 (PAK4) have 
been previously associated with poor prognosis 
in NSCLC and promote migration and invasion 
[116].

Meanwhile, several molecules have been iden-
tified as contributors to chemoresistance in 
NSCLC via ER signaling pathways. For example, 
enhanced expression of PAK4 has recently 
been observed in both cisplatin-resistant NS- 
CLC tumors and cell lines [116]. Inhibiting of 
PAK4 has demonstrated the potential to sensi-
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Table 2. Components in ER stress signaling engaged in NSCLC
Molecule Expression Effects Reference
FCN3 Down-regulated in LUAD tissues (vs. normal 

tissues)
Ectopic expression of FCN3 led to cell cycle arrest and 
apoptosis in A549 and H23 cells derived from LUAD

[112]

GRP78 Up-regulated in NSCLC tissues (vs. normal 
tissues)

Closely related to tumor stage and worse patient 
survival

[96]

GRP78 GRP78 expression in A549 cells increased 
significantly under hypoxic conditions

GRP78 promotes EMT by activating Smad2/3 and Src/
MAPK pathways

[97]

GRP78 Up-regulated in EGFR-TKI-resistant NSCLC 
cells (vs. gefitinib-sensitive control)

Associated with tumor growth [98]

LKB1 Inactivating mutations occur at a high 
frequency in NSCLC subtypes

Associated with URP-mediated apoptosis [110]

PAK4 Up-regulated in NSCLC tissues (vs. normal 
tissues)

Associated with invasion and migration progression of 
NSCLC

[116]

PERK Activation in NSCLC tissue and A549 contribute to the development and progression of 
NSCLC

[109]

PP4R1 Highly expressed in NSCLC cell lines 
H1299 and HCC827

After overexpression of PP4R1 in vitro, cell  
proliferation, colony growth, migration and invasion 
abilities were significantly enhanced

[115]

RRBP1 Increased expression in NSCLC cell lines 
A549, PC9, and H1299

Positively correlated with shorter overall survival in 
LUAD patients

[25]

SCD1 Up-regulated in LUAD tissues (vs. normal 
tissues)

Associated with poor prognosis in patients with early 
LUAD

[121]

TIPRL High levels in LUAD tissue and A549 Positively correlated with tumor malignancy and con-
tribute to cell survival

[114]

TG2 Higher level in A549 TG2 promotes proliferation through AKT activation [113]
XBP1s Up-regulated in LUAD tissues (vs. normal 

tissues)
Closely related to patient survival [101]

XBP1s Up-regulated in NSCLC tissues (vs. normal 
tissues)

Correlation with NSCLC TNM stage, lymph node metas-
tasis, and poor prognosis

[103]

tize resistant tumor cells by modulating ER 
stress [116]. Numerous studies indicate that 
cancer stem cells play a significant role in che-
motherapy resistance [117, 118]. The enzyme 
stearoyl-CoA desaturase 1 (SCD1) has been 
linked to poor prognosis and lower survival 
rates in LUAD, regulating the survival and prolif-
eration of LUAD stem cells through YAP/TAZ 
activation [119, 120]. Notably, blocking SCD1 
with the SCD1 inhibitor MF-438 can induce  
ER stress responses and enhance autophagy, 
thereby inhibiting the formation of three-dimen-
sional (3D) LUAD spheroids and reversing cis-
platin resistance [121]. Therefore, targeting ER 
stress response mechanisms may provide a 
promising strategy to combat chemoresistance 
in NSCLC.

Therefore, targeting UPR components or fac-
tors associated with ER stress signaling holds 
promise as a therapeutic strategy against ER 
stress-related pathologies, presenting novel 
avenues for the treatment of NSCLC. All the 

above factors that mediate NSCLC through ER 
stress signaling are summarized in Table 2.

Investigations into drugs aiming at ER homeo-
stasis in NSCLC

In recent years, with growing recognition of 
chronic ER stress in cancer cells and the criti- 
cal roles of associated UPR in the progression 
of NSCLC, modulation of UPR signaling compo-
nents has emerged as a means to either stimu-
late or attenuate protein folding, thereby facili-
tating anticancer strategies. To date, however, 
the mechanisms defining the thresholds at 
which UPR signaling transitions from adaptive 
cell protection to pro-apoptotic cell death, or 
vice versa, remain to be elucidated. Activation 
of ER stress is closely related to signaling  
pathways such as autophagy [33-35], oxida- 
tive stress [31], apoptosis [25-27], Ca2+ homeo-
stasis [36, 122], metabolic disorders [39, 123], 
and inflammatory response [124]. As a result, 
there is burgeoning interest in exploring UPR as 
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a potential therapeutic target. Next, we will 
review drugs targeting ER stress signaling in 
NSCLC.

ER stress-mediated autophagy induced by 
drugs

When developing new drugs for the treatment 
of NSCLC, researchers discovered that certain 
drugs can trigger ER stress-mediated autopha-
gy. Autophagy can exert either tumor-suppres-
sive or tumor-promoting functions depending 
on the stage and environment of tumor devel-
opment [125, 126]. This suggests that these 
drugs may exert anti-tumor or protective effec- 
ts through ER stress-mediated autophagy. For 
instance, crassolide activates the ER stress 
pathway through ROS accumulation, leading  
to increased autophagosome formation and 
resulting in achieving anti-tumor effects [127]. 
Of course, other molecules have also played a 
role in cytotoxic autophagy in the treatment of 
NSCLC, such as the antidepressant fluoxetine, 
the anticancer drug ABTL0812 (autophagy 
inducer), and total ginsenosides [33, 35, 128]. 
Conversely, in A549 cells treated with ra- 
foxanide, the compound significantly induced 
apoptosis via ER activation, while autophagy is 
activated to prevent ER-induced cell apoptosis 
[129]. Similarly, H1, a bromized derivative of 
tetrandrine, induces ER stress-mediated ex- 
pression of eDR5 and apoptosis in NSCLC  
cells. H1-induced autophagy plays a protective 
role in NSCLC cells and effectively attenuates 
caspase-mediated cell apoptosis [130]. Cyto- 
protective autophagy has also been observed 
when other molecules (salinomycin, cucurbita-
cin E, the natural product toosendanin, and 
glycyrrhetinic acid) are utilized in the treatment 
of NSCLC [34, 131-133]. These results indicate 
that ER stress-mediated autophagy plays a  
significant role in maintaining the survival of 
NSCLC cells within the challenging tumor micro-
environment. However, the anti-apoptotic or 
pro-apoptotic effects of autophagy are influ-
enced by various molecules, and the underlying 
mechanisms remain unclear, warranting fur-
ther investigation. Additionally, these studies 
suggest a need for therapeutic strategies that 
target ER stress signals or autophagy in cancer 
treatment.

Drugs inducing ER stress-mediated cell death

ER stress, as a crucial biological response fol-
lowing drugs treatment, has been proven to 

trigger a variety of cell death mechanisms, 
including caspase-dependent [27] or caspase-
independent apoptosis [134], as well as non-
apoptotic cell death modes such as paraptosis 
[135], ferroptosis [136], and immunogenic cell 
death (ICD) [137, 138], profoundly impacting 
the fate of tumor cells.

ER stress-mediated apoptosis: Multiple cellular 
stimuli may impair protein homeostasis in the 
ER, and activate the UPR to cope with this 
state. However, if the UPR fails to restore 
homeostasis and ER stress is not alleviated, 
cell death signals will be activated, leading to 
cell apoptosis. A variety of cellular stimuli may 
impair protein homeostasis in the ER and acti-
vate the UPR to cope with this state. However,  
if the UPR of the ER cannot reestablish homeo-
stasis and ER stress cannot be relieved, cell 
death signals will be activated, leading to cell 
apoptosis. The combination treatment of Ica- 
riside II and cisplatin induces cell death by acti-
vating three major sensors of the ER stress 
response (PERK, IRE1, and ATF6), as well as 
promoting caspase-dependent apoptosis in 
NSCLC cell lines [26]. Ciclopirox induces PERK-
dependent ER stress by impairing mitochondri-
al function and enhancing ROS generation in 
NSCLC cells, activating a caspase-dependent 
apoptotic pathway leading to NSCLC cell apop-
tosis [27]. Regorafenib enhances the expres-
sion of NADPH oxidase 5 (NOX5), which incre- 
ases ROS production, activates ER stress and 
induces caspase-dependent cell apoptosis 
[30]. Curcumol directly inhibits the enzyme 
activity of NRH: quinone oxidoreductase 2 
(NQO2), leading to ROS generation and ER 
stress, which triggers caspase-dependent  
cell apoptosis in a CHOP-dependent manner 
[139]. Moreover, caspase-independent path-
ways also contribute to cell apoptosis. It has 
been reported that (Z)3,4,5,4’-trans-tetrame- 
thoxystilbene (TMS), a novel analogue of re- 
sveratrol, significantly induces ER stress and 
leads to caspase-independent cell apoptosis in 
gefitinb-resistant NSCLC cells by elevating the 
intracellular Ca2+ levels [134].

Although pharmaceutical treatment can lead  
to either caspase-dependent or caspase-inde-
pendent apoptosis due to ER stress, it remains 
unclear under which specific circumstances the 
ER selects one pathway over the other.

ER stress-mediated paraapoptosis: In addition 
to caspase-dependent and caspase-indepen-
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dent apoptosis triggered by ER stress, certain 
drugs can induce alternative forms of cell 
death. Paraapoptosis is a caspase-indepen-
dent form of programmed cell death that lacks 
typical morphological changes associated with 
apoptosis and is characterized by swelling of 
the ER and/or mitochondrial and cytoplasmic 
vacuolation [140]. Recent studies have demon-
strated that ER stress-mediated paraapop- 
tosis plays an important role in the antitumor 
effects of various drugs [141, 142]. For 
instance, it has been reported that chalco-
moracin and epimedokoreanin B both induce 
paraapoptotic-like cell death by activating ER 
stress [28, 135]. Additionally, another study 
found that the combination of afatinib and 
celastrol activated ER stress through ROS 
accumulation and mitochondrial Ca2+ over- 
load, thereby inducing paraapoptotic-like cell 
death in NSCLC cells [143]. This type of para-
apoptotic cell death suggests that traditional 
methods for detecting apoptosis may be insuf-
ficient to fully evaluate the anticancer efficacy 
of drugs. From a clinical perspective, a deeper 
understanding of the mechanisms underlying 
drug-induced paraapoptotic-like cell death can 
inform rational drug use and help mitigate 
unnecessary toxic side effects.

ER stress-mediated ICD: ICD is also a form of 
programmed cell death that can activate adap-
tive immune responses in immunocompetent 
hosts [144]. It is characterized by the pre- 
apoptotic translocation of calreticulin (CRT) 
from the ER to the cell surface, which occurs as 
a result of an ER stress response accompani- 
ed by the phosphorylation of eIF2α. Research 
has been shown that CRT is overexpressed at 
both the cytoplasmic and cellular membrane 
levels in NSCLC cells [141], suggesting a poten-
tial association between NSCLC and ICD. 
Furthermore, Jitka et al. find that in certain  
subgroups of NSCLC, the ER stress response 
leads to CRT expression and exposure, which  
in turn triggers the activation of adaptive 
immune responses within the tumor microenvi-
ronment, thereby facilitating anticancer im- 
mune surveillance [145]. It is understood that 
ICD is the most relevant type of cell death 
under ER stress, as the ER plays a central role 
in nearly all instances of ICD [146, 147]. For 
example, marsdenia tenacissima extract (MTE) 
induced ICD in NSCLC cells by inhibiting AXL 
phosphorylation [137]. When ER stress inhibi-
tors are added to MTE-treated cells, changes 
are observed in the activity of ICD hallmark 

molecules, specifically adenosine-5’-triphos-
phate (ATP) and high mobility group box 1 
(HMGB1), indicating that MTE triggers ER 
stress-related ICD [137]. Additionally, afzelin 
can inhibit the progression of NSCLC by induc-
ing ICD [148]. Afzelin activates ER stress and 
induces ICD by targeting NQO2 (a flavin ade- 
nine mononucleotide-dependent quinone oxi-
doreductase), which inhibits cell viability and 
proliferation in A549 and H1299 cells, leading 
to an increased rate of apoptosis [148]. The 
Iridium (III) complex (Ir1), which contains an N, 
N-bis (2-chloroethyl)-azane derivate, can act as 
an ER-targeted ICD inducer in NSCLC, and pro-
duce long-lasting antitumor immunity by acti-
vating ICD in A549 cells [149].

However, these ICD inducers are currently in 
the preclinical research stage, and their safety 
has yet to be thoroughly evaluated. Therefore, 
there is still a considerable distance to cover 
before ER stress-related ICD research pro-
gresses to clinical trials.

ER stress-mediated ferroptosis: The character-
istic of ferroptosis is that under the action of 
ferrous iron or lipoxygenase, it catalyzes the 
lipid peroxidation in unsaturated fatty acids 
that are abundantly expressed on the cell mem-
brane, facilitated by ferrous iron or lipoxygen-
ase. This process is regulated by the antioxi-
dant system, which modulates the activity of 
the core enzyme glutathione peroxidase 4 
(GPX4), ultimately leading to cell death [150, 
151]. There is growing evidence that ER stress-
mediated ferroptosis can inhibit tumor initia-
tion and progression in both tumor and immune 
cells. However, the research on ER stress-medi-
ated ferroptosis in NSCLC remains limited. 
Currently, only fascaplysin has been identified 
as a compound that activates the ER stress 
response via SLC7A1, inducing iron-dependent 
cell death in A549 cells [136]. Although ER 
stress-mediated ferroptosis has been identi-
fied in NSCLC, the underlying mechanisms still 
require thorough investigation. The discovery of 
ferroptosis, particularly its intrinsic connection 
to ER stress, may pave the way for future 
research and potentially serve as a novel thera-
peutic target for NSCLC.

Several drugs that target ER stress signaling  
for the potential therapy of NSCLC, described 
above or in previous studied, are summarized 
in Table 3.
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Table 3. Drugs aiming at ER homeostasis in NSCLC

Drug UPR  
mediator In vitro or vivo model Mechanisms of action and effects Clinical applications Reference

ABTL0812 ATF4 A549 ABTL0812 increases the levels of cellular long-chain dihy-
droceramides by impairing DEGS1 activity, which resulted in 
sustained ER stress and activated UPR via ATF4-DDIT3-TRIB3 
that ultimately promotes cytotoxic autophagy and cell death in 
cancer cells.

ABTL0812 in combination with 
paclitaxel/carboplatin was studied 
in a phase II study in patients with 
squamous NSCLC.

[33, 152]

Ciclopirox PERK, eIF2α, 
ATF4 and 
CHOP

H1299 and 95D Ciclopirox impairs mitochondrial function and enhances the 
production of ROS in cells Enhanced ROS activates UPR in the 
ER via PERK-eIF2α-ATF4-CHOP to drive Caspase-3-dependent 
apoptosis, ultimately inhibiting NSCLC cell migration and inva-
sion.

Ciclopiroxx is mainly used in clinical 
practice to treat fungal infections.

[27]

Crassolide PERK H460 Crassolide activates the ER stress pathway by increasing the 
protein levels of p-eIF2α and CHOP via ROS, thereby inducing 
autophagy-mediated cell death and G2/M blockade in NSCLC 
cells.

In the stage of cell experiments. [127]

Curcumol CHOP A549 and H1299, xeno-
graft models

Curcumol directly targets NQO2 to cause ROS generation, 
which activates ER Stress-CHOP signaling to upregulate DR5, 
sensitizing NSCLC cell to TRAIL-induced apoptosis, thus achiev-
ing synergistic killing effect with TRAIL on cancer cells.

It has progressed to animal experi-
ments.

[139]

Fluoxetine PERK, ATF4 
and CHOP

H460 and A549 Triggering the ATF4-AKT-mTOR signaling pathway, inducing cell 
cycle arrest and autophagy, and inhibiting the growth of cancer 
cells.

Fluoxetine is one of the latest clinical 
anti-depressants. Fluoxetine is still 
in the cell experiments for NSCLC 
treatment.

[128]

H1 GRP7, IRE1α, 
p-eIF2α and 
CHOP

A549, Calu-1 and H157 H1 induces DR5 dependent cell apoptosis by enhancing the 
ER stress signaling pathway, while triggering protective au-
tophagy, effectively reducing caspase mediated cell apoptosis.

In the stage of cell experiments. [130]

Icariside II PERK, IRE1 
and ATF6

Lewis lung carcinoma 
(LLC) cells, H1299 and 
A549, xenograft models

Icariside II enhances cisplatin-induced apoptosis by activating 
ER stress, including three branches of UPR signaling, PERK, 
IRE1, and ATF6, and the downstream PERK-eIF2α-ATF4-CHOP 
pathway.

It has progressed to animal experi-
ments.

[26]

Rafoxanide PERK, IRE1 
and ATF6

A549 and H1299, xeno-
graft models

Rafoxanide induces ERs and activates all three UPR pathways 
in cells, thereby inducing apoptosis and cell cycle arrest. At the 
same time, autophagy was activated to partially alleviate ER 
stress.

Rafoxanide is an antihelminthic drug 
that is used to combat fluke infec-
tions in ruminant. Rafoxanide has 
progressed to animal experiments for 
NSCLC treatment.

[129]

Regorafenib ATF4, p-eIF2α H1299 and PC-9, xeno-
graft models

Significantly enhancing cisplatin-induced lung cancer cytotoxic-
ity by activating ROS-mediated ER Stress, c-Jun N-terminal ki-
nase (JNK), and p38 mitogen-activated protein kinase (MAPK) 
signaling pathways.

Regorafenib in combination with 
toripalimab for colorectal cancer has 
been studied in phase Ib/II. Rego-
rafenib in the treatment of NSCLC has 
been performed in a mouse xenograft 
model.

[30, 153]
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Salinomycin ATF4 and 
CHOP

A549, Calu-1 and H157 Salinomycin stimulates ER stress and mediates autophagy 
via the ATF4-DDIT3/CHOP-TRIB3-AKT1-MTOR axis. While ER 
stress-mediated autophagy protects cells from salinomycin-
induced apoptosis.

In the stage of cell experiments. [34]

TMS PERK, p-eIF2α H1975 TMS increases intracellular [Ca2+] levels by directly binding to 
SERCA, leading to ER stress and AMPK activation, inducing 
caspase independent apoptosis and autophagy.

In the stage of cell experiments. [134]

Toosendanin ATF6, IRE1, 
GPR78 and 
CHOP

A549, xenograft models Aggravating Ca2+ overload, ER stress thus ultimately triggering 
apoptosis; Inducing autophagy, recruiting membrane DR5, and 
subsequently antagonizing apoptosis sensitivity.

Toosendaninhas progressed to animal 
experiments for NSCLC treatment.

[133]

Total ginsenosides ATF4 and 
CHOP

A549 and PC-9 Inducing autophagic cell death by mediating autophagy 
through the ATF4-CHOP-AKT1-mTOR axis.

Total ginsenosides are in clinical trials 
for bone metabolism and in cellular 
trials for the treatment of NSCLC.

[35, 154]

Afatinib and 
celastrol

ATF6, IRE1 
and CHOP

H23 and H292, xenograft 
models

Inducing paraptosis by activating ER stress via intracellular 
ROS accumulation and mitochondrial Ca2+ overload.

Progressed to animal experiments for 
NSCLC treatment.

[143]

Chalcomoracin GPR78 and 
CHOP

H460, xenograft models Inducing paraapoptotic-like cell death and inhibiting cell prolif-
eration via ER stress and activation of MAPK pathway.

Progressed to animal experiments for 
NSCLC treatment.

[28]

Epimedokoreanin 
B

PERK, ATF6 
and IRE1α

A549 and NCI-H292, 
xenograft models

Epimedokoreanin B induces cell death through inducing ER-
related paraptosis accompanied by autophagosome accumula-
tion. During this process, all three UPR pathways are activated.

Progressed to animal experiments for 
NSCLC treatment.

[135]

Afzelin PERK, eIF2α, 
GRP78 and 
CHOP

A549 and H1299 Afzelin inhibits lung cancer progression by activating ER stress 
through upregulation of p-PERK and p-eIF2α levels via NQO2, 
which increases the levels of ATP, HMGB1, and CRT, leading to 
ICD in cells.

In the stage of cell experiments. [148]

MTE ATF6, GRP-78, 
ATF4, XBP1s 
and CHOP

PC-9 and H1975 MTE reduces mitochondrial membrane potential and in-
creased ROS production. At the same time, ER stress-related 
proteins and ICD related markers (ATP, HMGB1) are upregu-
lated, thereby inhibiting tumor progression.

In the stage of cell experiments. [137]

Fascaplysin ATF4 A549, xenograft models Fascaplysin induces apoptosis by promoting elevated ROS and 
induces iron death by regulating the GPX4 signaling pathway 
via ER stress.

Progressed to animal experiments for 
NSCLC treatment.

[136]

DEGS1: delta 4-desaturase, sphingolipid 1; DDIT3: DNA damage inducible transcript 3; TRIB3: tribbles pseudokinase 3.
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Currently, therapeutic strategies for ER stress 
have gradually become a research hotspot, but 
the potential toxicity and drawbacks of these 
drugs still need to be thoroughly explored.  
Most of the drugs in Table 3 are currently in the 
in vitro phase or in animal studies, and only 
ABTL0812, Regorafenib, and Total ginsen-
osidesi have been tested and studied in clinical 
trials, but only ABTL0812 was used in a phase 
II study in patients with squamous NSCLC  
[152-154]. From these conducted clinical stud-
ies, it is reasonable to speculate that these 
drugs also have side effects in clinical applica-
tions, for example, gastrointestinal toxicity: 
decreased appetite, weakness, diarrhea, nau-
sea, and vomiting [152-155]; hepatotoxicity: 
abnormalities of hepatic function, elevated 
aminotransferases and bilirubin [153]; im- 
mune-related toxicity: may cause immune 
pneumonia or skin toxicity, such as rash [153, 
154]; cardiotoxicity: patients may develop car-
diac arrhythmias [153]; hematologic adverse 
events: neutropenia, anemia, and thrombocy-
topenia [152, 153]. Of course, there are other 
adverse effects, such as alopecia, sudden 
death, infectious shock, neurotoxicity, cough, 
dysgeusia, headache, myalgia, abdominal pain 
and hyperthyroidism. Due to genetic polymor-
phisms and tumor heterogeneity, the response 
to ER stress therapy varies significantly am- 
ong patients [152]. In addition, activation of 
GPR78 may lead to drug resistance in tumor 
cells through activation of bypass signaling 
pathways [156]. Therefore, although targeting 
ER stress therapy provides a new therapeutic 
direction for NSCLC, its toxicity and drawbacks 
cannot be ignored.

Conclusion and future outlook

The core role of ER stress in the development 
of NSCLC has been identified, and there are 
still many new questions to be addressed. 
However, it is now clear that ER stress inte-
grates many anti-tumor and tumor-suppressing 
genes involved in the development of NSCLC. 
Given the multiple roles of ER stress in the 
treatment of NSCLC, the following suggestions 
are intended to guide the future direction of 
drug development: (a) Exploration of combina-
tion therapy: Since a single apoptotic pathway 
often fails to address the needs of all patients, 
the combined use of drugs that can induce 
apoptosis, ferroptosis, and ICD may significant-
ly improve the treatment effect and reduce the 

emergence of drug resistance. (b) Personalized 
treatment approaches: Gaining deeper insights 
into the specific manifestations of ER stress 
within each NSCLC patient allows for tailored 
treatment plans that increase specificity while 
decreasing the likelihood of adverse reactions. 
(c) Discovery of biomarkers: Actively looking  
for biomarkers related to ER stress to predict 
drug responsiveness and disease prognosis, 
which is helpful for early diagnosis and timely 
adjustment of treatment strategies. (d) Dee- 
pening basic research: Intensifying scientific 
investigation into the regulatory mechanisms  
of ER stress, especially its dynamic interplay 
with pathways of cell death, provides a solid 
theoretical foundation for the discovery and 
validation of innovative drugs.

In summary, ER stress-related UPR compo-
nents play a central role in the progression  
and treatment of NSCLC. It not only reflects the 
delicate balance of the intracellular environ-
ment but also serve as a critical link between 
the effectiveness of chemotherapeutics and 
decisions of cellular fate. In the future, through 
a deeper understanding of the molecular  
mechanisms of ER stress and their roles in 
drug responses, we will be able to design more 
precise and effective therapeutic strategies. 
This aims to improve the prognosis for NSCLC 
patients and heralds a new chapter in combat-
ing this stubborn form of cancer.
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