
Am J Cancer Res 2025;15(5):2022-2040
www.ajcr.us /ISSN:2156-6976/ajcr0162876

https://doi.org/10.62347/EGUX7327

Original Article
Identification of lipid metabolism-related  
marker genes in colorectal cancer 

Bo Gao1, Jitao Hu1, Hao Wu2, Baokun Li1

1Second Departments Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, 
China; 2Clinical Laboratory of East Hospital, The Fourth Hospital of Hebei Medical University, Shijiazhuang 
050000, Hebei, China

Received December 23, 2024; Accepted April 3, 2025; Epub May 15, 2025; Published May 30, 2025

Abstract: Objective: To identify lipid metabolism associated biomarkers in colorectal cancer (CRC). Methods: To 
refine our list of candidate genes, we utilized the Molecular Complex Detection (MCODE) plug-in within Cytoscape 
software and performed protein-protein interaction (PPI) network analysis to extract hub genes centrally located 
within the networks, which potentially possess important regulatory functions. Hub gene-associated miRNAs and 
transcription factors (TFs) were analyzed using miRNet. Immunohistochemical staining was employed to verify 
the expression levels of hub genes in clinical CRC tissues. Concurrently, cellular experiments were designed to 
explore the functional roles of the hub gene DHCR7 at the cellular level, providing scientific evidence for the 
precision treatment of CRC. Results: A total of 9008 differentially expressed genes (DEGs) were identified between 
CRC and control samples. Gene Set Enrichment Analysis (GSEA) revealed that these DEGs were mainly enriched 
in biological processes such as myogenesis, adipogenesis, oxidative phosphorylation, and fatty acid metabolism. 
Using Weighted Gene Co-expression Network Analysis (WGCNA), we found that the pink and yellow modules were 
most significantly associated with CRC. Cytoscape analysis identified six hub genes (DHCR7, FABP4, FASN, FAXDC2, 
PTGIS, SLC27A6). Their diagnostic performance was verified in the external GSE23878 dataset. Clinical studies 
showed a downregulation trend in the expression of FAXDC2 and PTGIS in CRC tissue samples, while FASN and 
DHCR7 were up-regulated in colon cancer tissues. However, the expression trend of FABP4 was inconsistent with 
previous bioinformatics predictions. Further cellular experimental results demonstrated that DHCR7 knockdown 
significantly inhibited CRC cell proliferation and induced apoptosis, which strongly supported the previous bioinfor-
matics analysis. Conclusion: Our research successfully identified six hub genes in CRC through a series of rigorous 
analyses and experimental validations. These findings provide important molecular basis for further investigation 
into the pathogenesis and progression of CRC.
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Introduction

Cancer incidence and mortality rates have 
remained high for many years, posing a signifi-
cant threat to human health. It was predicted 
that by 2020, approximately 19.3 million new 
cancer cases would be diagnosed worldwide, 
while nearly 10 million cancer patients would 
die from the disease. In China, this situation is 
particularly severe. Over the past decade, the 
incidence and mortality rates of colorectal can-
cer (CRC) have steadily increased, emerging as 
a prominent health concern [1]. Intermediate 
and advanced (stage III-IV) CRC accounts for 
the majority of cancer-related deaths. Although 

current treatment strategies, such as surgical 
resection, systemic chemotherapy, have impro- 
ved patient outcomes, their efficacy remains 
limited due to the lack of actionable tumor-spe-
cific antigens [2]. Therefore, further exploration 
of diagnostic biomarkers and therapeutic tar-
gets is crucial to develop more precise and 
effective interventions for CRC patients. Cur- 
rently, molecular targeted therapy has become 
a new trend and research direction in the field 
of CRC treatment due to its high efficiency and 
low toxicity. Accordingly, studying the molecular 
mechanisms underlying CRC progression and 
identifying novel biomarkers for targeted thera-
py are expected to benefit patient outcome.
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https://doi.org/10.62347/EGUX7327



Identifying lipid biomarkers in CRC

2023	 Am J Cancer Res 2025;15(5):2022-2040

Lipid molecules, including fatty acids, glycer-
ides, and other lipids, are fundamental struc-
tural components of life. In addition, they play a 
crucial role as signaling molecules in cellular 
activities and are involved in energy storage 
and metabolism [3]. Lipid metabolism is often 
reprogrammed in tumors, and cancer cells 
exploit aberrant lipid metabolism to obtain 
energy, biofilm components, and essential sig-
naling molecules that support their growth [4]. 
Lipid metabolism is intricately linked to CRC 
development. Besides the well-known role of 
lipid-related enzymes in providing energy and 
building blocks for cancer cells, recent studies 
have also shown that lipid metabolism-related 
genes can regulate the tumor microenviron-
ment. For example, lipid-associated signaling 
pathways can influence the infiltration and 
function of immune cells in the tumor microen-
vironment, which in turn affects the immune 
response against CRC cells. Moreover, abnor-
mal lipid metabolism can lead to the produc-
tion of bioactive lipid species that modulate 
cell-cell communication and promote tumor 
cell invasion and metastasis [5]. Dysregulated 
lipid metabolism is widely recognized as being 
closely related to the development of various 
cancers, including CRC. For example, study has 
shown that in CRC, the expression of squalene 
cyclooxygenase, a key rate-limiting enzyme in 
cholesterol biosynthesis pathway, is significant-
ly upregulated. This upregulation can promote 
tumor formation through intracellular mecha-
nisms and metabolic regulation of gut microbio-
ta [6]. DAI et al. [7] found that PTPRO inhibited 
CRC development and metastasis by regulating 
and reprogramming lipid metabolism. The rate-
limiting enzyme for fatty acid (FA) synthesis, 
acetyl coenzyme A carboxylase (ACC), consists 
of two isoforms (ACC1 and ACC2), and enhanc- 
ed expression of ACC1 promotes CRC tumor 
progression and lipid synthesis [8]. Fatty acid 
synthase (FASN), the main enzyme responsible 
for fatty acid synthesis, is upregulated in CRC. 
Study has shown that elevated FASN expres-
sion correlates with poor prognosis in CRC and 
can rescue CRC cells from oxaliplatin-induced 
apoptosis [9]. Stearoyl coenzyme A desaturase 
1 (SCD1) catalyzes the synthesis of unsaturat-
ed fatty acids. Literature reports indicate that 
SCD1 is highly expressed in CRC tissues, and 
its expression level is negatively correlated with 
the prognosis of CRC patients. In vitro experi-
ments have further confirmed that SCD1 accel-

erates CRC progression by promoting epitheli-
al-mesenchymal transition (EMT) [10]. The 
above research emphasizes the crucial role of 
lipid metabolism-related genes in the patho-
genesis and progression of CRC.

Since the turn of the century, gene sequencing 
technology has evolved rapidly, enabling the 
identification of molecular prognostic markers 
for an increasing number of cancers, including 
CRC. Recent reports suggest that genomic data 
outperform conventional staging systems in 
assessing prognostic risk and predicting the 
benefit of adjuvant chemotherapy. Therefore, 
screening molecular markers using big data at 
the transcriptome level holds great promise. In 
this comprehensive study, we leveraged the 
resources of the TCGA database to obtain RNA 
sequencing (RNA-seq) data and detailed clini-
cal information from CRC tumor samples. We 
then screened lipid metabolism-related genes 
from a molecular characteristics database and 
rigorously validated them through a series of 
experimental methods, aiming to identify key 
genes closely related to lipid metabolism in 
CRC.

Materials and methods

Data source

We retrieved RNA sequencing (RNA-seq) data 
and corresponding clinical features for over 
600 tumor samples from the Cancer Genome 
Atlas (TCGA) database, encompassing cases  
of TCGA-Colon Adenocarcinoma (COAD) and 
TCGA-Rectum Adenocarcinoma (READ), along 
with 51 control samples, all sourced from the 
official website. Additionally, we obtained the 
GSE23878 dataset from the Gene Expression 
Omnibus (GEO), which contained 35 CRC sam-
ples and 24 control samples. For our research, 
we designated the TCGA-CRC dataset as the 
training set and the GSE23878 dataset as the 
external validation set. On this basis, we metic-
ulously screened out 1,426 genes closely relat-
ed to lipid metabolism from the Molecular 
Signatures Database (MSigDB), laying a solid 
foundation for subsequent analyses.

Screening of DEGs

In the context of TCGA-CRC, we utilized the 
DESeq2 package [PMID: 25516281] to identify 
differentially expressed genes (DEGs) between 
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CRC and control samples, using the criteria of 
adj. P < 0.05 and |Log2 fold change| > 1. 
Visualization of these DEGs was achieved 
through heatmaps and volcano plots, generat-
ed by R packages such as “pheatmap”. Enrich- 
ment pathway analysis was performed using 
Gene Set Enrichment Analysis (GSEA). The sig-
nature gene sets were obtained from MSigDB 
Collections.

Weighted gene co-expression network analysis 
(WGCNA) 

We adopted the WGCNA R package to construct 
a gene co-expression network within the TCGA-
CRC database. During the initial processing 
phase, we utilized the ‘hclust’ function to clus-
ter the samples, effectively eliminating outliers 
and ensuring data quality. Subsequently, using 
the pick soft-threshold function from the 
WGCNA package, we carefully selected the 
optimal soft threshold to ensure the regulatory 
relationships among genes to conform to the 
characteristics of a scale-free network distribu-
tion. Based on this, we constructed a neighbor-
hood connectivity matrix among gene expres-
sion profiles and converted it into a Topological 
Overlap Matrix (TOM), from which we built a 
hierarchical clustering tree. Using dynamic 
pruning methods, we successfully identified 
multiple gene co-expression modules. Finally, 
we thoroughly calculated the correlations 
between these modules and clinical groups, 
selecting the module with the strongest corre-
lation. The genes within this module were  
taken as the focus of our subsequent analyses 
to further explore their potential biological 
significance.

Functional enrichment analysis

Functional annotation of candidate genes was 
presented using an R package, including GO 
(Gene Ontology) and KEGG (Kyoto Encyclopedia 
of Genes and Genomes) pathway analyses.  
GO was particularly useful for dissecting the 
cellular components (CC) and other biological 
aspects of candidate genes. Statistical signifi-
cance was considered when the adjusted 
P-value was less than 0.05.

Construction of PPI network and identification 
of hub genes

The PPI (Protein-Protein Interaction) network 
was constructed using the STRING (Search Tool 

for the Retrieval of Interacting Genes/Proteins) 
database. Afterward, we employed software 
and its plugin to screen for hub genes. The 
“GOSemSim” package was used to calculate 
the semantic similarity of gene classes. The 
Corrplot software package was used to analyze 
the correlation between hub genes. To further 
investigate the potential role of hub genes in 
immunotherapy, we adopted the Tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm to 
assess the immunotherapy sensitivity of CRC 
patients. 

Construction of hub genes-miRNA regulatory 
network

In this study, we leveraged the miRNet data-
base to accurately predict the potential roles  
of upstream transcription factors (TFs) and 
microRNAs (miRNAs). To visually represent 
these complex interactions, we used Cytoscape 
software to construct a detailed miRNA/TF-hub 
gene network diagram. In this network, blue 
nodes represent the crucial hub genes that 
play a central role in the entire regulatory net-
work; purple nodes symbolize TFs, which influ-
ence various cellular functions by regulating 
gene expression; and orange nodes stand for 
miRNAs, small RNA molecules that regulate 
gene expression at the post-transcriptional 
level.

ROC curve analysis

ROC (Receiver Operating Characteristic) analy-
sis was conducted using the “pROC” package 
in R. The primary purpose of this analysis was 
to evaluate the diagnostic value of central 
genes for CRC. Specifically, a central gene was 
considered to have practical diagnostic value 
for the disease if its AUC (Area Under the  
Curve) value exceeded 0.7, indicating a high 
ability to distinguish CRC patients from healthy 
individuals. 

Clinical information

From January 2019 to January 2022, the 
General Surgery Department of the Fourth 
Hospital of Hebei Medical University admitted 
and treated a total of 54 CRC patients. Among 
these, 31 were male and 23 were female. The 
youngest patient was 26 years old, and the old-
est was 79 years old, with an average age of 
64.31 years (standard deviation = 9.29). Tumor 
location: 29 cases of rectum and 25 cases of 
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colon. Lymph node metastasis was observed in 
18 cases. Tumor diameters were ≤ 5 cm in 40 
cases and > 5 cm in 14 cases. Regarding TNM 
stage, 37 cases were classified as stage I-II, 
and 17 cases were classified as stage III. Tumor 
differentiation was high or moderate in 35 
cases, and low in 19 cases. The study was 
approved by the ethics committee of the Fourth 
Hospital of Hebei Medical University, and all 
patients provided informed consent. Inclusion 
criteria: diagnosis of CRC confirmed by postop-
erative pathological examination; all patients 
were primary cases; complete clinical data. 
Exclusion criteria: age < 18 years or > 80 years; 
preoperative neoadjuvant radiotherapy or tar-
geted therapy; recurrent CRC, hereditary CRC, 
or combination of other malignant tumors; seri-
ous organ failure; pneumonia, urinary tract 
infection, or other infectious diseases.

Immunohistochemical staining

During surgery, portions of CRC tumor tissue 
and adjacent tissue (more than 5 cm from the 
tumor edge) were obtained, with each sample 
carefully preserved at approximately 100 milli-
grams. The CRC tumor and adjacent tissues 
were then placed in a standard 10% formalin 
solution for 12 hours of fixation. After fixation, 
the tissues were embedded in paraffin and sec-
tioned. The primary antibody was added to the 
sections and incubated at 4°C overnight. The 
following day, HRP-conjugated sheep anti-rab-
bit secondary antibody was added and incubat-
ed at 37°C for 60 mins. DAB color development 
was performed for 5 min, followed by re-stain-
ing with hematoxylin. Hydrochloric acid alcohol 
was used for differentiation, gradient ethanol 
was used for dehydration. Finally, the samples 
were sealed with neutral gum and observed 
under a microscope. 

Cell culture and transfection procedures

DEME medium was used to culture the SW620 
and HT-29 cell lines, supplemented with 10% 
fetal bovine serum, 100 U/ml penicillin, and 
100 μg/ml streptomycin to ensure optimal cell 
growth. The cells were cultivated in a standard 
incubator at 37°C with 5% CO2. When cell con-
fluence reached approximately 80%, 0.25% 
trypsin-EDTA was used for cell passage. For 
transfection, cells in the logarithmic growth 
phase were selected and seeded into 6-well 
plates at a density of 5×105 cells per well. Then, 

DHCR7 shRNA and negative control (NC) shRNA 
were transfected into the cells, following the 
Lipofectamine 3000 reagent protocol, with 
three wells set up for each condition to ensure 
experimental accuracy. After a transfection 
period of 48-72 hours, relevant assays were 
conducted to assess gene function and eluci-
date the underlying mechanisms. 

Clonogenic cell assay

Cells in the logarithmic growth phase were har-
vested using trypsinization to prepare a single-
cell suspension, which was then evenly dis-
pensed onto 6-well plates at a density of 
approximately 500 cells per well, with three 
replicate wells for each condition. Subsequently, 
the cells were placed in DMEM medium con-
taining 10% fetal bovine serum and incubated 
in a constant-temperature incubator for 10 to 
14 days. After incubation, the medium was 
carefully removed, and the cells were washed 
with PBS. The cells were then fixed with 4% 
paraformaldehyde for 15 minutes and stained 
with 0.1% crystal violet for 10 minutes. To 
remove excess stain, the 6-well plates were 
rinsed with running buffer and air-dried. Finally, 
the plates were observed and counted under a 
microscope to assess changes in cell prolifera-
tion and analyze the impact of the target gene 
on CRC cell proliferation. 

Wound healing assay

The cells were evenly plated in a 6-well plate 
and cultured under appropriate conditions until 
they reached approximately 90% confluence, 
forming a dense monolayer. Next, a sterile 
200μl pipette tip was used to make a precise 
and uniform scratch on the monolayer, creating 
a clear wound area. The plate was subsequent-
ly rinsed multiple times with PBS solution to 
remove any cells that detached during the 
scratching. Serum-free medium was added, 
and the plate was placed in an incubator for 
continued culture. At regular intervals, the 
wound closure was observed under a micro-
scope, and images were captured for documen-
tation. Finally, the width of the scratch was pre-
cisely measured using ImageJ software, and 
the cell migration rate was calculated: Migration 
rage = Initial scratch width - Scratch width at 
each time point)/Initial scratch width × 100%. 
This calculation allowed us to assess the 
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changes in cellular migratory capacity following 
modulation of the target gene. 

Transwell invasion assay

Prior to the experiment, 8 μm-pore Transwell 
inserts were pre-coated with 50 μL of Matrigel 
matrix (thawed at 4°C) and incubated at 37°C 
for 4-6 hours to solidify. Cells at logarithmic 
phase were trypsinized, resuspended in serum-
free medium at 5×105 cells/mL, and 100 μL 
aliquots were seeded into the upper chambers 
while 600 μL of 10% FBS medium served as 
chemoattractant in the lower chambers. After 
24-hour incubation (37°C, 5% CO2), non-invad-
ed cells were removed by PBS washing and cot-
ton swab abrasion, while invaded cells on the 
membrane’s lower surface were fixed with 4% 
paraformaldehyde (20 min), stained with 0.1% 
crystal violet (15 min), and quantified by count-
ing five random microscopic fields per insert to 
determine invasive potential.

TUNEL assay for apoptosis detection

After transfection, the cells were evenly plated 
onto a 6-well plate pre-placed with cover glass-
es and further cultured until the desired cell 
density was reached. Subsequently, the origi-
nal growth medium was aspirated, and the 
cells were rinsed with PBS. The cells were fixed 
with 4% paraformaldehyde for half an hour. 
After fixation, the cells were rinsed again with 
PBS and permeabilized with Triton X-100 for 15 
minutes. Following permeabilization, the cells 
were rinsed once more with PBS. Next, the 
TUNEL assay was performed according to the 
manufacturer’s instructions: the TUNEL reac-
tion mixture was added to the cells and incu-
bated in a dark, humidified chamber at 37°C 
for 1 hour. After incubation, the cells were thor-
oughly washed with PBS and stained with DAPI 
to highlight the nuclei. After another wash with 
PBS, the samples were examined under a fluo-
rescence microscope, where green fluores-
cence (indicating apoptotic cells) and blue  
fluorescence (representing cell nuclei) were 
observed using excitation wavelengths of 450-
500 nm. Apoptotic cells were counted in ran-
domly selected areas, and the apoptosis rate 
was calculated as the percentage of apoptotic 
cells to the total cell count, to assess the 
impact of the target gene on cellular 
apoptosis. 

Reverse transcription quantitative PCR (RT-
qPCR)

Following the provided protocol, cells in their 
logarithmic growth phase were collected, and 
total RNA was isolated using TRIzol reagent. 
Subsequently, the purity and concentration of 
the RNA were assessed with a spectrophotom-
eter, revealing an A260/A280 ratio between 
1.8 and 2.0. Using a reverse transcription kit, 1 
ug of total RNA was reverse transcribed into 
complementary DNA (cDNA) under the follow-
ing conditions: 5 minutes at 25°C, 30 minutes 
at 42°C, and a final 5-minute treatment at 
85°C. Quantitative PCR was performed in a 20 
μl reaction volume using cDNA as the template. 
The qPCR program included an initial denatur-
ation at 95°C for 10 minutes, followed by 40 
cycles of amplification at 95°C for 15 seconds 
and 60°C for 1 minute, concluding with a melt-
ing curve analysis to confirm amplification 
specificity. To ensure reproducibility, three inde-
pendent experiments were conducted, and the 
relative expression level of the target gene was 
determined using the 2-ΔΔCt method, with 
GAPDH serving as the endogenous control. The 
experiments were repeated three times to 
ensure accuracy, allowing precise measure-
ment of gene expression changes. 

Western blot analysis

After a series of treatments, the cells were col-
lected, and total protein was extracted through 
a lysis process. Subsequently, the protein con-
centration was quantified using a BCA protein 
assay kit. Equal amounts of protein samples 
were mixed with loading buffer and subjected 
to heat denaturation at boiling temperature for 
5 minutes. Following this, the proteins were 
effectively separated by SDS-PAGE electropho-
resis, with the stacking gel voltage set at 80 V 
and the resolving gel voltage at 120 V. Upon 
completion of electrophoresis, the proteins 
were transferred to a PVDF membrane at a con-
stant current of 300 mA for 90 minutes. At 
room temperature, the PVDF membrane was 
blocked for 60 minutes using 5% skimmed 
milk. The membrane was then incubated over-
night at 4°C with a DHCR7-specific primary anti-
body and a β-actin antibody as a loading con-
trol. After washing, the membrane was incubat-
ed with a secondary antibody at room tempera-
ture for 1 hour and washed again three times 
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with TBST. The protein bands were observed 
using ECL chemiluminescent solution, and  
their intensities were quantified using ImageJ 
software. 

Statistical analysis

Statistical analyses were performed using R 
and SPSS software. Continuous data were 
expressed as mean ± standard deviation (x±s). 
For comparisons between two groups, an inde-
pendent sample t-test was used; for compari-
sons among multiple groups, one-way ANOVA 
was applied, with Tukey’s post-hoc test for  
pair-wide comparisons. Categorical data were 
expressed as counts and percentages, and dif-
ferences between groups were assessed using 
the chi-square test or Fisher’s exact test (for 
smaller sample sizes). To generate the Receiver 
Operating Characteristic (ROC) curve, the 
“pROC” package was used to calculate the 
Area Under the Curve (AUC), which served as a 
key indicator of diagnostic performance. An 
AUC value exceeding 0.7 was considered indic-
ative of a significant difference. The signifi-
cance level was set at 0.05, and a P-value less 
than 0.05 was considered statistically signifi-
cant. This meticulous approach to data analy-
sis ensured accurate interpretation of the 
experimental results, revealing the intrinsic sig-
nificance of the data and providing a solid sta-
tistical foundation for the study’s conclusions.

Results

DEGs in CRC and control

This study successfully collected RNA-seq data 
and clinical characteristics from over 600 
tumor samples, including cases of TCGA-colon 
adenocarcinoma and TCGA-rectal adenocarci-
noma, along with 51 normal control samples. 
Using these datasets, this study screened a 
total of 9008 DEGs, with more than 5000 
upregulated genes and over 3000 downregu-
lated genes (Figure 1A). As shown in Figure  
1B, in addition to the overall analysis of DEGs, 
we specifically focused on lipid metabolism-
related genes, including RETSAT, SLC51A, 
SLC22A5, PEX26, PHLPP2, CIPC, ETFDH, 
APPL2, UGP2, PDCD4, CLEC3B, GLTP, TEX11, 
BEST4, SLC25A34, GRIN2D, PDX1, CPNE7, 
SIM2, FOXQ1, CEMIP, MTHFD1L, TRIB3, AJUBA, 
CLDN1, and CST1. Among these, RETSAT, which 
is involved in retinol metabolism, was downreg-

ulated in CRC samples compared to controls. 
SLC51A, which is related to lipid transport, 
showed upregulated expression. These differ-
ential expression patterns suggest potential 
disruptions in lipid-related processes, like reti-
nol-based signaling and lipid transportation,  
in CRC. Furthermore, analysis indicated that 
these DEGs were primarily enriched in biologi-
cal processes such as myogenesis and adipo-
genesis (Figure 1C).

Construction of co-expression networks

Based on the sample clustering tree, we identi-
fied four significant abnormal samples, which 
are clearly presented in Figure 2A, 2B. After 
precise calculations, the optimal soft threshold 
power was determined to be 7, as intuitively dis-
played in Figure 2C. In the co-expression net-
work, we successfully identified 14 key mod-
ules, as detailed in Figure 2D. Furthermore,  
the results of the module-trait relationships 
revealed the highest correlation between the 
pink and yellow modules and CRC, as shown in 
Figure 2E. Thus, 1640 genes in the pink and 
yellow modules were selected for further 
investigation.

Functional enrichment analysis

An in-depth analysis was conducted on the 
gene intersections within the aforementioned 
modules, specifically focusing on the intersec-
tion of DEGs, lipid metabolism-related genes, 
and specific genes. Using a Venn diagram for 
visualization, we identified 41 candidate genes 
in this intersection, as shown in Figure 3A. 
Subsequently, GO analysis of these candidate 
genes revealed that they were primarily en- 
riched in processes such as lipid metabolism 
and fatty acid metabolism, as shown in Figure 
3B. In addition, KEGG enrichment analysis also 
indicated that these candidate genes were sig-
nificantly involved in processes such as the Ras 
signaling pathway, as shown in Figure 3C. 

PPI network and hub gene identif﻿ication 

We utilized the STRING database to construct  
a PPI network encompassing 41 candidate 
genes, as illustrated in Figure 4A. With the 
assistance of the MCODE plugin, we success-
fully identified six hub genes, as shown in Figure 
4B. Functional similarity analysis revealed that 
FAXDC2 scored the highest, as depicted in 
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Figure 4C. In addition, a strong correlation was 
found between FASN and DHCR7 (r = 0.73, 
Figure 4D). The correlation between hub gene 

curves of the six hub genes clearly demonstrat-
ed their diagnostic performance. Specifically, 
the AUC values for DHCR7, FABP4, FASN, 

Figure 1. DEGs in CRC and control. A: The volcano plot displays differentially 
expressed genes (DEGs) between CRC samples and control samples in The 
Cancer Genome Atlas - Colorectal Cancer (TCGA-CRC) database, where red 
represents upregulated DEGs and blue represents downregulated DEGs. B: 
The heatmap visually presents the DEGs between CRC samples and control 
samples in the TCGA-CRC database. C: The enrichment pathway analysis of 
DEGs was performed using Gene Set Enrichment Analysis (GSEA).

expression and TIDE score 
showed that DHCR7 gene  
was associated with immune 
exclusion, while the remaining 
five genes were associated 
with immune disorders (Fig- 
ure 4E).

Prediction of potential miR-
NA/TF-hub gene regulatory 
network

We constructed a miRNA/
TF-hub gene regulatory net-
work diagram for the previ-
ously identified key genes,  
as shown in Figure 5. To bet-
ter understand the transcrip-
tional regulatory mechanisms 
involving these hub genes, we 
utilized Cytoscape software 
to construct the miRNA-hub 
gene TF regulatory network. 
The analysis revealed that 
FASN was the hub gene regu-
lated by most miRNAs, while 
FABP4 was the hub gene regu-
lated by most TFs.

The ROC curve analysis and 
expression analysis of hub 
genes 

To investigate the expression 
of these genes in CRC, we 
extracted and compared the 
expression data of hub genes 
between CRC patients and 
normal controls from the 
TCGA database (Figure 6A). 
The results showed that the 
expression levels of FABP4, 
FAXDC2, PTGIS, and SLC27A6 
were downregulated in CRC 
patients, while the expression 
levels of DHCR7 and FASN 
were upregulated. Next, we 
evaluated the diagnostic va- 
lue of these genes in CRC by 
analyzing ROC curves. As 
shown in Figure 6B, the ROC 
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FAXDC2, PTGIS, and SLC27A6 were 0.911, 
0.933, 0.894, 0.884, 0.833, and 0.972, 
respectively, indicating that these six hub ge- 
nes all have good application value in CRC 
diagnosis.

Validation of hub genes in GSE23878

We further validated the expression of the six 
hub genes in CRC tissues using the GSE23878 
dataset. As shown in Figure 7A, the expression 
of FABP4, FAXDC2, and PTGIS showed a down-
regulation trend in CRC tissues, while the 
expression of DHCR7 and FASN was significant-
ly upregulated. Notably, except for SLC27A6, 
which had an AUC of 0.673, the AUCs for all 
other genes were greater than 0.7 (Figure 7B). 

Validation of the expression of 6 hub genes in 
clinical CRC tissues

In this study, we collected 54 pairs of CRC tis-
sues and corresponding adjacent non-cancer-
ous tissue samples and systematically verified 
the expression levels of the six hub genes using 
immunohistochemical staining techniques. The 
results confirmed that, as predicted by bioinfor-
matics, the expression of FAXDC2 and PTGIS 
was downregulated in CRC tissues, and FASN 
and DHCR7 were upregulated. However, the 
expression trends of FABP4 and SLC27A6 were 
inconsistent with previous bioinformatics pre-
dictions. Specifically, FABP4 expression signifi-
cantly increased in CRC tissues, while no sig-
nificant difference in SLC27A6 expression was 

Figure 2. Construction of a shared expression network. A, B: The sample clustering diagram reveals the presence 
of outliers. C: To construct a standard scale-free network, we have determined an appropriate soft threshold power 
β. D: Association between each module and colorectal cancer (CRC) was analyzed by calculating gene significance 
(GS) and module membership degree (MM). E: The heatmap illustrates the correlation between gene co-expression 
modules and CRC. Each row represents a module, and each column represents the tumor trait. The number in each 
cell indicates the correlation coefficient (upper value) and corresponding p-value (lower value in parentheses). 
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observed between CRC tissues and adjacent 
non-cancerous tissues, deviating from the 
expected results (Figure 8).

DHCR7 functions as an oncogene to enhance 
CRC cell proliferation, migration, and invasion

To substantiate the bioinformatics findings,  
we focused on DHCR7, a gene that is upre- 
gulated in CRC, for further investigation. We 
transfected CRC cell lines SW620 and HT-29 
with DHCR7 shRNA#1, DHCR7 shRNA#2, and 
DHCR7 shRNA#3 to suppress DHCR7 expres-
sion. Among these, DHCR7 shRNA#2 demon-
strated the highest effectiveness in reducing 
both DHCR7 mRNA and protein levels (Figure 
9A, 9B), and was selected for further studies. 
Subsequent colony formation experiments 
revealed the impact of DHCR7 on CRC cell pro-
liferation. The results indicated that DHCR7 
knockdown significantly decreased the number 
of colonies formed by SW620 and HT-29 cells, 
demonstrating inhibition of cell proliferation, as 
shown in Figure 9C. Additionally, cell scratch 
assay and Transwell invasion assay showed 
that DHCR7 knockdown reduced the migration 
and invasion abilities of SW620 and HT-29 
cells, further confirming the crucial role of 
DHCR7 in CRC cell growth and metastasis 
(Figure 9D, 9E). Collectively, these findings  
indicate that DHCR7 knockdown significantly 
impedes the proliferative, migratory, and inva-

sive properties of CRC cells, thereby validating 
the bioinformatics outcomes for DHCR7.

Depletion of DHCR7 induced apoptosis in CRC 
cells

To further explore the functional role of  
DHCR7 in CRC, we designed and conducted a 
series of experiments to assess the specific 
impact of DHCR7 knockout on apoptosis of 
CRC cell lines SW620 and HT-29. The TUNEL 
assay, a sensitive and widely recognized meth-
od for detecting DNA fragmentation, was 
employed to detect apoptotic cell death. The 
results demonstrated a notable increase in 
green fluorescence intensity, indicative of 
TUNEL-positive cells, following the knockdown 
of DHCR7 in both SW620 and HT-29 cells 
(Figure 10). This increase in fluorescence inten-
sity reflects the elevated number of apoptotic 
cells, suggesting that DHCR7 depletion triggers 
apoptosis in CRC cells.

These findings not only validate the bioinfor-
matics prediction that DHCR7 may function as 
an oncogene in CRC but also underscore the 
therapeutic potential of targeting DHCR7 to 
induce apoptosis in cancer cells. By implement-
ing DHCR7 knockout technology to induce pro-
grammed cell death (apoptosis), we open a 
promising avenue for developing novel thera-
peutic strategies to combat CRC.

Figure 3. Functional enrichment analysis. A: The 
relationship between different genes and candi-
date genes using Venn diagram. B: Gene Ontol-
ogy (GO) analysis demonstrates the enrichment 
biological behavior of the above 41 candidate 
genes. C: GO analysis demonstrates the enrich-
ment pathways of the above 41 candidate genes.
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Discussion

To achieve a balance between precision and 
comprehensiveness in diagnosis and treat-

ment of CRC, this study adopted a relatively 
novel approach by screening genes, including 
hub genes identified through overlapping 
WGCNA module genes, DEGs and lipid metabo-

Figure 4. Protein-protein interaction network and identification of central genes. A: Protein-Protein Interaction (PPI) 
network analysis of 41 candidate genes (Known interactions: Blue and purple lines; Predicted interactions: Green, 
dark blue and red lines; Others: Light green, black and light blue lines). B: Key genes are displayed, including 
DHCR7, FABP4, FASN, FAXDC2, PTGIS, SLC27A6. C: Functional similarity analysis of the six key genes. D: Correlation 
analysis of key genes. E: Correlating key genes with Tumor Immune Dysfunction and Exclusion (TIDE) score. 
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lism-related genes, followed by gene action 
pathway analysis. Through rigorous validation 
using ROC curve analysis, external datasets, 
and clinical tissue specimen comparisons, we 
identified six lipid metabolism-related genes 
(DHCR7, FABP4, FASN, FAXDC2, PTGIS, and 
SLC27A6) demonstrating strong associations 
with colorectal cancer pathogenesis. These 
molecular targets may hold promise for future 
diagnostic and therapeutic applications.

Enrichment analysis of these DEGs showed 
that they were mainly enriched in pathways 
related to fatty acid metabolism, which led us 
to focus on biomarkers associated with lipid 

metabolism. To gain a deeper understanding of 
the interactions between these genes, WGCNA 
was employed to construct a gene co-expres-
sion network closely related to CRC. Among the 
14 gene modules identified by the WGCNA 
method, the pink and yellow modules were 
most strongly correlated with CRC, and were 
therefore selected for further detailed analysis. 
After screening, this study ultimately identified 
lipid metabolism-related DEGs [11]. As early as 
the 1920s, Warburg found that tumor tissues, 
unlike normal tissues that convert glucose to 
lactate only under hypoxic conditions, convert 
glucose to lactate even under well-oxygenated 
conditions. This process generates adenosine 

Figure 5. Predicting potential miRNA/TF hub gene regulatory networks. miRNAs are represented by orange nodes, 
TFs by purple nodes, and hub genes by blue nodes.
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triphosphate (ATP) through aerobic glycolysis 
rather than mitochondrial oxidation [12]. This 
‘change’, known as the ‘Warburg effect’, mark- 
ed the beginning of a new era in metabolic 
reprogramming in tumors. This metabolic shift 
provides abundant ATP and nutrients, support-
ing the rapid and uncontrolled proliferation of 
tumor cells. Lipids play a crucial role in the 

development of tumors, not only contributing to 
the formation and stability of tumor cell mem-
branes but also providing necessary energy for 
cell growth and division. Additionally, lipids are 
involved in generating signaling molecules that 
regulate tumor cell behavior [13]. Therefore, 
fatty acid oxidation, uptake, and lipogenesis 
are upregulated in tumor cells. Recent studies 

Figure 6. Expression of hub genes and their diagnostic value. A: Expression of DHCR7, FABP4, FASN, FAXDC2, PT-
GIS, and SLC27A6 in The Cancer Genome Atlas - Colorectal Cancer (TCGA-CRC). B: Receiver Operating Characteristic 
(ROC) curves demonstrates the diagnostic value of 6 hub genes in TCGA-CRC.

Figure 7. Validation of hub genes in GSE23878 dataset. A: Expression of DHCR7, FABP4, FASN, FAXDC2, PTGIS, and 
SLC27A6 in GSE23878 dataset. B: The Receiver Operating Characteristic (ROC) curve demonstrates the diagnostic 
efficacy of central genes in the dataset.
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Figure 8. Expression of different hub genes in clinical CRC tissues. Immunohistochemical staining was used to 
examine the expression levels of six hub genes in Colorectal Cancer (CRC) tissues and adjacent tissues. Scale bar: 
100 μm, 100×. Data: Mean ± Standard Error of the Mean (SEM), n = 54. *P < 0.05, **P < 0.01, ***P < 0.001, 
compared to normal tissues.
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Figure 9. DHCR7 functions as an oncogene to enhance CRC cell proliferation, migration, and invasion. A: The mRNA 
expression of DHCR7 in cells transfected with DHCR7 shRNAs. B: The protein expression of DHCR7 in cells trans-
fected with DHCR7 shRNAs. C: The proliferation of CRC cells after transfection with DHCR7 shRNA # 2 detected 
by clone formation assay. D: The migration of CRC cells after transfection with DHCR7 shRNA # 2 detected using 
wound healing assay. Scale bar: 200 μm, 50×. E: The invasion potential of different CRC cells after transfection with 
DHCR7 shRNA # 2 examined using Transwell invasion assay. Scale bar: 100 μm, 100×. Data: Mean ± Standard Error 
of the Mean (SEM), n = 3. *P < 0.05, **P < 0.01, ***P < 0.001, compared to Negative Control (NC) shRNA group.

Figure 10. Depletion of DHCR7 induced apoptosis in CRC cells. The Terminal deoxynucleotidyl transferase dUTP 
Nick End Labeling (TUNEL) staining assay was employed to evaluate the apoptosis in SW620 and HT-29 cells follow-
ing transfection with DHCR7 shRNA #2. Scale bar: 100 μm, 100×. Data: Mean ± Standard Error of the Mean (SEM), 
n = 3. **P < 0.01, compared to Negative Control (NC) shRNA group.
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have shown that, in addition to the well-known 
role of lipid-related enzymes in providing ener-
gy and building blocks for cancer cells, lipid 
metabolism-related genes can also influence 
the tumor microenvironment. For example, lip-
id-associated signaling pathways can modulate 
immune cell infiltration and function, affecting 
the immune response against CRC cells [14]. 
Moreover, abnormal lipid metabolism can lead 
to the production of bioactive lipid species, 
which can modulate cell-cell communication 
and promote tumor cell invasion and metasta-
sis [15]. Despite this, few studies have explored 
the involvement of lipid metabolism-related 
genes in regulating CRC.

The unique perspective of this study lies in its 
comprehensive approach of integrating multi-
ple bioinformatics methods, including WGCNA 
and PPI network analysis, to systematically 
screen for lipid metabolism-related genes in 
CRC. This differs from previous studies that 
focus on individual genes or pathways. By using 
WGCNA, we were able to construct gene co-
expression networks and identify modules 
closely related to CRC, offering a global view of 
gene-gene interactions. Subsequent PPI net-
work analysis and hub gene identification fur-
ther pinpointed key genes within these mod-
ules. Additionally, we not only examined the 
differential expression of genes but also ex- 
plored the regulatory networks involving miR-
NAs and transcription factors, which has not 
been comprehensively studied in the context of 
CRC and lipid metabolism. This multi-level anal-
ysis may uncover new regulatory mechanisms 
and potential therapeutic targets in CRC.

This study combined multiple bioinformatics 
methods to identify hub genes, including 
WGCNA and PPI, ultimately identifying six hub 
genes: DHCR7, FABP4, FASN, FAXDC2, PTGIS, 
and SLC27A6. Based on ROC analysis and rig-
orous scientific verification, we found that sev-
eral of these biomolecules, such as DHCR7 and 
FABP, exhibit extremely high sensitivity and 
specificity in CRC diagnosis. Therefore, these 
genes are considered key biomarkers for CRC 
diagnosis. Notably, DHCR7, a key enzyme in the 
cholesterol biosynthesis pathway, plays a criti-
cal role in regulating the balance between cho-
lesterol synthesis and vitamin D [16]. Recent 
studies have shown that the DHCR7 expression 
is closely related to cancer development. For 
example, Zou et al. [17] revealed a significant 

correlation between elevated DHCR7 expres-
sion and decreased survival rate in cervical 
cancer patients, as well as a correlation with 
the infiltration of T cells (especially CD8 T cells). 
This emphasizes the importance of DHCR7 in 
cancer research. Li et al. [18] illustrated that 
DHCR7 upregulation in bladder cancer serves 
as an independent risk factor, correlating with 
tumor grading and staging, and ultimately poor 
prognosis. DHCR7 overexpression accelerates 
G0/G1 phase tumor cell growth, inhibits apop-
tosis, enhances invasion, migration, and EMT 
through the PI3K/AKT/mTOR pathway. FABP4, a 
member of the FABP family, is predominantly 
found in mature adipocytes and macrophages 
[19]. It binds reversibly to hydrophobic ligands 
and regulates transcription, cell signaling, lipid 
droplet storage, lipid oxidation, and membrane 
synthesis [20]. Zhang et al. [21] showed that 
FABP4 expression is elevated in CRC tissues 
and is closely related to the TNM staging in 
CRC. Gao et al. [22] suggested that depletion of 
FABP4 inhibits CRC progression by regulating 
cell growth, stemness, glycolysis, and apopto-
sis. Fatty acid synthase gene (FASN) is highly 
expressed in human tissues, including the liver, 
lung, breast, and adipose tissues. Immunohis- 
tochemical studies have shown that FASN 
expression is abnormally high in a variety of 
human epithelial cancers and precancerous 
lesions, including breast cancer and CRC, and 
is associated with the occurrence and develop-
ment of these cancers [15, 23-26]. In contrast, 
inhibition of FAS results in the accumulation of 
malonyl CoA, which inhibits CPT-1, up-regulates 
ceramide expression, and induces pro-apoptot-
ic genes such as BNIP3, TRAIL, and DAPK2 
[27]. Research has shown that FASN is highly 
expressed in most CRC cases, especially in 
advanced CRC, and its expression intensity cor-
relates with CRC patient survival rates, with 
FASN overexpression linked to poorer survival 
[28]. FAXDC2, a member of the fatty acid 
hydroxylase family, plays a crucial role in the 
synthesis and metabolism of fatty acids [29]. 
Peng et al. [30] identified FAXDC2 as an effec-
tive inhibitor of hepatocellular carcinoma for 
the first time, suggesting that it inhibits tumor 
cell proliferation and invasion through mecha-
nisms related to ERK signaling. PTGIS, a key 
enzyme in arachidonic acid metabolism, be- 
longs to the cytochrome P450 superfamily 
(CYP8) [31]. It plays an important role in a wide 
range of physiological and pathological pro-



Identifying lipid biomarkers in CRC

2037	 Am J Cancer Res 2025;15(5):2022-2040

cesses, and many studies have recognized 
PTGIS as an inhibitor of multiple tumor types. At 
the same time, PTGIS is also a key candidate 
gene in cardiovascular disease research, linked 
to conditions such as hypertension, myocardial 
infarction, stroke and atherosclerosis [32, 33]. 
Ding et al. [34] found that PTGIS expression is 
relatively low in CRC. SLC27A, a class of trans-
membrane protein, promotes intracellular long-
chain fatty acid uptake. There are six isoforms 
of the SLC27A family (SLC27A1~6), all involved 
in fatty acid transport [35]. Zhong et al. [36] 
showed that overexpression of SLC27A6 in 
nasopharyngeal carcinoma cell lines signifi-
cantly inhibited cell proliferation and tumori-
genesis. In this study, we compared and ana-
lyzed the expression of hub genes in CRC 
patients versus the TCGA normal group. The 
results showed that genes such as FABP4 and 
FAXDC2 were downregulated in CRC patients, 
while DHCR7 and FASN expression levels were 
elevated. Additionally, we collected 54 pairs of 
CRC tissues and adjacent non-cancerous tis-
sues and used immunohistochemical staining 
to verify the expression levels of six hub genes. 
The verification results confirmed that in CRC 
tissues, FAXDC2, PTGIS, and SLC27A6 expres-
sion levels were decreased, while FASN and 
DHCR7 expression levels were increased. How- 
ever, it was noteworthy that the expression 
trend of FABP4 in CRC tissues did not match 
the bioinformatics predictions, with its expres-
sion level significantly elevated in CRC tissues.

The upregulation of DHCR7 and FASN in CRC 
tissues is consistent with previous reports in 
some cancers. However, our study not only con-
firmed their overexpression in CRC but also 
demonstrated their potential as diagnostic bio-
markers through ROC curve analysis. The high 
AUC values for DHCR7 and FASN indicate their 
strong diagnostic performance. For FAXDC2 
and PTGIS, our observation of their downregu-
lation in CRC provides new insights. Previous 
studies on these genes in CRC are limited, and 
our results suggest that they may play a sup-
pressive role in CRC development. The abnor-
mal expression of FABP4 and SLC27A6, which 
deviated from bioinformatics predictions, also 
highlights the complexity of gene regulation in 
CRC. These findings prompt us to further 
explore the underlying molecular mechanisms, 
which may involve different signaling pathways 
and regulatory networks in CRC.

The inconsistent expression trends of FABP4 
and SLC27A6 genes compared to bioinformat-
ics predictions are intriguing. For FABP4, one 
possible reason is the complex regulation of 
this gene in different cellular contexts. Although 
bioinformatics analyses are based on large-
scale datasets, they may not fully capture the 
tissue-specific or microenvironment-dependent 
regulatory mechanisms. In CRC tissues, local 
factors, such as specific cytokines, growth fac-
tors, or epigenetic modifications, may override 
the general trends predicted by bioinformatics. 
Another possibility is that the databases used 
for bioinformatics analysis may have limitations 
in representing the full spectrum of CRC patient 
heterogeneity. Regarding SLC27A6, the lack of 
significant difference in expression between 
CRC tissues and adjacent non-cancerous tis-
sues in our clinical validation may be due to 
small sample size. A larger cohort might reveal 
a clearer and more statistically robust expres-
sion pattern. Additionally, SLC27A6 may have a 
more complex regulatory mechanism in CRC, 
which could involve post-translational modifica-
tions or interactions with other proteins that 
were not accounted for in our bioinformatics 
analysis. Future studies with larger sample 
sizes and more in-depth molecular analysis are 
needed to fully understand the reasons for 
these discrepancies.

After a series of bioinformatic analyses and 
clinical validation, this study concluded that  
the lipid metabolism-related genes FAXDC2, 
PTGIS, FABP4, and SLC27A6 are down-regulat-
ed, while FASN and DHCR7 are up-regulated in 
the TCGA-CRC and GEO-CRC databases. Im- 
munohistochemistry-based validation in clini-
cal CRC tissues confirmed that the expression 
trends of FAXDC2, PTGIS, SLC27A6, FASN, and 
DHCR7 were consistent with bioinformatics 
predictions (Figure 11). However, the expres-
sion of FABP4 in CRC tissues differed from the 
bioinformatics prediction, which may be due to 
the limited data available in the database. To 
gain a deeper understanding of the specific 
mechanisms underlying FABP4’s differential 
expression, we plan to expand the dataset and 
conduct more in-depth analysis. Overall, this 
study successfully identified six characteristic 
genes closely related to lipid metabolism. 
These findings not only enhance our under-
standing of CRC pathogenesis but also indicate 
that these biomarkers may provide new diag-
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nostic and treatment strategies for CRC 
patients in the future, ultimately improving the 
prognosis and quality of life of CRC patients.
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