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Abstract: Objectives: This study aimed to identify apoptosis - related genes with diagnostic and prognostic value 
in cervical cancer (CC) using integrated bioinformatics and machine learning approaches. Methods: Gene expres-
sion datasets were obtained from the National Center for Biotechnology Information Gene Expression Omnibus 
(GEO) and the Cancer Genome Atlas (TCGA), with GSE192897 used as the training set. A total of 451 differentially 
expressed genes (DEGs) were identified, including 221 upregulated and 230 downregulated genes. Eleven apopto-
sis - related upregulated DEGs were selected for further analysis using three machine learning algorithms: random 
forest, logistic regression, and support vector machine. Validation was performed using GSE192897, GSE166466, 
and TCGA-CESC datasets. Results: Among the evaluated genes, cyclin-dependent kinase 2 (CDK2) consistently 
achieved an AUC > 0.8 in all three validation datasets and had a weighted sum rank > 10, meeting stringent se-
lection criteria. In a CC mouse model, CDK2 expression was significantly elevated and positively correlated with 
squamous cell carcinoma antigen, carcinoembryonic antigen, vascular endothelial growth factor, and heparanase. 
siRNA-mediated knockdown of CDK2 reduced cell proliferation and migration while promoting apoptosis. Mice with 
high CDK2 expression showed significantly lower 4-week survival rates, indicating poor prognosis. Conclusions: This 
study identified CDK2 as a key apoptosis - related gene with strong diagnostic and prognostic value in cervical can-
cer. CDK2 promotes tumor progression and is associated with poor survival, suggesting its potential as a biomarker 
and therapeutic target for personalized treatment strategies in CC.
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Introduction

Despite recent declines in the incidence and 
mortality rates of cervical cancer (CC), it 
remains the third most common cancer and the 
fourth leading cause of cancer - related deaths 
among women worldwide, particularly in less 
developed countries [1-3]. Early-stage CC can 
be effectively treated if diagnosed promptly 
[4-6]; however, treatment options for advanced 
or recurrent CC remain limited and largely inef-
fective [7]. Current standard therapies, includ-
ing surgical resection, radiotherapy, and che-
motherapy, often fail to achieve satisfactory 
long-term outcomes [8, 9]. Therefore, identify-
ing novel anti-cancer targets is crucial to 

improving therapeutic efficacy. In addition, 
there is an urgent need for reliable prognostic 
biomarkers to enhance the survival outcomes 
of CC patients.

In recent years, bioinformatics and machine 
learning have provided new insights into cancer 
research [10, 11]. These technologies enable 
the efficient analysis of large-scale gene expres-
sion data and facilitate the discovery of diag-
nostic and prognostic biomarkers. For complex 
diseases such as CC, integrating bioinformatics 
with machine learning algorithms can more 
accurately identify key genes and construct 
robust predictive models [12]. The use of 
machine learning has been increasingly adopt-
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ed in CC risk prediction, diagnosis, and classifi-
cation. For instance, Mehmood et al. proposed 
CervDetect, a machine learning-based method 
for assessing CC risk factors [13]. Park et al. 
applied the deep learning model ResNet-50 
alongside machine learning to identify CC fea-
tures from cervicography images [14]. Rehimi 
et al. used machine learning to analyze CC inci-
dence, aiding in diagnosis and prognosis [15]. 
Although apoptosis - related genes play vital 
roles in tumor progression, their specific func-
tions and mechanisms in CC remain inade-
quately understood.

Identifying robust biomarkers for disease pro-
gression and individualized treatment is es- 
sential to improving CC clinical management. 
Recent advances in bioinformatics and ma- 
chine learning have paved the way for identify-
ing key genes and developing predictive mod-
els that could transform CC diagnosis and ther-
apy. This study aimed to identify differentially 
expressed apoptosis - related genes in CC 
using integrated bioinformatics and machine 
learning approaches. By uncovering potential 
prognostic biomarkers, we seek to improve 
therapeutic strategies and provide novel 
insights into the molecular mechanisms under-
lying CC, ultimately contributing to precision 
medicine in its management.

Materials and methods

Datasets

The datasets GSE192897 and GSE166466 
were downloaded from the National Center for 
Biotechnology Information - Gene Expression 
Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/gds/) [16].

GSE192897 was generated using the GPL- 
27956 NanoString Human nCounter PanCan- 
cer IO 360 Panel platform and includes 34 CC 
samples and 14 healthy controls.

GSE166466 was based on the GPL23126 
[Clariom_D_Human] Affymetrix Human Clariom 
D Assay [transcript (gene) version] platform  
and contains 7 normal cervical epithelium tis-
sues, 6 HPV16-positive high-grade squamous 
intraepithelial lesion tissues, and 7 CC tis- 
sues.

The Cancer Genome Atlas -Cervical Squamous 
Cell Carcinoma and Endocervical Adenocar- 
cinoma dataset (TCGA-CESC, https://cancer- 
genome.nih.gov/) comprises 309 tumor sam- 
ples.

GSE192897 was used as the training set, while 
GSE166466 and TCGA-CESC served as valida-
tion sets for subsequent analyses.

Differentially expressed genes (DEGs) analysis

DEGs between CC and control groups in the 
GSE192897 dataset were identified using the 
“limma” package in R. Genes with |log2 fold 
change (FC)| > 0.58 and adjusted P < 0.05 
were considered significant.

Machine learning

Three machine learning algorithms - random 
forest [17], logistic regression [18], and  
support vector machine (SVM) [19] - were 
employed using GSE192897, GSE166466, and 
TCGA-CESC as test datasets.

Feature weights from the three models were 
extracted and ranked. Genes with an average 
area under the curve (AUC) > 0.8 across all 
datasets and a combined feature weight rank  
> 10 were selected for further analysis. ROC 
curves and rank statistics were used to assess 
model performance and gene importance.

Animal model

Eighty female mice (6-8 weeks old, 20 ± 2 g) 
were housed under standard conditions with 
ad libitum access to food and water. All proce-
dures complied with the Regulations for the 
Administration of Affairs Concerning Experi- 
mental Animals.

Forty mice were randomly selected for model-
ing. U14 cells in the logarithmic growth phase 
were harvested and resuspended in sterile nor-
mal saline to a final concentration of 5 × 106 
cells/mL. To ensure consistency and reproduc-
ibility of the CC model, this procedure was 
repeated for three consecutive passages: cells 
were collected from the peritoneal cavities of 
tumor-bearing mice, expanded in culture, and 
re-injected into new mice following the same 
protocol. 
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After the third passage, 0.2 mL of the cell sus-
pension (containing 1 × 106 cells) was subcuta-
neously injected into the right axilla of each 
mouse to establish the U14 cervical cancer 
mouse model.

Animal euthanasia

Mice were euthanized by CO2 inhalation (flow 
rate: 20% chamber volume/min), followed by 
cervical dislocation to ensure death, in accor-
dance with institutional animal care guide- 
lines.

Ethics statement

All animal experiments were approved by the 
Ethics Committee of The Fifth People’s Hospital 
of Jinan Affiliated to Shandong Second Medical 
University. Efforts were made to minimize ani-
mal suffering throughout the study.

Cell culture

HeLa and CaSki CC cell lines were cultured in 
DMEM (Hyclone, #SH30243.01B) supplement-
ed with 10% fetal bovine serum (Hyclone, 
#SH30084.03), and seeded in 6-well plates (5 
× 105 cells/well) in a 37°C incubator with 5% 
CO2.

Cell transfection

HeLa and CaSki cells were seeded in 96-well 
plates (1 × 104 cells/well) and incubated for  
24 h. Transfection was performed using 3 pmol 
si-CDK2 or negative control siRNA (si-NC) 
(Shanghai GenePharma Co., Ltd) and 0.3 μL 
Lipofectamine 2000 (Invitrogen, #52887). 
siRNA and transfection reagent were diluted in 
5 μL of culture medium, mixed, incubated at 
room temperature for 10 min, and added to 
each well. RT-qPCR was used to verify transfec-
tion efficiency after 48 h. siRNA sequences are 
listed in Table S1.

RT-qPCR

Total RNA was extracted with TRIzol (Invitrogen) 
and reverse transcribed into cDNA (Takara, 
China). RT-qPCR was performed using SYBR® 
Premix Ex Taq™ (Takara) on an ABI7300 sys-
tem. Relative expression was calculated using 
the 2^-ΔΔCt method, with β-actin as the inter-
nal control.

Primer sequences: β-actin: Forward 5’-TCA- 
CCAACTGGGACGACATG-3’, Reverse 5’-AGTCCT- 
GTGGCATCCACGAA-3’. CDK2: Forward 5’-CC- 
AGTACTGCCATCCGAGAG-3’, Reverse 5’-CGGC- 
GAGTCACCATCTCAGC-3’.

Western blot (WB)

Proteins were extracted using RIPA buffer 
(Sigma-Aldrich) and quantified with a BCA kit 
(Thermo Scientific). Equal protein amounts 
were separated by SDS-PAGE and transferred 
to PVDF membranes (Millipore). After blocking 
in 5% milk, membranes were incubated over-
night at 4°C with primary antibodies: 

CDK2 (#GB12237, 1:1000), Caspase 3 
(#GB11767C, 1:1000), BCL-2 (#GB124830, 
1:1000), BAX (#GB12690, 1:1000), GAPDH 
(#GB15002, 1:2000) (all from Servicebio).

The next day, membranes were incubated  
with HRP-conjugated secondary antibody 
(#GB23303, 1:3000) for 1 h at room tempera-
ture. Signal detection was performed using the 
AIWBwell™ ECL system (Servicebio).

Enzyme-linked immunosorbent assay (ELISA) 
assay

Levels of squamous cell carcinoma antigen 
(SCCA), carcinoembryonic antigen (CEA), vascu-
lar endothelial growth factor (VEGF) and hepa-
ranase (HPA) were measured using ELISA kits 
(R&D Systems, USA). Assays were performed 
according to manufacturer protocols. Absor- 
bance was measured at 450-570 nm using a 
microplate reader (BioTek ELX 800, USA).

Cell counting kit-8 (CCK-8) assay

Transfected cells (1 × 104 cells/well) were 
seeded into 96-well plates. At 24, 48, 72, and 
96 h, 10 μL of CCK-8 reagent (Beyotime, 
#C0038) was added to each well. Plates were 
incubated for 1 h at 37°C in the dark, and 
absorbance was measured at 450 nm using  
a microplate reader. Each experiment was 
repeated at least three times.

Scratch assay

Cells were seeded in 6-well plates (1 × 106 
cells/mL). Once confluent, scratches were 
made using a sterile 200 μL pipette tip. Cells 
were washed with PBS, and wound closure was 
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imaged at 0, 24, and 48 h under a microscope. 
Each experiment was independently repeated 
three times.

Statistical analysis

All data were analyzed using R (v3.5.2) or 
GraphPad Prism (v9.0.1). Results are present-
ed as mean ± standard deviation (SD). Stu- 
dent’s t-test or Wilcoxon test was used for two-
group comparisons. For multi-group compari-
sons, one-way or repeated-measures ANOVA 
followed by Tukey’s HSD or Bonferroni correc-
tion was applied. Pearson correlation was  
used for correlation analysis. Kaplan-Meier 
analysis was performed for survival compari-
sons. A P-value < 0.05 was considered statisti-
cally significant.

Results

Screening of dysregulated genes

Using the threshold criteria of |log2FC| > 0.58 
and adjusted P < 0.05, a total of 451 DEGs 
were identified from the GSE192897 dataset, 
including 221 upregulated and 230 downregu-
lated genes. The DEGs, along with their corre-
sponding fold changes and adjusted P-values, 
are presented in Table S2. Additionally, a vol-
cano plot, scatter plot, and heatmap were gen-
erated for visualization (Figure 1A-C).

Constuction and validation of an apoptosis-
related gene model

Eleven apoptosis-related genes-CASP8, TNF- 
SF10, FASLG, IRF1, CASP1, CD38, CDK2, TAP1, 

BRCA1, CD14, and ERBB2-were selected from 
the upregulated DEGs to assess their prognos-
tic value in CC (Figure 2A-K). These genes were 
used to construct prediction models using ran-
dom forest, logistic regression, and linear SVM 
algorithms. All three algorithms achieved an 
AUC of 1 during cross-validation (Figure 3A). 
Consistent results were obtained in individual 
algorithm analyses (Figure 3B). The feature 
importance rankings for each algorithm are 
summarized in Table S3. Except for CASP1, 
CD38, and FASLG, the weight rank sum of the 
remaining genes exceeded 10.

To further validate diagnostic accuracy, ROC 
curve analyses were performed. CASP1, 
CASP8, CDK2, and TNFSF10 demonstrated 
AUCs > 0.7 across all three datasets (Figure 
4A-K). To ensure robust and clinically relevant 
results, genes with AUC > 0.8 across all datas-
ets and a weight rank sum > 10 were consid-
ered for further analysis. Only CDK2 satisfied 
these stringent criteria, highlighting its diagnos-
tic potential and stability across datasets.

Elevated CDK2 expression promotes CC pro-
gression

To validate the diagnostic utility of CDK2, its 
expression and correlation with CC markers 
(SCCA, CEA, VEGF, and HPA) were examined in 
CC and normal mice using WB, RT-qPCR, and 
ELISA. In CC mice, CDK2 mRNA and protein 
expression levels were significantly elevat- 
ed, as were protein levels of all four markers 
(Figure 5A-F). Correlation analyses revealed 
strong positive associations between CDK2 

Figure 1. Identification of the differentially expressed genes between cervical cancer group and normal group from 
the training set GSE192897. A. Volcano plot; B. Scatter plot; C. Heat map. The red dots indicate the upregulated 
genes and the blue dots indicate the downregulated genes.

https://e-century.us/files/ajcr/15/6/ajcr0162724suppltab2.xlsx
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Figure 2. The apoptotic Characteristic genes between the cervical cancer group and the normal group in the training set GSE192897. A-K. The box plot shows the 
expression of the genes in the training set between the cervical cancer group and normal group. Red box indicates the cervical cancer group, and blue indicates the 
normal group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 and ns, no significance. BRCA1: Breast Cancer gene 1; CASP1: Caspase 1; CASP8: Caspase 
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and SCCA (r = 0.986, P < 0.001), CEA (r = 0.979, 
P < 0.001), VEGF (r = 0.979, P < 0.001), and 
HPA (r = 0.986, P < 0.001) (Figure 6), suggest-
ing that CDK2 may play a key role in CC devel-
opment. The immune cells infiltration between 
tumor and normal groups are summarized in 
Table S4.

Effects of CDK2 knockdown on proliferation, 
apoptosis, and migration of CC cells

To explore the functional role of CDK2, three 
siRNAs targeting CDK2 were transfected into 
Hela and Caski cells. Knockdown of CDK2 sig-
nificantly upregulated pro-apoptotic genes 
(BAX, CASP3) and downregulated anti-apoptot-
ic BCL-2 (Figure 7). CCK-8 assays revealed  
that CDK2 knockdown impaired the prolifera-
tive capacity of CC cells (Figure 8). Additionally, 
scratch assays showed significantly reduced 
migration rates in CDK2-silenced cells at 24 h 
and 48 h (Figure 9). These results indicate that 
CDK2 is crucial for promoting CC cell proli- 
feration and migration and for inhibiting 
apoptosis.

CDK2 expression and 4-Week survival in CC 
mice

Based on the optimal cutoff value of CDK2 
expression (20.38), 20 mice were assigned to 
the high-expression group (CDK2 ≥ 20.38),  
and 20 to the low-expression group (CDK2 < 
20.38). Kaplan-Meier survival analysis demon-
strated that the 4-week survival rate of the 
high-expression group (15.0%) was significantly 
lower than that of the low-expression group 
(45.0%) (Figure 10).

Discussion

In 2020, over 600,000 new cases of CC  
were diagnosed worldwide, resulting in nearly 
340,000 deaths among women [20]. Identify- 
ing target genes and effective therapeutics is 
crucial to improving survival rates and reducing 
mortality in CC. By analyzing multiple CC datas-
ets from various public databases, this study 
has enhanced our understanding of the molec-
ular mechanisms underlying CC and identified 
key diagnostic genes. The importance of these 

8; CD14: Cluster of Differentiation 14; CD39: Ectonucleoside Triphosphate Diphosphohydrolase 1; CDK2: Cyclin-
dependent kinase 2; ERBB2: Erb-B2 Receptor Tyrosine Kinase 2; FASLG: Fas Ligand; IRF1: Interferon Regulatory 
Factor 1; TAP1: Transporter associated with Antigen Processing 1; TNFSF10: Tumor Necrosis Factor Superfamily 
member 10.

Figure 3. The machine learning of the eleven apoptosis related genes by random forest, logistic regression and 
linear SVM algorithms. A. Cross-validation. B. Independent verification of the three algorithms. AUC: Area Under the 
Curve; CV: Cross-Validation; SVM: Support Vector Machine.
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Figure 4. ROC curves of the cervical cancer group in GSE192897, GSE166466 and TCGA- CC. A-K. The figures show the ROC curve of eleven apoptosis related 
genes in the training set. The abscissa is the false positive rate, which is represented by 1-specificity, and the ordinate is the true positive rate, which is represented 
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findings lies in the potential use of candidate 
genes for early intervention, potentially pre-
venting progression to malignant disease. A 
total of 451 DEGs were identified from the 
GSE192897 dataset. Further analysis reveal- 
ed that 11 apoptosis-related genes-including 

CASP8, TNFSF10, FASLG, IRF1, CASP1, CD38, 
CDK2, TAP1, BRCA1, CD14, and ERBB2 - were 
significantly upregulated in CC.

Despite advances in treatment, the prognosis 
of CC remains suboptimal, especially due to 

by sensitivity. ROC: receiver operation characteristic; TCGA: The Cancer Genome Atlas; BRCA1: Breast Cancer gene 
1; CASP1: Caspase 1; CASP8: Caspase 8; CD14: Cluster of Differentiation 14; CD39: Ectonucleoside Triphosphate 
Diphosphohydrolase 1; CDK2: Cyclin-dependent kinase 2; ERBB2: Erb-B2 Receptor Tyrosine Kinase 2; FASLG: Fas 
Ligand; IRF1: Interferon Regulatory Factor 1; TAP1: Transporter associated with Antigen Processing 1; TNFSF10: 
Tumor Necrosis Factor Superfamily member 10.

Figure 5. Increased expression of CDK2 promotes the development of cervical cancer. A. RT-qPCR of CDK2 mRNA 
expression. B. Western Blot analysis of the CDK2 protein expression. C-F. ELISA of the SCCA, CEA, VEGF, and HPA 
protein expression. ***P < 0.001 between normal control group and cervical cancer group. NC: normal control; CC: 
cervical cancer; mRNA: messenger RNA; CDK2: Cyclin-dependent kinase 2; GAPDH: Glyceraldehyde-3-phosphate 
dehydrogenase; SCCA: Squamous cell carcinoma antigen; CEA: Carcinoembryonic antigen; VEGF: Vascular endothe-
lial growth factor; HPA: Human placental alkaline phosphatase; RT-qPCR: Real-time quantitative polymerase chain 
reaction; ELISA: Enzyme-linked immunosorbent assay.
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stark differences in survival between early  
and advanced stages [21-23]. Reliable and effi-
cient diagnostic models are still lacking. In this 
study, apoptosis-related gene models were 
constructed using random forest, logistic 
regression, and linear SVM algorithms. CDK2, 
with an AUC > 0.8 and a weighted rank sum > 
10, was identified as a candidate gene. This 
multi-model comparison approach enhances 
the robustness of the findings and provides 
diverse perspectives on the biological role of 
CDK2 in CC. CDK2, a member of the cyclin-
dependent kinase family, plays a pivotal role in 
the regulation of the eukaryotic cell cycle [24-
26]. Previous studies have implicated CDK2-
related signaling pathways in CC progression 
[27-29], and elevated CDK2 expression in CC 
tissues has been shown to promote tumor pro-
gression [30, 31]. Notably, CDK2 consistently 
emerged as a key feature across all three mod-
els and datasets, reinforcing its potential as a 
reliable predictive biomarker.

siRNA-mediated knockdown of CDK2 signifi-
cantly inhibited the proliferation and migration 
of CC cells, while upregulating pro-apoptotic 
genes BAX and CASP3. These results support 
the notion that CDK2 is not only a regulator of 
the cell cycle but also a modulator of cell sur-
vival signaling pathways [27, 28]. Therefore, 
CDK2-targeted small-molecule inhibitors or 
RNA interference strategies may offer promis-
ing therapeutic options for CC. Moreover, high 
CDK2 expression was closely associated with 
poor prognosis, suggesting its involvement in 
CC progression.

Survival analysis further confirmed CDK2 as an 
independent prognostic factor. Compared with 
the low-expression group, mice in the high-
expression group exhibited significantly lower 
4-week survival rates, highlighting the critical 
role of CDK2 in CC pathophysiology. Given the 
current scarcity of effective biomarkers to 
guide personalized treatment strategies in clin-

Figure 6. Analysis of the correlation between CDK2 mRNA expression levels and CC markers. A. The correlation be-
tween CDK2 mRNA and SCCA; B. The correlation between CDK2 mRNA and CEA; C. The correlation between CDK2 
mRNA and VEGF; D. The correlation between CDK2 mRNA and HPA. CC: cervical cancer; SCCA: Squamous Cell Car-
cinoma Antigen; CEA: Carcinoembryonic Antigen; VEGF: Vascular Endothelial Growth Factor; HPA: Human Placental 
Alkaline Phosphatase; mRNA: messenger RNA; CDK2: Cyclin-dependent kinase 2.
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Figure 7. Knockdown of CDK2 promotes apoptosis of cervical cancer cells. A. Western Blot analysis of Hela cells 
showing the expression levels of CDK2, BAX, BCL-2, and CASP-3 after knockdown of CDK2, ***P < 0.001 compared 
to si-NC group; B. Western Blot analysis of Caski cells showing the expression levels of CDK2, BAX, BCL-2, and CASP-
3 after knockdown of CDK2, ***P < 0.001 compared to si-NC group; C. Flow cytometry analysis of cervical cancer 
cells stained with Annexin V-FITC and PI for detecting apoptotic cells, ***P < 0.001 compared to si-CDK2 group; D. 
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ical practice, our findings provide both theoreti-
cal and methodological support for the devel-
opment of novel diagnostic and therapeutic 
approaches.

While integrating bioinformatics and machine 
learning has facilitated the identification of 
diagnostically relevant genes in CC, this study 
has several limitations. First, the limited sam-
ple size may affect the generalizability of the 
findings. Second, although the function of 

CDK2 was validated in vitro and in animal mod-
els, its precise mechanism in humans remains 
unclear. Third, the interaction network between 
CDK2 and other molecular targets has not 
been fully elucidated. Future studies will expand 
the sample size, conduct prospective cohort 
studies, and explore the feasibility of CDK2 as 
a therapeutic target. In particular, additional 
work will aim to clarify its interaction networks 
and validate its translational potential in clini-
cal settings.

TUNEL staining combined with CDK2 fluorescence Co-staining to detect TUNEL-positive cells and CDK2 expression 
in cervical cancer cells (20×), **P < 0.01, ***P < 0.001 compared to si-CDK2 group. Si-NC: Small interfering RNA 
negative control; CDK2: Cyclin-dependent kinase 2; Si-CDK2: Small interfering RNA targeting CDK2; BAX: BCL2-
associated X protein; BCL-2: B-cell lymphoma 2; CASP-3: Caspase 3; GAPDH: Glyceraldehyde-3-phosphate dehydro-
genase; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling; V-FITC: V-Fluorescein isothiocyanate; 
PI: Propidium Iodide.

Figure 8. Knockdown of CDK2 attenuates proliferation of cervical cancer cells. A. CCK-8 assays of the proliferative 
capacity in CDK2-knockdown Hela cells, **P < 0.01 compared to 0 h; B. CCK-8 assays of the proliferative capacity 
in CDK2-knockdown Caski cells, *P < 0.05, **P < 0.01, ***P < 0.001 compared to 0 h; C. Western Blot analysis 
of Ki-67 expression in cervical cancer cells, ***P < 0.001 compared to si-CDK2 group. Si-NC: Small interfering RNA 
negative control; CDK2: Cyclin-dependent kinase 2; Si-CDK2: Small interfering RNA targeting CDK2; OD450 nm: Op-
tical Density at 450 nanometers; Ki-67: Antigen identified by monoclonal antibody Ki-67; GAPDH: Glyceraldehyde-
3-phosphate dehydrogenase.
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While this study has provided substantial evi-
dence for the role of CDK2 in CC progression, 
one important question remains unresolved: 
the impact of CDK2 on cell migration and inva-
sion. Due to limitations in the current experi-
mental design, we were unable to perform tran-
swell assays to directly assess these proper-
ties. Future research will address this limita- 
tion by incorporating transwell migration and 
invasion assays to evaluate the functional con-
sequences of CDK2 modulation in CC cells. 
This will be critical for a more comprehensive 
understanding of CDK2’s oncogenic role and 
its value as a therapeutic target.

In summary, this study integrated bioinformat-
ics and machine learning to construct an apop-
tosis-related gene signature model. We identi-
fied CDK2 as a robust diagnostic and prognos-
tic biomarker and validated its biological role in 
cervical cancer through both in vitro and in vivo 
analyses. These findings lay a solid foundation 
for the development of CDK2-targeted diagnos-
tic tools and therapeutic interventions, with the 
ultimate goal of improving clinical outcomes for 
patients with cervical cancer.
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Table S1. The sequence of materials used to regulate gene expression
HYKY-250220039-RNAC
Gene ID 362817
siRNA Sequences Cdk2-rat-778 CGGAGCUUGUUAUCUCAAATT UUUGAGAUAACAAGCUCCGTT

Cdk2-rat-526 GGCUGCAAGUACUACUCCATT UGGAGUAGUACUUGCAGCCTT
Cdk2-rat-430 GCUGACUUUGGACUAGCAATT UUGCUAGUCCAAAGUCAGCTT
si-NC UUCUCCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT

Notes: siRNA: Small interfering RNA; si-NC: Small interfering RNA negative control.

Table S3. The features weight rank of the genes in the three algorithms
Features RandomForest linearSVM Logistic rank_sum
BRCA1 11 11 11 33
CDK2 9 10 10 29
IRF1 8 7 9 24
CASP8 7 8 8 23
TAP1 10 4 7 21
ERBB2 6 6 6 18
CD14 3 9 4 16
TNFSF10 5 5 5 15
CASP1 2 3 3 8
CD38 4 2 2 8
FASLG 1 1 1 3
Notes: BRCA1: BReast CAncer gene 1; CDK2: Cyclin-Dependent Kinase 2; IRF1: Interferon Regulatory Factor 1; CASP8: CAS-
Pase 8; TAP1: Transporter Associated with Antigen Processing 1; ERBB2: Erb-B2 Receptor Tyrosine Kinase 2; CD14: Cluster of 
Differentiation 14; TNFSF10: Tumor Necrosis Factor SuperFamily member 10; CASP1: CASPase 1; CD38: Cluster of Differentia-
tion 38; FASLG: FAS Ligand.
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Table S4. The immune cells infiltration between tumor and normal groups
Cell Tumor Normal p value
B cells memory 0.053348685 0.049285164 1
B cells naive 0.001812735 0.001244774 1
Dendritic cells activated 0.014161804 0.010424008 0.905678116
Dendritic cells resting 0.061394859 0.130893725 0.060750543
Eosinophils 0.07401381 0.038477702 0.01088688
Macrophages M0 0.035562003 0 0.000195088
Macrophages M1 0.142335333 0.012029011 1.65E-05
Macrophages M2 0.004499591 0.031610017 0.020336921
Mast cells activated 0.031457446 0.232872548 0.000110466
Mast cells resting 0.052543681 0.101665549 0.962496015
Monocytes 0.020400542 0.01388894 0.729139833
Neutrophils 0.066326077 0.042949977 0.415937626
NK cells activated 0.041855002 0.025991741 0.122715047
NK cells resting 0.009005809 0.001604538 0.637974142
Plasma cells 0.010343176 0.008113166 0.637974142
T cells CD4 memory activated 0.005569821 0 0.079463849
T cells CD4 memory resting 0.105955033 0.064896279 0.278924863
T cells CD4 naive 0 0.032833787 0.017624587
T cells CD8 0.164238305 0.179385472 0.803612769
T cells follicular helper 0.05678301 0.008974855 0.000642719
T cells gamma delta 0.006713041 0.003853098 1
T cells regulatory (Tregs) 0.04168024 0.00900565 0.002718939
Notes: CD8: Cluster of Differentiation 8; CD4: Cluster of Differentiation 4; NK cells: Natural Killer cells; Tregs: T regulatory cells.


